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ABSTRACT Rear-lamp tracking at nighttime plays a momentous role in the advanced driver assistance
system (ADAS), involving collision mitigation, automatic cruise control, automatic headlamp dimming, etc.
Most of the existing tracking methods based on monocular camera leverage on color features. However, such
tracking methods can be easily influenced by background clutter, illumination change, distance variation,
and occlusion. In this paper, we propose an evolutionary adaptive rear-lamp tracking method at nighttime,
in which a novel genetic algorithm powered by the probabilistic bitwise operation (PBO) is utilized. Also,
to improve the robustness against various environments, a balanced fitness function is proposed by taking
color information, symmetry, spatial relationship, and rigidity into account. Especially, a series of adaptive
thresholds based on rear data in HSV color space is proposed to exploit color information reasonably with
respect to our task. A strategy to deal with occlusion is also proposed, which relies on color information
and rigidity. Moreover, to our knowledge, there is no publicly available dataset for rear-lamp tracking at
nighttime. To fill the gap between the real-world application and the theoretical research, we create a novel
dataset, which contains diverse traffic conditions at nighttime. The experimental results indicate that our
method outperforms comparative online tracking methods in terms of success rate and center location error.

INDEX TERMS Nighttime rear-lamp tracking, evolutionary algorithm, probabilistic bitwise operation.

I. INTRODUCTION
More than half of all traffic deaths occur after dark and a large
percentage of road injuries are attributed to lack of clarity
of vision at nighttime [1], [2]. In this paper, we propose to
automatically track the rear-lamps of the preceding vehicle
at nighttime, in order to make contributions to the advanced
driving assistance system (ADAS). For example, our pro-
posed rear-lamp tracking method can be useful for the traffic
status understanding (e.g., the status of the brake light or the
turn signal light), collision mitigation, automatic cruise con-
trol, automatic headlamp dimming, etc. On the other hand,
although the LIDAR sensor can obtain 3D information which
can possibly increase the success rate of rear-lamp tracking,
despite its high cost, it also has range limitations. In this paper,
we aim to design a rear-lamp tracking system that depends on
a single monocular camera, which can be a part of the driving
recorder.

Previous studies have given less consideration on
rear-lamp tracking at nighttime. Most existing researches
on vehicle tracking or detection have been focused on
the daytime environment (e.g., [3]). However, tracking or
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detection at nighttime can be more challenging because
of the low-light environment and complex light sources.
E.g., under the low-light environment, the contour of a vehicle
can hardly be perceived. Instead of detecting the vehicles
directly, rear-lamp detection can be indirectly applied for
vehicle detection at nighttime [4]. Following the same idea,
vehicle tracking can also be handled by rear-lamp tracking.
On the other hand, owing to the lack of visual features,
existing online tracking methods, such as [5]–[8], cannot
deal with the problem well as shown in our experimental
result. Fig. 1 shows some examples of tracking results from
an image sequence. As the sequence progresses, the scale
of rear-lamp regions changes and a variety of light sources
appear to include street lamps, traffic lights, the headlight
of opposite vehicles, reflection from the ground, etc., which
makes the tracking task challenging.

Rear-lamp tracking can be realized in a tracking-
by-detection fashion. Most of the existing detection meth-
ods consist of two steps: 1) candidate regions sampling;
2) optimization based on candidate regions. In the first step,
since the rear-lamps emit red light, features are consid-
ered to be effective for sampling candidate regions, such as
RGB [9]–[11], HSV [12], [13], and YCbCr [14]. The second
step is to distinguish the rear-lamps from candidate regions
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FIGURE 1. Examples of rear-lamp tracking under mixed light sources and scale variation at nighttime. (a)∼(d) are different frames from the same
sequence, with the frame number shown at the top left. The red bounding boxes illustrate our tracking results. Cyan, magenta, yellow, blue bounding
boxes illustrate the tracking results of [5]–[8] respectively.

in order to alleviate the drift problem of tracking caused by
other light sources. Existing methods propose to detect the
symmetry of two rear-lamps by normalized cross-correlation
[12] and color information [10]. However, such methods rely
on fixed thresholds, which could cause results to change with
the environment.

There also exist some rear-lamp datasets at nighttime
for the detection purpose (e.g., Sun Yatsen University
Night-time Vehicle Dataset [15]), with the limited number
of annotations based on independent images. In this paper,
a nighttime rear-lamp tracking dataset is created. It contains
50 annotated sequences (19558 frames) with different types
of vehicles, traffic situations, and environments (e.g., illumi-
nation variation, scale variation, occlusion, and background
clutters).

To tackle the problems described above, in this paper,
a robust evolutionary rear-lamp tracking method at nighttime
is proposed. The main framework is powered by a variant of
genetic algorithm (GA) embedded with probabilistic bit-wise
operation (PBO) [16], which replaces the traditional genetic
operations such as crossover and mutation, to increase the
ability to prevent the algorithm from falling into local opti-
mum. In order to adopt PBO to our problem, we propose
a balanced fitness function by considering color informa-
tion, symmetry, consistency of tracking results between adja-
cent frames, and rigidity. Here, color information is mainly
extracted based on a series of adaptive thresholds in HSV
color space and location relationships. Also, a strategy for
dealing with occlusion is proposed. In conclusion, the main
contributions of this paper can be summarized as follows:
• A novel evolutionary algorithm with a balanced fitness
function is applied for rear-lamp tracking.

• A series of adaptive color thresholds and a strategy
for dealing with occlusion are proposed for further
improvement.

• A large-scale rear-lamp tracking dataset at nighttime is
originally built with annotations.

II. RELATED WORKS
A. REAR-LAMP DETECTION AT NIGHTTIME
As the claim given by Schamm et al. [4] that vehicle detection
at nighttime can be through rear-lamp detection, rear-lamp
detection at nighttime is important, well studied, and can be
the fundamental of rear-lamp tracking. The research field is
usually divided into two steps: 1) candidate regions sampling;

2) candidate regions optimization, as is mentioned in Sect. I.
We review related works for rear-lamp detection at nighttime
from the aspects of the two steps.

In the first step, because rear-lamps are red, which is an
important property, most methods employed various color
spaces to solve the problem. Chen et al. [9] proposed to
exploit the contrast between the rear-lamp and the back-
ground so that the candidate regions can be extracted and
sampled. The contrast was emphasized by transfer RGB
images to single-channel images. O’Malley et al. [12]
decided thresholds in HSV color space, which were deter-
mined according to worldwide regulations and real-world
conditions, to sample candidate regions. Casares et al. [10]
proposed to sample the candidate regions by locating the
region that is red or red surrounded by white. Jeong et al. [11]
proposed a tone-mapping process to locate rear-lamps.
Nakane et al. [13] combined PBO with the thresholds in [12]
and the strategy in [10]. The method of [13] is our previous
work, which aims at detecting the rear-lamps from a single
image, rather than videos.

The second step is to cluster the candidate regions into the
positive (rear-lamp) or the negative (other luminous sources).
Firstly, the shape of the rear-lamp depends on the design, thus
it cannot be handled by geometric rules. Some researchers
concentrated on the property of symmetry, estimated by nor-
malized cross-correlation [12] and color information [10].
Secondly, the part-based models that measure the spatial
relationships are also effective. E.g., rear-lamps and license
plates have determined location relationships, which can be
detected by Markov [17] random field or Gaussian mixture
model [18]. Thirdly, this step can also be tackled with by deep
learning [19].

Apart from the special researches, other object detection
methods are supposed to be applied to rear-lamp detection.
1) Feature-based detection. The histogram of oriented gra-
dient (HOG) [20] was good at measuring the whole fea-
ture and could be combined with supported vector machine
(SVM) [21], which was applied to vehicle detection [22].
Scale-invariant feature transform (SIFT) [23] and speeded-up
robust feature (SURF) [24] measured local point features.
2) Template matching. As representative methods, GA [25],
particle swarm optimization (PSO) [26], and determinis-
tic crowding (DC) [27] based template matching was able
to locate objects. Best-buddies similarity (BBS) [28] and
deformable diversity similarity (DDIS) [29] had the ability
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to deal with deformation between the template and target.
3) Machine learning. Once the training dataset is large
enough, convolutional neural networks (CNN) based object
detection, such as the one-stage you look only once (YOLO)
[30] and single shot multibox detector (SSD) [31], as well as
two-stage Faster R-CNN [32], performed much better than
other methods, including other machine learning methods.
But they also usually face the challenging of training dataset
creation.

B. REAR-LAMP TRACKING
As an object tracking problem, rear-lamp tracking can be
solved by online tracking methods. Sevilla et al. [7] proposed
distribution fields for tracking (DFT), which built an image
descriptor using distribution fields. Zhang et al. [6] proposed
compressive tracking (CT), which compressed the samples
by a sparse matrix and employed naive Bayes classifier to
classify haar-like features. Henriques et al. [5] proposed cir-
culant structure of tracking-by-detection with kernels (CSK).
Oron et al. [8] proposed locally orderless tracking (LOT),
which automatically estimated the amount of local (dis)order
in the target. Nevertheless, the online tracking methods
are not the special methods for rear-lamp tracking and are
difficult to deal with the problem in real traffic environments.

Existing special researches on rear-lamp tracking at night-
time are based on the detection. O’Malley [12] extended
their detection method to tracking. Li et al. [33] proposed
to track rear-lamps by vehicle detection and symmetry

analysis, but their method was not conducted experiments at
nighttime. Vancea et al. [19] proposed to sample candidates
by thresholding and pair the candidates by deep learning,
then extended the detection to tracking. However, existing
rear-lamp tracking methods are experimented with simple
backgrounds and without real traffic environments.

In this paper, we propose a novel robust evolutionary
rear-lamp tracking method at nighttime, which is based on
refined GA with a balanced fitness function. The function
also considers color information, but the thresholds are adap-
tive according to the environment. And a strategy to cope with
occlusion is also proposed. The proposed method is evaluated
in diverse real complex conditions.

III. METHODOLOGY
A. OVERVIEW
Given an image sequence of a driving record at nighttime,
the locations of two rear-lamps in the first frame are given by
the user (denoted by r1), which follows the problem setting
of online tracking [5]–[8]. The objective of tracking is to
automatically locate the rear-lamps from the second frame,
with the locations of two lamps denoted by r2,...,n. The track-
ing result of t-th frame rt is defined as a set consists of the
left bounding box r lt and the right bounding box rrt . With
located rt , in (t + 1)-th frame, a region of interest (ROI) is
located according to t-th frame as shown in Fig. 2. The ROI
is represented by a green bounding box, in which there are
randomly generated candidate boxes at the initialization step

FIGURE 2. The overview of our method. (a) t-th frame in the sequence with the tracking result represented by two red bounding boxes.
(b) The optimization procedure of frame t + 1 by PBO. The cyan boxes are the randomly generated initial candidates, which form the first
generation in PBO. (c) The tracking result of (t + 1)-th frame.
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of PBO. Especially, the tracking result of t-th frame is also
inherited as a candidate to ensure the consistency of tracking
results. Each individual in PBO consists of parameters to
define a boxed pair, and parameters are encoded into binary
chromosomes. During the generation iteration of PBO, genes
are flipped according to a probability calculated from the
bit order and the fitness value. To estimate rt+1, the elite
of the last generation is decoded back to parameters in real
number and then passed through the strategy for dealing with
occlusion at last. We will then introduce each step in detail.

B. LOCATING ROI
Given the (t + 1)-th frame and the tracking result of the
last frame rt , rt+1 is considered to be near rt because
rear-lamps should not be displaced significantly in two adja-
cent frames. In our algorithm, the ROI of (t + 1)-th frame,
which potentially contains the rear-lamps, is defined by

ROIt+1 = λrmt , (1)

where rmt is the minimum bounding box that can contain both
r lt and r

r
t . λ is a scaling factor which is set to 2 throughout

this paper. That is, the ROI of frame t + 1 is determined by
enlarging the neighborhood region of rt .

C. PBO BASED GA
1) SIMPLE GA
Simple GA [34] encodes parameters into chromosomes
and explores the optimum solution by iterating the genetic
operations, including selection, crossover, and mutation.
Specifically, GA begins with a potential solution space,
named population, which consists of a number of individ-
uals. Each individual corresponds to a chromosome, while
each chromosome is made up of a series of genes. Usually,
the chromosome is encoded into binary codes, in order to sim-
ply simulate heredity and evolution. The population evolves
for a predetermined number of generations. The evolution of
each generation involves the computation of fitness and the
operation of selection, crossover, and mutation. Meanwhile,
the elite of each generation is saved and inherited from the
next generation. The decoded parameters from the elite in the
last generation are the optimum solution given by GA.

2) PBO
GA could fall into local optimums easily, owing to the
insufficient ability of diversity preserving when the solu-
tion space is large [35]. Hence, preserving genetic diversity
during the evolution process is a crucial factor for effec-
tive solution search [36]. We adopt PBO [16], which is an
individual-independent bit flip operation calculated accord-
ing to the fitness and bit order, to replace crossover and
mutation. PBO flips each bit in the chromosome with the
probability

P = ωmax exp(−
1
2
(
b2

s2b
+
f 2

s2f
)), (2)

where b denotes the normalized bit order (the maximal bit
order is defined as the left-most bit) in one parameter, f
denotes the fitness value, sb and sf are the parameters for
controlling the smoothness of distribution, and ωmax denotes
the max value of the distribution. The description of PBO is
shown in Fig. 3.

FIGURE 3. Illustration of PBO. PBO flips each binary bit by probability P .
P is calculated according to bit order b and fitness f , where the maximal
b is defined as the left-most bit.

PBO also employs annealing selection with the rate of Pa
for controlling the convergence, which represents the proba-
bility of an individual to be selected. For the i-th generation,
Pa is calculated by

Pa =
1.0− exp(mG i)

exp(m)− 1.0
(1.0− Pmin)+ 1.0, (3)

where m is the parameter to control the smoothness of the
distribution, G denotes the predetermined number of genera-
tions, and Pmin is a constant.

3) OPTIMIZATION
Each chromosome in our method is encoded with six parame-
ters as shown in Fig. 4. Both rear-lamps are supposed to be the
same size. Minimal width wmin and height hmin are defined.
Hence, w = αwmin, h = βhmin. In this way, in stead of w and
h, only integers α and β need to be encoded and optimized.

FIGURE 4. Parameters to represent a tracking result in optimization. The
ROI is illustrated by a green bounding box, and the rear-lamp regions are
represented by two red bounding boxes. There are six parameters in total,
including the upper-left coordinates of the left rear lamp (x0, y0),
the width of both rear-lamps w , the height of both rear-lamps h,
the horizontal distance between the two rear-lamps l , and the vertical
distance between the two rear-lamps dy .
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Also, rt is added to the first generation to accelerate the
convergence.

We design a balanced fitness function, which is defined by

f =
6∑
j=1

ωjfj, (4)

where fj denotes the j-th of six terms, andωj denotes the corre-
sponding weight. With letting

∑6
j=1 ωj = 1 and normalizing

each fj to [0, 1], the problem is defined as a maximization
problem of Eq. 4 within [0, 1]. The weights are empirically
determined and fixed throughout the experiments:ω1 = 0.10,
ω2 = 0.60, ω3 = 0.10, ω4 = 0.05, ω5 = 0.10, and
ω6 = 0.05.
The first term f1 considers the spatial relationship, which

is calculated by

f1 = 1.0− 2|d ′y − 0.5|, (5)

where d ′y =
dy−dmin
dmax−dmin

is the normalized dy to satisfy f1 ∈

[0, 1], in which dmax = h − hmin, and dmin = −dmax . Eq. 5
turns out to be closer to 1 when dy → 0 because we suppose
the heights between the left and the right rear-lamps are the
same.

TABLE 1. Adaptive thresholds.

The second term f2 considers color information, in which
adaptive thresholds are proposed. Casares et al. [10] and
Nakane et al. [13] utilized the fixed thresholds to extract red
and white regions, while the extraction result of rear-lamp
regions by color can change due to different illuminations.
To solve this problem, based on rear-lamp images, we statis-
tically cluster the red pixels in rear-lamp regions into three
clusters, as shown in Table 1. In the ROI of each frame, more
pixels within a cluster of the ‘‘red’’ represents the cluster is
more probably adaptive. For this reason, the cluster of the
‘‘red’’ is selected by

max


C({(x, y)|HSV(x, y) ∈ M1, (x, y) ∈ ROI′}),
C({(x, y)|HSV(x, y) ∈ M2, (x, y) ∈ ROI′}),
C({(x, y)|HSV(x, y) ∈ M3, (x, y) ∈ ROI′}).

(6)

In Eq. 6, C(·) is the function of counting pixels, HSV(·)
is the function of extracting HSV values, M1∼3 are cluster
1∼3 of the ‘‘red’’ respectively shown in Table 1, and ROI′ is
the center partition of the ROI, where the ROI′ remains the
region from the height of 1

4 to 3
4 . After selecting the cluster,

f2 is calculated by

f2 =
1
4
(
CiL + CiR

2Si
+
CoL + CoR

2So
), (7)

Algorithm 1 The Strategy for Occlusion
input: rt , Et+1
output: rt+1
if CiL = 0 & CoL = 0 then
r lt+1 = r lt , r

r
t+1 = Ert+1

end if
if CiR = 0 & CoR = 0 then
r lt+1 = E lt+1, r

r
t+1 = rrt

end if
if ρ(r lt , r

l
t+1) ≥ 0.8 then

r lt+1 = Ert+1 − E
r
t+1

rrt −r
l
t

rrt
, rrt+1 = Ert+1

else if ρ(rrt , r
r
t+1) ≥ 0.8 then

r lt+1 = E lt+1, r
r
t+1 = E lt+1 − E

l
t+1

r lt−r
r
t

r lt
else
rt+1 = Et+1

end if
return: rt+1

where CiL and CiR are the counting number of the ‘‘red’’
pixels inside the left and the right rear-lamp bounding boxes,
respectively, Si denotes the sum pixel number within the
candidate region, CoL and CoR are the counting number of
the ‘‘white’’ pixels on the bounding box of the left and the
right bounding boxes, respectively, and So denotes the sum
pixel number on the bounding box of candidate region.
f3 and f4 consider the symmetry of rear-lamps. Among

them, f3 evaluates the fitness by the visual (color) symmetry,
which is calculated by

f3 = 1.0− |
CiL
Si
−
CiR
Si
|, (8)

i.e., a closer difference of effective pixels between the left and
right rear-lamps leads to a larger f3. Owing to the rear-lamp in
this research belongs to the preceding vehicle, f4 utilizes the
zero-means normalized cross-correlation (ZNCC) computed
from the grayscale image, which is calculated by

f4 =
ZNCC(I1, I2)+ 1.0

2.0
,

ZNCC(L,R)

=

∑D
p=1 (I1(p)−mean (I1)) (I2(p)−mean (I2))√∑D
p=1 (I1(p)−mean (I1))2 (I2(p)−mean (I2))2

,

(9)

whereD represents the number of pixels in both the left patch
I1 and the right patch I2 which are illustrated in Fig. 4. mean(·)
is a function to calculate the mean intensity value of an input
patch and p denotes a pixel. Patches with the larger ZNCC
value are considered a better match. The fourth part f4 makes
contribution to preventing the bounding box from the false
pairing between rear-lamp and the background.

The fifth part f5 evaluates the relationship to the last frame.
The result rt+1 is considered more probably to be located
within a range surrounded with rt , which is a set that consists
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TABLE 2. List of the attributes tagged to the sequences.

FIGURE 5. The distribution of the attributes. The attribute that concerns
most sequences is IV (25 sequences), the least is OC (3 sequences).

of the left and right bounding boxes, thus a threshold of this
range γ = 1

4 · r
l
t =

1
4 · r

r
t . Then f5 can be described as

f5 =

 1− 2
|rt+1 − rt |2

f max
5

, if |rt+1 − rt |2 > γ

1, otherwise
(10)

in which f max
5 is a constant to satisfy f5 ∈ [0, 1], rt and rt+1

are vectors that contain both the center points of the left and
the right bounding boxes in two consecutive frames. The
sixth part f6 evaluates the rigidity. The change of the structure
of left and right rear-lamps from frame t to t + 1, such as
mutual distance and length-width ratio, would not be radical,
i.e., rear-lamps in adjacent frames have rigidity. The rigidity
is evaluated by

f6 =
1
wI

(
pt+1

pt+1 − pt
+

qt+1
qt+1 − qt

),

p =
l
w
, q =

w
h
, (11)

where wI denotes the width of the whole image, and guaran-
tees f6 ∈ [0, 1].

The rigidity also helps to improve the results. The results
given by GA without rigidity are not permitted. Specifi-
cally, when the results given by optimal parameters occur
ρ(r lt , r

l
t+1) ≥ 0.8 or ρ(rrt , r

r
t+1) ≥ 0.8, where ρ(·, ·) denotes

Euclidean distance, the corresponding r lt+1 or r
r
t+1 is melio-

rated by rigidity. Specifically,

(x, y)lt+1 = (x, y)rt+1 − (x, y)rt+1
(x, y)rt − (x, y)lt

(x, y)rt
,

if ρ(r lt , r
l
t+1) ≥ 0.8, (12)

similarly, (x, y)rt+1 can bemeliorated when ρ(rrt , r
r
t+1) ≥ 0.8.

TABLE 3. Comparison between proposed method and online tracking
methods with respect to average success rate (%).

FIGURE 6. Comparison of average CLE over the whole dataset
(300 frames × 50 sequences). Best view in color.

4) THE STRATEGY FOR OCCLUSION
If the occlusion occurs partially, the part that is not occluded
can be the evidence for tracking, so the complete occlusion
is mainly discussed here. When the complete occlusion hap-
pens, there could be two conditions: 1) when our method
locates in other lamp-like regions that can be resolved by
Eq. 12; 2) when our method suffers a series of negative
chromosomes, meaning CiL = 0 & CoL = 0 or CiR = 0
& CoR = 0. For the second condition, rt+1 is set the same
as rt . The strategy is summarized in Algorithm 1, in which
Et+1 denotes the results of frame t + 1 that are not processed
with the strategy for occlusion, and the superscript l and r
denote left and right, respectively.

IV. EXPERIMENT
A. NIGHTTIME REAR-LAMP TRACKING DATASET
In order to evaluate rear-lamp tracking at nighttime, a novel
dataset is created in this research. The dataset contains
50 sequences consist of 19558 frames and 39116 annotated
bounding boxes. Each sequence is taken by a driving recorder
in 1280 × 720 pixels resolution. Sequences are collected
under different traffic situations and annotatedwith attributes,
including illumination variation (IV), scale variation (SV),
occlusion (OC), background center location error (CLE)
and success rate (SR) are employed as evaluation criteria,
which are common under the scenario of object tracking
(e.g., [37]–[39]). In the experiment, the average processing
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FIGURE 7. Comparison on attribute-wise subset of the dataset. Best view in color.

time of our methodwith respect to all the sequences is 3.57fps
(implemented on Windows with Intel i9-10900X 3.7GHz
and 32GB RAM, the programming language is C++). Both
CLE and SR are defined on a single rear lamp. CLE is the
distance between the center of ground truth and the result.
In a single frame, the tracking result of a single rear lamp is
treated as successful if the overlap coefficient of bounding
boxes is more than 0.5. In this paper, the overlap coefficient
is calculated by dividing the intersection of the ground-truth
box and the result box by the smaller one. Because rather
than the sizes of bounding boxes, we care more about the
position of the tracking result in this task. Background clut-
ters (BC), far (FA), and close (CL) for analysis. The infor-
mation of each attribute is summarized in Table 2. The
number of sequences with respect to each attribute is shown
in Fig. 5.

B. EVALUATION CRITERIA
Center location error (CLE) and success rate (SR) are
employed as evaluation criteria, which are common under the
scenario of object tracking (e.g., [37]–[39]). Both CLE and
SR are defined on a single rear lamp. CLE is the distance
between the center of ground truth and the result. In a single
frame, the tracking result of a single rear lamp is treated
as successful if the overlap coefficient of bounding boxes
is more than 0.5. In this paper, the overlap coefficient is
calculated by dividing the intersection of the ground-truth box

and the result box by the smaller one. Because rather than the
sizes of bounding boxes, we care more about the position of
the tracking result in this task.

C. RESULTS AND ANALYSIS
The quantitative experiment consists of the evaluation of
overall performance and attribute-wise performance. Online
tracking algorithms CSK [8], DFT [7], CT [6], and LOT [5]
are employed for comparison.

1) OVERALL PERFORMANCE ANALYSIS
The average success rate and CLE plots over the whole
dataset are shown in the last row of Table 3 and Fig. 6
respectively. Generally, our method outperforms other online
trackers with respect to both criteria. It is worth pointing out
that during the first 50 frames, especially the beginning of
the frames, the curve of our method is inferior to some of
the other methods. The reason is that our method tends to
track the part of the rear-lamp which fits the color model best,
rather than the whole region recognized by the human eye,
which results in a relatively larger average CLE. On the other
hand, as can be observed from the trend of the CLE curves,
our method tracks the target well over a long period of time
comparing against other trackers as the CLE increases after
losing the target. There exists a peek at the red curve around
the 130-th frame because a challenging tracking scenario that
leads to failure happens.
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FIGURE 8. Visual comparison between our method and online trackers. Number at the top left of each image indicates the frame ID. Legends are shown
at the top. Best view in color.

2) ATTRIBUTE-WISE PERFORMANCE ANALYSIS
Our dataset is annotated with the attributes in Table 2, in order
to facilitate a more comprehensive analysis on the perfor-
mance. Because each sequence could have more than one
label, each subset probably has an intersection with each
other. The attribute-wise SR is shown in Table 3, and CLE
curves are shown in Fig. 7. As can be observed, our method

outperforms other online trackers in different aspects with
respect to both SR and CLE in the rear-lamp tracking
problem.

3) QUALITATIVE ANALYSIS
The visual results are shown in Fig. 8. Overall, all themethods
can track the rear-lamps to some extent. With the challenging
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TABLE 4. SR (%) comparison by varing the weights.

factors involved (e.g., from the second column in Fig. 8),
some of the methods start to fail. Our proposed method can
track the rear-lamps from first to last in these three sequences.
Especially, Fig. 8(a) evaluates the SV and OC. In frame #128
and #257, the rear-lamp is occluded by a pedestrian and a
bicycle respectively, which leads other methods to failure.
Our proposed method benefits from the strategy for occlusion
to achieve complete tracking results. Fig. 8(b) is a challeng-
ing sequence because of intense IV and SV. In frame #2,
the preceding vehicle is far and small, while in frame 280,
the preceding vehicle is close. The illumination change is
mainly caused by the light from the opposite lane, street light,
and brake light. Our proposed method benefits from adaptive
thresholds to achieve complete tracking results.

Figure 8(c) suffers intense IV and BC, especially in
frame #285. Also, the preceding vehicle keeps its distance
from the camera. In frame #266, the result of our method
(left rear-lamp) drifts due to BC. However, in the following
frames, by benefiting from the balanced fitness function, our
method successes in relocating the target.

4) LIMITATION ANALYSIS
Figure 8(d) suffers intense IV from the headlight of the oppo-
site vehicle, which is closed to the left rear-lamp as shown in
frame #882 and #883. Although our method performs well in
the previous frames before frame #882, it fails in tracking due
to the strong illumination change. It indicates the limitation
of our method that intense IV nearby the rear-lamps is still a
challenging condition for our method.

To show our parameters are reasonably set, we compare
different parameter settings by varying the empirically deter-
mined one (ω1 = 0.10, ω2 = 0.60, ω3 = 0.10, ω4 = 0.05,
ω5 = 0.10, ω6 = 0.05) and the results are summarized
in Tab. 4 with respect to the whole dataset. Each weight is
incrementally increased by 0.20 from 0.10 to 0.90 to show
if a more optimal parameter setting can be found. When a
certain weight is varied, other weights are adjusted with an
equal proportion to make sure that the sum of all weights
equals 1. As can be observed in Tab. 4, as long as any of the
weights is varied, the success ratio will decrease. The 91.29%
of SR is achieved with our empirically determined parameter
setting.

V. CONCLUSION
In this paper, an evolutionary algorithm based rear-lamp
tracking method for nighttime usage is proposed. PBO based

GA is adopted for optimization, with a balanced fitness
function proposed, considering the consistency, color infor-
mation, symmetry, and rigidity. Especially, as to the color
information, adaptive thresholds are proposed. The proposed
method processed occlusion by the analysis of color informa-
tion as well. In evaluation, the proposed method performed
better than the existing online tracking methods.

For future works, firstly, the proposed method sometimes
tracked part of the rear-lamps, without bounding all the
regions of the rear-lamps. Thus to solve the problem by region
growing or rear-lamp edge detection is one of the future
works. Secondly, as one limitation of this paper is that all
the hyperparameters are empirically determined, we would
like to introduce an optimal or adaptive tuning method for
determining the weighting coefficients.
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