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ABSTRACT Recently, wireless sensor networks (WSNs) were perceived as the foundation infrastructure
that paved the way to the emergence of the Internet of Things (IoT). However, a challenging issue exists
when WSNs are integrated into the IoT because of high energy consumption in their nodes and poor
network lifespan. Therefore, the elementary discussions in WSN are energy scarcity in sensor nodes,
sensors’ data exchange, and routing protocols. To address the aforesaid shortcomings, this paper develops
an optimized energy-efficient path planning strategy that prolongs the network lifetime and enhances its
connectivity. The proposed approach has four successive procedures: initially, the sensing field is partitioned
into equal regions depending on the number of deployed mobile sinks that eliminate the energy-hole problem.
A new heuristic clustering approach called stable election algorithm (SEA) is introduced to minimize the
message exchange between sensor nodes and prevent frequent cluster heads rotation. A sojourn location
determination algorithm is proposed based on the minimum weighted vertex cover problem (MWVCP) to
find the best position for the sinks to stop and collect the data from cluster heads. Finally, three optimization
techniques are utilized to evaluate the optimized mobile sinks’ trajectories using multi-objective evolutionary
algorithms (MOEAs). Whilst the performance of the developed work was evaluated in terms of cluster
heads number, network lifetime, the execution time of the sinks’ sojourn locations determination algorithm,
the convergence rate of optimization techniques, and data delivery. The simulation scenarios conducted in
MATLAB and the obtained results showed that the introduced approach outperformed comparable existing
schemes. It succeeded in prolonging the network lifetime up to 66% compared to existing routing protocols.

INDEX TERMS Ant colony optimization, clustering protocol, genetic algorithm, IoT, M2M, multiple mobile
sinks, optimized path, routing protocol, simulated annealing, stable election algorithm, WSN.

I. INTRODUCTION

Wireless sensor network (WSN) is the preferred term adopted
by the academic scholars to describe the “wireless sensor
and control network” or ‘““wireless sensor and actuator net-
work™ [1]. WSN is characterized by small-sized devices
called sensor nodes which have the ability to sense the
surrounding environment and send the sensory data to a
centralized base station (sink node). The sensor nodes are
battery-powered and randomly distributed in the area of
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interest for monitoring and relaying the data of the desired
phenomenon wirelessly in a multi-hop communication [2].
WSNss consist of a tremendous number of sensor nodes that
communicate with each other to form the network. The sensor
network may be semi or fully connected because the sensor
nodes are separated by a geographical distance when they are
deployed over a wide geographical area [3], [4].
Autonomous wireless sensors serve as the gist of the
WSNs, and therefore, WSNs can be identified as one of
the Internet of things (IoT) pillars. The IoT is a recog-
nized paradigm that exemplifies the interrelation of ubig-
uitous computing resources with diverse components in
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FIGURE 1. A simplified loT system.

a dynamic environment. Different technologies can be
utilized to implement assorted IoT applications such as
(i) machine-to-machine (M2M) communication that enables
two or more devices to communicate with each other with-
out human intervention, (ii) context-aware computing that
senses the surrounding environment and alters system behav-
ior accordingly, and (iii) low power and low data rate wireless
communication (e.g., radio frequency identification (RFID),
Zigbee, etc.) that provides short-range communication at
minimum power consumption. The common examples of
IoT application including but not limited to wearable devices
like a smartwatch for healthcare applications, a smart lock
for smart home appliances, and drones or smart vehicles
for domestic industrial automation [5], [6]. The international
telecommunication union (ITU) depicted a comprehensive
vision of 0T as the transformation from anytime connectivity
for anyone at anywhere to the connectivity for anything [7].
Fig. 1 illustrates a simplified block diagram for IoT system.
The sensors are used to amass the sensory data at partic-
ularized time intervals. The microcontroller formulates the
data packets that include protocol stack control messages to
proceed with medium access control operations. The trans-
mission unit performs packet modulation and transmission
over the wireless link. The gateway (base station or sink
node) has two communication paths, the first is a low-power
wireless link to communicate with the sensor nodes, and
the second is an Internet connection to store and/or retrieve
the data from the cloud. The gateway has an infinite energy
source and may execute complex algorithms to curtail the
number of data packets before being stored in the cloud.
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Finally, the sensory data will be transferred to the end-user
for further data analysis where the reports are generated [8].

As stated earlier, the sensor nodes are battery-powered, and
it is not feasible to regularly replace their batteries, especially
for a large number of sensor nodes, while the gateway may be
mains powered. The report of Ericsson mobility articulated
that number of IoT-connected devices will increase from
seven billion in 2017 to twenty billion in 2023 with 19%
annual growth [9]. Therefore, significant efforts are required
in order to replace and safely recycling this number of dispos-
able batteries. Accordingly, the energy-efficient techniques
are demanding in order to prolong the sensor node lifetime
as the sensor nodes anticipate to operate for a long lifespan
without human intervention and any maintenance.

The rest of the paper is formulated as follows: Section II
elucidates the energy hole (hotspot) problems and the sink
mobility types. While Section III scrutinizes the state-of-
the-art researches that are available in the literature and are
relevant to the introduced approach. In Section IV, a com-
prehensive demonstration of the proposed approach is illus-
trated. Section V presents a detailed discussion regarding the
acquired results. Finally, Section VI suggests some future
research directions and the paper is concluded in Section VII.

Il. SINK NODE IN WIRELESS SENSOR NETWORKS

In general, the sensor nodes are deployed in a harsh environ-
ment that makes it difficult to recharge or replace the nodes’
batteries when they are depleted during nodes operation.
Several problems may exist when nodes are drained out of
power, such as communication holes and coverage holes.
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Therefore, several energy-efficient techniques have been con-
ducted in order to maintain the battery power and prolong
the node lifetime [10]. Duty-cycle scheduling is one of these
techniques that enables the sensor node to perform sleep
mode periodically without affecting the WSN operation [11].
Another technique is utilizing an energy-efficient routing
mechanism that balances the energy consumption in every
sensor node [12], [13]. While data aggregation mechanism
is used to integrate similar or different multiple sensory
data into a single packet, and hence a reduction in data
transmission is achieved and node lifetime is extended as
well [14]. The other energy-saving technique is to deploy
mobile sensors that travel across the sensor field and change
their locations depending on the energy level of the other
nodes. A compromised approach is to adopt a mobile sink
instead of a static sink or mobile sensor nodes. The mobile
sink changes its location in the sensing area to gather the
data from the sensor nodes and expand network lifespan.
It is worth noting that most of the aforementioned energy-
efficient techniques can exist together in the same sensing
field [10], [15].

The sensor node depletes abundant energy to perform data
sensing and data transmission towards the sink node. The
sensor nodes closer to the sink node exhaust their residual
energy faster than the farther nodes due to heavy data traffic
while relaying the other sensors’ data. Sensor node deaths
around the sink node will cause topology disruption and
lowering sensing coverage. This situation is called a hotspot
problem and leads to isolating the sink node and hindering the
aggregation of the sensory data across the network. A mobile
sink is employed to alleviate the hotspot problem by visiting
every sensor node in the sensor field during the data collec-
tion phase. However, the sink node traveling may be time-
consuming, especially in large sensor fields, and hence some
packets may be dropped by the sensor nodes due to finite
buffer size. Therefore, effective delay-aware mechanisms are
in demand to reduce packet losses and extend the network
lifetime. Rendezvous points technique is one of the mobile
sink scheduling techniques that reduces the data collection
delay in WSNs. They are sensor nodes or specific locations
in the sensor field in which the mobile sink visits while
collecting sensor field data [16], [17]. The mobility patterns
of the sink node depend on the application area where the
WSN being deployed.

A good summary of the classification of sink mobility
patterns has been provided in [3] and [18]:

1) Random mobility: it is the simplest form of mobil-
ity in WSN as the mobile sink does not need any
network information. Unfortunately, this pattern does
not provide optimal lifetime enhancement due to fre-
quent update of sink position and route reconstruction
accordingly;

2) Predictable mobility: it is also called deterministic
mobility as the sensor nodes can predict the arrival time
and position of the mobile sink because the mobile sink
visits certain nodes periodically to collect the data;
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3) Controlled mobility: it is also called optimized mobility
as the data collection path of the sink node will be
determined based on network parameters such as nodes
residual energy, event location, and sink speed. In addi-
tion, the mobile sink visits certain nodes at a particular
time interval and starts to collect the sensed data until
the node’s buffer becomes empty.

The existing challenges of the static sink in multi-hop and
dense WSN led to utilize the mobile sink for collecting and
disseminating sensory data. Accordingly, the main advan-
tages of using mobile sinks in WSN include [19]:

o Improvement network reliability due to reducing the
contention and collisions while accessing the wireless
medium by collecting the nodes’ data in single or finite
hop transmissions;

« Improve the hotspot region by reducing the dependency
on the relay nodes that are closer to the static sink,
resulting in extending the network lifetime;

« Enhance network connectivity as the mobile sinks can
collect the data from the isolated sensor nodes;

o Sporadic network architecture indicates lowered appli-
cation cost because a limited number of nodes are
required, and the mobile elements are available such as
cars, trains, wildlife, etc.

Ill. RELATED WORKS

The available researches that were handling the hotspot
(energy hole) problem can be assorted into two main cate-
gories based on the sink mobility: static (stationary) sink and
mobile (movable) sink. The previous works are done in the
mobile sink that solved the network performance degradation
issues can be subdivided into the single mobile sink and
multiple mobile sinks. Therefore, employing multiple mobile
sinks in WSNs could improve network performance by shar-
ing the network overhead among the deployed sinks. Over the
past decades, the researchers proposed different approaches
to extend the WSN lifespan. Among them, the most effective
strategy is the determination of the mobile sink path to equal-
ize the sensor nodes’ energy depletion. Hence, the mobile
sink path determination received considerable attention from
academic scholars and researchers due to its importance in
developing IoT-based real-world applications. In the recent
literature, the sink mobility problem classified into two main
categories: (1) optimized mobile sink path without clustering,
and (2) optimized mobile sink path with clustering.

A. OPTIMIZED MOBILE SINK PATH

WITHOUT CLUSTERING

Deng et al. [20] introduced an online algorithm that solved
the issue of data gathering in sensor field with multiple
mobile sinks by primal-dual approach. The main aim of their
approach was to maximize the data transmitted by the sensor
nodes. The online algorithm performed real-time decisions
for the newly employed mobile sink based on the new sink
data capacity and location.
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Thomas and Mathew [21] presented an intelligent method
to locate the best route for the mobile sink based on a mod-
ified travel salesman problem to gather the data from the
sensor nodes. In their proposed approach, the mobile sink
node traveled along the circle’s chord that served as the
maximum communication range of the sensor nodes. Their
intelligent algorithm found out the optimal locations of the
aforementioned chords along the mobile sink path.

Cheng et al. [22] developed a fast and efficient broadcast
(FEB) protocol for asynchronous WSNs with mobile sink.
The sink traveled along the sensing field in a predefined path
depending on the coverage information that was shared with
the sensor nodes before starting the transmission process. The
authors argued that their proposed approach minimized the
broadcast delay and reduced the energy consumption.

Sun et al. [23] presented hybrid positive and negative parti-
cle swarm optimization algorithm (HPNPSOA) to determine
the optimal path for multiple mobile sinks and stop positions
in hexagonal grids. The authors concluded that their proposed
approach eliminated the energy hole problem, reduced net-
work latency, and prolonged the network lifetime.

Gharaei et al. [24] developed energy-efficient mobile-sink
sojourn location optimization (EMSLO) scheme for hetero-
geneous home network. Robovac is employed as a mobile
sink, and the sojourn location was optimized to solve the
energy hole and network coverage problems. The obtained
results from their approach enhanced the coverage time and
improved the network lifetime.

Kumar and Prasanth [25] proposed an optimized path
selection technique for mobile sink based on weighted
rendezvous planning (WRP). Their approach employed
Q-learning-based adaptive zone partition method in order to
partition the sensing field into small regions. The particle
swarm optimization (PSO) algorithm was used to evaluate
the optimum path from the rendezvous to the mobile sink.
The authors argued that the network lifetime was extended
because the energy consumption was reduced in multi-hop
transmissions.

Byun [26] proposed a cost balancing algorithm for mul-
tiple mobile data collectors. His proposed algorithm aimed
at achieving uniform delay while gathering the data from
the stationary sensor nodes. The sensor field was partitioned
into several grids where the mobile collectors traveled to
collect the data. The mobile sinks’ trajectories for the multiple
mobile collectors were determined based on the traveling
distance and the energy consumption of the nodes. The author
argued that the network lifetime was extended by balancing
the energy depletion in sensor nodes.

Zhong et al. [27] introduced a hyper-heuristic framework
(HHF) that intelligently organized the mobile sink move-
ments based on heuristic rules. Based on the prior knowledge
of their networks, predefined low-level heuristics and training
networks were designed and assigned as input to the genetic
programming (GP) algorithm to automatically built-up high-
level heuristics. As a result, the GP algorithm produced the
heuristics with the highest fitness.
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Wang et al. [28] introduced a trajectory scheduling method
based on coverage rate for multiple mobile sinks (TSCR-M)
that utilized particle swarm optimization (PSO) to find the
optimal rendezvous points for the mobile sinks. TSCR-M
integrated the genetic algorithm (GA) for scheduling the
traveling trajectory of the multiple sinks. The authors argued
that the network lifetime enhanced due to the reduction in
node’s energy consumption.

Jain et al. [29] proposed an event-based data transmission
scheme called delay-aware green routing protocol (DGRP)
that created virtual infrastructure by introducing multiple
rings within the sensing field. The location information
updates of the mobile sink in the DGRP scheme were limited
to the sensor nodes that belonged to the designated ring
only. The authors argued that the DGRP employed a single
mobile sink and showed a remarkable improvement in terms
of throughput and nodes’ energy consumption.

Lin et al. [30] aimed at prolonging the network lifes-
pan of heterogeneous WSN by adopting mobile sink. They
introduced DDCF as a data collection mechanism that pri-
marily comprised of two phases: data collection points and
tree topology construction that were executed during each
simulation round. The authors argued that the introduced
mechanism improved the lifespan of the WSN.

B. OPTIMIZED MOBILE SINK PATH WITH CLUSTERING
Zhong and Ruan [31] proposed an energy-efficient routing
technique for WSN utilizing multiple mobile sinks. The
authors studied the effect of mobile sink numbers on network
performance when the clustering method was used to group
the sensor nodes across the erring field. The authors argued
that the optimum number for mobile sinks was three, and
there is no need to deploy more sinks as the sink node cost
increased.

Koosheshi and Ebadi [32] presented multiple mobile sinks
path determination strategy for WSN employed clustering
technique. Their proposed approach divided the sensor nodes
into unequal clusters based on fuzzy logic. The sensing field
was divided into 16 equal regions, and the average residual
energy was calculated in each region to determine the mobile
sinks’ optimum routes. The authors showed that their intro-
duced approach decreased energy consumption and solved
the energy holes that existed in WSNs.

Wen et al. [33] proposed cooperative data collection
algorithm (CDCA) in order to extend the WSN lifetime.
The CDCA algorithm consisted of three phases: network
partition phase, collection points selection and path construc-
tion phase, and speed control phase. Their introduced algo-
rithm began with splitting the sensor nodes into groups and
appointed a mobile sink to each group. The authors argued
that the energy consumption was minimized, and the network
lifetime was extended accordingly.

Wang et al. [34] presented a routing scheme based on
sink mobility with clustering approach. The proposed energy-
efficient scheme divided the sensor field into sub-regions
with equal sizes. Within each sub-region, the sensor nodes
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elected cluster heads and calculated the routing path based
on the optimal consumed energy while transmitting the sen-
sory data to the cluster heads using single-hop or multi-hop
communication.

Sun et al. [35] proposed mobile intelligent computing
based on compressive sensing data gathering (MIC-CSDQG)
algorithm. Their proposed approach was based on multi-hop
data routing among sensor nodes. A clustering approach was
adopted with compressive sensing data gathering mechanism
to minimize the sampling data between cluster members.

Krishnan et al. [36] introduced a modified clustering tech-
nique based on low energy adaptive clustering hierarchy
(LEACH) protocol for WSN utilizing multiple mobile sinks.
The mobile sinks traveled along the sensing field to collect the
data from the cluster heads, and their paths evaluated using
the ant colony optimization (ACO) technique. The authors
depicted that their developed approach eliminated data loss
and improved the network lifetime.

Vijayashree and Dhas [37] proposed a data collection strat-
egy for multiple mobile sinks with a clustering scheme. The
cluster heads were selected based on nodes’ residual energy,
while the data collection path for the multiple mobile sinks
evaluated using an artificial bee colony (ABC) algorithm.
The obtained results from their proposed approach showed an
effective reduction in redundant data transmission, conserved
nodes’ energy, and enhanced the network lifespan.

Donta et al. [38] proposed a hierarchical agglomerative
clustering-based data collection (HACDC) algorithm. The
HACDC approach determined the optimal rendezvous points
using unsupervised machine learning for 3D WSNs. In addi-
tion, a novel statistical approach was used to find the optimal
number of clusters in HAC and set the rendezvous points at
the center of each cluster.

Pang et al. [39] proposed collaborative data collection
scheme that utilized multiple mobile sinks. The authors intro-
duced a path equalization algorithm (PEABR) to determine
the optimal path for the mobile sinks when visiting the cluster
heads. The network was divided into clusters, and the cluster
heads were chosen based on their residual energy to collect
the sensory data from cluster members. The authors argued
that their proposed approach was feasible while balancing
the path length of each mobile sink without increasing the
additional path calculation cost.

Liu et al. [40] proposed iterative sensor node association
and trajectory planning policy to reduce the age of infor-
mation (Aol) of each ground sensor node. Dynamic pro-
gramming was used by the trajectory planning algorithm to
evaluate the optimum value of the maximum and average
Aol for the unmanned ariel vehicle (UAV). Their proposed
scheme had an optimized clustering weight that guaranteed
a balance between the uploading time of the sensor node
and the flight time of the UAV when different simulation
scenarios were executed.

This paper was motivated by the recent IoT applications
that implicitly needed sink mobility. For instance, the per-
sonal digital assistance (PDA) handled by a rescuer moving
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across a disaster area to search for any survivors [41] and
may other applications with similar scenarios surveyed in
[42], [43]. While the sink mobility enhanced the network
lifetime, it also incurred route adjustments overhead to the
routing protocol. In a conventional way, there is only one
stationary sink resided at the center of the sensing field to
gather the sensory data through single-hop or multi-hop trans-
missions. Therefore, the energy consumption of the nodes
nearer to the sink was high and caused energy holes in
WSNs. While in cluster hierarchy, all the cluster members
sent their data to the cluster head, and unbalance energy
depletion existed due to the increased burden on these cluster
heads. In order to address the aforementioned problems, this
paper employed mobile sinks in order to reduce the number
of hops during data transmissions, achieve uniform energy
depletion among the sensor nodes, and thereby prolong the
network lifespan. An optimized path determination strategy
is proposed with clustering techniques for both homogeneous
and heterogeneous sensor networks. Fig. 2 illustrates the
hierarchical structure of the proposed approach and the major
contributions are as follows:

1) Developing a stable election algorithm (SEA) that
enables the sensor nodes to form clusters and the cluster
heads are selected based on heuristic rules. The SEA
is capable of preventing unnecessary frequent cluster
head selection and/or rotation in homogeneous and
heterogeneous WSNs;

2) Developing a cognitive sojourn location determina-
tion algorithm based on minimum weighted vertex
cover problem (MWVCP). The introduced algorithm
searches for the optimum minimum number of virtual
vertices that cover the sensing field, while each virtual
vertex must cover a maximum number of cluster heads
within its vicinity. These sojourn locations represent
the best locations for the mobile sinks to stop while
traveling across the sensing field to collect cluster
heads’ data;
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3) Developing an optimized mobile sink trajectory based
on a multi-objective evolutionary algorithm (MOEA).
The optimized mobile sinks’ paths are calculated
using the sojourn locations’ coordinates in which four
mobile sinks are deployed to gather the sensing field
data. In addition, three optimization techniques are
employed to determine the best technique that provides
efficient data collection and faster convergence to the
optimal solution.

IV. PROPOSED APPROACH

In this paper, we assume that the sensor field consists
of 200 randomly deployed sensor nodes distributed over a
geographical area (200 x 200 m?). The sensor nodes are sta-
tionary and aware of their geographical locations only when
certain sensor node is elected to be a cluster head. Multiple
mobile sinks are employed to gather the sensory data. The
sensor nodes are grouped together to form a cluster. The
cluster head is responsible for collecting cluster members’
data within the single-hop transmission. The sink nodes travel
along the field freely (aerial or terrestrial movement without
obstacle). their optimized moving paths are calculated when
the cluster heads locations are received at the base station.

A. NETWORK MODEL

In this paper, three types of networks have been employed
to provide comprehensive simulation scenarios of all avail-
able IoT-based WSN applications. The sensor nodes in the
introduced models are assumed to be stationary, unaware of
their geographical location except when the node becomes a
cluster head, identical in terms of sensing facility and commu-
nication range. All the networks models have N sensor nodes
and can be described as follows:

1) Homogeneous network (single-tier)
In this model, all the sensor nodes are similar in having
the same initial energy when the simulation started. The
sensor node with initial energy (ep) is called the normal
node. The total initial energy of the homogeneous sen-
sor network can be expressed by:

N
Erotal 1—tier = Z €0 (n
i=1

2) Two-tier heterogeneous network
In this model, the sensor nodes are classified into two
main groups: normal and advanced nodes. The fraction
of advanced nodes in the heterogeneous network is 7.
Therefore, the number of advanced nodes in the sensor
field is nN, and the advanced node is equipped with
o times more energy than the normal node. Hence,
the total initial energy of a two-tier heterogeneous sen-
sor network can be expressed by:

Etotal 2—tier = N(l — n)eg + nNeo(1 + @)
= Neop(1 + an) )
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3) Three-tier heterogeneous network

In this model, the sensor nodes are characterized into
three main classes: normal, advanced, and supernodes.
The fraction of advanced and supernodes in the het-
erogeneous network is n. Let ng is the percentage of
supernodes from n, and Nn(1 — ng) is the total number
of advanced nodes whilst the remaining N (1 — n) is the
number of normal nodes in the three-tier heterogeneous
network. The supernode is equipped with 8 times more
energy than the normal node. Accordingly, the total ini-
tial energy of a three-tier heterogeneous sensor network
can be expressed by:

Etotal 3—tier = Nnnpeo(1 + B)
+ Nn(1 — ng)eg(1 + «)
+N(1 — n)eg
= Neo(1 + n(a +no(B —))) (3

B. ENERGY CONSUMPTION MODEL

The first order radio model introduced by Heinzelman in [44]
is employed in this paper for later energy consumption per-
formance simulation. Fig. 3 depicts the block diagram of the
adopted radio model whilst the mathematical representation
is given in Eq. 4 and Eq. 5 for transmission and receiving
energies, respectively.

Erx(P,d) = Ecircuit(P) + Eamp(P, d)
= Ecireuit X P+ Eamp X P % d* )
Erx(P) = Ecircuir(P)
= Ecircuir X P S

The E7y is the energy dissipated during transmission of
a packet, and Egy is the energy consumed during receiving
a packet. While P is the packet size and d is the geograph-
ical distance between the cluster head and its members and
between the mobile sink and the cluster heads, which is
assumed to be fixed in the introduced simulation scenarios.
The E;ircyir 1s the depleted energy in the transmitter and
receiver electronic circuits that is equal to 50 nJ /bit while the
consumed energy in amplifier circuit Egyp is 100 pJ /bit / m?
for attaining a specific level of signal-to-noise ratio (SNR).

The cluster heads and cluster members can communicate
directly; this type of communication is called intra-cluster
communication. We assume that the mobile sink can reach
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(a) No. of mobile sinks = 3 (b) No. of mobile sinks = 4

(¢) No. of mobile sinks =5

(d) No. of mobile sinks = N

FIGURE 4. Sensing field segmentation based on the number of deployed mobile sinks.

each cluster head within the mobile sink’s transmission range
using a single-hop communication. The cluster members can-
not send any data to the mobile sink directly. At the same time,
a symmetric radio channel is employed during the simulation
to ensure that the transmission energy between two nodes
remains the same for a fixed SNR.

C. CLUSTER FORMATION

The number of sensing field partitions depends on the desired
number of the deployed mobile sinks. The introduced seg-
mentation procedure works for square sensing fields only.
The division procedure targets to divide the field into mul-
tiple equal areas, and each area should have the same side
length. Therefore, each side of the sensing field is divided
into equal N congruent segments, where N is the number
of deployed mobile sinks. Then, choosing a corner for an
odd number of mobile sinks or the middle point of the field
side for the even number of mobile sinks to start the sens-
ing field division process. Once the starting point is identi-
fied, the total number of sides’ segments is divided by the
number of mobile sinks to determine how many segments
each area should have. Finally, a line is drawn from the
starting point of each segment to the center of the sensing
field to determine the segment border. Fig. 4 illustrates how
the sensing field is divided for 3, 4, 5, and N mobile sinks
respectively.

The sensor field is portioned into four equal regions in
order to achieve distributed cluster head selection that solved
the scalability issues while prolonging the network lifetime
by ultimately minimizing the energy depletion in sensor
nodes. The topology of the sensor network is unexpected
due to random node deployment in the sensing field. The
random deployment of sensor nodes does not guarantee that
each subregion of the sensing field will have all three types
of nodes (normal, advanced, super). It could be possible that
a certain region may not contain any advanced and/or super
nodes when random node deployment is adopted. Therefore,
the main goal of the introduced clustering algorithm is to
reduce the overall energy depletion by utilizing a new heuris-
tic mechanism that reduces the unnecessary re-clustering
frequency.
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The introduced stable election algorithm (SEA) conserves
sensors’ energies by eliminating cluster formation message
exchange while providing stable distributed clusters. The
SEA consists of three phases: cluster initiation, cluster head
rotation, and data collection.

1) Cluster initiation phase starts once the sensor nodes
were powered on after deployment. In the homoge-
neous network, all the nodes have a similar proba-
bility of becoming a cluster head because they have
equal residual energy (ep). The sensor nodes begin to
broadcast “Hello”” messages to their neighbors and
receive acknowledgment messages from them. After
the aforementioned message exchange is finished, each
node constructs a neighbors table. The sensor node
that has a maximum number of neighbor nodes will be
elected as an initial cluster head among the neighbor
nodes within its vicinity. While in a heterogeneous
network, the initial cluster head is chosen based on the
total number of neighbor nodes and the node’s resid-
ual energy. In other words, the advanced and supern-
odes have a higher priority to become a cluster head
than normal nodes because they have higher residual
energy.

2) Cluster head rotation phase launches when the resid-
ual energy (E,) of the current cluster head dropped
below a certain predefined threshold (E7;) value. After
the initial cluster head selection procedure is finished,
every sensor node in the sensor field consciously mon-
itors its residual energy and evaluates the cluster head
rotation index (R) that is given in Eq. 6 during each
simulation round. An advertisement message is broad-
casted by the current cluster head to initiate the cluster
head rotation procedure when its E, reached a cer-
tain predefined value. The node with a high rotation
index value will win the competition to be elected as
the next cluster head for that cluster. The heuristic
approach used in evaluating the rotation index will
prevent the sensor nodes from generating multiple con-
trol messages for cluster head selection and rotation.
In addition, the SEA eliminates the frequent cluster
head rotations that deplete the node’s energy without
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performing useful functions.

R; = ‘ .
[\/ I —y(@imod (1/y))

where y is a random number between O and 1 that
serves as a seed for later cluster head selection, i is the
simulation round for the current scenario, ¥ is the num-
ber of times that the current node became a cluster head
so far, and 7 is the multiplication index (n = 1 when
E, > Er, and n = 0 when E, < Efy). The n blocks
old cluster heads from being chosen in the future while
allowing them to participate in the communication until
they deplete their remaining energies.

3) The data collection phase begins upon the completion
of cluster head selection and/or rotation. At the begin-
ning of this phase, the selected cluster heads report their
geographical locations to a centralized base station for
computing the optimized route(s) of the mobile sink(s).
Once the node is chosen to serve as a cluster head,
it activates the global system for mobile communica-
tions (GSM) module to determine its location using the
global positioning system (GPS) and send its location
to the base station using short message service (SMS).
Upon the completion of SMS transmission, the cluster
head turns off the GSM module and never uses it again.
The sensor nodes within the cluster start sending the
sensory data to the cluster head in order to be aggre-
gated before sending the received data to the mobile
sink. The cluster head can reach the mobile sink in
a single-hop within its transmission range. When the
sink node arrives at the sojourn location, it broadcasts a
notification message to inform the cluster heads within
its transmission range to start sending the aggregated
data. The sink node waits, and then it moves to the
following sojourn location after the time out of no data
received timer.

*Er*w]*n (6)

D. OPTIMIZED MOBILE SINK PATH DETERMINATION

In this paper, the sojourn point can be defined as the best
point (location) in the sensor field where the mobile sink node
can communicate with the maximum number of cluster heads
that are covered by its transmission range. The introduced
algorithm for sojourn point determination scans the received
cluster heads’ locations and searches for the best position
that satisfied the sojourn point definition. Fig. 5 shows three
cluster heads and their corresponding sojourn point.

After receiving the cluster heads’ locations, the centralized
base station assumes that the sensing field is an undirected
weighted graph G(V,E,w), where v = {1,2,...,a} is
the vertices set, E = {1,2,...,b} is the edges set, and
w is the weights. The vertices represent the cluster heads,
while the edges represent the communication link between
them. The introduced sojourn location determination algo-
rithm is based on MWVCP. The weighted vertex cover prob-
lem aimed at finding a subsets of minimum number of virtual
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FIGURE 5. The sojourn location of a mobile sink node among three
cluster heads.

vertices (VV) where VV C V, such that V(u, v) € E, either
u C VVorv C VV, and every vertex v linked to ¢ weights,
wi(v), w2 (v), ..., we(v). The proposed sojourn algorithm will
search for a set of VV that minimizes the m objective func-
tions f;(V) = ZV[v] wi(v), where i = 1,2,...,c. Finally,
the MW VCP of the sojourn location algorithm can be formu-
lated as follows:

Min F(V) = (fi(V), V), ..., fin(V)T (7

where V is a binary vector that represents the optimal solu-
tion. When VV is the solution, then V = 1; otherwise,
V = 0. In summary, the VV represents the minimum sojourn
locations for the multiple mobile sinks, and each location
covers the maximum number of cluster heads.

Two main scenarios are conducted: single mobile sink and
multiple mobile sinks. For the single mobile sink, the central-
ized base station is located at one of the sensing field corners.
Whilst in multiple mobile sinks scenarios, the centralized
base station is positioned at the sensing field center. When
employing multiple mobile sinks, the sensing field is por-
tioned into four equal regions in order to extend the network
lifetime and improve network delay.

In this paper, the optimized mobile sink path is one of the
NP-hard optimization problems that required the evaluation
of a closed shortest path with minimum cost and delay.
The optimized path should pass through a predefined set of
sojourn points where each sojourn point can be visited only
once. The multi-objective evolutionary algorithms (MOEAs)
may be deemed as an optimum solution for multiple-criteria
decision-making (MCDM) problems because MOEAs eval-
uation encompasses many metrics. The developed algorithm
aimed at minimizing simultaneously the cost, distance, and
delay of the mobile sink path. Let & is a sojourn point and S
isasetof &£ (i,j = 1,2,...,m), C;; is the cost of moving
from §; to &;, d; ; is the distance from &; to &;, and t;; is the
traveling delay from §; to &;. The decision variable I is given
in Eq. 8. While the objective functions for minimizing the
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cost, distance and delay are given in Eq. 9, Eq. 10, and Eq. 11
respectively.

Lho 1 if & is visited from &;
“7 10 otherwise

m m
C: Min) > CijTij )
i

m m
D : Min Z dijTij (10)
j

i

®)

m m
T : Min) Y 7T (1)
i

While the optimization constraints are: Y ;' I'; ; = 1 for all
i and j, the evaluated route must not be chosen more than once
Tij + T < DandT;; > 1.

The evolutionary algorithm (EAs) received considerable
attention from industrial researchers and academic scholars
in different fields because of the robust and effective merits
that exist while finding a set of trade-off solutions. Three EAs
are utilized in the optimized mobile sink path determination
algorithm: ant colony optimization (ACO), genetic algorithm
(GA), and simulated annealing (SA). These optimization
techniques have been employed in the simulation scenarios
for single mobile and multiple mobile sinks. There are many
similarities between the aforementioned EAs. However, each
intelligent heuristic algorithm possesses unique characteris-
tics primarily in its strategy for seeking the optimum solution.
The three EAs are employed in this work to solve the same
multi-objective optimization problem (optimized mobile
sink path).

TABLE 1. The parameters of simulation scenarios.

Parameter Value
Sensing field dimensions 200 x 200 m?
Number of sensor nodes (N) 200
Deployment type Random
Sensor node’s initial energy (eo) 0.5J
Packet size 127 bytes
Amplifier energy (Eqmp) 100 pJ/bit /m?
Energy consumption in idle state (Ecircuit) 50 nJ/bit
Consumed energy during data aggregation 5nJ/bit
Number of mobile sinks 1 and 4
Simulation rounds 9000

V. RESULTS AND DISCUSSIONS

In this work, the simulation scenarios were conducted using
MATLAB 2020a running on a Windows 10 operated PC
with Intel Core i5 CPU and 4 GB of RAM. In addition, all
the results were evaluated when the sensor network had the
maximum number of clusters. Table 1 shows the detailed
parameters’ values for the conducted simulation scenarios.

VOLUME 9, 2021

The developed SEA approach was compared among four
well-known cluster-based routing protocols in terms of net-
work lifetime and cluster heads’ count. Low energy adap-
tive clustering hierarchy (LEACH) is a pioneer cluster-based
hierarchical routing protocol that is employed in WSNs to
extend the network lifetime. The sensor nodes in LEACH
managed themselves in groups called clusters, and only one
node in each group is nominated to be a cluster head. Every
node executed a stochastic algorithm during each simulation
round to decide if it would be a cluster head or not during this
round. The cluster head rotation carried out in a random fash-
ion, or the node that had the highest energy level was chosen
to be a cluster head for the current simulation round [45].

Stable election protocol (SEP) is a two-level heteroge-
neous cluster-based protocol. The SEP protocol guaranteed
that the advanced node had a higher priority to be selected
frequently as a cluster head. Therefore, the clustering mech-
anism resulted in random cluster heads selection that was
distributed based on their respective energy [46].

Threshold sensitive energy-efficient sensor network
(TEEN) is a cluster-based routing protocol with a hierarchical
multi-hop feature that is used broadly in time-critical applica-
tions. The TEEN protocol was designed for reactive networks
that interacted with unexpected variations in the surrounding
environment. The TEEN protocol was employed in two-tier
heterogeneous networks with two attributes: soft and hard
thresholds value. The cluster heads selection criteria in TEEN
were similar to LEACH [47], [48].

Distributed energy-efficient clustering (DEEC) protocol
is a significant three-tier heterogeneous routing protocol in
which selection of cluster heads carried on the ratio between
the remaining energy of each node and the average of net-
work’s energy. Thus, the sensor nodes that were equipped
with high initial and remaining energies possessed more
opportunities to be selected as cluster heads than the low
energy nodes [49], [50].

Fig. 6 shows the number of cluster heads versus sim-
ulation rounds for the proposed SEA approach and the
four well-known routing protocols. The SEA approach was
employed in both homogeneous and heterogeneous sensor
networks, and it is clear that the developed algorithm for
cluster head selection exhibited a stable behavior due to the
heuristic nature. The SEA approach did not fluctuate during
cluster head selection and rotation compared to LEACH,
SEP, TEEN, and DEEC protocols. The clusters were formed
according to the formula presented in Eq. 6 that prevented
cluster head rotation from occurring in each simulation round.

Many diverse definitions for sensor network lifetime and
stability period existed in the literature. For simplicity, this
work adopted the definitions introduced by Mak in [51] and
Abo-Zahhad in [52]. The term “‘network lifetime’” stands for
the time interval between the instant the sensor network starts
operating to the death of the last alive sensor node. Whilst the
term “‘stability period” stands for the time interval between
the instant the sensor network starts operating to the death
of the first alive sensor node. These definitions also support

82841



IEEE Access

B. R. Al-Kaseem et al.:

Optimized Energy - Efficient Path Planning Strategy in WSN With Multiple Mobile Sinks

LEACH
SEA- Single Mobile Sink
- = = SEA- Multiple Mobile Sinks

50 -
'
'
40 v
v

i

Number of Cluster Heads
Number of Cluster Heads

o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0
Simulation Rounds

(a) Homogeneous network (Single Tier)

FIGURE 6. The number of cluster heads versus simulation rounds.

1000 2000 3000 4000 5000 600D 7000 8OO0 9000 0
Simulation Rounds

(b) Hetrogeneous network (2-Tier)

—SER

TEEN

———SEA- Single Mobile Sink

- = —SEA- Multiple Mobile Sinks

~
El

DEEC
SEA - Single Mobile Sink
— = —SEA- Multiple Mobile Sinks

@
g

@
2

Number of Cluster Heads

.

aabli i .

1000 2000 3000 4000 5000 6ODO 7000 800D 9000
Simulation Rounds

(c) Hetrogeneous network (3-Tier)

LEACH
SEA- Single Mobile Sink 180
- = = SEA- Multiple Mobile Sinks

Alive Nodes
Alive Nodes
2
e

—SER 5, DEEC

TEEN 180 SEA - Single Mobile Sink
———SEA- Single Mobile Sink - = = —SEA- Mulliple Mobile Sirks
- = —SEA- Multiple Mobile Sinks 160

Alive Nodes
2
S

0 o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0
Simulation Rounds

(a) Homogeneous network (Single Tier)

FIGURE 7. The number of alive sensor nodes versus simulation rounds.

o
1000 2000 3000 4000 5000 600D 7000 8OO0 9000 0
Simulation Rounds

(b) Hetrogeneous network (2-Tier)

1000 2000 3000 4000 5000 6ODO 7000 800D 9000
Simulation Rounds

(c) Hetrogeneous network (3-Tier)

140 i

Distance (m)
2
g
Distance (m)
2
e

Distance (m)
=
g

= 00 —=O=00 g 4 : 600
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 180 200
Distance (m) Distance (m) Distance (m)
(a) ACO (b) GA () SA

FIGURE 8. Optimized energy-efficient path for single mobile sink.

a fairer basis for similar sensor network protocol performance
comparisons among the proposed approach.

Fig. 7 depicts the network lifetime in terms of the num-
ber of alive nodes versus the simulation rounds. The SEA
approach conserved the node’s energy by eliminating unnec-
essary message exchange during cluster formation, and
hence, the node’s lifetime increased. The network lifespan for
sensor network adopted optimized single mobile sink with
SEA approach can be extended by 41%, 39.5%, 22%, and
16% compared to LEACH, SEP, TEEN, and DEEC respec-
tively. Whilst for the sensor network that employed multiple

82842

mobile sinks with SEA approach can extend the network
lifespan by 66%, 64%, 48% and 41% compared to LEACH,
SEP, TEEN, and DEEC, respectively.

Without any doubt, with a more considerable stability
period, the reliability of the sensor network clustering process
will be better. On the other hand, there should be a trade-
off between sensor network lifetime and its reliability since
the failure of a single sensor node does not block the other
sensor nodes from transmitting their data due to the self-
organized feature of WSN and the redundancy nature of
the deployed sensor nodes in the sensor field. Hence, the
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FIGURE 10. Optimized energy-efficient paths for multiple mobile sinks.

proposed approach has a short stability period compared to
other approaches while it has a longer network lifetime.

Fig. 8 shows the optimized sink path when utilizing a
single mobile sink that traveled across the sensing field and
stopped at the determined sojourn locations. The optimized
path was calculated using ACO, GA, and SA techniques,
and Fig. 9 depicts their corresponding convergence to the
optimum solution. Different paths were calculated based on
the optimization technique being used. The obtained results
showed that SA determined the optimized sink path with
88.5% and 79.5% faster than ACO and GA, respectively.

Fig. 10 shows the optimized paths that were calculated for
each mobile sink when four mobile sinks were employed in
the sensing field. Three optimization techniques were utilized
(ACO, GA, and SA) in order to study the effectiveness of the
best technique. The determined paths by different techniques
were similar in some regions because of the limited number of
sojourn locations that made the objective function converged
to the same path. The multiple mobile sinks succeeded in
prolonging the network lifetime by shortening the commu-
nication path between the cluster heads and mobile sinks.
Therefore, the hotspot problem or energy holes around the
sink was eliminated when an optimized path was adopted
when the mobile sink(s) traveled across the sensing field.

Fig. 11 depicts a comprehensive run for optimized path
determination when four mobile sinks were employed.
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FIGURE 11. The simulation result for multiple mobile sinks scenario.

The sensing field was partitioned into four regions, and the
number beside the optimization techniques represents the
region’s index. The obtained simulation results showed that
for a different number of cluster heads, the SA calcu-
lated the optimum path faster than the ACO and GA by
19.6% and 49%, respectively.

Fig. 12 shows the execution time of sojourn points deter-
mination algorithm versus cluster heads number. This algo-
rithm is adopted for both single mobile and multiple mobile
sinks as there is no change in the clustering algorithm. The
algorithm’s execution time increases as the number of cluster
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FIGURE 12. The execution time for the proposed sojourn algorithm.

heads increases because the search space of virtual vertices
for the developed algorithm became large. The relationship
between the algorithm execution time (IE;) and the number of
cluster heads (v) is obtained after performing curve fitting to
the sampled data that was shown in Fig. 12. Eq. 12 depicted
the obtained formula of evaluating the execution time when a
particular number of clusters exited in the sensor network.

Es = —0.0001v3 + 0.0137v% — 0.0186v + 0.0722 (12)

The sensor nodes rely on their accumulated energy in the
attached battery to perform sensing and data transmission
tasks during their lifetime. One of the important metrics that
affect the network lifespan is packet delivery, especially when
energy-constrained devices are deployed.

Fig. 13 depicts the network remaining energy versus the
simulation rounds. In LEACH, TEEN, SEP, and DEEC,
the sensor nodes depleted their energy much quicker than
the proposed SEA approach. Due to the heuristic scheme
in cluster head selection and rotation, the introduced SEA
scheme had a smooth slope compared to the aforementioned
routing protocols. While Fig. 13(d) illustrated the comparison
between the proposed approach and the work presented by
Krishnan [36]. Krishnan’s approach adopted multiple mobile
sinks with ACO to determine the mobile sink trajectory.
However, his work is suitable only for homogeneous net-
works and is limited to three mobile sinks only. It is clear that
the proposed SEA scheme exhibited the same behavior when
it is deployed in homogeneous or heterogeneous networks by
utilizing fair load balancing techniques.

Table 2 shows a numerical comparison between the work
presented in this paper and the work introduced by Pang [39]
in terms of the number of lost packets. In Pang’s work, when
the distance between the mobile sinks and the cluster heads
increased, the number of lost packets increased until the
mobile sinks became unable to receive any packet because
they were out of the transmission range of the cluster heads.
While in the presented work, this situation is not possible
because the developed sojourn location determination algo-
rithm takes into account that the sojourn locations should
be within the transmission range of the cluster heads, and
therefore very few packets will be lost.
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TABLE 2. The data delivery comparison.

Lost Packets
Distance Sent Packets Proposed
Itz 2] Approach

10 1000 0 0

15 1000 0 0

20 1000 1 0

25 1000 23 5

30 1000 101 12

35 1000 382 N/A

40 1000 1000 N/A

TABLE 3. The multiple mobile sinks trajectory comparison.

No. of Algorithm Mobile Sinks Labels

CHs #1 #2 #3 #4
Krishnan [36] 540 540 545 N/A

SEA + ACO 286 233 179 198

10 SEA + GA 260 275 230 269
SEA + SA 243 164 170 225

Krishnan [36] 840 846 853 N/A

SEA + ACO 287 295 207 298

20 SEA + GA 277 304 270 239
SEA + SA 230 319 308 319

Krishnan [36] 988 996 997 N/A

SEA + ACO 337 308 323 307

30 SEA + GA 318 331 304 344

SEA + SA 350 326 265 313

Table 3 depicts the length of mobile sink trajectory for
multiple mobile sinks approaches. In this paper, multiple sce-
narios were conducted in order to study the effectiveness of
the proposed approach. The work presented by Krishnan [36]
is used in the comparison, and it was based on ACO when
calculating the mobile sink path trajectory and his work is
limited to three mobile sinks that collected the sensory data
from cluster heads. Whilst the multiple mobile sinks in the
SEA scheme with ACO, GA, and SA visited sojourn locations
to collect the sensory data from multiple cluster heads. The
obtained results showed that the proposed approach outper-
formed Krishnan’s work by providing a shorter traveling tour
when the mobile sinks visited the sojourn locations. The
developed optimized path algorithm shortens the traveling
path by introducing virtual vertices covering the maximum
number of cluster heads within its vicinity.

VI. OPEN RESEARCH DIRECTIONS

Most of the previous and ongoing researches that focused
on sink mobility issues heavily depend on simulation sce-
narios. At the same time, hardware testbeds are necessary
for laboratory researches in order to transfer and deploy the
confirmed results in WSN-based real-world systems. The
following factors are essential in designing WSN testbed in
general and sink mobility in particular.
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o Cost: robots are considered as mobile objects that
explore the sensing field and collect the sensed data.
However, these mobile robots are expensive as they are
designed for commercial purposes. Hence, the testbed
cost needs to be monitored when deploying mobile sinks
in real-world WSN-based applications.

o Energy consumption: the sensor nodes and mobile sinks
deplete their stored energy during sensing, processing,
and communication tasks. Batteries are the common
approach in powering the sensor nodes but a power cable
may be considered as the best choice if the system is
deployed in an indoor environment.

« Stability: testbed steadiness-related concerns are worth
research attention. The hardware and software malfunc-
tions could be managed and fixed promptly in small-
scale WSN testbeds. Large-scale WSN testbeds should
have diverse stable mobility management schemes as
they are deployed in real-world applications.

VII. CONCLUSION

This paper presents an optimized path planning strategy based
on the SEA scheme that formed clusters based on heuristic
information from the sensor nodes. The proposed scheme
can be employed in both homogeneous and heterogeneous
sensor networks with variable sensor nodes that are dis-
tributed indiscriminately in a predefined monitoring area.
A comprehensive review has been done in order to address
the challenges of adopting single and multiple mobile sinks
in WSNs. Hence, the surveyed recent research led to classify
the existing routing protocols and identify their advantages
and drawbacks that could be used to enhance the performance
requirements of the developed approach.

Uneven energy depletion among the deployed sensor nodes
participates in the generation of hotspots or energy holes.
The network lifetime extension is affected by these energy
holes, and therefore mobile sinks were utilized to enhance
the current WSN architecture performance. In this work, four
mobile sinks were adopted to gather the sensed data from
the distributed cluster heads. The sinks’ sojourn locations
were evaluated based on the minimum weighted vertex cover
problem (MWVCP). Whilst the optimized sink path should
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pass through all the sojourn locations and it is calculated
through multi-objective EAs that are aimed at minimizing the
traveling distance and time.

Four well-known routing protocols were used in the eval-
uation of the proposed approach: LEACH, SEP, TEEN, and
DEEC. While ACO, GA, and SA techniques were employed
to find the optimum path for mobile sinks. The simulation
results showed that the network lifespan for sensor network
adopted optimized single mobile sink with SEA approach
can be extended by 41%, 39.5%, 22% and 16% compared
to LEACH, SEP, TEEN, and DEEC, respectively. Whilst for
the sensor network that employed multiple mobile sinks with
SEA approach can extend the network lifespan by 66%, 64%,
48% and 41% compared to LEACH, SEP, TEEN, and DEEC,
respectively. In addition, The simulation results showed that
SA determined the single optimized sink path with 88.5%
and 79.5% faster than ACO and GA, respectively. While
for the multiple mobile sinks, the SA calculated the opti-
mum path faster than the ACO and GA by 19.6% and 49%,
respectively.
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