
Received May 14, 2021, accepted May 27, 2021, date of publication June 7, 2021, date of current version June 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086704

An Exhaustive Survey on P4 Programmable Data
Plane Switches: Taxonomy, Applications,
Challenges, and Future Trends
ELIE F. KFOURY 1, (Graduate Student Member, IEEE), JORGE CRICHIGNO 1, (Member, IEEE),
AND ELIAS BOU-HARB 2, (Senior Member, IEEE)
1College of Engineering and Computing, University of South Carolina, Columbia, SC 29201, USA
2The Cyber Center for Security and Analytics, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Corresponding author: Elie F. Kfoury (ekfoury@email.sc.edu)

This work was supported in part by the National Science Foundation under Grant 1925484 and Grant 1829698, and in part by the Office of
Advanced Cyberinfrastructure (OAC).

ABSTRACT Traditionally, the data plane has been designed with fixed functions to forward packets using a
small set of protocols. This closed-design paradigm has limited the capability of the switches to proprietary
implementations which are hard-coded by vendors, inducing a lengthy, costly, and inflexible process.
Recently, data plane programmability has attracted significant attention from both the research community
and the industry, permitting operators and programmers in general to run customized packet processing
functions. This open-design paradigm is paving the way for an unprecedented wave of innovation and exper-
imentation by reducing the time of designing, testing, and adopting new protocols; enabling a customized,
top-down approach to develop network applications; providing granular visibility of packet events defined
by the programmer; reducing complexity and enhancing resource utilization of the programmable switches;
and drastically improving the performance of applications that are offloaded to the data plane. Despite the
impressive advantages of programmable data plane switches and their importance in modern networks,
the literature has beenmissing a comprehensive survey. To this end, this paper provides a background encom-
passing an overview of the evolution of networks from legacy to programmable, describing the essentials
of programmable switches, and summarizing their advantages over Software-defined Networking (SDN)
and legacy devices. The paper then presents a unique, comprehensive taxonomy of applications developed
with P4 language; surveying, classifying, and analyzing more than 200 articles; discussing challenges and
considerations; and presenting future perspectives and open research issues.

INDEX TERMS Programmable switches, P4 language, Software-defined Networking, data plane, custom
packet processing, taxonomy.

I. INTRODUCTION
Since the emergence of the world wide web and the explosive
growth of the Internet in the 1990s, the networking industry
has been dominated by closed and proprietary hardware and
software. Consider the observations made by McKeown [1]
and the illustration in Fig. 1, which shows the cumulative
number of Request For Comments (RFCs) [2]. While at
first an increase in RFCs may appear encouraging, it has
actually represented an entry barrier to the network mar-
ket. The progressive reduction in the flexibility of protocol
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design caused by standardized requirements, which cannot
be easily removed to enable protocol changes, has perpet-
uated the status quo. This protocol ossification [3], [4] has
been characterized by a slow innovation pace at the hand of
few network vendors. As an example, after being initially
conceived by Cisco and VMware [5], the Application Spe-
cific Integrated Circuit (ASIC) implementation of the Virtual
Extensible LAN (VXLAN) [6], a simple frame encapsulation
protocol, took several years, a process that could have been
reduced to weeks by software implementations1.

1The RFC and VXLAN observations are extracted from Dr. McKeown’s
presentation in [1].
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FIGURE 1. Cumulative number of RFCs.

Protocol ossification has been challenged first by
Software-defined Networking (SDN) [7], [8] and then by
the recent advent of programmable switches. SDN fostered
major advances by explicitly separating the control and data
planes, and by implementing the control plane intelligence
as a software outside of the switches. While SDN reduced
network complexity and spurred control plane innovation at
the speed of software development, it did not wrest control
of the actual packet processing functions away from network
vendors. Traditionally, the data plane has been designed with
fixed functions to forward packets using a small set of pro-
tocols (e.g., IP, Ethernet). The design cycle of switch ASICs
has been characterized by a lengthy, closed, and proprietary
process that usually takes years. Such process contrasts with
the agility of the software industry.

The programmable forwarding can be viewed as a nat-
ural evolution of SDN, where the software that describes
the behavior of how packets are processed can be con-
ceived, tested, and deployed in a much shorter time span
by operators, engineers, researchers, and practitioners in
general. The de-facto standard for defining the forward-
ing behavior is the P4 language [9], which stands for
Programming Protocol-independent Packet Processors.
Essentially, P4 programmable switches have removed the
entry barrier to network design, previously reserved to net-
work vendors.

The momentum of programmable switches is reflected
in the global ecosystem around P4. Operators such as
ATT [10], Comcast [11], NTT [12], KPN [13], Turk
Telekom [14], Deutsche Telekom [15], and China Uni-
com [14], are now using P4-based platforms and applications
to optimize their networks. Companies with large data cen-
ters such as Facebook [16], Alibaba [17], and Google [18]
operate on programmable platforms running customized soft-
ware, a contrast from the fully proprietary implementations
of just a few years ago [19]. Switch manufacturers such
as Edgecore [20], Stordis [21], Cisco [22], Arista [23],
Juniper [24], and Interface Masters [25] are now manufac-
turing P4 programmable switches with multiple deployment
models, from fully programmable or white boxes to hybrid
schemes. Chip manufactures such as Barefoot Networks

(Intel) [26], Xilinx [27], Pensando [28], Mellanox [29], and
Innovium [30] have embraced programmable data planes
without compromising performance. The availability of tools
and the agility of software development have opened an
unprecedented possibility of experimentation and innovation
by enabling network owners to build custom protocols and
process them using protocol-independent primitives, repro-
gram the data plane in the field, and run P4 codes on diverse
platforms. Main agencies supporting engineering research
and education world-wide are investing in programmable
networks as well. For example, the U.S. National Science
Foundation (NSF) has funded FABRIC [31], [32], a national
research backbone based on P4 programmable switches.
Another project funded by the NSF operates an interna-
tional Software Defined Exchange (SDX) which includes
a P4 testbed that enables international research and edu-
cation institutions to share P4 resources [33]. Similarly,
an European consortium has recently built 2STiC [34], a P4
programmable network that interconnects universities and
research centers.

A. CONTRIBUTION
Despite the increasing interest on P4 switches, previous
work has only partially covered this technology. As shown
in Table 1, currently, there is no updated and comprehensive
material. Thus, this paper addresses this gap by providing
an overview of the evolution of networks from legacy to
programmable; describing the essentials of programmable
switches and P4; and summarizing the advantages of pro-
grammable switches over SDN and legacy devices. The
paper continues by presenting a taxonomy of applications
developed with P4; surveying, classifying, and analyzing and
comparing more than 200 articles; discussing challenges and
considerations; and putting forward future perspectives and
open research issues.

B. PAPER ORGANIZATION
The road-map of this survey is illustrated in Fig. 2.
Section II studies and compares existing surveys on vari-
ous P4-related topics and demonstrates the added value of
the offered work. Section III describes the traditional and
SDN devices, and the evolution toward programmable data
planes. Section IV introduces programmable switches and
their features and explains the Protocol Independent Switch
Architecture (PISA), a pipeline forwarding model. Section V
describes the survey methodology and the proposed taxon-
omy. Subsequent sections (from Section VI to Section XII)
explore the works pertaining to various categories pro-
posed in the taxonomy, and compare the P4 approaches in
each category, as well as with the legacy-enabled solutions.
Section XIII outlines challenges and considerations extracted
and induced from the literature, and pinpoints directions that
can be explored in the future to ameliorate the state-of-the-art
solutions. Finally, Section XIV concludes the survey. The
abbreviations used in this article are summarized in Table 36,
at the end of the article.
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FIGURE 2. Paper roadmap.

II. RELATED SURVEYS
The advantages of programmable switches attracted consid-
erable attention from the research community. They were
described in previous surveys.

Stubbe [35] discussed various P4 compilers and
interpreters in a short survey. This work provided a short
background on the P4 language and demonstrated the main
building blocks that describe packet processing in a pro-
grammable switch. It outlined reference hardware and soft-
ware programmable switch implementations. The survey
lacks critical discussions on the evolution of programmable
switches, the features of P4 language, the existing applica-
tions, challenges, and the potential future work.

Dargahi et al. [36] focused on stateful data planes and
their security implications. There are two main objectives of
this survey. First, it introduces the reader to recent trends
and technologies pertaining to stateful data planes. Second,
it discusses relevant security issues by analyzing selected
use cases. The scope of the survey is not limited to P4 for
programming the data plane. Instead, it describes other
schemes such as OpenState [44], Flow-level State Transitions
(FAST) [45], etc. When reviewing the security properties
of stateful data planes, the authors described a mapping
between potential attacks and corresponding vulnerabilities.
The survey lacks critical discussions on the P4 language
and its features, the existing applications beyond security,
the challenges, and the potential future work.

Cordeiro et al. [37] discussed the evolution of SDN from
OpenFlow to data plane programmability. The survey briefly

explained the layout of a P4 program and how it is mapped to
the abstract forwarding model. It then listed various compil-
ers, tools, simulators, and frameworks for P4 development.
The authors categorized the literature into two categories:
1) programmable security and dependability management;
2) enhanced accounting and performance management. In the
first category, the authors listed works pertaining to pol-
icy modeling, analysis, and verification, as well as intru-
sion detection and prevention, and network survivability.
In the second category, the authors focused on network mon-
itoring, traffic engineering, and load balancing. The survey
only lists a limited set of papers without providing much
details or how papers differ from each other. Moreover,
the surveywas published in 2017, and since then, a significant
percentage of P4-related works are missing.

Satapathy [38] presented a limited description about the
pitfalls of traditional networks and the evolution of SDN.
The report briefly described elements of the P4 language. The
authors then discussed the control plane and P4Runtime [46],
and enumerated three use cases of P4 applications. The report
concludes with potential future work. This work lacks critical
discussions on the P4 language and its features, the existing
applications, and challenges.

The short survey presented by Bifulco and Rétvári [39]
reviews the trends and issues of abstractions and architectures
that realize programmable networks. The authors discussed
the motivation of packet processing devices in the network-
ing field and described the anatomy of a programmable
switch. The proposed taxonomy categorizes the literature

TABLE 1. Comparison with related surveys.
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as state-based, abstraction-based, implementation-based, and
layer-based. The layer-based consists of control/intent layer
and data plane layer; the implementation-based encom-
passes software and hardware switches; the abstraction-based
includes data flow graph and match-action pipelines; and the
state-based differentiates between stateful and stateless data
planes. This short survey lacks critical discussions on the
existing P4 applications.

Kaljic et al. [40] presented a survey on data plane flex-
ibility and programmability in SDN networks. The authors
evaluated data plane architectures through several definitions
of flexibility and programmability. In general, flexibility in
SDN refers to the ability of the network to adapt its resources
(e.g., changes in the topology or the network requirements).
Afterwards, the authors identified key factors that influence
the deviation from the original data plane given with Open-
Flow. The survey concludes with future research directions.

Kannan and Chan [41] presented a short survey related
to the evolution of programmable networks. This work
described the pre-SDN model and the evolution to SDN
and programmable data plane. The authors highlighted some
features of programmable switches such as stateful process-
ing, accurate timing information, and flexible packet cloning
and recirculation. The survey categorized data plane appli-
cations into two categories, namely, network monitoring and
in-network computing. While this survey listed a consider-
able number of papers belonging to these categories, it barely
explained the operation and main ideas of each paper. Also
it lacks many other categories that are relevant in the pro-
grammable data plane context.

Tan et al. [42] presented a survey describing In-band
Network Telemetry (INT). The survey explained the devel-
opment stages and classifications of network measurement
(traditional, SDN-based, and P4-based). It also outlined some
existing applications that leverage INT such as congestion

control, troubleshooting, etc. The survey concludes with dis-
cussions and potential future work related to INT.

Zhang et al. [43] presented a survey that focuses on stateful
data plane. The survey starts with an overview of stateless and
stateful data planes, then overviews and compares some state-
ful platforms (e.g., OpenState, FAST, FlowBlaze, etc.). The
paper reviews a handful of stateful data plane applications and
discusses challenges and future perspectives.

Table 1 summarizes the topics and the features described
in the related surveys. It also highlights how this paper differs
from the existing surveys. All previous surveys lack a micro-
scopic comparison between the intra-category works. Also,
none of them compare switch-based schemes against legacy
server-based schemes. To the best of the authors’ knowl-
edge, this work is the first to exhaustively explore the whole
programmable data plane ecosystem. Specifically, the paper
describes P4 switches and provides a detailed taxonomy of
applications using P4 switches. It categorizes and compares
the applications within each category as well as with legacy
approaches, and provides challenges and future perspectives.

III. TRADITIONAL CONTROL PLANE AND SDN
A. TRADITIONAL AND SDN DEVICES
With traditional devices, networks are connected using pro-
tocols such as Open Shortest Path First (OSPF) and Border
Gateway Protocol (BGP) [47]) running in the control plane
at each device. Both control and data planes are under full
control of vendors. On the other hand, SDN delineates a clear
separation between the control plane and the data plane, and
consolidates the control plane so that a single centralized con-
troller can control multiple remote data planes. The controller
is implemented in software, under the control of the net-
work owner. The controller computes the tables used by each
switch and distributes them via a well-defined Application

TABLE 2. Features, traditional, SDN, and P4 programmable devices.
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Programming Interface (API), such as Openflow [48]. While
SDN allows for the customization of the control plane, it is
limited to the OpenFlow specifications and the fixed-function
data plane.

B. COMPARISON OF TRADITIONAL, SDN, AND
PROGRAMMABLE DATA PLANE DEVICES
Table 2 contrasts the main characteristics of traditional, SDN,
and P4 programmable devices. In the latter, the forwarding
behavior is defined by the user’s code. Other advantages
include the program-dependent APIs, where the same P4 pro-
gram running on different targets requires nomodifications in
the runtime applications (i.e., the control plane and the inter-
face between control and data planes are target agnostic); the
protocol-independent primitives used to process packets; the
more powerful computation model where the match-action
stages can not only be in series but also in parallel; and
the infield reprogrammability at runtime. On the other hand,
the technology maturity and support for P4 devices can still
be considered low in contrast to traditional and SDN devices.

C. NETWORK EVOLUTION AND ANALOGY WITH OTHER
DOMAIN SPECIFIC PROCESSORS
The introduction of the general-purpose computers in the
early 1970s enabled programmers to develop applications
running on CPUs. The use of high-level languages accel-
erated innovation by hiding the target hardware (e.g., x86).
In signal processing, Digital Signal Processors (DSPs) were
developed in the late 1970s and early 1980s with instruction
sets optimized for digital signal processing. Matlab is used
for developing DSP applications. In graphics, Graphics Pro-
cessing Units (GPUs) were developed in the late 1990s and
early 2000s with instruction sets for graphics. Open Com-
puting Language (OpenCL) is one of the main languages for
developing graphic applications. In machine learning, Ten-
sor Processor Units (TPUs) and TensorFlow were developed
in mid 2010s with instruction sets optimized for machine
learning.

The programmable forwarding is part of the larger infor-
mation technology evolution observed above. Specifically,
over the last few years, a group of researchers developed a
machine model for networking, namely the Protocol Inde-
pendent Switch Architecture (PISA) [49]. PISAwas designed
with instruction sets optimized for network operations. The
high-level language for programming PISA devices is P4.

IV. PROGRAMMABLE SWITCHES
A. PISA ARCHITECTURE
PISA is a packet processingmodel that includes the following
elements: programmable parser, programmable match-action
pipeline, and programmable deparser, see Fig. 3.

The programmable parser permits the programmer to
define the headers (according to custom or standard proto-
cols) and to parse them. The parser can be represented as a
state machine. The programmable match-action pipeline exe-
cutes the operations over the packet headers and intermediate
results. A single match-action stage has multiple memory

FIGURE 3. A PISA-based data plane and its interaction with the control
plane.

blocks (tables, registers) and Arithmetic Logic Units (ALUs),
which allow for simultaneous lookups and actions. Since
some action results may be needed for further processing
(e.g., data dependencies), stages are arranged sequentially.
The programmable deparser assembles the packet headers
back and serializes them for transmission. A PISA device is
protocol-independent.

In Fig. 3, the P4 program defines the format of the
keys used for lookup operations. Keys can be formed using
packet header’s information. The control plane populates
table entries with keys and action data. Keys are used for
matching packet information (e.g., destination IP address)
and action data is used for operations (e.g., output port).

B. PROGRAMMABLE SWITCH FEATURES
The main features of programmable switches are [51]:
• Agility: the programmer can design, test, and adopt
new protocols and features in significantly shorter times
(i.e., weeks or months rather than years).

• Top-down design: for decades, the networking indus-
try operated in a bottom-up approach. Fixed-function
ASICs are at the bottom and enforce available proto-
cols and features to the programmer at the top. With
programmable switches, the programmer describes pro-
tocols and features in the ASICs. Note that the phys-
ical layer and parts of the MAC layer may not be
programmable.

• Visibility: programmable switches provide greater visi-
bility into the behavior of the network. INT is an exam-
ple of a framework to collect and retrieve information
from the data plane, without intervention of the control
plane.
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TABLE 3. Comparison between a P4 programmable switch and a
fixed-function switch [50].

• Reduced complexity: fixed-function switches
incorporate a large superset of protocols. These pro-
tocols consume resources and add complexity to the
processing logic, which is hard-coded in silicon. With
programmable switches, the programmer has the option
to implement only those protocols that are needed.

• Differentiation: the customized protocol or feature
implemented by the programmer needs not to be shared
with the chip manufacturer.

• Enhanced performance: programmable switches do not
introduce performance penalty. On the contrary, they
may produce better performance than fixed-function
switches. Table 3 shows a comparison between a pro-
grammable switch and a fixed-function switch, repro-
duced from [50]. Note the enhanced performance of the
former (e.g., maximum forwarding rate, latency, power
draw). When compared with general purpose CPUs,
ASICs remain faster at switching, and the gap is only
increasing as shown in Fig. 4.

The performance gain of switches relies on the multiple
dimensions of parallelism, as described next.
• Parallelism on different stages: each stage of the pipeline
processes one packet at a time [49]. In Fig. 3, the number
of stages is n. Implementations may have more than 10
stages on the ingress and egress pipelines. While adding
more stages increases parallelism, they consume more
area on the chip and increase power consumption and
latency.

• Parallelism within a stage: the ASIC contains multiple
match-action units per stage. During the match phase,
tables can be used for parallel lookups. In Fig. 3, there
are four matches (in blue) on each stage that can occur
at the same time. An ALU executes one operation over
the header field, enabling parallel actions on all fields.
Hundreds of match-action units exist per stage and thou-
sands in an entire pipeline [49]. Since ALUs execute
simple operations and use a simple Reduced Instruction
Set Computer (RISC)-type instruction set, they can be
implemented in the silicon at a minimal cost.

FIGURE 4. Evolution of the packet forwarding speeds of the
general-purpose CPU and the switch chip (reproduced from [53]).

• Very Long Instruction Words: the set of instructions
issued in a given clock cycle can be seen as one
large instruction with multiple operations, referred to
as Very Long Instruction Word (VLIW). A VLIW is
formed from the output of the match tables. A stage
executes one VLIW per packet, and each action unit
within the stage executes one operation. Thus, for
a given packet, one operation per field per stage is
applied [52].

• Parallelism on pipelines: the switch chip may contain
multiple pipelines per chip, also referred to as pipes.
Pipes on a PISA device are analogous to cores on a
general purpose CPU. Examples include chips contain-
ing two and four pipes [20], [49]. Each pipe is isolated
from the other and processes packets independently.
Pipes may implement the same functionality or different
functionalities.

C. P4 LANGUAGE
P4 has a reduced instruction set and has the following goals:
• Reconfigurability: the parser and the processing logic
can be redefined in the field.

• Protocol independence: the switch is protocol-agnostic.
The programmer defines the protocols, the parser, and
the operations to process the headers.

• Target independence: the underlying ASIC is hid-
den from the programmer. The compiler takes the
switch’s capabilities into account when turning a
target-independent P4 program into a target-dependent
binary.

The original specification of the P4 language was released
in 2014, and is referred to as P414. In 2016, a new version of
the language was drafted, which is referred to as P416. P416 is
a more mature language which extended the P4 language
to broader underlying targets: ASICs, Field-Programmable
Gate Arrays (FPGAs), Network Interface Cards (NICs),
etc.

V. METHODOLOGY AND TAXONOMY
This section describes the systematic methodology that was
adopted to generate the proposed taxonomy. The results of
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FIGURE 5. (a) Distribution of surveyed data plane research works per
year. (b) Implementation platform distribution. The shares are calculated
based on the studied papers in this survey.

this literature survey represent derived findings by thoroughly
exploring more than 200 data plane-related research works
starting from 2016 up to 2020. The distribution of which
is summarized in Fig. 5 (a). Note that the survey addition-
ally includes the important works of the first quarter of
2021.

Fig. 5 (b) depicts the share of each implementation plat-
form used in the surveyed papers, grouped by software
(e.g., BMv2, PISCES), ASIC (e.g., Tofino, Cavium),
NetFPGA (e.g., NetFPGA SUME), and SmartNICs
(e.g., Netronome NFP). The graph shows that the vast
majority of the works were implemented on software and

hardware switches. Note that behavioral software switches
(e.g., BMv2 [244]) are not suitable indicators of whether
the program could run on a hardware target; they are typ-
ically used for prototyping ideas and to foster innovation.
On the other hand, non-behavioral software switches (e.g.,
PICSES [245], derived from Open vSwitch (OVS) [246])
are production-grade and can be deployed in data
centers.

It is worth noting that the majority of works imple-
mented on hardware switches are recent; this demon-
strates the increase in the adoption of programmable
switches by the industry and academia. Currently, to acquire
a switch equipped with Tofino chip (e.g., Edgecore
Wedge100BF-32 [20]), and to get the development environ-
ment and the customer support, a Non-Disclosure Agree-
ment (NDA) with Barefoot Networks (Intel) should be
signed. Additionally, the client should attend a training
course (e.g., [247]) to understand the architecture and
the specifics of the platform. This process is somewhat
lengthy and costly, and not every institution is capable of
affording it.

The proposed taxonomy is demonstrated in Fig. 6.
The taxonomy was meticulously designed to cover the most
significant works related to data plane programmability
and P4. The aim is to categorize the surveyed works based
on various high-level disciplines. The taxonomy provides a

FIGURE 6. Taxonomy of programmable switches literature based upon relevant, explored research areas.
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FIGURE 7. In-band Network Telemetry (INT).

clear separation of categories so that a reader interested in a
specific discipline can only read the works pertaining to the
said discipline. The correctness of the taxonomy was verified
by carefully examining the related work of each paper to
correlate them into high-level categories. Each high-level
category is further divided into sub-categories. For instance,
various measurements works belong to the sub-category
‘‘Measurements’’ under the high-level category ‘‘Network
Performance’’.

Further, the survey compares the results and the
features offered by programmable data plane approaches
(intra-category), as well as with those of the contemporary
and legacy ones. This detailed comparison is elaborated upon
for each sub-category, giving the interested reader a com-
prehensive view of the state-of-the-art findings of that sub-
category. Additionally, the survey presents various challenges
and considerations, as well as some current and future trends
that could be explored as future work.

VI. IN-BAND NETWORK TELEMETRY (INT)
Conventional monitoring and collecting tools and protocols
(e.g., ping, traceroute, Simple Network Management Proto-
col (SNMP), NetFlow, sFlow) are by no means sufficiently
accurate to troubleshoot the network, especially with the
presence of congestion. These methods provide millisec-
onds accuracy at best and cannot capture events that happen
on microseconds magnitude. Moreover, they cannot provide
per-packet visibility across the network.

In-band Network Telemetry (INT) [248] is one of the
earliest key applications of programmable data plane
switches. It enables querying the internal state of the switch
and provides fine-grained and precise telemetry measure-
ments (e.g., queue occupancy, link utilization, queuing
latency, etc.). INT handles events that occur on microseconds
scale, also known as microbursts. Collecting and reporting
the network state is performed entirely by the data plane,
without any intervention from the control plane. Due to the
increased visibility achieved with INT, network operators are
able to troubleshoot problems more efficiently. Additionally,
it is possible to perform instant processing in the data plane
after measuring telemetry data (e.g., reroute flows when a
link is congested), without having to interact with the control

FIGURE 8. Example of how INT can be used to provide the path traversed
by a packet in the network. The INT source inserts its label (S1) as well as
the INT headers to instruct subsequent switches about the required
operations (i.e., push their labels). Finally, switch S4 strips the INT
headers from the packet and forwards them to a collector, while
forwarding the original packet to the receiver.

plane. Fig. 7 shows an INT-enabled network. INT enables
network administrators to determine the following:

• The path a packet took when traversing the network
(see Fig. 8). Such information is difficult to learn using
existing technologies when multi-path routing strategies
(e.g., Equal-cost Multi-Path Routing (ECMP) [249],
flowlet switching [250]) are used.

• The matched rules that forwarded the packets (e.g., ACL
entry, routing lookup).

• The time a packet spent in the queue of each switch.
• The flows that shared the queue with a certain packet.

The P4 Applications Working Group developed the INT
telemetry specifications [251] with contributions from key
enablers of the P4 language such as Barefoot Networks,
VMware, Alibaba, and others. INT allows instrumenting
the metadata to be monitored without modifying the appli-
cation layer. The metadata to be inserted depends on the
use case; for example, if congestion was the main con-
cern to monitor, the programmer inserts queue metadata and
transit latency. An INT-enabled network has the following
entities: 1) INT source: a trusted entity that instruments with
the initial instruction set what metadata should be added into
the packet by other INT-capable devices; 2) INT transit hop:
a device adding its own metadata to an INT packet after
examining the INT instructions inserted by the INT source;
3) INT sink: a trusted entity that extracts the INT headers in
order to keep the INT operation transparent for upper-layer
applications; and 4) INT collector: a device that receives and
processes INT packets.

The location of an INT header in the packet is intentionally
not enforced in the specifications document. For example,
it can be inserted as a payload on top of TCP, UDP, and
NSH, as a Geneve option on top of Geneve, and as a VXLAN
payload on top of VXLAN.

A. POSTCARD-BASED TELEMETRY (PBT)
INT provides the exact forwarding path, the timestamp and
latency at each network node, and other information. Such
detailed information is derived by augmenting user packets
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FIGURE 9. Postcard-based Telemetry (PBT).

with data collected by each switch. Postcard-based Teleme-
try (PBT) is an alternative to INT which does not modify user
packets. Fig. 9 shows an example of PBT. As a user packet
traverses the network, each switch generates a postcard and
sends it to the monitor. The event that triggers the generation
of the postcard is defined by the programmer, according to
the application’s need. Examples include start and/or end of
a flow, sampling (e.g., one report per second), packet dropped
by the switch, queue congestion, etc.

B. INT VARIATIONS
1) BACKGROUND
Despite the improvements that INT brings compared to
legacy monitoring schemes, it introduces bandwidth over-
head when enabled unconditionally by network opera-
tors. In such scenarios, INT headers are added to every
packet traversing the switch, increasing bandwidth overhead
which decreases the overall network throughput. To mitigate
such limitation, conditional statements are included in the
P4 program to send reports only when certain events occur
(e.g., queue utilization exceeds a threshold). Such solution
requires network operators to adjust thresholds and param-
eters manually based on the usual network traffic patterns.
Consequently, several variations of INT have been devel-
oped, aiming at customizing its functionalities and addressing
its limitations. Mainly, recent works focus on minimizing

the bandwidth overhead of INT by adjusting thresholds and
parameters automatically, based on measured traffic patterns
and the desired application type.

2) ACTIVE NETWORK TELEMETRY
Network telemetry can be actively collected by generat-
ing and sending probes to a selected network path. Probes
are typically used for minimizing the traffic overhead
imposed by regular INT. Liu et al. [54] proposed NetVi-
sion, a probing-based telemetry system that actively sends
the rightful amount and format of probe packets depending
on the telemetry application (e.g., traffic engineering, net-
work visualization). INT-path [57] is another probing-based
approach that was the first to achieve network-wide teleme-
try. Network-wide telemetry provides a global view of the
network, which simplifies the management and the control
decisions. INT-Path uses Euler trail-based path planning pol-
icy to generate probe paths. This mechanism allows achieving
non-overlapped probe paths. The idea is to transform net-
work troubleshooting into pattern recognition problems after
encoding the traffic status into a series of bitmap images.
A subsequent work by Lin et al. [62] that extends NetVision,
referred to as NetView [62], was proposed. The objective of
NetView is to achieve on-demand network-wide telemetry.
NetView considers various telemetry applications, has full
coverage, and achieves scalable telemetry.

3) PASSIVE NETWORK TELEMETRY
Instead of actively sending probes through the network, INT
can determine telemetry information passively [252]. The
standardized INT [251], which writes telemetry information
along the path in packets, is an example of passive network
telemetry.

Kim et al. [56] proposed selective INT (sINT), a scheme
that dynamically adjusts the insertion frequency of INT head-
ers. A monitoring engine observes changes in consecutive
INT metadata and applies a heuristic algorithm to compute
the insertion ratio. Marques et al. [58] described the orches-

TABLE 4. INT variations comparison.
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TABLE 5. In-band, postcard-based, and traditional network telemetry.

tration problem in INT, which is associated with the opti-
mal use of network resources for collecting the state and
behavior of forwarding devices through INT. Niu et al. [59]
proposed multilayer INT (ML-INT), a system that visualizes
IP-over-optical networks in realtime. The proposed system
encodes INT headers in a subset of packets pertaining to an
IP flow. The encoded headers contain metadata that describes
statistics of electrical and optical network elements on the
flow’s routing path. Ben Basat et al. [61] proposed Proba-
bilistic INT (PINT), an approach that probabilistically adds
telemetry information into a collection of packets to mini-
mize the per-packet overhead associated with regular INT.
Hyun et al. [55] proposed an architecture for self-driving net-
works that uses INT to collect packet-level network telemetry,
and Knowledge-Defined Networking (KDN) to create intelli-
gence to the network management, considering the collected
telemetry data. KDN accepts the network information as
input and generates policies to improve the network per-
formance. Karaagac et al. [60] extended INT from wired
network to wireless network.

4) INT VARIATIONS, COMPARISON, AND DISCUSSIONS
Table 4 compares the aforementioned INT variations solu-
tions. The main motivation behind these solutions is that
the majority of applications that leverage INT (e.g., conges-
tion control, fast reroute) only require approximations of the
telemetry data and therefore, do not need to gather per-packet
per-hop INT information. NetVision, NetView, and INT-Path
use probing to reduce the overhead of INT. The main lim-
itation of such approaches is that probing might result in
poor accuracy and timeliness as the probes might experi-
ence different network conditions than actual packets. All
other works collect INT information passively. [55] and sINT
select flows based on current network conditions, ML-INT
uses a fixed sampling scheme to select a small portion of
packets in a flow, and PINT uses a probabilistic approach

to encode telemetry on multiple packets. Note that sampling
and anomaly-basedmonitoringmight lead to information loss
since not all packets are being reported.

Some solutions require manual intervention from the
operators to configure the telemetry process. The sim-
plicity of the configuration interface is vital to make the
solution easily deployable. Furthermore, some solutions
(e.g., NetView, INT-Path) achieve network-wide telemetry.
Note that network-wide traffic monitoring incurs additional
overhead since multiple switches are being monitored at the
same time. Finally, some solutions were implemented on soft-
ware switches, while other were implemented on hardware.
It is important to note that not all software implementations
can fit into the pipeline of the hardware.

5) INT, PBT, AND TRADITIONAL TELEMETRY COMPARISON
Table 5 compares INT, PBT, and traditional telemetry.
INT has higher potential vulnerabilities than PBT, such as
eavesdropping and tampering. Adding extra protective mea-
sures (e.g., encryption) is difficult on the fast data path. On the
other hand, PBT packets tolerate additional processing to
enhance security. The flow tracking process is simpler with
INT than with PBT. The latter requires the server receiving
INT reports (i.e., INT collector, explained in Section VI-C)
to correlate multiple postcards of a single flow packet passing
through the network, to form the packet history at the mon-
itor. This process also adds delay in reporting and tracking.
Legacy schemes that rely on sampling and polling suffer from
accuracy issues, especially when links are congested. INT
on the other hand is push-based, has better accuracy, and
is more granular (microseconds scale). Reports sent by an
INT-capable device contain rich information (e.g., the path
a packet took) that can aid in troubleshooting the network.
Such visibility is minimal in legacy monitoring schemes.
Programmable switches permit reporting telemetry after the
occurrence of specific events (e.g., congestion). Moreover,
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TABLE 6. INT collectors comparison.

they provide flexibility in programming reactive logic that
executes promptly in the data plane. One drawback of INT
is that it imposes bandwidth overhead if configured to report
for every packet; however, when event-based reports are con-
sidered, the bandwidth overhead significantly decreases.

C. INT COLLECTORS
1) BACKGROUND
An INT collector is a component in the network that pro-
cesses telemetry reports produced by INT devices. It parses
and filters metrics from the collected reports, then option-
ally stores the results persistently into a database. Since a
large number of reports is typically produced in INT, having
a high-performance collector is essential to avoid missing
important network events. To this end, a number of research
works focus on developing and enhancing the performance
of INT collectors running on commodity servers. Both open
source and closed source INT collectors are proposed in the
literature.

2) OPEN-SOURCE
IntMon [63] is an ONOS-based collector application for
INT reports. It includes a web-based interface that allows
controlling which flows to monitor and the specific meta-
data to collect. Another INT collector is the Prometheus
INT exporter [64], which extracts information from every
INT packet and pushes them to a gateway. A database
server then periodically pulls information from the gateway.
INTCollector [65] is a collector that extracts events, which are
important network information, from INT raw data. It uses
in-kernel processing to further improve the performance.
INTCollector has two processing flows; the fast path, which
processes INT reports and needs to execute quickly, and the
normal path which processes events sent from the fast path,
and stores information in the database.

3) CLOSED-SOURCE
Deep Insight [66] is a proprietary solution provided
by Barefoot Networks that leverages INT capabilities to
provide services such as real-time anomaly detection, con-
gestion analysis, packet-drop analysis, etc. It follows a pay-
as-you-grow business model, where customers pay based
on the volume of collected telemetry. Another proprietary
solution is BroadView Analytics used on Broadcom Trident

3 devices by Broadcom [67]. This solution enables real-time
network latency analysis and facilitates Service Level Agree-
ment (SLA) compliance.

4) INT COLLECTORS COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 6 compare the aforementioned INT collectors. Int-
Mon and Prometheus INT exporter were among the earliest
collectors. Both have low processing rates since they are
implemented without kernel nor hardware acceleration. Also,
they are very limited with respect to the features they provide
(e.g., lack of event detection, limited analytics, historical data
unavailability, etc.). Prometheus INT exporter also suffers
from increased overhead of sending the data for every INT
packet to the gateway, and the potential loss of network events
as the database only stores the latest data pulled from the gate-
way. INTCollector on the other hand has higher rate and uses
the eXpress Data Path (XDP) [253] to accelerate the packet
processing in the kernel space. It filters the data to be pub-
lished based on significant changes in the network through
its event detection mechanism. DeepInsight Analytics has
a modular architecture and runs on commodity servers.
It executes the Barefoot SPRINT data plane telemetry which
consists of a P4 program (INT.p4) encompassing intelligent
triggers. It also provides open northbound RESTful APIs
that allow customers to integrate their third-party network
management solutions. DeepInsight Analytics is advanced
with respect to the features it provides (real-time anomaly
detection, congestion analysis, packet-drop analysis, etc.).
However, it is a closed-source solution and lacks reports of
performance benchmarks.

FIGURE 10. CPU efficiency with the three INT collectors. Source:
INTCollector paper [65].
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Fig. 10 demonstrates the CPU efficiency of three INT col-
lectors (IntMon, Prometheus INT exporter, and INTCollec-
tor) [65]. IntMon has the lowest throughput, and is 57 times
slower than Prometheus INT. INTCollector on the other
hand has the highest throughput and is 27 times faster than
Prometheus INT exporter.

5) COLLECTORS IN INT AND LEGACY MONITORING
SCHEMES COMPARISON
Generally, collectors used with both INT and legacy monitor-
ing schemes run on general purpose CPUs, and hence, have
comparable performance. INT produces excessive amounts
of reports when compared with legacy monitoring schemes
(e.g., NetFlow), and therefore, requires having a collector
with high processing capability. INT-based collectors are
typically accelerated with in-kernel fast packet processing
technologies (e.g., XDP) and hardware-based accelerators
(e.g., Data Plane Development Kit (DPDK)).

D. SUMMARY AND LESSONS LEARNED
Legacy telemetry tools and protocols are not capable of
capturing microbursts nor providing fine-grained teleme-
try measurements. INT was developed to address these
challenges; it enables the data plane developer to query
with high-precision the internal state of switches. Telemetry
data are then embedded into packets and forwarded to a
high-performance collector. The collector typically performs
analysis and applies actions accordingly (e.g., informs the
control plane to update table entries). Current research efforts
mainly focus on developing variations of INT to decrease
its telemetry traffic overhead, considering the overhead-
accuracy trade-off. Other works aim at accelerating INT
collectors to handle large volumes of traffic (in the scale
of Kpps). Future work could possibly investigate further
improvements for INT such as compressing packets’ headers,
broadening coverage and visibility, enriching the telemetry
information, and simplifying the deployment.

VII. NETWORK PERFORMANCE
Measuring and improving network performance is critical
in nowadays’ infrastructures. Low latency and high band-
width are key requirements to operate modern applications
that continuously generate enormous amounts of data [254].
Congestion control (CC), which aims at avoiding net-
work overload, is critical to meet these requirements.
Another important concept for expediting these applications
is managing the queues that form in routers and switches
through Active Queuing Management (AQM) algorithms.
This section explores the literature related to measuring and
improving the performance of programmable networks.

A. CONGESTION CONTROL (CC)
1) BACKGROUND
One of the most challenging tasks in the Internet today is
congestion control and collapse avoidance [255]. The diffi-
culty in controlling the congestion is increasing due to factors

such as high-speed links, traffic diversity and burstiness, and
buffer sizes [68]. Today’s CC algorithms aim at shortening
delays, maximizing throughput, and improving the fairness
and utilization of network resources.

Tremendous amount of research work has been done on
congestion control, including end hosts algorithms such as
loss-based CC algorithms (e.g., CUBIC [256], Hamilton TCP
(HTCP) [257], etc.), model-based algorithms (e.g., Bottle-
neck Bandwidth and Round-trip Time (BBR) [258], [259]),
congestion-signalling mechanisms (e.g., Explicit Conges-
tion Notification (ECN) [260]), data-center specific schemes
(e.g., TIMELY [261], Data Center Quantized Congestion
Notification (DCQCN) [262], Data Center TCP (DCTCP)
[263], pFabric [264], Performance-oriented Congestion Con-
trol (PCC) [265], etc.), and application-specific schemes
(e.g., QUIC [266]).

With the advent of programmable data plane switches,
researchers are investigating new methods for managing con-
gestion. Such methods can be classified as 1) hybrid CC,
where network-assisted congestion feedback is provided for
end-hosts; and 2) in-network CC, where the switch performs
traffic rerouting, steering, or other congestion control tech-
niques, without modifications on end hosts.

2) HYBRID CC
Handley et al. [68] proposed NDP, a novel protocol archi-
tecture for datacenters that aims at achieving low comple-
tion latency for short flows and high throughput for longer
flows. NDP avoids core network congestion by applying
per-packet multipath load balancing, which comes at the cost
of reordering. It also trims the payloads of packets, similar
to what is done in Cut Payload (CP) [267], whenever the
queues of the switches become saturated. Once the payload
is trimmed, the headers are forwarded using high-priority
queues. Consequently, a Negative ACK (NACK) is generated
and sent through high-priority queues so that a retransmission
is sent before draining the low priority queue. Similarly,
Feldmann et al. [69] proposed a method that uses
network-assisted congestion feedback (NCF) in the form of
NACKs generated entirely in the data plane. NACKs are
sent to throttle elephant-flow senders in case of congestion.
The method maintains three separate queues for mice flows,
elephant flows, and control packets to ensure fair sharing of
resources.

Li et al. [70] proposed High Precision Congestion Control
(HPCC), a new CCmechanism that leverages INT-based data
added by P4 switches to obtain precise link load informa-
tion. HPCC computes accurate flow rate by using only one
rate update, as opposed to legacy approaches that require a

FIGURE 11. HPCC: INT-based high precision congestion control.
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TABLE 7. Congestion control schemes comparison.

large number of iterations to determine the rate. HPCC pro-
vides near-zero queueing, while being almost parameterless.
Fig. 11 shows the mechanism of HPCC. The switches add
INT headers to every packet, and then the INT information is
piggybacked into the TCP/RDMAAcknowledgement (ACK)
packet. The end-hosts then use this information to adjust
the sending rate through their smart Network Interface
Controllers (NICs).

Kfoury et al. [71] proposed a P4-based method to automate
end-hosts’ TCP pacing. It supplies the bottleneck bandwidths
and the number of elephants flows to senders so that they
can pace their rates to safe targets, avoiding filling routers’
buffers. Shahzad et al. [72] proposed EECN, a system that
uses ECN to signal the occurrence of congestion to the sender
without involving the receiver. This is especially useful for
networks with high bandwidth-delay product (BDP).

3) IN-NETWORK CC
Turkovic et al. [73] proposed a P4-based method that reroutes
flows to backup paths during congestion. The system detects
congestion by continuously monitoring the queueing delays
of latency-critical flows. The same authors [74] proposed a
method that separates the senders based on their congestion
control algorithm. Each congestion control uses a separate
queue in order to enforce the fairness among its competing
flows. Apostolaki et al. [75] proposed FAB, a flow-aware
and device-wide buffer sharing scheme. FAB prioritizes
flows from port-level to the device-level. The goal of FAB
is to minimize the flow completion time for short flows
in specific workloads. Geng et al. [76] proposed P4QCN,
a fow-level, rate-based congestion control mechanism that
improves the Quantized Congestion Notification (QCN).
P4QCN improves QCN by alleviating the problems of PFC
within a lossless network. Furthermore, P4QCN extends the
QCN protocol to IP-routed networks.

4) CC SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 7 compares the aforementioned CC schemes. NDP and
NCF are similar in the sense that both use NACKs as conges-

tion feedback. NDP avoids congestion by applying per-packet
multihop load balancing. This approach works adequately
with symmetric topologies, but fails when topologies are
asymmetric (e.g., BCube, Jellyfish), especially during heavy
network load. Another limitation of NDP is the excessive
retransmissions produced by the server. NCF adopted the
idea of packet trimming from NDP, but generates NACKs
from the trimmed packet and sends it directly to the sender.
Such approach removes the receiver from the feedback loop,
improving the sender’s reaction time. One limitation of
NCF is that it requires operators to manually tune some of
the predefined parameters (e.g., threshold, queue size, etc.).
Additionally, NCF might disclose network congestion infor-
mation, making it less attractive to operators. Finally,
the authors of NCF claim that the approach works with both
datacenters and Internet-wide scenarios. However, no imple-
mentation results were presented to evaluate the effectiveness
of the solution.

HPCC leverages INT data to control network con-
gestion. It enhances the convergence time by using a
Multiplicative-Increase Multiplicative-Decrease (MIMD)
scheme. Note that previous TCP variants use the
Additive-Increase Multiplicative-Decrease (AIMD), which
is conservative when increasing the rate, and hence has a
slow convergence time. The reason AIMD schemes are slow
is that they use a single-bit congestion information (packet
loss, ECN). With HPCC, end-hosts can perform aggres-
sive increase as INT metadata encompasses precise link
utilization and timely queue statistics. HPCC demonstrated
promising results with respect to latency, bandwidth, and
convergence time. The authors however did not evaluate
the performance of HPCC with conventional congestion
control algorithms in the Internet (e.g., CUBIC, BBR). Note
that achieving inter-protocol fairness is essential so that the
solution is adopted by operators.

The method in [71] uses TCP pacing. Pacing decreases
throughput variations and traffic burstiness, and hence, mini-
mizes queuing delays. However, this method works well only
in networks where the number of large flows senders is small
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TABLE 8. Congestion control schemes. 1) Programmable Switches (HPCC); 2) end-hosts; and 3) legacy network-assisted (ECN).

(e.g., in science Demilitarized Zone (DMZ) [254]). Further,
it is worthmentioning that methods which provide congestion
feedback to end hosts must implement some security mecha-
nisms to prevent packets from being modified.

As for the full in-network CC schemes, P4Air, which
applies traffic separation, demonstrated significant improve-
ments in fairness compared to contemporary solutions. How-
ever, it requires allocating a queue for each congestion control
algorithm group (e.g., loss-based (Cubic), delay-based (TCP
Vegas), etc.). Note that the number of queues is limited
in switches, and production networks often reserve them
for other applications’ QoS [70]. P4QCN is not evaluated
on hardware targets, and therefore their results (which are
extracted based on software switches) are not that indicative.

5) END-HOSTS, PROGRAMMABLE SWITCHES, AND LEGACY
DEVICES’ CC SCHEMES
Table 8 compares the CC schemes assisted by programmable
switches (e.g., HPCC) with end-hosts CC algorithms
(e.g., CUBIC) and legacy congestion signalling schemes
(e.g., ECN). End-hosts CC infer congestion through
packet drops and estimations (e.g., btlbw and Round-trip
Time (RTT) estimation with BBR), which is not always suffi-
cient to infer the existence of congestion. Legacy devices use
classic ECN to signal congestion so that end-hosts slow down
their transmission rates. Classic ECN is limited as it only
marks a single bit to signal congestion, and is not aggressive
nor immediate. Programmable switches on the other hand
use fine-grained prompt measurements to signal congestion
(e.g., INT metadata), which results in higher detection accu-
racy, near-zero queueing delays, and faster convergence time.
The distributed nature of end-hosts CC schemes allows them
to operate without modifying the network infrastructure and
without tweaking parameters. ECN-enabled devices and pro-
grammable switches on the other hand require few param-
eters (e.g., marking threshold) to adapt to different network
conditions.

B. MEASUREMENTS
1) BACKGROUND
Gaining an overall understanding of the network behavior
is an increasingly complex task, especially when the size
of the network is large and the bandwidth is high. Legacy

measurements schemes have accuracy limitations since they
rely on polling and sampling-based methods to gather
traffic statistics. Typically, sampling methods have high sam-
pling rates (e.g., one every 30,000 packets) and polling
methods have large polling intervals. The literature [268]
has shown that such methods are only suitable for
coarse-grained visibility. The accuracy limitation of sam-
pling and polling techniques hampers the development of
measurement applications. For instance, it is not possible to
accurately measure frequently changing TCP-specific fields
such as congestion window, receive window, and sending
rate.

Data streaming or sketching algorithms [269]–[272] were
proposed to answer the limitation of sampling and polling.
They address the following problem: an algorithm is allowed
to perform a constant number of passes over a data stream
(input sequence of items) while using sub-linear space com-
pared to the dataset and the dictionary sizes; desired statis-
tical properties (e.g., median) on the data stream are then
estimated by the algorithm. The main problem with such
algorithms is that they are tightly coupled to the metrics of
interest. This means that switch vendors should build spe-
cialized algorithms, data structures, and hardware for specific
monitoring tasks.With the constraints of CPU andmemory in
networking devices, it is challenging to support a wide spec-
trum of monitoring tasks that satisfy all customers. Legacy
devices also lack the capability of customizing the processing
behavior so that switches co-operate in the measurement
process.

With the emergence of programmable switches, it is now
possible to perform fine-grained measurements in the data
plane at line rate. Moreover, data structures such as sketches
and bloom filters can be easily implemented and customized
for specific metrics of interest. Programmable switches pave
the way for new areas of research in measurements since not
only they provide flexibility in inspecting with high accuracy
the traffic statistics, but also allow programmers to express
reactive processing in real time (e.g., dropping a packet when
a threshold is bypassed as done in Random Early Detection
(RED) [273]).

INT provides path-level metrics, with data similar to
that of polling-based techniques. Note that the metrics
themselves are fixed; for instance, it is possible to deter-

VOLUME 9, 2021 87107



E. F. Kfoury et al.: Exhaustive Survey on P4 Programmable Data Plane Switches

mine the flow-level latency, but not the latency variation
(jitter) [79]. The fixed metrics of INT also prevent perform-
ing network-wide measurements; note that the INT stan-
dard specification document does not mention methods to
aggregatemetadata and perform complex analytics in the data
plane.

This section focuses on techniques that provide measure-
ments that go beyond the fixed metrics extracted from the
internal state of the switch.

2) GENERIC QUERY-BASED MONITORING
Operators constantly change their monitoring specifications.
Adding new monitoring requirements on the fixed-function
switching ASIC is expensive. Recent work explored the idea
of providing a query-driven interface that allows operators to
express their monitoring requirements. The queries can then
be converted into switch programs (e.g., P4) to be deployed in
the network. Alternatively, the queries can be executed on the
control plane considering the measured information extracted
from the data plane.

A simplistic attempt is FlowRadar [77], a system that
stores counters for all flows in the data plane with low
memory footprint, then exports periodically (every 10ms)
to a remote collector. Liu et al. [78] proposed Universal
Monitoring (UnivMon), an application-agnostic monitoring
framework that provides accuracy and generality across a
wide range of monitoring tasks. UnivMon benefits from
the granularity of the data plane to improve accuracy and
runs different estimation algorithms on the control plane.
Narayana et al. [79] presented Marple, a query lan-
guage based on common query constructs (i.e., map, filter,
group by). Marple allows performing advanced aggregation
(e.g., moving average of latencies) at line rate in the data
plane. Similarly, Sonata [87] provides a unified query inter-
face that uses common dataflow operators, and partitions
each query across the stream processor and the data plane.
PacketScope [93] also uses dataflow constructs but allows to
query the internal switch processing, both in the ingress and
the egress pipelines.

Many of the previous works use the sketch data structure.
The work in [96] extended the sketching approach used in
previous works to support the notion of time. The motivation
of this work is that recently captured traffic trends are the
most relevant in network monitoring. Huang et al. [97]
proposed OmniMon, an architectural design that
coordinates flow-level network telemetry operations between
programmable switches, end-hosts, and controllers. Such
coordination aims at achieving high accuracy while main-
taining low resource overhead. Chen et al. [98] proposed
BeauCoup, a P4-based measurement system that handles
multiple heterogeneous queries in the data plane. It offers
a general query abstraction that counts the attributes across
related packets identified by keys, and flags packets that
surpass a defined threshold.

Other approaches such as Elastic sketch [81] performs
measurement that are adaptive to changes in network con-

ditions (e.g., bandwidth, packet rate and flow size distri-
bution). *Flow [85] supports concurrent measurements and
dynamic queries. Such approach aims at minimizing the con-
currency problems and the network disruption resulting from
compiling excessive queries into the data plane.
TurboFlow [86] aims at achieving high coverage without
sacrificing information richness. Bai et al. [94] proposed
FastFE, a system that performs traffic features extraction
by leveraging programmable data planes. Extracted fea-
tures are then used by traffic analysis and behavior detector
ML techniques.

3) PERFORMANCE DIAGNOSIS SYSTEMS
Recent works are leveraging programmable data planes to
diagnose network performance. The main motivation here is
that fine-grained information can be monitored at line rate,
mitigating the slow reaction to ‘‘gray failures’’ experienced
by diagnosing end-hosts in legacy approaches.

Ghasemi et al. [80] proposed Dapper, an in-network TCP
performance diagnosis system. Dapper analyzes packets in
real time, and identifies and pinpoints the root cause of the
bottleneck (sender, network, or receiver). Blink [90] also
diagnoses TCP-related issues. In particular, it detects failures
in the data plane based on retransmissions, and consequently,
reroutes traffic. Other approaches attempt to diagnose per-
formance degradation manifested by an increase of latency.
Wang et al. [92] proposed SpiderMon, a system that performs
network-wide performance degradation diagnosis. The key
idea is to have every switch maintain fine-grained telemetry
data for a short period of time, and upon detecting per-
formance degradation (e.g., increased delay), the informa-
tion is offloaded to a collector. Liu et al. [89] proposed a
memory-efficient approach for network performance mon-
itoring. This solution only monitors the top-k problematic
flows.

4) QUEUE AND OTHER METRICS MEASUREMENT
Programmable data planes allows querying the internal state
of the queue with fine-grained visibility. Recent works lever-
aged this feature to provide better queueing information
which can be used by various applications (e.g., AQMs,
congestion control, etc.).

Chen et al. [88] proposed ConQuest, a P4-based queue
measurement solution that determines the size of flows occu-
pying the queue in real time, and identifies flows that are
grabbing a significant portion of the queue. Joshi et al. [83]
proposed BurstRadar, a system that uses programmable
switches to monitor microbursts in the data plane. Mircor-
bursts are events of sporadic congestion that last for tens
or hundreds of microseconds. Microbursts increase latency,
jitter, and packet loss, especially when links’ speeds are high
and switch buffers are small.

Other works enabled measuring further metric. For
instance, Ding et al. [91] proposed P4Entropy, an algorithm
to estimate network traffic entropy (Shannon entropy) in the
data plane. Tracking entropy is useful for calculating traffic
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TABLE 9. Measurements schemes comparison.

distribution in order to understand the network behavior.
Another example is the system proposed by Chen et al. [95]
which passively measures the RTT of TCP traffic in ISP
networks. RTT measurement is important for detecting
spoofing and routing attacks, ensuring Service Level Agree-
ments (SLAs) compliance, measuring the Quality of Experi-
ence (QoE), improving congestion control, and many others.

5) MEASUREMENTS SCHEMES COMPARISON,
DISCUSSIONS, AND LIMITATIONS
Table 9 compares the measurements schemes.

a: GENERIC QUERY-BASED MONITORING
Some schemes (e.g., Sonata, FlowRadar, UnivMon) per-
formed approximations of the metrics by using probabilistic
data structures (e.g., sketch, bloomfilter, etc), samplingmeth-

ods, and top-k counting. In addition, some focused on a subset
of traffic by leveraging event matching techniques. Such tech-
niques are primarily used to achieve high resource efficiency
(i.e., lowmemory footprint), but cannot achieve full accuracy.
On the other hand, systems like OmniMon carefully coor-
dinates the collaboration among different types of entities
in the network. Such coordination will result in efficient
resource utilization and fully accuracy. OmniMon follows a
split-merge strategy where the split operation decomposes
telemetry operations into partial operations and schedules
them among the entities (switches, end-hosts, and controller),
and themerge operation coordinates the collaboration among
these entities. The idea is to leverage the strength of the
data plane in the switches and end-hosts (i.e., per-flow
measurements with high accuracy) and the control plane
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(i.e., network-wide collaboration). OmniFlow also ensures
consistency through a synchronization mechanism and
accountability through a system of linear equation
considering packet loss and other data center characteristics.
Results show that OmniMon reduces the memory
by 33%-96% and the number of actions by 66%-90% when
compared to state-of-the-art solutions.

Another criterion that differentiates the measurements
schemes is whether there are computations being performed
outside the data plane. Most of the systems use the control
plane or external servers to perform complex computations
since the data plane has limited support to complex arith-
metic functions. While some systems (e.g., BeauCoup) do
not require an external computation device, they often support
less measurement operations.

The selection of the data structure to be used in the data
plane strongly affects the measurements features supported
by a certain scheme. For instance, the goal of BeauCoup is
to enable simultaneous distinct counting queries; for such
task, the authors based their design on the coupon-collection
problem [274], which computes the number of random draws
from n coupons such that all coupons are drawn at least once.
For example, if the threshold of distinct destination IPs for
detecting superspreaders is 130, instead of recording all dis-
tinct destination IPs, 32 coupons are defined. Consequently,
the destination IPs of incoming packets are mapped to those
32 coupons. While this data structure uses less memory than
the other state-of-the-art measurement sketches, it is limited
to specific objectives (distinct counting). Other works (e.g.,
UnivMon) focused on generalizing the measurement scenar-
ios, and hence, used universal sketches as data structures.

Qiu et al. [96] focused on capturing traffic trends that are
the most relevant in network monitoring and attacks’ detec-
tion. The notion of time is not supported by native streaming
algorithms. For instance, count-min sketch, which is a data
structure that uses constant memory amount to record data,
is oblivious to the passage of time. Existing solutions that
consider recency are easily implemented on software, but
not on programmable ASICs. For example, resetting a sketch
after a timer expires requires iterating over the elements in the
sketch, an operation that cannot be implemented in the data
plane due to the lack of loops. Likewise, creating multiple
sketches require additional stages which is limited in the
hardware. Time-adaptive sketches utilize the idea of Dolby
noise reduction [275], [276]; a pre-emphasis function inflates
the update when a new key is inserted and a de-emphasis
function restores the original value. This mechanism ages the
old events over time, and therefore, improves the accuracy
of recent events. The authors implemented the pre-emphasis
function in the data plane using simple bit shifts, and the
de-emphasis function in the control plane.

Finally, some systems considered network-wide monitor-
ing, while others only restricted their capabilities to local
per-switch measurements. Network-wide measurement is
essential and can significantly improve the visibility of traffic,
as discussed in Section XIII-D.

b: PERFORMANCE DIAGNOSIS SYSTEMS
Some performance diagnosis schemes restricted their scope
to troubleshooting TCP. For instance, Dapper infers sending
rate, Maximum Segment Size (MSS), sender’s reaction time
(time between received ACK and new transmission), loss
rate, latency, congestion window (CWND), receiver window
(RWND), and delayedACKs. Based on the inferred variables,
Dapper can identify the root cause of the bottleneck. Simi-
larly, the authors in [89]monitored conditions such as retrans-
missions, packet loss, round-trip-time, out-of-order packets
to identify the top-k problematic flows. Furthermore, Blink
detects failures based on the predictable behavior of TCP,
which retransmits packets at epochs exponentially spaced in
time, in the presence of failure. Other schemes (i.e., Spider-
Mon) identify failures based on the increase of latency.

Some schemes use reactive processing to mitigate the
network performance issue. For instance, Blink promptly
reroutes traffic whenever failures signals are generated by the
data plane, while SpiderMon limits the sending rate of the
root cause hosts.

Finally, it is worth mentioning that some systems
(e.g., Blink, Dapper) considered traces from real-world cap-
tures such as the ones provided by CAIDA for evaluation.
Using real-world traces gives more credibility to the proposed
solution.

c: QUEUE AND OTHER METRICS MEASUREMENT
Understanding the occupancy of the queue is useful for use
cases such as mitigating congestion-based attacks, avoiding
conflicting workloads, implementing new AQMs, optimiz-
ing switch configurations, debugging switch implementation,
off-path monitoring of queues in legacy devices, etc. Con-
Quest performs queue measurements and identifies flows
depending on the purpose (e.g., detecting bursty connec-
tions). It maintains compact snapshots of the queue, updated
on each incoming packet. The snapshots are then aggregated
in a round-robin fashion to approximate the queue occupancy.
Afterwards, it cleans the previous snapshots to reuse it for
further packets. Similarly, BurstRadar detects microbursts,
which can increase latency, jitter, and packet loss, espe-
cially when links’ speeds are high and switch buffers are
small. It is almost impossible to detect microbursts in legacy
switches which use sampling and polling-based techniques.
BurstRadar detects microbursts, and captures a snapshot of
the telemetry information of all the involved packets. After-
wards, an analysis is conducted on the snapshot to identify
themicroburst-contributing flow and the burst characteristics.
Note that BurstRadar does not support measuring the queues
of legacy devices passively, but ConQuest does. In addition,
BurstRadar performs the analysis on the control plane, while
ConQuest uses the data plane for analysis.

6) IN-NETWORK VERSUS LEGACY MEASUREMENTS
Fig. 12 compares the legacy measurements to those con-
ducted on programmable switches. There are two main
classes of legacy measurements techniques. First, there are
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FIGURE 12. (a) Traditional measurements with sampling/polling. The switch uses sampling and polling protocols (e.g., NetFlow, SNMP)
to generate fixed network flow records. Instead of collecting every packet, sampling collects only one every N number of packets.
Records are then exported to an external server for further analysis. (b) Measurements with programmable switches
(e.g., UnivMon [78]). The switch runs a universal algorithm over a universal data structure (e.g., universal sketch). The control plane
then estimates a wide range of metrics for various applications. Note that this is not the only design possible for measurement tasks
with programmable switches. The programmer has the flexibility to use customized algorithms than run at line rate in the data plane.
Such algorithms can leverage various data structures in the P4 program (e.g., sketch, bloom filter) to store flow statistics. The switch
then push statistics reports to the control plane for further analysis and reactive processing.

techniques that rely on polling and sampling (e.g., Net-
Flow). The differences between in-network measurements
and polling/sampling-based schemes are closely related to
the differences between legacy measurements and INT
(see Table 5). For instance, the granularity of the measure-
ments conducted in the data plane is much higher than those
collected in traditional measurements (e.g., NetFlow). Fur-
ther, it is not possible to conduct event-based monitoring in
legacy approaches, whereas with in-network measurements,
the programmer has the flexibility of customizing the moni-
toring based on conditions and thresholds. Second, there are
techniques that rely on sketching or streaming algorithms
to estimate the metric of interest. Such methods are tightly
coupled with the metric, which forces hardware vendors to
invest time and effort in building customized algorithms and
data structures that might not be used by various customers.
Moreover, with the constraints of routers and switches, it is
not possible to implement a variety of monitoring tasks while
still supporting the standard routing/switching functionali-
ties. Therefore, such approaches are not scalable for the long
run.

With programmable switches, it is possible to customize
the monitoring tasks by implementing customized sketch-
ing/streaming algorithms as P4 programs. This advantage
improves scalability as the operator can always modify the
algorithms whenever needed.

C. ACTIVE QUEUE MANAGEMENT (AQM)
1) BACKGROUND
A fundamental component in network devices is the queue
which temporarily buffers packets. As data traffic is inher-
ently bursty, routers have been provisioned with large queues
to absorb this burstiness and to maintain high link utilization.
The majority of delays encountered in a communication ses-
sion is a result of large backlogs formed in queues. Previous
legacy devices are limited in the visibility of the queue as they

provide little or no insight about which flows are occupying
or sharing the queue [88]. Consequently, researchers have
been investigating queue management algorithms to shorten
the delay and mitigate packet losses, while providing fairness
among flows. AQM is a set of algorithms designed to shorten
the queueing delay by prohibiting buffers on devices from
becoming full. The undesirable latency that results from a
device buffering too much data is known as ‘‘Bufferbloat’’.
Bufferbloat not only increases the end-to-end delay, but
also decreases the throughput and increases the jitter of a
communication session. Modern AQMs help in mitigating
the bufferbloat problem [277]–[280]. Unfortunately, modern
AQMs are typically not available in state-of-the-art network
equipment; for instance, Controlled Delay (CoDel) AQM,
which was proposed in 2013, and was proven in the literature
to be effective in mitigating Bufferbloat [281], is still not
available in most network equipment. With programmable
switches, it is now possible to implement AQMs as P4 pro-
grams, which not only accelerates support for new AQMs,
but also provides means to customize its parameters pro-
grammatically in response to network traffic. Moreover, pro-
grammable switches thrives for innovation on newer AQMs
that can be easily implemented and rapidly tested.

2) STANDARDIZED AQMs IMPLEMENTATION
Kundel et al. [99] implemented the CoDel queueing
discipline on a programmable switch. CoDel eliminates
Bufferbloat, even in the presence of large buffers [100].
Sharma et al. [101] proposed Approximate Fair Queueing
(AFQ), a mechanism built on top of programmable switches
that approximates fair queuing on line rate. Fair Queue-
ing (FQ) aims at fairly dividing the bandwidth allocation
among active flows. Laki et al. [102] described an AQM
evaluation testbed with P4 in a demo paper. The authors
tested the framework with two AQMs: Proportional Integral
Controller Enhanced (PIE) and RED. Papagianni and De
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TABLE 10. AQM schemes comparison.

Schepper [103] implemented Proportional Integral PI2 AQM
on a programmable switch. PI2 is an extension of PIEAQM to
support coexistence between classic and scalable congestion
controls in the public Internet. Kunze et al. [104] analyzed the
implementation details of three AQMs, namely, RED, CoDel,
and PIE on a hardware programmable switch (Tofino). Tores-
son [105] implemented a combination of PIE and Per-Packet
Value (PPV) concept on a programmable switch.

3) CUSTOM AQMs
Mushtaq et al. [106] approximated Shortest Remaining Pro-
cessing Time (SRPT) on a programmable switch. Their
method, which they refer to as Approximate and Deployable
SRPT (ADS), was evaluated and it was shown that it can
achieve performance close to SRPT.Menth et al. [107] imple-
mented activity-based congestion management (ABC) on
programmable switches. ABC aims at ensuring fair resource
sharing as well as improving the completion times of short
flows. Alcoz et al. [108] proposed SP-PIFO, a method
that approximates Push-In First-Out (PIFO) queues on pro-
grammable data planes. The method consists of an adap-
tive scheduling algorithm that dynamically adapts mapping
between packet ranks and Strict Policy (SP) queues. Kumazoe
and Tsuru [109] implemented MTQ/QTL scheme on P4.

4) AQM SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 10 compares the aforementioned AQM schemes. Some
schemes require tuning a number of parameters and thresh-
olds so that they operate well in certain network conditions.
It is worth mentioning that a scheme becomes hard to manage
and less autonomous when the number of parameters and
thresholds is high.

Some schemes are simple to implement in the data plane.
CoDel’s algorithm can be easily expressed in the data plane
as it consists of comparisons, counting, basic arithmetic, and
dropping packets. Similarly, PI2 is simple to implement as it
is mostly based on basic bit manipulations. FQ algorithms on
the other hand are difficult to implement on hardware as they

require complex flow classification, per-packet scheduling,
and buffer allocation. Such requirements make FQ algorithms
expensive to be implemented on high-speed devices. AFQ
aims at approximating fair queueing by using programmable
switches’ features such as mutating switch state, performing
basic calculations, and selecting the egress queue of a packet.
AFQ’s operations can be summarized as follows: 1) per-flow
state, which includes the number and timing information of
the previous packet pertaining to that flow, is approximated;
2) the position of each packet in the output schedule is
determined; 3) the egress queue to use is selected; and 4) the
packet is dequeued based on the approximate sorted order.
Note that AFQ uses a probabilistic data structure (count-min
sketch) since it only approximates the states, and uses multi-
ple queues in its implementation.

5) AQMs ON PROGRAMMABLE SWITCHES AND
FIXED-FUNCTION DEVICES
Inventing novel AQMs that control queueing delay, mitigate
bufferbloat, and achieve fairness with different network con-
ditions (e.g., short/long RTTs, lossy networks, WANs) is an
active research area. Typically, new AQMs are implemented
and tested in software (e.g., as a Linux queueing discipline
(qdisc) used with traffic control (tc)), which is limited when
the objective is to deploy the AQMs on production networks.
With programmable switches, AQMs are implemented in
P4 programs, which foster innovation and enhance testing
with production networks. Additionally, operators can create
their own customized AQMs that perform efficiently with
their typical network traffic.

Historically, deploying AQMs on network devices is a
lengthy and costly process; once an effective AQM is pub-
lished and thoroughly tested, equipment vendors start inves-
tigating whether it is feasible to implement it on future
devices. Such process might take years to finish, and by
then, new network conditions evolve, requiring new AQMs.
With programmable switches, this process is cost-efficient
and relatively fast (can be completed in weeks).
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TABLE 11. AQMs on programmable and fixed-function switches.

Table 11 compares the features of AQMs on programmable
switches versus fixed-function devices. While new AQMs
can be devised on programmable switches, there are some
constraints that should be taken into account. First, the traffic
manager of a programmable switch is not programmable
itself using P4; this is where AQM algorithms are typi-
cally implemented in legacy devices. Nevertheless, there are
efforts that started investigating methods for emulating pro-
grammable traffic managers [282]. Second, current AQMs
do not consider the constraints of high-speed ASICs, and
thus, cannot be directly implemented as they are using P4.
Researchers overcome such limitations through approxima-
tions or through rewriting the AQM logic in an high-speed
ASIC-friendly way. Third, queue state information is not
available in the ingress before packet enqueue. Consequently,
AQM are usually implemented in the egress. Such limita-
tions can be addressed in future research works pertaining
to AQMs.

D. QUALITY OF SERVICE AND TRAFFIC MANAGEMENT
1) BACKGROUND
Meeting diverse Quality of Service (QoS) requirements is
a fundamental challenge in today’s networks. Traffic Man-
agement (TM) provides access control that guarantees that
the traffic admitted to the network conforms to the defined
QoS specifications. TM often regulates the rate of a flow by
applying traffic policing. New generation of programmable
switches facilitate traffic policing and differentiation by
allowing network operators to express their logic in a pro-
gramming language (P4). This section explores the works on
programmable switches that involve QoS and TM.

2) QUALITY OF SERVICE
Bhat et al. [110] described a system where programmable
switches intelligently route traffic by inspecting application
headers (layer-5) to improve users’ QoE. Chen et al. [111]
proposed a bandwidth manager for end-to-end QoS provi-
sioning using programmable switches. The system classifies
packets into different categories based on their QoS demands
and usages, and uses two-level queue when prioritizing.

TABLE 12. QoS/TM schemes comparison.

Chen et al. [112] proposed a system that uses the metering
capabilities of a programmable switch to measure the flow
rate. It then marks packets when the flow rate exceeds a cer-
tain threshold. The sender then adjusts its congestion window
proportional to the marking packet ration. The goal of this
approach is to avoid the frequent packet drops of TCP when
rate limiting QoS scheme is present.

3) TRAFFIC MANAGEMENT
Tokmakov et al. [113] proposed RL-SP-DRR, a traffic man-
agement system that combines Rate-limited Strict Priority
(RL-SP) and Deficit round-robin (DRR) to achieve low
latency and fair scheduling while improving link utilisation,
prioritization and scalability. Lee and Chan [114] imple-
mented a traffic meter based onMulti-Color Markers (MCM)
on programmable switches to support multi-tenancy
environments.

4) QoS/TM SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 12 compares the QoS/TM schemes. The main idea
in [110] is to translate application-layer header information
into link-layer headers (Q-in-Q 802.1ad) for the core net-
work in order to perform QoS routing and provisioning. The
authors adopted the Adaptive Bit Rate (ABR) video stream-
ing as a use case to showcase the QoS improvements and the
flexibility of traffic management. Such approach is interest-
ing since switches are inspecting higher layers in the protocol
stack. This capability is not available in non-programmable
devices. Note however that the solution was only imple-
mented on a software switch (BMv2).When it comes to hard-
ware switches, the solution might face challenges to run at
line rate when processing L5 headers. Therefore, the authors
left the hardware implementation as a future work.

The other approaches considered traffic rates as inputs
rather than inspecting application-layer headers.
Reference [114] focused on isolating virtual networks (VN).
A VN has to have its own dedicated bandwidth (i.e., other
networks’ traffic should not impact the bandwidth) and
should be able to differentiate priorities in order to provide
QoS for its flows. While the solution was not implemented
on hardware (the authors left the hardware implementation
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as future work), it is worth noting that this system relies
on metering primitives which are available in today’s hard-
ware targets (e.g., meters in Tofino). Similarly, [113] was
only implemented on a software switch (BMv2) and was
evaluated by comparison against standard priority-based and
best-effort scheduling. This system uses multiple priority
queues, a feature supported in hardware targets. Therefore,
the system could be implemented on hardware switches. The
approach in [111] aims at limiting the maximum allowed rate
and at maximizing bandwidth utilization. This is the only
work that was implemented on a hardware switch (Tofino),
and its design was compared against approaches based on
OpenFlow.

5) COMPARISON OF QoS/TM BETWEEN LEGACY AND
PROGRAMMABLE NETWORKS
The ability to perform QoS-based traffic management in
legacy networks is restricted to algorithms that consider stan-
dard header fields (e.g, differentiated services [283]). On the
other hand, programmable switches can parse, modify, and
process customized protocols. Hence, operators now have
the ability to perform TM by inspecting custom headers
fields.Moreover, it is possible to extract with high-granularity
metadata pertaining to the state of the switch (e.g., queue
occupancy, packet sojourn time, etc.) at line rate. Such infor-
mation can significantly help switches take better decisions
while performing traffic management.

E. MULTICAST
1) BACKGROUND
Multicast routing enables a source node to send a copy of a
packet to a group of nodes. Multicast uses in-network traffic
replication to ensure that at most a single copy of a packet tra-
verses each link of the multicast tree. Perhaps themost widely
multicast routing protocol deployed in traditional networks
is the Protocol-Independent Multicast (PIM) protocol [284].
PIM and other multicast routing protocols require a signaling
protocol such as the Internet Group Management Protocol
(IGMP) [285] to create, change, and tear-down the multi-
cast tree. Traditional multicast presents some challenges. For
example, it is not suitable for environments where multi-
cast group members constantly move (e.g., virtual machine
migration and allocation). In such cases, the multicast tree
must be updated dynamically, which may require substan-
tial time and overhead. Also, some routers support a lim-
ited number of group-table entries, which does not scale in
environments such as datacenters. Additionally, the signaling
protocol and multicast algorithm are hard coded in the router,
which reduces flexibility in building and managing the tree.
Finally, it is not possible to implement multicast based on
non-standard header fields.

2) SOURCE-ROUTED MULTICAST
Shahbaz et al. [115] presented ELMO, a multicast scheme
based on programmable P4 switches for datacenter applica-
tions. ELMO encodes the multicast tree in the packet header,
as opposed to maintaining group-table entries inside routers.

TABLE 13. Source-routed multicast schemes comparison (source: [115]).

Kadosh et al. [116] implemented ELMO using a hybrid dat-
aplane with programmable and non-programmable elements.
ELMO is intended for multi-tenant datacenter applications
requiring high scalability. Braun et al. [117] presented an
implementation of the Bit Index Explicit Replication (BIER)
architecture [286] with extensions for traffic engineering.
Similar to ELMO, BIER removes the per-multicast group
state information from switches by adding a BIER header,
which is used to forward packets. BIER does not require a
signaling protocol for building, managing, and tearing down
trees.

3) PRIORITY-BASED DECENTRALIZED MULTICAST
Cloud applications in data centers often require file transfers
to be completed in a prioritized order. Luo et al. [287] pro-
posed Priority-based Adaptive Multicast (PAM), a preemp-
tive and decentralized rate control protocol for data center
multicast. The switches explicitly and preemptively compute
sending rates based on priorities encoded in scheduling head-
ers, and the real-time link loads.

4) MULTICAST SCHEMES COMPARISON, DISCUSSIONS,
AND LIMITATIONS
Table 13 compares the source-routed multicast schemes.
Both ELMO and BIER are source-routed multicast schemes.
In BIER, group members are encoded as bit strings and are
then inspected by switches to identify the output port. Such
scheme requires heavy processing on the switch, hampering
the execution at line rate. Consequently, the authors only
implemented BIER on a software switch (BMv2). ELMO on
the other hand has no restrictions on the group and network
sizes, and was implemented on a hardware switch, running at
line rate.

Other schemes like PAM addressed the challenges faced in
file transfers by data center cloud applications. For instance,
when sharing the link with other latency-sensitive flows,
file transfers suffer from continuous changes in the link’s
bandwidth, affecting the flow completion times. To solve this
problem, PAM adopted a scheduling scheme that performs
adaptive rate allocations in RTT scales. Other aspects that
were addressed by PAM include: fault tolerance and scala-
bility of file transfers; limited number of priority queues; and
the challenges of performing complex computations in data
plane.

5) COMPARISON P4-BASED AND TRADITIONAL MULTICAST
Table 14 compares P4-based multicast and traditional multi-
cast. The main advantages of implementing multicast routing
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TABLE 14. Comparison between P4-based and traditional multicast.

with programmable P4 switches are: i) the groupmembership
is encoded in the packet itself, which permits the creation of
arbitrarymulticast tree based on the application. For example,
a multicast tree to update software devices may prioritize
bandwidth over latency, while one for media traffic may
prioritize latency; ii) switches do not need to store per-group
state information, although tables can be customized and used
in conjunction with the tree encoded in the packet header;
iii) groups can be reconfigured easily by changing the infor-
mation in the header of the packet; and iv) the elimination
of the signaling protocol to build, manage, and tear-down the
tree results in consider simplification and flexibility for the
operator.

F. SUMMARY AND LESSONS LEARNED
Performing network-wide monitoring and measurements is
of utmost importance for network operators to diagnose
performance degradation. A wide range of research efforts
harness streaming methods that utilize various data structures
(e.g., sketches, bloom filters, etc.) and approximation algo-
rithms. Further, the majority of measurements work provide
a query-based language to specify the monitoring tasks.
Future measurement works should consider generalizing the
monitoring jobs, reducing storage requirements, managing
accuracy-memory trade-off, extending monitoring primi-
tives, minimizing controller intervention, and optimizing the
placement of switches in a legacy network. Another line of
research aim at combating congestion and reducing packet
losses by analyzing measurements collected in the data plane
and by applying queue management policies. Congestion
control is enhanced by adopting techniques such as throt-
tling senders, cutting payloads, enforcing sending rates by
leveraging telemetry data, and separating traffic into different
queues. Furthermore, a handful of works are investigating
methods to improve QoS by applying traffic policing and
management. Techniques adopted include application-layer
inspection, traffic metering, traffic separation, and bandwidth
management. Finally, the scalability concerns of multicast

FIGURE 13. (a) Traditional software-based load balancing. (b) Load
balancing system implemented by a programmable switch.

in legacy networks are being mitigated with programmable
switches. Recent efforts proposed encoding multicast trees
into the headers of packets, and using programmable switches
to parse these headers and to determine the multicast
groups. Future endeavours should investigate incremental
deployment (i.e., interworking with legacy multicast
schemes), and reliability enhancement (e.g., by adopting lay-
ering protocols such as Pragmatic General Multicast (PGM)
and Scalable Reliable Multicast (SRM)).

VIII. MIDDLEBOX FUNCTIONS
RFC 3234 [288] defines middlebox as a device that per-
forms functions other than the standard functions of an IP
router between a source and a destination host. In legacy
devices, middlebox functions are designed and implemented
by manufacturers. Hence, they are limited in the functionali-
ties they provide, and typically include standard well-known
functions (e.g., NAT, protocol converters (6to4/4to6), etc.).
To overcome this limitation, the trend moved towards imple-
menting middleboxes in x86-based servers and in data cen-
ters as Network Function Virtualization (NFVs). While this
shift accelerated innovation and introduced a wide range of
new applications, there was some performance implications
resulting from operating systems’ scheduling delays, inter-
rupt processing latency, pre-emptions, and other low-level
OS functions. Since programmable switches offer the flex-
ibility of inspecting and modifying packets’ headers based
on custom logic, they are excellent candidates for enabling
middlebox functions, while operating at line rate without
performance implications.

A. LOAD BALANCING
1) BACKGROUND
A cloud data center, such as a Google or Facebook data cen-
ter, provides many applications concurrently, such as email
and video applications. To support requests from external
clients, each application is associated with a publicly visible
IP address to which clients send their requests and from
which they receive responses. This IP address is referred
to as Virtual IP (VIP) address. The external requests are
then directed to a software load balancer whose task is to
distribute requests to the servers, balancing the load across
them. The load balancer is also referred to as layer-4 load
balancer because it makes decisions based on the 5-tuple
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TABLE 15. Load balancing schemes comparison.

source IP address and port, destination IP address and port,
and transport-layer protocol. This state information is stored
in a connection table containing the 5-tuple and the Direct
IP (DIP) address of the server serving that connection. State
information is needed to avoid disruptions caused by changes
in the DIP pool (e.g., server failures, addition of new servers).
The load balancer also provides a translation functionality,
translating the VIP to the internal DIP, and then translating
back for packets traveling in the reverse direction back to
the clients. The traditional software-based load balancer is
illustrated in Fig. 13(a).

2) STATEFUL LOAD BALANCING
Recent works presented schemes where load balancing func-
tionality is implemented in programmable P4 switches. The
main idea consists of storing state information directly in
the switch’s dataplane. The connection table is managed by
the software load balancer, which can be implemented either
in the switch’s control plane or as an external device, as shown
in Fig. 13(b). The software load balancer adds new entries in
the switch’s table as they arrive, or removes old entries as
flows end.

Katta et al. [118] proposed HULA, a load balancer scheme
where switches store the best path to the destination via their
neighboring switches. This strategy avoids storing the con-
gestion status of all paths in leaf switches. Benet et al. [119]
extended this approach to support multi-path transport pro-
tocols (e.g., Multi-path TCP (MPTCP)). Another significant
work is SilkRoad, [120], a load balancer that provides a
direct path between application traffic and servers. Other
mechanisms such as DistCache [121] enables load balancing
for storage systems through a distributed caching method.
DASH [122] proposed a data structure that leverages multiple
pipeline stages and per-stage SALUs to dynamically balance
data across multiple paths. The aforementioned approaches
work under specific assumptions about the network topology,
routing constraints, and performance. Contra [123] general-
ized load balancing toworkwith various topologies and under
multiple constraints by using a performance-aware routing
mechanism.

3) STATELESS LOAD BALANCING
Recent advances in customized and stateful packet processing
in programmable switches not only forked a variety of stateful

load balancing schemes, but also stateless ones. Stateless load
balancing in this context avoids storing per-connection state
in the switch.

Perhaps the first and most significant P4-based stateless
load balancing scheme is Beamer [124]. Instead of storing
the state in the switch, Beamer leverages the connection state
already stored in backend servers to perform the forwarding.
Another scheme is SHELL [125], which is an application-
agnostic, application-load-aware approach that uses a power-
of-choices scheme to dispatch flows to a suitable instance.
Other approaches such as W-ECMP [126] were built to solve
the issue of hash collision in the well-known Equal-Cost
Multi-Path (ECMP) scheme. W-ECMP maintains a maxi-
mum utilization table, which is used as weights to determine
the routing probability for each path. Note that W-ECMP is
not storing per-connection state information in the data plane.

4) LOAD BALANCING SCHEMES COMPARISON,
DISCUSSIONS, AND LIMITATIONS
Table 15 compares the aforementioned load balancing
schemes. The key idea of switch-based stateful load bal-
ancing is to eliminate the need for a software-layer
while mapping a connection to the same server, ensuring
Per-Connection Consistency (PCC) property. The majority
of the proposed approaches are stateful, meaning that the
switches store information locally to perform load balancing.

Some approaches (e.g., HULA, MP-HULA, Contra) use
active probing to collect network performance metrics. Such
metrics are then analyzed by the switches to make load bal-
ancing decisions. Note that probing increases the bandwidth
overhead which might result in performance degradation.

In the presence of multi-path transport protocols (e.g.,
MPTCP), systems such as HULA provide sub-optimal for-
warding decisions when several subflows pertaining to a
single connection are pinned on the same bottleneck link.
As a result, schemes such as MP-HULA, Contra, and Dash
were proposed to support multi-path transport protocols. For
instance, MP-HULA is a transport layer multi-path aware
load-balancing scheme that uses the best-k paths to the desti-
nation through the neighbor switches.

Other approaches are stateless. Beamer relies on using the
connection state already stored in backend servers to ensure
that connections are never dropped under churn. On the
other hand, SHELL, which assigns new connections to a
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TABLE 16. Switch-based and server-based load balancers.

set of pseudo-randomly chosen application instances, marks
packets, allowing the load-balancer to direct them without
storing state. W-ECMP makes forwarding decisions based
on weights adjusted according to the link utilization. Finally,
it is important for a load balancing scheme to be adaptive and
handle network failures. Furthermore, it should mitigate load
imbalance in asymmetric topologies.

5) COMPARISON BETWEEN SWITCH-BASED AND
SERVER-BASED LOAD BALANCER
Table 16 shows a comparison between switch-based and
server-based load balancers. There is a significant improve-
ment in the throughput when load balancing is offloaded to
the switches; for instance, SilkRoad [120], which is a load
balancing scheme in the data plane, achieves 10 billion pack-
ets per second (pps) while operating at line rate. Software load
balancers on the other hand achieve amuch lower throughput,
nine million PPS on average. Software-based load balancers
also incur additional latency overhead when processing new
requests. It is relatively easy to install additional software load
balancers, which makes it more scalable than switch-based
load balancing schemes. Moreover, software load balancers
are more flexible in assigning flow identification policies.
Finally, switch-based schemes are simpler as the whole
logic is expressed in a program (customized parser and
match-action tables), whereas server-based balancers might
require additional coordination with routers (e.g., tunneling).

B. CACHING
1) BACKGROUND
Modern applications (e.g., online banking, social networks)
rely on key-value stores. For example, retrieving a single
web page may require thousands of storage accesses. As the
number of users increases to millions or billions, the need
for higher throughput and lower latency is needed. A chal-
lenge of key-value stores is the non-uniform access of items.
Instead, popular items, referred to as ‘‘hot items’’, receive
more queries than others. Furthermore, popular items may
change rapidly due to popular posts, limited-time offers,

FIGURE 14. (a) Traditional software-based caching. (b) Switch-based
caching.

and trending events [127]. Fig. 14(a) shows a typical skew
key-value store systemwhich presents load imbalance among
servers storing key-value objects. The performance of such
systems may present reduced throughput and long latencies.
For example, server 2 may add substantial latency as a result
of storing a hot item and being over-utilized, while server 1 is
under-utilized.

2) KEY-VALUE CACHING
Fig. 14(b) illustrates a system where a programmable switch
receives a query before forwarding them to the server storing
the key. The switch is used as an ‘‘in-network cache’’, where
the hottest items are stored. When a read request for a hot
key is received, the switch consults its local table and returns
the value corresponding to that key. If the key is missed
(i.e., the case for non-hot keys) then the switch forwards the
request to the appropriate server. When a write request is
received, the switch checks its local table and evicts the entry
if the key is stored there. It then forwards the request to the
appropriate backend server. A controller periodically collects
statistics to update the cache with the current hot items.

A noteworthy approach is NetCache [127], an in-network
architecture that uses programmable switches to store hot
items and balance the load across storage nodes. Similarly,
Liu et al. [128] proposed IncBricks, a hardware-software
co-designed in-network caching fabric for key-value pairs
with basic computing primitives in the data plane.
Cidon et al. [129] proposed AppSwitch, a packet switch
that performs load balancing for key-value storage systems,
while exchanging only a single message from the key-value
client to the server. Wang et al. [130] proposed CONCOR-
DIA, a rack-scale Distributed Shared Memory (DSM) with
in-network cache coherence. While the system targets cache
coherence, the authors implemented a distributed key-value
store to demonstrate the practical benefits of the system.
Similarly, Li et al. [131] proposed Pegasus which acts as an
in-network coherence directory tracking and managing the
replication of objects.

3) APPLICATION-SPECIFIC CACHING
Other class of caching schemes target specific appli-
cations rather than caching arbitrary key-value pairs.
Signorello et al. [132] developed a preliminary imple-
mentation of Named Data Networking (NDN) instance
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TABLE 17. Caching schemes comparison.

using P4 that caches requests to optimize its operations.
Grigoryan and Liu [133] proposed a system that caches For-
warding Information Base (FIB) entries (the most popular
entries) in fast memory in order to minimize the TCAM
consumption and to avoid the TCAM overflow problem.
Zhang et al. [134] proposed B-Cache, a framework that
bypasses the original processing pipeline to improve the
performance of caching. Vestin et al. [135] proposed Fas-
tReact, a system that enables caching for industrial control
networks. Finally, Woodruff et al. [136] proposed P4DNS,
an in-network cache for Domain Name System (DNS)
entries.

4) CACHING SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 17 compares the aforementioned caching schemes.
Schemes can be separated based on the type of data they aim
to cache. For instance, NetCache, AppSwitch, and IncBricks
cache arbitrary key-value pairs, while NDN.p4 caches
only NDN names. Further, some schemes (e.g., NetCache,
P4DNS, etc.) automatically index entries to be cached based
on their access frequencies, while others require the operators
to manually specify the entries. Another important distinc-
tion is whether the scheme uses a custom protocol or not.
For instance, switches in NetCache parse a custom protocol
that carries key-value pairs, while switches in P4DNS parse
standard DNS headers.

Themainmotivation of switch-based caching schemes is to
improve the performance issues of server-based schemes. For
instance, NetCache, which efficiently detects hot key-value
items and serves them in the data plane, was capable of
handling two billion queries per second for 64,000 items with
16-bytes keys and 128-bytes values. Compared to commodity
servers, NetCache improves the throughput by 3-10 times and
reduces the latency of 40% of queries by 50%. In addition to
the throughput, the latency of the queries is also a major met-
ric to improve. In IncBricks, the latency of requests is reduced
by over 30% compared to client-side caching systems.

Similarly, B-Cache aims at improving the performance by
caching behaviors defined along the processing pipeline into
a single cache match-action table. The motivation behind
B-Cache is that the performance of the data plane decreases
significantly as the complexity of the P4 program and the
packet processing pipeline grows. When a match occurs,

TABLE 18. Switch-based and server-based caching.

the packet bypasses the original pipeline, making the perfor-
mance of caching independent of the pipeline length. Note
however that this system was evaluated on a software switch
(BMv2), and it is not certain whether this design is always
feasible on hardware targets.

Other caching schemes are more targeted for specific
applications. As examples, FastReact enables caching for
industrial control networks, while P4DNS caches DNS
entries. Further, some schemes offer multi-level caching
(e.g., level-1 and level-2 caches).

Unlike the other approaches which store cached data in
the data plane, CONCORDIA coordinates coherence among
the cache of servers, and therefore only stores the cache’s
metadata in the switch.

5) COMPARISON BETWEEN SWITCH-BASED AND
SERVER-BASED CACHING
Table 18 compares the switch-based versus server-based
caching schemes. The throughput when data is cached
on the switch is order of magnitude larger than that
of general purpose servers. The latency is also reduced
by 50%, and most of it is induced by the client. The
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TABLE 19. Telecom schemes comparison.

switched-based caching solves the load imbalance problem
and is simpler as the whole logic is expressed in a program.
Server-based caching on the other hand is more flexible
regarding cache policies, as well as keys, values, and tables’
sizes.

C. TELECOMMUNICATION SERVICES
1) BACKGROUND
The evolution of the current mobile network to the emerg-
ing Fifth-Generation (5G) technology implies significant
improvements of the network infrastructure. Such improve-
ments are necessary in order to meet the Key Perfor-
mance Indicators (KPIs) and requirements of 5G [290].
5G requires ultra-reliable low latency and jitter
(microseconds-scale). As programmable switches fulfill
these requirements, researchers are investigating the idea of
offloading telecom-oriented VNFs running on x86 servers to
programmable hardware.

2) 5G FUNCTIONS
Ricart-Sanchez et al. [137] proposed a system that uses pro-
grammable data plane to enhance the performance of the
data path from the edge to the core network, also known
as the backhaul, in a 5G multi-tenant network. The same
authors [138] proposed a 5G firewall that detects, differenti-
ates and selectively blocks 5G network traffic in the backhaul
network.

In parallel, attempts such as TurboEPC [139] proposed
offloading a subset of user state in mobile packet core to pro-
grammable switches in order to perform signaling in the data
plane. Similarly, Singh et al. [140] designed a P4-based ele-
ment of 5G Mobile Packet Core (MPC) that merges the func-
tions of both signaling gateway (SGW) and the Packet Data
Network Gateway (PGW). Additionally, Vörös et al. [141]
proposed a hybrid next-generation NodeB (gNB) that com-
bines the capabilities of P4 switches and the external services
built on top of NIC accelerators (DPDK). Another impor-
tant function required in 5G is handover. Palagummi and
Sivalingam [142] proposed SMARTHO, a system that uses
programmable switches to perform handover efficiently in a
wireless network.

Paolucci et al. [143] demonstrated the potential and the
disruptiveness of data plane programmability as opposed

to the SDN/NFV network with no programmable switches.
Specifically, the authors focused on the problems of full
softwarization in current SDN networks (high latency and
jitter, low precision traffic and advancedmonitoring, etc.) and
how P4 is paving the way to novel orchestration frameworks
enabling innovation at the edge. Lin et al. [144] integrated
P4 switches in their 5G testbed to implement the User Plane
Function (UPF) in the data plane.

3) MEDIA OFFLOADING
Kfoury et al. [145] proposed a system for offloading con-
versational media traffic (e.g., Voice over IP (VoIP), Voice
over LTE (VoLTE), WebRTC, media conferencing, etc.) from
x86-based relay servers to programmable switches. While
this system is not tailored for 5G network specifically,
it provides significant performance improvements for Over-
The-Top (OTT) VoIP systems.

Andrus et al. [146] offloaded video processing to the
switch. Essentially, the switch dynamically filters and sepa-
rate control traffic from video streams, and then redirect them
to the desired destinations. The authors implemented this
scheme due to processing constraints on the software when
the number of devices is high (the authors noted that CCTV
cameras in London, UK is estimated at roughly 500,000).

4) TELECOM SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 19 compares the aforementioned telecom schemes
on P4. In general, all schemes aim at offloading various func-

FIGURE 15. CDF of delay and packet loss rate of 900 offloaded VoIP
calls [145].
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TABLE 20. Switch-based and server-based media relaying.

tionalities originally executed on x86-based servers to the
data plane. Such strategy improves the network performance
(e.g., latency, throughput) significantly and aim at achieving
the KPIs of 5G. For instance, the experiments conducted
in [137] show that the attained QoS metrics meet the latency
requirements of 5G. Similarly, the results reported in [138]
demonstrate that the system meets the reliability KPI of 5G,
which states that the network should be secured with zero
downtime. Furthermore, the results reported in [142] show
that there are 18% and 25% reductions in handover time with
respect to legacy approaches, for two- and three-handover
sequences, respectively.

The system in [145] emulates the behavior of the relay
server which is primarily used to solve the NAT problem.
Results show that ultra-low latency and jitter (nanoseconds-
scale) are achieved with programmable switches as opposed
to x86-based relay servers where the latency and the jitter
are in the milliseconds-scale (see Fig. 15). The solution also
improves the packet loss rate, CPU usage of the server, Mean
Opinion Score (MOS), and can scale to more than onemillion
concurrent sessions, with additional resources to spare in the
switch.

Other systems allow offloading the signaling part to the
data plane. For instance, TurboEPC offloads messages that
constitute a significant portion of the total signaling traffic in
the packet core, aiming at improving throughput and latency
of the control plane’s processing.

5) SWITCH-BASED AND SERVER-BASED MEDIA RELAY
Offloading media traffic from general purpose servers to
programmable switches greatly improves the quality of ser-
vice. Table 20 shows the metrics achieved when media is
relayed by a relay server versus when it is relayed by the
switch, based on [145]. The results show that the latency, jitter
and packet loss rates are significantly lower when media is
being relayed by the switch. Not only the QoS metrics are
improved, but also the maximum number of concurrent ses-
sions. With Tofino 3.2Tbps, more than one million sessions

were accommodated in the switch’s SRAM, with additional
resources to spare for other functionalities. On the other hand,
only one thousand sessions per CPU core were handled in
the server-based relay, before QoS starts to degrade. The
drawback of offloading media traffic to the switch is that
some functionalities are complex to be implemented in the
data plane (e.g., media mixing for conference calls, noise
reduction, etc.).

D. CONTENT-CENTRIC NETWORKING
1) BACKGROUND
Emerging network architectures (e.g., [291]) promote
content-centric networking, a model where the addressing
scheme is based on named data rather than named hosts.
In other words, users specify the data they are interested in
instead of specifying where to get the data from. A branch of
content-centric networking is the publish/subscribe (pub/sub)
model. The goal of the model is to provide a scalable and
robust communication channel between producers and con-
sumers of information. A large fraction of today’s Internet
applications follow the publish/subscribe paradigm. With the
IoT, this paradigm proliferated as sensors/actuators are often
deployed in dynamic environments. Other applications that
use pub/sub model include instant messaging, Really Simple
Syndication (RSS) feeds, presence servers, telemetry and
others. Current approaches to content-centric networking use
software-based middleboxes, which limits the performance
in terms of throughput and latency. Recent works are lever-
aging programmable switches to overcome the performance
limitations of software-based middleboxes.

2) PUBLISH/SUBSCRIBE
Jepsen et al. [147] presented ‘‘packet subscription’’, a new
abstraction that generalizes the forwarding rules by evaluat-
ing stateful predicates on input packets.Wernecke et al. [148],
[149] presented distribution strategies for content-based pub-
lish/subscribe systems using programmable switches. The
authors described a systemwhere the notification distribution
tree (i.e., the subscribers that should receive the notification)
is encoded in the packet headers, similar to multicast source
routing. Similarly, Kundel et al. [150] implemented a pub-
lish/subscribe system on programmable switches. The system
is flexible in encoding attributes/values in packet headers.

3) NAMED DATA NETWORKING
Signorello et al. [132] developed NDN.p4, a prelimi-
nary implementation of a Named Data Networking (NDN)
instance that caches requests to optimize its operations.
Miguel et al. [151] extended NDN.p4 to include the content
store and to solve the scalability issues of the previous FIB
design. Karrakchou et al. [152] proposed ECDN, another
CDN implementation on P4where data plane configuration is
generated according to application requirements and supports
extensions to the regular CDN such as adaptive forwarding,
customizedmonitoring, in-network caching control, and pub-
lish/subscribe forwarding.
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FIGURE 16. (a) Traditional software-based pub/sub architecture. (b) Pub/sub implemented on a programmable switch.

TABLE 21. Content-centric networking schemes comparison.

4) CONTENT-CENTRIC NETWORKING SCHEMES
COMPARISON, DISCUSSIONS, AND LIMITATIONS
Table 21 compares the aforementioned pub/sub schemes.
In [147], the authors described a compiler that gener-
ates P4 tables from logical predicates. It utilizes a novel
algorithm based on Binary Decision Diagrams (BDD) to
preserve switch resources (TCAM and SRAM). This feature
simplifies the configuration as operators do not need to man-
ually install tables entries switches, which is a cumbersome
process when the topology is large. The prototype was eval-
uated on a hardware switch (Tofino), and the authors con-
sidered the Nasdaq’s ITCH protocol as the pub/sub use case.
Results show that the system was able to process messages
at line rate while using the full switch capacity (6.5 Tbps).
The other systems considered different encoding strategies.
For example, in [148], [149], the authors described a system
where the notification distribution tree (i.e., the subscribers
that should receive the notification) is encoded in the packet
headers, similar to multicast source routing. The advantage
of storing the distribution tree in the packet header instead
of storing it in the switch is that rules in the switches do not
need to be updated when subscriptions change. Another dis-
tinction between the pub/sub systems is whether they require
a dedicated language to describe the subscriptions, and the
configuration complexity.

Regarding the NDN schemes, ENDN focused on making
the data plane adaptive and easily programmable to meet
the application needs. This flexibility is lacking in the other
P4-based CDN schemes. It is worthmentioning that P4 has its
shortcomings when it comes to supporting a stateful variable
length protocol. This is an important aspect that should be
tackled when implementing NDN on the data plane.
5) COMPARISON BETWEEN SWITCH-BASED AND
SERVER-BASED PUB/SUB SYSTEMS
Fig. 16 illustrates the operations of traditional software-based
pub/sub systems (a) and switch-based pub/sub systems (b).
Latency and its variations are significantly reduced when
the switch acts as a pub/sub broker. However, the size of
memory in the switch limits the amount of data to be
distributed. Moreover, implementing features provided by
software-based pub/sub systems such as QoS levels, session
persistence, message retaining, last will and testament (notify
users after a device disconnects) in hardware is challenging.
E. SUMMARY AND LESSONS LEARNED
Programmable switches offer the flexibility of customizing
the data plane to enable middlebox functions. A middlebox
can be defined as a device that performs functions that are
beyond the standard capabilities of routers and switches.
A number of works demonstrated the implementation of mid-
dlebox functions such as caching, load balancing, offloading
services, and others on programmable switches. The majority
of load balancing schemes took advantage of the stateful
nature of the data plane to store the load balancing connection
table. Future work should consider minimizing the storage
requirement to improve the scalability, supporting flow pri-
ority, and developing further variations for novel multipath
transport protocols such as multipath QUIC.

The switch can also act as an ‘‘in-network cache’’ that
serves hot items at line rate. Some schemes indexes entries
automatically, while others require operator’s intervention.
Future endeavours could investigate items compression, com-
munication minimization, priority-based caching, and aggre-
gated computations caching (e.g., cache the average of hot
items).
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An additional middlebox application is offloading tele-
com functions. The switch is capable of relaying media traf-
fic and user plane functions. Future work could investigate
scalability improvement (i.e., to accommodate more concur-
rent sessions), offloading signalling traffic, and in-network
media mixing.

Finally, the switch can also act as a broker to dis-
tribute packets in a publish/subscribe system. Future work
could investigate reliability insurance (e.g., packet deliver
guarantee), message retaining, and QoS differentiation
(e.g., QoS features of MQTT).

IX. NETWORK-ACCELERATED COMPUTATIONS
Programmable switches offer the flexibility of offload-
ing some upper-layer logic to the ASIC, referred also as
in-network computation. Since switch ASICs are designed
to process packets at terabits per second rates, in-network
computation can result in an order of magnitude or more
of improvement in throughput when compared to applica-
tions implemented in software. The potential performance
improvement has motivated programmers to built in-network
computation for different purposes, including consensus,
machine learning acceleration, stream processing, and others.

The idea of delegating computations to networking devices
was perceived with Active Networks [292], where pack-
ets are replaced with small programs (‘‘capsules’’) that are
executed in each traversed device along the path. However,
traditional network devices were not capable of perform-
ing computations. With the recent advancements in pro-
grammable switches, performing computations is now a
possibility.

A. CONSENSUS
1) BACKGROUND
Consensus algorithms are common in distributed systems
where machines collectively achieve agreement on a single

FIGURE 17. Consensus protocol in the data plane model [154].
An application sends a request to the proposer which resides on a
commodity server. The proposer then creates a Paxos message and sends
it to the coordinator, running in the data plane. The role of the
coordinator is be the broker of requests on behalf of proposers.
Afterwards, the acceptor, which also runs on the data plane, receives the
messages from the coordinator, and ensures consistency through the
system by deciding whether to accept/reject proposals. Finally, learners
provide replication by learning the result of consensus.

data value, or on the current state of a distributed system.
Reliability is achieved with consensus algorithms, even in the
presence of some malicious or faulty processes. Consensus
algorithms are used in applications such as blockchain [293],
load balancing, clock synchronization, and others [294].

Latency has always been a bottleneck with consensus algo-
rithms as protocols require expensive coordination on every
request. Lately, researchers have started investigating how
programmable switches can be leveraged to operate consen-
sus protocols in order to increase throughput and decrease
latency. Fig. 17 shows a consensus model in the data plane.

2) PAXOS IMPLEMENTATIONS
Li et al. [153] proposed Network-Ordered Paxos (NOPaxos),
a P4-based Paxos [295] system that applies replication in
the data center to reduce the latency imposed from com-
munication overhead. Similarly, Dang et al. [154] presented
an implementation of Paxos using P4 on the data plane.
Jin et al. [157] proposed NetChain, a variant of the Paxos pro-
tocol that provides scale-free sub-RTT coordination in data
centers. It is strongly-consistent, fault-tolerant, and presents
an in-network key-value store. Dang et al. [158] proposed
Partitioned Paxos, a P4-based system that separates the two
aspects of Paxos, namely, agreement and execution, and
optimizes them separately. Furthermore, The same authors
also proposed P4xos [160], a P4-based solution that executes
Paxos logic directly in switch ASICs, without strengthening
assumptions about the network (e.g., ordered delivery, packet
loss, etc.).

3) OTHER IMPLEMENTATIONS
Another line of research focused on consensus algorithms
other than Paxos. Li et al. [155] proposed Eris, a P4-based
solution that avoids replication and transaction coordination
overhead. It processes a large class of distributed transactions
in a single round trip, without any additional coordination
between shards and replicas. Sakic et al. [159] proposed
P4 Byzantine Fault Tolerance (P4BFT), a system that is
based on BFT-enabled SDN, where controllers act as repli-
cated state machines. The system offloads the comparison of
controllers’ outputs required for correct BFT operations to
programmable switches. Finally, Han et al. [156] offloaded
part of the Raft consensus algorithm [296] to programmable
switches in order to improve its performance. The authors
selected Raft due to the fact that it has been formally proven
to be more safe than Paxos, and it has been implemented on
popular SDN controllers.

4) CONSENSUS SCHEMES COMPARISON, DISCUSSIONS,
AND LIMITATIONS
Table 22 compares the aforementioned consensus schemes.
In general, consensus algorithms such as Paxos are complex
and cannot be easily implemented with the constraints of the
data plane. For instance, [154] only implemented phase-2
logic of Paxos leaders and acceptors. Similarly, NetChain
uses a variant of the Paxos protocol that divides it into two
parts: steady state and reconfiguration. This variant is known
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TABLE 22. Consensus schemes comparison.

as Vertical Paxos, and is relatively simple to implement in the
network as the division’s parts can be mapped to the control
plane and the data plane.

Unordered and completely asynchronous networks require
the full implementation and complexity of Paxos. NOPaxos
suggests that the communication layer should provide a
new Ordered Unreliable Multicast (OUM) primitive; that is,
there is a guarantee that receivers will process the multicast
messages in the same order, though messages can be lost.
NOPaxos relies on the network to deliver ordered messages
in order to avoid entirely the coordination. Dropped packets
on the other hand are handled through coordination with the
application. Other systems like Eris avoid replication and
transaction coordination overhead. The main contribution of
Eris compared to NOPaxos is that it establishes a consis-
tent ordering across messages delivered to many destination
shards. Eris also allows receivers to detect dropped messages.

Partitioned Paxos [158] improved the existing systems.
The motivation behind Partitioned Paxos is that existing
network-accelerated approaches do not address the problem
of how replicated application can cope with the high rate of
consensus messages; NOPaxos only processes 13,000 trans-
actions per second since it presents a new bottleneck at
the host side. Other systems (e.g. NetChain) are specialized
replication services and cannot be used by any off-the-shelf
application.

Finally, P4xos improves both the latency and the tail-
latency. The throughput is also improved compared to hard-
ware servers which require additional memory management
and safety features (e.g., user and kernel separation). P4xos
was implemented on a hardware switch (Tofino), and results
show that it reduces the latency by three times compared to
traditional approaches, and it can process over 2.5 billion
consensus messages per second (four orders of magnitude
improvement).

5) NETWORK-ASSISTED AND LEGACY CONSENSUS
COMPARISON
Consensus algorithms have been traditionally implemented
as applications on general purpose CPUs. Such architecture
inherently induces latency overhead (e.g., Paxos coordinator
has a minimum latency of 96us [297]).

There are numerous performance benefits gained when
consensus algorithms are implemented in programmable
devices.When consensusmessages are processed on thewire,

the latency significantly decreases (Paxos coordinator had a
minimum latency of 340ns [297]).Moreover, when compared
to legacy consensus deployments, network-assisted consen-
sus require fewer hops traversal.

B. MACHINE LEARNING
1) BACKGROUND
The remarkable success ofMachine Learning (ML) today has
been enabled by a synergy between development in hardware
and advancements in machine learning techniques. Increas-
ingly complex ML models are being developed to handle the
large size of datasets and to accelerate the training process.
Hardware accelerators (e.g., GPU, TPU) were introduced to
speedup the training. These accelerators are installed in large
clusters and collaborate through distributed training to exploit
parallelism. Nevertheless, training ML models is time con-
suming and can last for weeks depending on the complexity
and the size of the datasets. Researchers have traditionally
investigated methods to accelerate the computation process,
but not the communication in distributed learning. With the
advancements in programmable switches, it is now possible
to accelerate the ML training process through the network.

2) IN-NETWORK TRAINING
Sapio et al. [161] proposed DAIET, a system that per-
forms in-network data aggregation to accelerate applications
that follow a partition/aggregate workload pattern. Similarly,
Yang et al. [162] proposed SwitchAgg, a system that per-
forms similar functions as DAIET, but with a higher data
reduction rate. Perhaps the most significant work in the train-
ing acceleration literature is SwitchML [163], a system that
performs in-network aggregation for ML model updates sent
from workers on external servers.

3) IN-NETWORK INFERENCE
Other schemes have shown interest in speeding the inference
process by leveraging programmable switches. Siracusano
and Bifulco [164] proposed N2Net, a system that runs sim-
plified neural networks (NN) on programmable switches.
Sanvito et al. [165] proposed BaNaNa Split, a solution that
evaluates the conditions under which programmable switches
can act as CPUs’ co-processors for the processing of Neural
Networks (e.g., CNN). Finally, Xiong et al. [166] proposed
IIsy, a system that enables programmable switches to perform
in-network classification. The system maps trained ML clas-
sification models to match-action pipelines.

4) ML SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 23 compares the aforementioned ML schemes. While
the goal of DAIET is to discuss what computations the net-
work can perform, the authors did not design a complete sys-
tem, nor did they address the major challenges of supporting
ML applications. Moreover, their proof-of-concept presented
a simple MapReduce application on a software switch, and
it is not certain whether the system can be implemented on
a hardware switch. Compared to DAIET, SwitchAgg does
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TABLE 23. Machine learning schemes comparison.

not require modifying the network architecture, and offers
better processing abilities with a significant data reduction
rate. Moreover, SwitchAgg was implemented on an FPGA,
and the results show that the job completion time can be
reduced as much as 50%.

SwitchML extended the literature on accelerating ML
models training by providing a complete implementation
and evaluation on a hardware switch. A commonly used
training technique for deep neural networks is synchronous
stochastic gradient descent [299]. In this technique, each
worker has a copy of the model that is being trained.
The training is an iterative process where each iteration
consists of: 1) reading the sample of the dataset and
locally perform some computation-intensive learning using
the worker’s accelerators. This yields to a gradient vector;
and 2) updating the model by computing the mean of all
gradient vectors. The main motivation of this idea is that
the aggregation is computationally cheap (takes 100ms), but
is communication-intensive (transfer hundreds of megabytes
each iteration). SwitchML uses computation on the switch
to aggregate model update in the network as the workers are
sending them (see Fig. 18). An advantage is that there is min-

imal communication; each worker sends its update vector and
receives back the aggregated updates. The design challenges
of this system include: 1) the limitation of storage available
on the switch, addressed by using a streaming approach;
2) switches cannot perform much computations per packet,
addressed by partitioning the work between the switch and
the workers; 3) ML systems use floating point numbers,
addressed by quantization approaches; and 4) failure recovery
is needed to ensure correctness. The system is implemented
on a hardware switch (Tofino), and results show that the
system speeds up training by up to 300% compared to existing
distributed learning approaches.

With respect to in-network inference, it is challenging
to implement full-fledged models as they require extensive
computations (e.g., multiplications and activation functions).
Simple variation such as the Binary Neural Network (BNN)
only requires bitwise logic functions (e.g., XNOR, POPCNT,
SIGN). N2Net provides a compiler that translates a given
BNN model to switching chip’s configuration (P4 program).
The authors did not mention on which platform N2Net was
evaluated; however, based on their evaluations, they con-
cluded that a BNN can be implemented on most current

FIGURE 18. (a) ML model updates in legacy networks. The aggregation process is communication-intensive and follows an all-to-all communication
pattern. This means that the workers should receive all the other workers’ updates. Since accelerators on end-hosts are becoming faster, the network
should speed up so that it does not become the bottleneck. Therefore, it is expensive to deploy additional accelerators since it requires re-architecting
the network. The red arrow in (a) shows that the bottleneck source is the network. (b) ML model updates accelerated by the network. Aggregation is
performed in the network by the programmable switches while the workers are sending them. The workers do not need to obtain the updates of all other
workers, hence there is minimal communication. They only obtain the aggregated model from the switch. The red arrow in (b) shows that the bottleneck
source is the worker rather than the network [163], [298].
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TABLE 24. Switch-based and server-based ML approaches.

switching chips, and with small additions to the chip design,
more complex models can be implemented. IIsy studied
other ML models. The authors of IIsy acknowledged that
the work is limited in scope as it does not address popular
ML algorithms such as neural networks. Furthermore, it is
bounded to the type of features it can extract (i.e., packet
headers), and has accuracy limitations. IIsy tries to find a
balance between the limited resources on the switch and the
classification accuracy. Finally, BaNaNa Split took a different
approach by partitioning the processing of NN to offload a
subset of layers from the CPU to a different processor. Note
that the solution is far from complete, and the authors evalu-
ated a single binary fully connected layer with 4096 neurons
using a network processor-based SmartNIC.

C. COMPARISON BETWEEN SWITCH-BASED AND
SERVER-BASED ML
Table 24 shows a comparison between switch-based and
server-based ML approaches. ML works that were extracted
from the literature can be divided into two main categories:
1) expedited inference in the data plane, and 2) accelerated
training in the network. The main advantage of switch-based
over server-based inference is the ability to execute at line
rate, and hence provides faster results to the clients. Perform-
ing complex computations in the switch is achieved through
estimations, and hence is limited. Moreover, the SRAM
capacity of the switch is small, impeding the storage of
large models. Such limitations are not problematic with
server-based inference approaches.

Distributed training can be significantly faster when aggre-
gations are offloaded to a centralized switch. However, due to
the small capacity of the switch memory, it is not possible to
store the wholemodel update at once. Additionally, encrypted
traffic remains a challenge when inference or training is
handled by the switch.

D. SUMMARY AND LESSONS LEARNED
Accelerating computations by leveraging programmable
switches is becoming a trend in data centers and backbone
networks. Although switches only support basic and limited
operations, it was shown in the literature that the performance
of various tasks (e.g., consensus, training models in machine
learning), could significantly improve if computations are
delegated to the network.

The majority of the in-network consensus works aim at
implementing common consensus protocols such as Paxos

and Raft in the data plane. Due to the hardware constraints,
current schemes implement only simplified variations of the
protocols. Future work could investigate implementing novel
consensus algorithms that diverge from the existing complex
ones. Further, such schemes should encompass failure recov-
ery mechanisms.

Another interesting in-network application is ML train-
ing/inference acceleration. The literature has shown that sig-
nificant performance improvements are attained when the
switch aggregates model updates or classifies new samples.
Future work could explore developingMLmodels for various
tasks such as classification, regression, clustering, etc.

In addition to the aforementioned categories, data plane
programming is being used for stream processing [167],
[168], parallel processing [169], string searching [170], era-
sure coding [171], in-network lock managers [172], database
queries acceleration [173], in-network compression [174],
and computer vision offloading [175].

X. INTERNET OF THINGS (IoT)
The Internet of Things (IoT) is a novel paradigm in which
pervasive devices equipped with sensors and actuators collect
physical environment information and control the outside
world. IoT applications include smart water utilities, smart
grid, smart manufacturing, smart gas, smart metering, and
many others. Typical IoT scenarios entail a large number
of devices periodically transmitting their sensors’ readings
to remote servers. Data received on those collectors is then
processed and analyzed to assist organizations in taking
data-driven intelligence decisions.

A. AGGREGATION
1) BACKGROUND
Since IoT devices are constrained in size and processing capa-
bilities, they typically generate packets that carry small pay-
loads (e.g., temperature sensor readings). While such packets
are small in size, their headers occupy a significant portion
of the total packet size. For instance, Sigfox Low-Power
Wide Area Network (LPWAN) [300] can support a maximum
of 12-bytes payload size per packet. The overhead of headers
is 42-bytes (Ethernet 14-bytes + IP 20-bytes + UDP 8-
bytes), which represent approximately 78% of the packet
total size. When numerous devices continuously transmit
IoT packets, a significant percentage of network bandwidth
is wasted on transmitting these headers. Packet aggregation
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TABLE 25. IoT aggregation schemes comparison.

is a mechanism in which the payloads of small packets
are aggregated into a single larger packet in order to miti-
gate the bandwidth overhead caused by transmitting multiple
headers.

Legacy packet aggregation mechanisms operate on
the CPUs of servers or on the control plane of
switches [301]–[306]. While legacy mechanisms reduce the
overhead of packet headers, they unquestionably increase the
end-to-end latency and decrease the throughput. As a result,
some studies have suggested aggregating only packets that
are not real-time.
2) IoT BANDWIDTH OVERHEAD REDUCTION
Wang et al. [176] presented an approach where small IoT
packets are aggregated into a larger packet in the switch data
plane (see Fig. 19). The goal of performing this aggregation
is to minimize the bandwidth overhead of packets’ headers.
The same authors [177] extended this work to solve some
constraints related to the payload size and the number of
aggregated packets. Similarly, Madureira et al. [179] pro-
posed IoTP, a layer-2 communication protocol that enables
the aggregation of IoT data in programmable switches. The
solution gathers network information that includes the Maxi-
mumTransmission Unit (MTU), link bandwidths, underlying
protocol, and delays. These properties are used to empower
the aggregation algorithm.
3) AGGREGATION COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 25 compares the aforementioned IoT aggregations
schemes. References [176] and [177] operate in the same
way. Upon receiving a packet, the P4 switch parses its
headers and identifies whether the packet is an IoT packet.
If the packet was identified as an IoT packet, the switch
parses and extracts the payload. Afterwards, the payload is
stored in switch registers along with some other metadata,
and the packet is dropped. Once packets are aggregated,
the resulting packet is sent across the WAN to reach the
remote server. Before the packet reaches the server, it is
disaggregated by another P4 switch situated close to the
server and several packets identical to the original ones are
generated. An important observation is that the aggrega-
tion/disaggregation processes are transparent to both the IoT
devices and the servers; hence, no modifications are required
on either end. The main advantages of [177] over [176] are:
1) packets can have different payload sizes; 2) the payload
size is no longer limited to 16 bytes; 3) the number of pack-
ets is dynamic and only limited by the packet MTU; and
4) both the disaggregation and the aggregation run at line
rate.

FIGURE 19. IoT packets aggregation [176]. Frequent small IoT packets are
aggregated by a P4 switch and encapsulated in a larger packet. Another
switch across the WAN disaggregates the large packet to restore the
original IoT packets. Such mechanism prevents the frequent
transmissions of headers, and thus, minimizes the bandwidth overhead.

4) COMPARISON BETWEEN SERVER-BASED AND
SWITCH-BASED AGGREGATION
Table 26 shows a comparison between switch-based and
server-based packet aggregation. When aggregation is per-
formed on the switch (ASIC), the throughput is higher and
the latency and jitter are lower than that of the server-based
approaches (e.g., switch CPU, x86-based server). On the
other hand, the server-based aggregation has more flexibility
in defining the number of packets and the amount of data
that can be aggregated. Note that if aggregation and disag-
gregation are executed on the IoT device itself, the session
would suffer from long delays and low throughput. More
importantly, the IoT device is limited in computational and
energy resources.

B. SERVICE AUTOMATION
1) BACKGROUND
Low-power low-range IoT communication technologies
(e.g., Bluetooth Low Energy (BLE) [307], Zigbee [308],
Z-wave [309]) typically follow a peer-to-peer model. IoT
devices in such technologies can be divided into two distinct
types, peripheral and central. Peripheral devices, which con-
sist of sensors and actuators, receive commands and execute
subsequent actions. Central devices on the other hand run

TABLE 26. Switch-based and server-based packet aggregation.
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applications that analyze information collected from periph-
eral devices and subsequently issue commands.

The interconnection of devices and services can follow a
Peer-to-Peer (P2P) model or a cloud-centric approach. In the
P2P model, the automation service runs on the central device
which processes and analyzes sensor data published by
peripheral devices in order to issue commands. The main
advantages of the P2P include the low end-to-end latency
and the subtle power consumption as devices are physically
close to each other. The drawbacks of the P2P model include
poor scalability, short reachability, and inflexibility of policy
enforcement. The cloud-centric model addresses the limita-
tions of the P2P model by adding a gateway node that con-
nects peripheral devices to a middleware hosted on the cloud
(Internet). While this approach solves the poor scalability and
the policy enforcement flexibility issues, it incurs additional
delays and jitters in collecting and reacting to data. Moreover,
the middleware represents a single point of failure which
can shutdown the whole service in the event of an outage.
With programmable switches, researchers are investigating
in-network approaches to manage transactional relationships
between low-power, low-range IoT devices.

2) SERVICE MANAGEMENT AND MULTI-PROTOCOL
PROCESSING
Uddin et al. [180] proposed Bluetooth Low Energy Service
Switch (BLESS), a programmable switch that automates IoT
applications services by encoding their transactions in the
data plane. It maintains link-layer connections to the devices
to support P2P connectivity. The same authors proposed
Muppet [181], an extension to BLESS to support multiple
non-IP protocols.

3) SERVICE AUTOMATION COMPARISON, DISCUSSIONS,
AND LIMITATIONS
In BLESS, the data plane operations are performed at the
Attribute Protocol (ATT) service layer which consists of three
operations: read attributes, write attributes, and attributes’
notification. BLESS parses ATT packets, then processes and
forwards them to the devices. The control plane on the
other hand is responsible for address assignment, device
and service discovery, policy enforcement, and subscription
management. The switch was implemented on a software
switch (PISCES), and the results show that BLESS com-
bines the advantages of P2P and the cloud-center approaches.
Specifically, it achieves small communication latency, low
device power consumption, high scalability, and flexible pol-
icy enforcement. Muppet extended this approach to support
multiple IoT protocols. The system studied two popular IoT
protocols, namely BLE and Zigbee. Being in the middle,
Muppet switch is responsible for translating actions (e.g.,
on/off switch of a light bulb) between Zigbee and BLE proto-
cols, as well as logging important events to a database which
resides on the Internet via the Hypertext Transfer Protocol
(HTTP). Note that parsers and actions policies have to be
implemented for each supported protocol. Another difference
from BLESS is that the implementation of Muppet’s control

TABLE 27. Switch-based, P2P, and cloud service automation.

plane leverages ONOS controller with Protocol Indepen-
dent (PI) framework.

4) COMPARISON BETWEEN SERVER-BASED AND
SWITCH-BASED SERVICE AUTOMATION
Table 27 shows a comparison between switch-based, P2P, and
cloud-based service automation. Generally, the switch-based
approach overcomes the limitations of both approaches.
It achieves the low energy and latency characteristics of P2P
while increasing scalability and reachability.

C. SUMMARY AND LESSONS LEARNED
In the context of IoT, there exist broadly two categories,
namely, packets aggregation and service automation. The
goal of packet aggregation is to minimize the overhead
of IoT packets’ headers. Typically, headers in IoT pack-
ets represent a significant portion of the whole packet
size. By aggregating several packets into a single packet,
the bandwidth overhead is reduced. Future work should
study the performance side-effects (e.g., delay, jitter, loss
rate, retransmission) that aggregation causes to packets. Fur-
thermore, timers should be implemented to avoid exces-
sive delays resulting from waiting for enough packets to be
aggregated.

With respect to service automation, the goal is to auto-
mate IoT applications services by encoding their transactions
in the data plane while improving scalability, reachability,
energy consumption, and latency. Future work should design
and develop translators for non-IP IoT protocols so that
applications on various devices that run different protocols
can exchange data. Additionally, production-grade software
switches should be leveraged to support non-Ethernet IoT
protocols.

Other works that involve IoT include flowlet-based stateful
multipath forwarding [310] and SDN/NFV-based architec-
ture for IoT networks [311].

XI. CYBERSECURITY
Extensive research efforts have been devoted on deploying
programmable switches to perform various security-related
functions in the data plane. Such functions include heavy
hitter detection, traffic engineering, DDoS attacks detec-
tion and mitigation, anonymity, and cryptography. Fig. 20
demonstrates the difference between contemporary security
appliances and programmable switches with respect to lay-
ers inspection in the OSI model. Although programmable
switches are limited in the computation power, they are capa-
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FIGURE 20. Layers inspection in the OSI model. (a) Contemporary security
appliances. (b) Programmable switch.

ble of inspecting upper layers (e.g., application layer) at line
rate. Such functionality is not available in any of the existing
solutions.

A. HEAVY HITTER
1) BACKGROUND
Heavy hitters are a small number of flows that constitute most
of the network traffic over a certain amount of time. They
are identified based on the port speed, network RTT, traf-
fic distribution, application policy, and others. Heavy hitters
increase the flow completion time for delay-sensitive mice
flows, and represent the major source of congestion. It is
important to promptly detect heavy hitters in order to react
to them; for instance, redirect them to a low priority queue,
perform rate control and traffic engineering, block volumetric
DDoS attacks, and diagnose congestion. Traditionally, packet
sampling technique (e.g., NetFlow) was used to detect heavy
hitters. The main problem with such technique is the lim-
ited accuracy due to the CPU and bandwidth overheads of
processing samples in the software. Advancements in pro-
grammable switches paved the way to detect heavy hitters in
the data plane, which is not only orders of magnitude faster
than sampling, but also enables additional applications (e.g.,
flow-size aware routing). The detection schemes can be clas-
sified as local and network-wide. In the former, the detection
occurs on a single switch; in the latter, the detection covers
the whole network.

2) LOCAL DETECTION
Sivaraman et al. [182] proposed HashPipe, a heavy hitter
detection algorithm that operates entirely in the data plane.
It detects the k-th heavy hitter flows within the constraints of
programmable switches while achieving high accuracy. Fur-
thermore, Kučera et al. [183] proposed Elastic Trie, a solu-
tion that detects hierarchical heavy hitters, in-network traffic
changes, and superspreaders in the data plane. Hierarchical
heavy hitters include the total activity of all traffic match-
ing relevant IP prefixes. Ben-Basat et al. [184] proposed
PRECISION, a heavy hitter detection algorithm that prob-

abilistically recirculates a fraction of packets for a second
pipeline traversal. The recirculation idea greatly simplifies
the access pattern of memory without significantly degrading
throughput. Tang et al. [185] proposedMV-Sketch, a solution
that exploits the idea of majority voting to track the can-
didate heavy flows inside the sketch data structure. Finally,
da Silva et al. [186] proposed a solution that identifies ele-
phant flows in Internet eXchange Points(IXP) networks.

3) NETWORK-WIDE DETECTION
A work proposed by Harrison et al. [187] considers
a network-wide distributed heavy-hitter detection. The
approach reports heavy hitters deterministically and with-
out errors; however, it incurs significant communication
costs that scale with the number of switches. Accordingly,
the same authors proposed another scheme (Carpe [188])
which reports probabilistically with negligible communica-
tion costs. Ding et al. [189] proposed an approach for incre-
mentally deploying programmable switches in a network
consisting of legacy devices with the goal of monitoring as
many distinct network flows as possible. The same authors
of MV-Sketch proposed SpreadSketch [190], an extension
to Count-min sketch where each bucket is associated with
a distinct counter to track the distinct items of a stream.
SpreadSketch aims at mitigating the high processing over-
head of MV-Sketch.

4) HEAVY HITTER DETECTION COMPARISON, LIMITATIONS,
AND DISCUSSIONS
Table 28 compares the aforementioned heavy hitter schemes.
A major criterion that differentiates the solutions is the
selection and the implementation of the data structure. Hash
tables and sketches are frequently used to store counters
for heavy flows. Note that several variations of such data
structures are being used in the literature, mainly to tackle
the memory-accuracy tradeoff; the choice of data structure
reflects on the accuracy of the performed measurements. For
example, with probabilistic data structures, only approxima-
tions are performed.

In HashPipe, the programmable switch stores the flows
identifiers and their byte counts in a pipeline of hash
tables. HashPipe adapts the space saving algorithm which is
described in [312]. The system was evaluated using an ISP
trace provided by CAIDA (400,000 flows), and the results
show that HashPipe needed only 80KB of memory to identify
the 300 heaviest flows, with an accuracy of 95%. Another
hashtable-based solution is Elastic Trie, which consists of
a prefix tree that expands or collapses to focus only on the
prefixes that grabs a large share of the network. The data
plane informs the control plane about high-volume traffic
clusters in an event-based push approach only when some
conditions are met. Other systems explored different data
structures for the task. For instance, in [189] the authors used
the HyperLogLog algorithm [313] which approximates the
number of distinct elements in a multi-set. The solution is
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TABLE 28. Heavy hitter schemes comparison.

capable of detecting heavy hitters by only using partial input
from the data plane.

Another important criteria is whether the scheme tracks
heavy hitters across the whole network. For example, unlike
HashPipe which considers a single switch, [187] tracks
network-wide heavy hitters. Tracking network-wide heavy
hitter is important as some applications (e.g., port scanners,
superspreaders, etc.) cannot go undetected within a single
location. Moreover, aggregating the results of switches sepa-
rately for detecting heavy hitter is not sufficient; flows might
not exceed a threshold locally, but when the total volume is
considered, the threshold might be crossed.

5) COMPARISON BETWEEN P4-BASED AND TRADITIONAL
HEAVY HITTER DETECTION
The main advantage of heavy hitters detection schemes in the
data plane over sampling-based approaches is the ability to
operate at line rate. Thismeans that every packet is considered
in the detection algorithm, which improves accuracy and the
speed of detection. Moreover, additional applications that
exploit reactive processing can be implemented. For instance,
switches can perform a flow-size aware routing method to
redirect traffic upon detecting a heavy hitter.

B. CRYPTOGRAPHY
1) BACKGROUND
Performing cryptographic functions in the data plane is useful
for a variety of applications (e.g., protecting the layer-2 with
cryptographic integrity checks and encryption, mitigating
hash collisions, etc.). Computations in cryptographic oper-
ations (e.g., hashing, encryption, decryption) are known to
be complex and resource-intensive. The supported operations
in switch targets and in the P4 language are limited to basic
arithmetic (e.g., additions, subtractions, bit concatenation,
etc.). Recently, a handful of works have started studying
the possibility of performing cryptographic functions in the
data plane. Generally, cryptographic functions are executed
externally (e.g., on a CPU) and invoked from the data plane.

2) EXTERNAL CRYPTOGRAPHY
The authors in [191] argue on the need to implement crypto-
graphic hash functions in the data plane to mitigate poten-
tial attacks targeting hash collisions. Consequently, they
presented prototype implementations of cryptographic hash
functions in three different P4 target platforms (CPU, Smart-
NIC, NetFPGA SUME). Another work by Hauser et al. [192]
attempted to implement host-to-site IPsec in P4 switches. For
simplification, only Encapsulating Security Payload (ESP)
in tunnel mode with different cipher suites is implemented.
The same authors also proposed P4-MACsec [314], an imple-
mentation of MACsec on P4 switches. MACsec is an IEEE
standard for securing Layer 2 infrastructure by encrypting,
decrypting, and performing integrity checks on packets.

Malina et al. [193] presented a solution where P4 programs
invoke cryptographic functions (externs) written in VHDL
on FPGAs. The goal of this work is to avoid coding cryp-
tographic functions on hardware (VHDL), and thus enables
rapid prototyping of in-network applications with security
functions. Another work that relies on externs for crypto-
graphic functions is P4NIS [194].

3) DATA PLANE CRYPTOGRAPHY
The previous works delegated the complex computations to
the control plane. Chen [195] implemented the Advanced
Encryption Standard (AES) protocol in the data plane using
scrambled lookup tables. AES is one of the most widely
used symmetric cryptography algorithms that applies several
encryption rounds on 128-bit input data blocks.

4) CRYPTOGRAPHY SCHEMES COMPARISON, DISCUSSIONS
AND LIMITATIONS
Table 29 compares the aforementioned cryptography
schemes. With respect to hashing, P4 currently implements
hash functions that do not have the characteristics of cryp-
tographic hashing. For example, Cyclic Redundancy Check
(CRC), which is commonly used in P4 targets, is originally
developed for error detection. CRC can be easily imple-
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TABLE 29. Cryptography schemes comparison.

mented in embedded hardware, and is computationally much
less complex than cryptographic hash functions (e.g., Secure
Hash Algorithm (SHA)-256); however, it is not secure and
has a high collision rate. Evaluation results in [191] show
that 1) implementing cryptographic hash functions on CPU
is easy, but has high latency (several milliseconds); 2) Smart-
NICs has the highest throughput, but can only process packets
up to 900 bytes; and 3) NetFPGA has the lowest latency, but
cannot be integrated using native P4 features. The authors
found that the performance of hashing is highly dependent on
the application, the input type, and the hashing algorithm, and
therefore there is no single solution that fits all requirements.
However, P4 targets should benefit from the characteristics
of each solution (CPU, SmartNICs, FPGA, and ASICs) to
implement cryptographic hashing.

As for more complex protocol suites (e.g., IPsec),
Hauser et al. [192] only implemented Encapsulating Secu-
rity Payload (ESP) in tunnel mode for simplification. The
Security Policy Database (SPD) and the Security Association
Database (SAD) are represented as match-action tables in
the P4 switch. To avoid complex key exchange protocols
such as the Internet Key Exchange (IKE), this work delegates
runtime management operations to the control plane. More-
over, since encryption and decryption are not supported by
P4, the authors relied on user-defined P4 externs to perform
complex computations. Note that implementing user-defined
externs is not applicable for ASIC (e.g., Tofino), and con-
sequently, the main CPU module of the switch is used for
performing encryption/decryption computations, at the cost
of increased latency and degraded throughput. Same ideas are
applied to P4-MACsec by the same authors. Other works that
rely on externs include [193], [194].

The system proposed by Chen [195] has significant perfor-
mance advantages as it is fully implemented in the data plane.
The idea of the proposed system is to apply permuted lookup
tables by using an encryption key. The authors found that
a single switch pipeline is capable of performing two AES
rounds. Consequently, the system leverages packet recircula-
tion technique which re-injects the packet into the pipeline.
By doing so, it is possible to complete the 10 rounds of
encryption required by the AES-128 algorithm by using five

pipeline passes. Note that recirculation uses loopback ports
and hence is limited by their bandwidth. The implementation
on Tofino chip shows that≈ 10Gbps throughput was attained.
The authors argued that this throughput is sufficient to sup-
port various in-network security applications. Nevertheless,
it is possible to enhance the throughput by configuring addi-
tional physical ports as loopback ports.

Note that there are other schemes that implements some
cryptographic primitives in the data plane but are in the
Privacy and Anonymity category (Section XI-C).

5) COMPARISON BETWEEN IN-NETWORK AND
CONTEMPORARY CRYPTOGRAPHY
Cryptographic primitives often require performing complex
arithmetic operations on data. Implementing such compu-
tations on general purpose servers is simple; memory and
processing units are not constrained. The literature has shown
that there is a need to implement cryptographic functions
in the data plane. For instance, cryptographic hash func-
tions can significantly improve existing data plane appli-
cations with respect to collisions; encryption can protect
confidential information from being exposed to the public.
However, switches have limitations when it comes to com-
puting. Supported hash functions in P4 are non-cryptographic
(e.g., CRC), and therefore, produce collisions when the
table is not large. Consequently, researchers are continuously
investigating techniques to perform such operations in the
data plane.

C. PRIVACY AND ANONYMITY
1) BACKGROUND
Packets in a network carry information that can poten-
tially identify users and their online behavior. Therefore,
user privacy and anonymity have been extensively studied
in the past (e.g., ToR and onion routing [315]). However,
existing solutions have several limitations: 1) poor perfor-
mance since overlay proxy servers are maintained by volun-
teers and have no performance guarantees; 2) deployability
challenges; some solutions require modifying the whole
Internet architecture, which is highly unlikely; 3) no clear
partial deployment pathway; and 4) most solutions are
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TABLE 30. Privacy and anonymity schemes comparison.

software-based. Consequently, recent works started inves-
tigating methods that exploit programmable switches to
develop partially-deployable, low-latency, and light-weight
anonymity systems.With respect to anonymity and privacy in
the network, new class of attacks which target the topology,
requires the attacker to know the topology and understand it’s
forwarding behavior. Such attacks can be mitigated by obfus-
cating (hiding) the topology from external users. P4-based
schemes are also being developed to achieve this goal.

2) USERS PRIVACY PROTECTION
Kim and Gupta [196] proposed Online Network Traf-
fic Anonymization System (ONTAS), a system that
anonymizes traffic online using P4 switches. Moghaddam
and Mosenia [197] proposed Practical Anonymity at the
NEtwork Level (PANEL), a lightweight and low overhead
in-network solution that provides anonymity into the Inter-
net forwarding infrastructure. Likewise, Datta et al. [198]
proposed Surveillance Protection in the Network Elements
(SPINE), a system that anonymizes traffic by concealing IP
addresses and relevant TCP fields (e.g., sequence number)
from adversarial Autonomous Systems (ASes) on the data
plane. Wang et al. [199] proposed Programmable In-Network
Obfuscation of DNS Traffic (PINOT), a system where the
packet headers are obfuscated in the data plane to protect the
identity of users sending DNS requests.

On the other hand, Meier et al. [200] proposed NetHide,
a P4-based solution that obfuscates network topolo-
gies to mitigate against topology-centric attacks such as
Link-Flooding Attacks (LFAs).

3) PRIVACY AND ANONYMITY SCHEMES DISCUSSIONS
Table 30 compares the privacy and anonymity schemes.
NetHide aims at mitigating the attacks targeting the network
topology. The solution formulates network obfuscation as
a multi-objective optimization problem, and uses accuracy
(hard constraints) and utility (soft constraints) as metrics. The
system then uses ILP solver and heuristics. The P4 switches
in this system capture and modify tracing traffic at line rate.
The specifics of the implementation were not disclosed, but
the authors claim that the system was evaluated on realistic
topologies (more than 150 nodes), and more than 90% of link
failures were detected by operators, despite obfuscation.

FIGURE 21. SPINE architecture [198].

ONTAS had a slightly different goal; it aims at protect-
ing the personally identifiable information (PII) from online
traces. The system overcomes the limitations of existing sys-
tems which either requires network operators to anonymize
packet traces before sharing them with other researchers
and analysts, or anonymize traffic online but with signifi-
cant overhead. ONTAS provides a policy language used by
operators for expressing anonymization tasks, which makes
the system flexible and scalable. The system was imple-
mented and tested on a hardware switch, and results show that
ONTAS entails 0% packet processing overhead and requires
half storage compared to existing offline tools. A limitation
of this system is that it does not anonymize TCP/UDP field
values. Another limitation is that it does not support applying
multiple privacy policies concurrently.

Other line of research (i.e., PANEL, SPINE) focused on
protecting the identities of Internet user. PANEL overcomes
the performance limitations of popular anonymity systems
(e.g., Tor), and does not require modifying entirely the Inter-
net routing and forwarding protocols as proposed in [316] and
[317]. Partial deployment is possible as PANEL can co-exist
with legacy devices. The solution involves: 1) source address
rewriting to hide the origin of the packet; 2) source infor-
mation normalization (IP identification and TCP sequence
randomization) to mitigate against fingerprinting attacks; and
3) path information hiding (TTL randomization) to hide the
distance to the original sender at any given vantage point.

As for SPINE, it does not require cooperation between
switches and end-hosts, but assumes that at least two
entities (typically two ASes or two ISPs) are trusted.
Fig. 21 shows the SPINE architecture. The solution encrypts
the IP addresses before the packets enter the intermediary
ASes. Therefore, adversarial devices only see the encrypted
addresses in the headers. It also encrypts the TCP sequence
and ACK numbers to mitigate against attributing packets
to flows. SPINE transforms IPv4 headers into IPv6 head-
ers when packets leave the trusted entity and restore the
IPv4 headers upon entering the trusted entity. These oper-
ations enable routing to be performed in intermediary net-
works. The encrypted IPv4 address is inserted in the last
32-bits of the IPv6 destination address. The encryption works
by XORing the IP address with the hash of a pre-shared
key and a nonce. The system uses SipHash since it is easily
implemented in the data plane.

Note that SPINE was implemented on software. If ASIC
implementation was to be done, SPINE would require at least
three pipeline passes to be fully executed (i.e., through recir-
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culation). Thus, the throughput of SPINEwould be decreased
by a factor of three. In contrast, PINOT was executed on the
ASIC with a single pipeline pass, and hence, has a higher
throughput that the other solutions.

4) PRIVACY AND ANONYMITY IN SWITCH-BASED AND
LEGACY SYSTEMS
Contemporary approaches that provide privacy and anonymity
in the Internet uses special routing overlay networks to hide
the physical location of each node from other participants
(e.g., Tor). Such approaches have performance limitations
as proxy servers (overlays) are maintained by volunteers
and have no performance guarantees. Moreover, they often
require performing advanced encryption routines to obfuscate
from where the packet is originated (e.g., onion routing
technique used by Tor involves encapsulating messages in
several layers of encryption). On the other hand, approaches
that are based on programmable switches often rely on
headers modification and simplified encryption and hashing
to conceal information (e.g., SPINE [198]).

D. ACCESS CONTROL
1) BACKGROUND
The selective restriction to access digital resources is known
as access control in cybersecurity. Typically, access control
begins with ‘‘authentication’’ in order to verify the identity
of a party. Afterwards, ‘‘authorization’’ is enforced through
policies to specify access rights to resources. To authenti-
cate parties, methods such as passwords, biometric analysis,
cryptographic keys, and others are used. With respect to
authorization, methods such as ACL are used to describe what
operations are allowed on given objects.

With the advent of programmable switches, it is now pos-
sible to delegate authentication and authorization to the data
plane. As a result, access can be promptly granted or denied at
line rate, before reaching the target server. A clear advantage
of this approach is that servers are no longer busy processing
access verification routines, which increases their services
throughput.

2) FIREWALLS
Datta et al. [201] presented P4Guard, a stateful P4-based
configurable firewall that acts based on predefined policies
set by the controller and pushed as entries to data plane tables.
Similarly, Cao et al. [202] proposed CoFilter, another stateful
firewall that encodes the access control rules in the data
plane. Li et al. [203] presented an architecture in SDN-based
clouds where P4-based firewalls are provided to the tenants.
Almaini et al. [204] proposed delegating the authentication
of end hosts to the data plane. The method is based on
port knocking, in which hosts deliver a sequence of packets
addressed to an ordered list of closed ports. If the ports match
the ones configured by the network administrators, then end
host is authenticated, and subsequent packets are allowed.
Likewise, Zaballa et al. [205] implemented port knocking in
the data plane.

FIGURE 22. Overview of Poise [206]. A compiler translates high-level
policies into P4 programs and device configurations. Context packets are
continuously sent from the clients to the network, where the switches
enforce the policies.

3) OTHER ACCESS CONTROL
Kang et al. [206] presented a scheme that implements
context-aware security policies (see Fig. 22). The policies are
applicable to enterprise and campus networks with diverse
devices, i.e., Bring Your Own Device (BYOD) (e.g., lap-
tops, mobile devices, tablets, etc.). In context-aware policies,
devices are granted access dynamically based on the device’s
runtime properties. Finally, Bai et al. [207] presented P40f,
a tool that performs OS fingerprinting on programmable
switches, and consequently, applies security policies
(e.g., allow, drop, redirect) at line rate. Almaini et al. [208]
implemented an authentication technique based on One Time
Passwords (OTP). The technique follows the Leslie Lamport
algorithm [318] in which a chain of successive hash functions
are verified for authentication.

4) ACCESS CONTROL COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 31 compares the aforementioned access control
schemes. P4Guard provides access control based on secu-
rity policies translated from high-level security policies
to table entries. Note that P4Guard only operates up to
the transport layer (e.g., source/destination IP addresses,
source/destination ports, protocol, etc.), similar to a tra-
ditional firewall. While programmable switches provide
increased flexibility in the parser (e.g., parse beyond the
transport layer) and the packet processing logic, P4Guard
did not leverage such capabilities. It would be interesting to
investigate additional capabilities such as those enabled by
next-generation firewalls (NGFW).

The solution in [204] controls access by performing
authentication in the data plane. The solution has several
limitations since it uses on port knocking, a technique that has
several security implications. For instance, programmable
switches do not use cryptographic hashes, making the solu-
tion vulnerable to IP address spoofing attacks. Additionally,
unencrypted port knocking is vulnerable to packet sniff-
ing. Furthermore, port knocking relies on security through
obscurity.
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TABLE 31. Access control schemes comparison.

In [206], the scheme dynamically enforces access control
to users based on contexts (e.g., if the user’s device uses
Secure Shell (SSH) 2.0 or higher, then the switch forwards
the packets of this flow. Otherwise, the switch drops the pack-
ets). The scheme requires user devices to run an application
which communicates with the switch using a custom protocol
(context packets). The context packets are generated on a
per-flow basis. The switch tracks flows using a match action
table and registers at the data plane. Actions over a packet
are dropping, allowing, and forwarding to other appliances
for deep packet inspection. Data packets are not modified.
Evaluations show that the proposed approach can operate
(install new flows in the and update rules) with a minimum
latency, even under heavy DoS attacks. On the other hand,
such attacks can decimate similar SDN-based systems. One
of the main drawbacks of the proposed system is the lack
of authentication, integrity, and confidentiality of the context
packets. Thus, the system can be subject to attacks such as
snooping (i.e., eavesdropping) on communication between
user devices and the switch, impersonation, and others.

Finally, [207] proposes fingerprinting OS in the data plane.
The main motivation behind this work is that software-based
passive fingerprinting tools (e.g., p0f [319]) are not practical
nor sufficient with large amounts of traffic on high-speed
links. Furthermore, out-of-band monitoring systems cannot
promptly take actions (e.g., drop, forward, rate-limit) on traf-
fic at line rate. The main drawback of the solution is that it
lacks sophisticated policies that involve rate-limiting traffic.

5) COMPARISON BETWEEN SWITCH-BASED AND
SERVER-BASED ACCESS CONTROL
Controlling access to resources often starts with authentica-
tion. While server-based approaches are more flexible in the
methods of authentication they can provide, they typically
require client connections to reach the server before the com-
munication starts. In switch-based approaches, the authen-
tication can be done in-network at the edge, eliminating
unnecessary latency incurred from traversing the network and
from software processing.

Various features are considered when comparing P4-based
firewalls to traditional firewalls. First, P4 firewalls are capa-
ble of performing headers inspection above the transport layer
(also known as deep packet inspection (DPI)), whereas tradi-
tional firewalls only reach the transport layer and typically
operate on the 5-tuple fields. It is important to note that DPI
in P4 switches is limited: if only few bytes are parsed above
the transport layer, line rate will be achieved; however, if the
packet is deeply parsed, the throughput will start degrading
accordingly. Second, in P4, policies and rules can be cus-
tomized to be activated based on arbitrary information stored
in the switch state (e.g., measurements through streaming);
such capabilities are not present in traditional firewalls. Third,
in P4, access control algorithms’ exclusivity and innova-
tion are solely attributed to operators, unlike fixed-function
firewalls which are provided by device vendors. Note that
non-programmable Next-Generation Firewalls (NGFW) are
capable of performing advanced DPI at the cost of having
much lower throughput than the line rate.

Access to resources can be controlled after fingerprinting
end-hosts OS. Software-based passive fingerprinting tools
cannot keep up with the high load (gigabits/s links). The
literature has shown that said tools lead to 38% degradation
in throughput [320]. Additionally, such tools are out-of-band,
meaning that it is not possible to apply policies on traffic (e.g.,
after fingerprinting an OS). On the other hand, switch hard-
ware is able to perform OS fingerprinting and apply security
policies at line rate. Context-aware policies applied on nodes
(clients/servers) have local visibility. A newer approach is
to use a centralized SDN controller (e.g., [321]), but such
scheme is vulnerable to control plane saturation attacks and
is subject for delay increases. Switch-based schemes on the
other hand are able to provide access control at line rate.

E. DEFENSES
1) BACKGROUND
DDoS attacks remain among the top security concerns despite
the continuous efforts towards the development of their detec-
tion and mitigation schemes. This concern is exacerbated not
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only by the frequency of said attacks, but also by their high
volumes and rates. Recent attacks (e.g. [322], [323]) reached
the order of terabits per seconds, a rate that existing defense
mechanisms cannot keep with.

There are two main concerns with existing defense meth-
ods handled by end-hosts or deployed as middlebox func-
tions on x86-based servers. First, they dramatically degrade
the throughput and increase latency and jitter, impacting the
performance of the network. Second, they present severe con-
sequences on the network operation when they are installed
at the last mile (i.e., far from the edge). The escalation of
volumetric DDoS attacks and the lack of robust and effi-
cient defense mechanisms motivated the idea of architect-
ing defenses into the network. Up until recently, in-network
security methods were restricted to simple access control lists
encoded into the switching and routing devices. The main
reason is that the data plane was fixed in function, impeding
the capabilities of developing customized and dynamic algo-
rithms that can assist in detecting attacks. With the advent of
programmable data planes, it is possible to develop systems
that detect and mitigate various types of attacks without
imposing significant overhead on the network.

2) ATTACK-SPECIFIC
Hill et al. [209] presented a system that tracks flows in
the data plane using bloom filters. The authors evaluated
SYN flooding as a use case for their system. Li et al. [210]
presented NETHCF, a Hop-Count Filtering (HCF) defense
mechanism that mitigates spoofed IP traffic. HCF schemes
filter spoofed traffic with an IP-to-hop-count map-
ping table. Another attack-specific scheme proposed by
Febro et al. [211] mitigates against distributed SIP DDoS
in the data plane. Furthermore, Scholz et al. [212], [213]
presented a scheme that defends against SYN flood attacks.
Ndonda and Sadre [214] implemented an intrusion detection
system in P4 that whitelists and filters Modbus protocol
packets in industrial control systems.

3) GENERIC ATTACKS
Some schemes are generic and aim at addressing multiple
attacks concurrently. For instance, Xing et al. [215] proposed
FastFlex, an abstraction that architects defenses into the net-
work paths based on changing attacks. Kang et al. [216]
presented an automated approach for discovering sensitivity
attacks targeting the data plane programs. Sensitivity attacks
in this context are intelligently crafted traffic patterns that
exploit the behavior of the P4 program. Lapolli et al. [217]
implemented a mechanism to perform real-time DDoS
attack detection based on entropy changes. Such changes
will be used to compute anomaly detection thresholds.
Mi and Wang [218] proposed ML-Pushback, a P4-based
implementation of the Pushback method [219].

Zhang et al. [220] proposed Poseidon, a system that
mitigates against volumetric DDoS attacks through pro-
grammable switches. It provides a language where operators
can express a range of security policies. Friday et al. [221]

proposed a unified in-network DDoS detection and mitiga-
tion strategy that considers both volumetric and slow/stealthy
DDoS attacks. Xing et al. [222] proposed NetWarden,
a broad-spectrum defense against network covert channels
in a performance-preserving manner. The method in [223]
models a stateful security monitoring function as an Extended
Finite State Machine (EFSM) and expresses the EFSM
using P4 abstractions. Ripple [224] provides decentralized
link-flooding defense against dynamic adversaries.

da Silveira Ilha et al. [225] presented EUCLID, an exten-
sion to [217] where the data plane runs a fine-grained traffic
analysis mechanism for DDoS attack detection and mitiga-
tion. EUCLID is based on information-theoretic and statisti-
cal analysis (entropy) to detect the attacks. Khooi et al. [226]
presented a Distributed In-network Defense Architecture
(DIDA), a solution that deals with the sophisticated ampli-
fied reflection DDoS. Ding et al. [227] proposed INDDoS,
an in-network DDoS victim identification system that fin-
gerprints the devices that for which the number of packets
exceeds a certain threshold. Musumeci et al. [228] proposed
a system where ML algorithms executed on the control plane
update the data plane after observing the traffic. Finally,
Liu et al. [229] proposed Jaqen, an inline DDoS detection and
mitigation scheme that addresses a broad range of attacks in
an ISP deployment.

4) DEFENSE SCHEMES COMPARISON, DISCUSSIONS, AND
LIMITATIONS
Table 32 compares the aforementioned defense schemes.
Broadly, defense schemes can be grouped into two main
categories: attack-specific and generic. Attack-specific cat-
egory consists of the work that address a specific attack
(e.g., NETHCF for IP spoofing, [211] for SIP DDoS, etc.),
while the generic category aims at addressing various types of
attacks (e.g., FastFlex for various availability attacks, Ripple
for link flooding attacks, etc.).

The significant advantage of architecting defenses in the
data plane is the performance improvement of the application.
For instance, NETHCF is motivated by the fact that tradi-
tional HCF-based schemes are implemented on end-hosts,
which delays the filtering of spoofed packets and increases
the bandwidth overhead. Moreover, since traditional schemes
are implemented in server-based middleboxes, low latency
and minimal jitter are hard to achieve. Similarly, FastFlex
advocates on the need to offload the defenses to the data
plane. Specifically, it tackles the following key challenges
that are faced when programming defenses in the data plane:
1) resourcemultiplexing; 2) optimal placement; 3) distributed
control; and 4) dynamic scaling.

When deploying defenses in the data plane, operators must
be aware of the capabilities of the constrained targets. Many
operations that require extensive computations cannot be eas-
ily implemented on the data plane. The existing work either
approximate the computations in the data plane (considering
the computation complexity and the measurements accuracy
trade-off), or delegate the computations to external processors
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TABLE 32. Defenses schemes comparison.

(e.g., CPU on the switch, external server, SDN controller,
etc.). For instance, NETHCF decouples the HCF defense into
a cache running in the data plane and a mirror in the control
plane. The cache serves the legitimate packets at line rate,
while the mirror processes the missed packets, maintains the
IP-to-hop-count mapping table, and adjust the state of the
system based on network dynamics. In Poseidon, the defense
primitives are partitioned to be executed on switches and on
servers, based on their properties. On the other hand, in [217],
the authors estimated the entropies of source and destination
IP addresses of incoming packets for consecutive partitions
(observation windows) in the data plane, without consulting
external devices.

Perhaps the most significant state-of-the-art works in the
defense schemes are Poseidon and Jaqen. Poseidon provides
a modular abstraction that allows operators to express their
defense policies. Poseidon requires external modules running
on servers, making its deployment challenging, especially in
ISP settings. Furthermore, such design incurs additional costs
and undesirable latency. Jaqen addressed those limitations
and was designed to be executed fully in the switch, with-
out external support from servers. Additionally, Jaqen used
universal sketches as data structures; this selection enables

detecting a wide range of attacks instead of crafting custom
algorithms for specific ones.

Network-wide defenses are those that are not restricted to
a single switch, and require multiple switches to co-operate
in the attacks detection and mitigation phases. Such
co-operation significantly improves the accuracy and the
promptness of the detection. More details on network-wide
data plane systems is explained in Section XIII-D.

Finally, Table 32 lists some limitations of the existing
schemes, which can be explored in future work to advance
the state-of-the-art.

5) COMPARISON BETWEEN P4-BASED AND TRADITIONAL
DEFENSE SCHEMES
Network attacks such as large-scale DDoS and link flooding
may have substantial impact on the network operation. For
such attacks, server-based defenses deployed at the last mile
are problematic and inherently insufficient, especially when
attacks target the network core. Moreover, it is not feasible
to detect and mitigate large volume of attack traffic (e.g.,
SYN flood) on end-hosts without impacting the throughput
of the network. Other defense schemes are proprietary, and
hence are costly and limited to the detection algorithms
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TABLE 33. Comparison of DDoS defense schemes. Source: [229].

provided by the vendors. Table 33 highlights the costs and
the performance differences between switch-based schemes
(Poseidon and Jaqen) and other existing solutions. When
defenses are architected into the network (i.e., detection and
mitigation are programmed into the forwarding devices), it is
easy to detect, throttle, or drop suspicious traffic at any van-
tage point, at line rate, with significant cost reductions.

F. SUMMARY AND LESSONS LEARNED
In the context of cybersecurity, a wide range of works lever-
aged programmable switches to achieve the following goals:
1) detect heavy hitters and apply countermeasures; 2) execute
cryptographic primitives in the data plane to enable further
applications; 3) protect the identity and the behavior of end-
hosts, as well as obfuscate the network topology; 4) enforce
access control policies in the network while considering net-
work dynamics; and 5) architect defenses in the data plane to
accelerate the detection and mitigation processes.

Identifying heavy hitters at line rate has several advan-
tages. Recent works considered various data structures and
streaming algorithms to detect heavy hitters. Future systems
could explore more complex data structures that reduce the
amount of state storage required on the switches. Further-
more, novel systemsmustminimize the false positives and the
false negatives compared to both P4-based and legacy heavy
hitter detection systems. Finally, new schemes should explore
strategies for incremental deployment whilemaximizing flow
visibility across the network.

There is an absolute necessity to implement cryptographic
functions (e.g., hash, encrypt, decrypt) in the data plane. Such
functions can be used by various applications that require
low hashing collisions (e.g., load balancing) and strong data
protection. Most existing efforts delegate the complex com-
putations to the control plane. However, recent systems have
demonstrated that AES, a well-known symmetric key encryp-
tion algorithm, can be implemented in the data plane.

Another interesting line of work provided privacy and
anonymity to the network. Recent efforts obfuscated the net-
work topology in order to mitigate topology-centric attacks
(e.g., LFA). Such systems must preserve the practicality of
path tracing tools, while being robust against obfuscation
inversion. Additionally, link failures in the physical topol-
ogy should remain visible after obfuscation. Furthermore,

when randomizing identifiers to achieve session unlinkabil-
ity, the identifiers must fit into the small fixed header space
so that compatibility with legacy networks is preserved. Other
efforts considered rewriting source information and headers
concealing to protect the identity of Internet users.

Finally, access control methods and in-network defenses
were proposed. Future access control schemes should explore
further in-network methods to authenticate the users, beyond
port knocking. Additionally, since switches are capable of
inspecting upper-layer headers, it is worth exploring offload-
ing some next generation firewall functionalities to the data
plane (such as in [327]). For instance, in [170], the authors
proposed a system that allows searching for keywords in the
payload of the packet. Similar techniques could be leveraged
to achieve URL filtering at line rate. Additionally, schemes
should mitigate against stealthy, slow DDoS attacks.

XII. NETWORK TESTING
Although programmable switches provide flexibility in defin-
ing the packet processing logic, they introduce potential risks
of having erroneous and buggy programs. Such bugs may
cause fatal damages, especially when they are unexpectedly
triggered in production networks. In such scenarios, the net-
work starts experiencing a degradation in performance as
well as disruption in its operation. Bugs can occur in various
phases in the P4 program development workflow (e.g., in the
P4 program itself, in the controller updating data plane table
entries, in the target compiler, etc.). Bugs are usually man-
ifested after processing a sequence of packets with certain
combinations not envisioned by the designer of the code.
This section gives an overview of the troubleshooting and
verification schemes for P4 programmable networks.

A. TROUBLESHOOTING
1) BACKGROUND
Intensive research interests were drawn on troubleshooting
the network. Previous efforts are mainly based on pas-
sive packet behavior tracking through the usage of moni-
toring technologies (e.g., NetSight [328], EverFlow [329]).
Other techniques (e.g., Automatic test Packet Generation
(ATPG) [330]) send probing packets to proactively detect
network bugs. Such techniques have two main problems.
First, the number of probe packets increases exponentially
as the size of the network increases. Second, the coverage is
limited by the number of probes-generating servers. Despite
the flexibility that programmable switches offer, writing data
plane programs increases the chance of introducing bugs
into the network. Programs are inevitably prone to faults
which could significantly compromise the performance of the
network and incur high penalty costs.

2) PROGRAMMABLE NETWORKS TROUBLESHOOTING
Zhang et al. [230] proposed P4DB, an on-the-fly runtime
debugging platform. The system debugs P4 programs in
three levels of visibility by provisioning operator-friendly
primitives: watch, break, and next. Zhou et al. [231] pro-
posed P4Tester, a troubleshooting system for data plane
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TABLE 34. Troubleshooting schemes comparison.

runtime faults. It generates intermediate representation of
P4 programs and table rules based on BDD data structure.
Dumitru et al. [232] examined how three different targets,
BMv2, P4-NetFPGA, and Barefoot’s Tofino, behave when
undesired behaviours are triggered. Kodeswaran et al. [233]
proposed a data plane primitive for detecting and localizing
bugs as they occur in real time. Finally, Zhou et al. [234] pro-
posed KeySight, a platform that troubleshoots programmable
switches with high scalability and high coverage. It uses
Packet Equivalence Class (PEC) abstraction when generating
probes.

Some schemes such as Whippersnapper [331], BB-Gen
[332], P8 [333], and [334] provide benchmarking for P4 pro-
grams and aim at understanding their performance.

3) TROUBLESHOOTING SCHEMES COMPARISON,
DISCUSSIONS, AND LIMITATIONS
Table 34 compares the aforementioned troubleshooting
schemes. Essentially, the schemes either passively track how
packets are processed inside switches (e.g., [230], [233]) or
diagnoses faults by injecting probes (e.g., [231], [234]). The
main limitation of passive detection is that schemes can only
detect rule faults that have been triggered by existing packets,
and cannot check the correctness of all table rules. On the
other hand, probing-based schemes may incur large control
and probes overheads.

Examples of probing-based schemes include P4Tester and
KeySight. P4Tester generates intermediate representation of
P4 programs and table rules based on BDD data structure.
Afterwards, it performs an automated analysis to generate
probes. Probes are sent using source routing to achieve high
rule coverage while maintaining low overheads. The system
was prototyped on a hardware switch (Tofino), and results
show that it can check all rules efficiently and that the probes
count is smaller than that of server-based probe injection
systems (i.e., ATPG and Pronto).

Other schemes that use passive fault detection (e.g., P4DB)
assume that packets consistently trigger the runtime bugs.
P4DB debugs P4 programs in three levels of visibility by
provisioning operator-friendly primitives: watch, break, and
next. P4DB does not require modifying the implementation of
the data plane. It was implemented and evaluated on a soft-
ware switch (BMv2), and the results show that it is capable of
troubleshooting runtime bugs with a small throughput penalty
and little latency increase.

Another important criterion that differentiate the trou-
bleshooting schemes is the memory footprint they require.

Some schemes (e.g., P4DB) requiremorememory than others
(e.g., KeySight).

Finally, the work in [232] is different than the others.
The authors examined how three different targets, BMv2,
P4-NetFPGA, and Barefoot’s Tofino, behave when undesired
behaviours are triggered. The authors first developed buggy
programs in order to observe the actual behavior of targets.
Then, they examined the most complex P4 program publicly
available, switch.p4, and found that it can be exploited when
attackers know the specifics of the implementation. In sum-
mary, the paper suggests that BMv2 leaks information from
previous packets. This behavior is not observed with the other
two targets. Furthermore, the authors were able to perform
privilege escalation on switch.p4 due to a header destined
to ensure communication between the CPU and the P4 data
plane.

4) COMPARISON LEGACY VS. P4-BASED DEBUGGING
In legacy networks, network devices are equipped with
fixed-function services that operate on standard proto-
cols. Troubleshooting these networks often involve testing
protocols and typical data plane functions (e.g., layer-3 rout-
ing) through rigid probing. On the other hand, with pro-
grammable networks, since operators have the flexibility of
defining custom data plane functions and protocols, testing
is more complex and is program-dependent. Probing-based
approaches should craft patterns depending on the deployed
P4 program. Other approaches proposed primitives that
increase the levels of visibility when debugging P4 programs.
Research work extracted from the literature show that it is
essential to develop flexible mechanisms that operate dynam-
ically on diverse P4 programs and targets.

B. VERIFICATION
1) BACKGROUND
Program verification consists of tools and methods that
ensure correctness of programs with respect to specifica-
tions and properties. Verification of P4 programs is an active
area as bugs can cause faults that have drastic impacts on
the performance and the security of networking systems.
Static P4 verification handles programs before deployment
to the network, and hence, cannot detect faults that occur
at runtime. On the other hand, runtime verification uses
passive measurements and proactive network testing. This
section describes the major verification work pertaining to
P4 programs.
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2) PROGRAM VERIFICATION
Lopes et al. [235] proposed P4NOD, a tool that compiles
P4 specifications to Datalog rules. The main motivation
behind this work is that existing static checking tools (e.g.,
Header Space Analysis (HSA) [335], VeriFlow [336]) are not
capable of handling changes to forwarding behaviors without
reprogramming tool internals. The authors introduced the
‘‘well formedness’’ bugs, a class of bugs arising due to the
capabilities of modifying and adding headers.

Another interesting work is ASSERT-P4 [236], [237],
a network verification technique that checks at compile-time
the correctness and the security properties of P4 programs.
ASSERT-P4 offers a language with which programmers
express their intended properties with assertions. After anno-
tating the program, a symbolic execution takes place with all
the assertions being checked while the paths are tested.

Further, Liu et al. [238] proposed p4v, a practical
verification tool for P4. It allows the programmer to anno-
tate the program with Hoare logic clauses in order to per-
form static verification. To improve scalability, the system
suggests adding assumptions about the control plane and
domain-specific optimizations. The control plane interface
is manually written by the programmer and is not ver-
ified, which makes it error-prone and cumbersome. The
authors evaluated p4v on both an open source and proprietary
P4 programs (e.g., switch.p4) that have different sizes and
complexities.

Nötzli et al. [239] proposed p4pktgen, a tool that automat-
ically generates test cases for P4 programs using symbolic
execution and concrete paths. The tool accepts as input a
JSON representation of the P4 program (output of the p4c
compiler for BMv2), and generates test cases. These test
cases consist of packets, tables configurations, and expected
paths. Similarly, Lukács et al. [240] described a framework
for verifying functional and non-functional requirement of
protocols in P4. The system translates a P4 program in a
versatile symbolic formula to analyze various performance
costs. The proposed approach estimates the performance cost
of a P4 program prior to its execution.

Stoenescu et al. [241] proposed Vera, a symbolic
execution-based verification tool for P4 programs. The
authors argue in this paper that a data plane program should
be verified before deployment to ensure safe operations. Vera
accepts as input a P4 program, and translates it to a network
verification language, SEFL. It then relies on SymNet [337],
a network static analysis tool based on symbolic execution
to analyze the behavior of the resulting program. Essentially,
Vera generates all possible packets layouts after inspecting
the program’s parser and assumes that the header fields can
accept any value. Afterwards, it tracks the paths when pro-
cessing these packets in the program following all branches
to completion. For scalability improvements, Vera utilizes
a novel match-forest data structure to optimize updates and
verification time. Parsing/deparsing errors, invalid memory
accesses, loops, among others, can be detected by Vera.

TABLE 35. Verification schemes comparison.

A different approach uses reinforcement learning is
P4RL [242], a fuzzy testing system that automatically veri-
fies P4 switches at runtime. The authors described a query
language p4q in which operators express their intended
switch behavior. A prototype that executes verification on
layer-3 switch was implemented, and results show that PR4L
detects various bugs and outperforms the baseline approach.

Finally, Dumitrescu et al. [243] proposed bf4, an end-
to-end P4 program verification tool. It aims at guarantying
that deployed P4 programs are bug-free. First, bf4 finds
potential bugs at compile-time. Second, it automatically gen-
erates predicates that must be followed by the controller
whenever a rule is to be inserted. Third, it proposes code
changes if additional bugs remain reachable. bf4 executes
a monitor at runtime that inspects the rules inserted by the
controller and raises an exception whenever a predicate is
not satisfied. The authors executed bf4 on various data plane
programs and interesting bugs that were not detected in state-
of-the-art approaches were discovered.

3) VERIFICATION SCHEMES DISCUSSIONS
Table 36 compares the aforementioned verification schemes.
Essentially, some schemes translate P4 programs to verifica-
tion languages and engines. For instance, in [235], P4 pro-
grams are translated to Datalog to verify the reachability
and well-formedness. Similarly, in [238], P4 programs are
converted into Guarded Command Language (GCL) models,
and then a theorem prover Z3 is used to verify that several
safety, architectural and program-specific properties hold.
Other schemes (e.g., p4pktgen, Vera) use symbolic execution
to generate test cases for P4 programs.

The verification schemes were evaluated on different
P4 programs from the literature. A program that was evalu-
ated by most schemes is switch.p4which implements various
networking features needed for typical cloud data centers,
including Layer 2/3 functionalities, ACL, QoS, etc. It is rec-
ommended for future schemes to evaluate switch.p4 as well
as other programs from the literature. Finally, P4RL detects
path-related consistency between data-control planes.

4) P4-BASED AND TRADITIONAL NETWORK VERIFICATION
Traditional verification techniques that address the secu-
rity properties in computer networks are mainly related to
host reachability, isolation, blackholes, and loop-freedom.
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FIGURE 23. Challenges and future trends. The references represent
examples of existing works that tackle the corresponding future trends.

Techniques that check for the aforementioned properties
include Anteater [338], which models the data plane as
boolean functions to be used in a Boolean Satisfiability Prob-
lem (SAT) solver, NetPlumber [339] which uses header space
algebra [335], and others (e.g., VeriFlow [336], DeltaNet [340],
Flover [341], and VMN [342]).

Since P4 programs incorporate customized protocols and
processing logic to be used in the data plane, traditional tools
are not capable of handling changes to forwarding behaviors
without reprogramming their internals. Therefore, verifica-
tion techniques in programmable networks rely on analyzing
the P4 programs themselves since they define the behavior of
the data plane.

C. SUMMARY AND LESSONS LEARNED
Network testing can generally be divided into debugging/
troubleshooting network problems and verifying the behavior
of forwarding devices. While traditional tools and techniques
were adequate for non-programmable networks, they are
insufficient for programmable ones due to their inability to
handle changes to forwarding behaviors without reprogram-
ming and restructuring their internals. A variety of works
were proposed to analyze and model P4 programs in order
to troubleshoot and verify the correctness of networks’ oper-
ations.

Network measurements can be collected through
P4 switches and used to troubleshoot and verify the cor-
rectness of networks (control loop). Future work could
explore methods that make a network more autonomous
and capable of healing itself (e.g., self-driving networks,
knowledge-defined networking, zero-touch networks) by
leveraging the collected inputs from programmable switches.

XIII. CHALLENGES AND FUTURE TRENDS
In this section, a number of research and operational chal-
lenges that correspond to the proposed taxonomy are out-
lined. The challenges are extracted after comprehensively

FIGURE 24. Expanding switch memory by leveraging remote DRAM on
commodity servers [368].

reviewing and diving into each work in the described lit-
erature. Further, the section discusses and pinpoints several
initiatives for future work which could be worthy of being
pursued in this imperative field of programmable switches.
The challenges and the future trends are illustrated in Fig. 23

A. MEMORY CAPACITY (SRAM AND TCAM)
Stateful processing is a key enabler for programmable data
planes as it allows applications to store and retrieve data
across different packets. This advantage enabled a wide range
of novel applications (e.g., in-network caching, fine grained
measurements, stateful load balancing, etc.) that were not
possible in non-programmable networks. The amount of data
stored in the switch is limited by the size of the on-chip mem-
ory which ranges from tens to hundreds of megabytes at most.
Consequently, the majority of stateful-based applications suf-
fer have trade-offs between performance and memory usage.
For instance, the efficiency of cachingwhich is determined by
the hit rate is directly affected by the memory size. Further-
more, the vast majority of measurement applications require
storing statistics in the data plane (e.g., byte/packet counters).
The number of flows to be measured and the richness of
measurement information is bound by the size of the memory
in the switch.
Current and Future Initiatives: A notable work by

Kim et al. [368], [369] suggests accessing remote Dynamic
Random Access Memory (DRAM) installed on data cen-
ter servers purely from data plane to expand the available
memory on the switch. The bandwidth of the chip is traded
for the bandwidth needed to access the external DRAM.
The approach is cheap and flexible since it reuses existing
resources in commodity hardware without adding additional
infrastructure costs. The system is realized by allowing the
data plane to access remote memory through an access chan-
nel (RDMA over Converged Ethernet (RoCE)) as shown
in Fig. 24. The implementation show that the proposal
achieves throughput close to the line rate, and only incur
1-2 extra microseconds latency (Fig. 25). There are some
limitations in this approach that can be explored in the future.
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FIGURE 25. Accessing remote DRAM latency overhead. Only 1-2us
additional latency. Achieved throughput close to the line rate
(≈ 37.5 Gbps). Reproduced from [368].

• The current implementation only supports address-based
memory access, and hence, complicated data layouts and
ternary matching in remote memory should be explored.

• Frequent updates in the remote memory requires several
packets for fetching and adding. This is common in
measurement applications where counters are continu-
ously incremented. A possible solution to the bandwidth
overhead is aggregating updates into single operation.
This comes with the cost of having delays in the updates.

• Packet loss between the switch and the remote memory
should be handled, otherwise, the performance of the
application and the freshness of the remote values might
be affected.

• The interaction between general data plane applications
and the remote memory is challenging. A potential
improvement is designingwell-definedAPIs to facilitate
the interaction.

B. RESOURCES ACCESSIBILITY
Beside the size limitation of the on-chip memory, there are
other restrictions that data plane developers should take into
account [52], [373]. First, since the table memory is local
to each stage in the pipeline, other stages cannot reclaim
non-utilized memory in other stages. As a result, memory
andmatch/action processing are fuzed, making the placement
of tables challenging. Second, the sequential execution of
operations in the pipeline lead to poor utilization of resources
especially when the matches and the actions are imbalanced
(i.e., the presence of default actions that do not need a match).
Current and Future Initiatives: An interesting work by

Chole et at. [367] explored the idea of disaggregating
the memory and compute resources of a programmable
switch. Themain notion of this work is to centralize the mem-
ory as a pool that is accessed by a crossbar. By doing so, each
pipeline stage no longer has local memory. Additionally, this
work solves the sequential execution limitation by creating a
cluster of processors used to execute operations in any order.
The main limitation of this approach is the lack of adoption
by hardware vendors. Most of the switch vendors (e.g., Cav-
ium’s XPliant and Barefoot’s Tofino) do not implement the
disaggregation model and follow the regular Reconfigurable
Match-action Tables (RMT) model. The implementation and
analysis of the disaggregation model on hardware targets
should be explored in the future.

C. ARITHMETIC COMPUTATIONS
There are several challenges that must be handled when
dealing with arithmetic computations in the data plane. First,
programmable switches support a small set of simple arith-
metic computations that operate on non-floating point values.
Second, only few operations are supported per packet to
guarantee the execution at line rate. Typically, a packet should
only spend tens of nanoseconds in the processing pipeline.
Third, computations in the data plane consume significant
hardware resources, hampering the possibility of other pro-
grams to execute concurrently. A wide range of applications
suffer from the lack of complex computations in the data
plane. For instance, some operations required by AQMs (e.g.,
square root function in the CoDel algorithm) are complex
to be implemented with P4. Additionally, the majority of
machine learning frameworks and models operate on floating
point values while the supported arithmetic operations on the
switch operate on integer values. In-network model updates
aggregation requires calculating the average over a set of
floating-point vectors.
Current and Future Initiatives: Existing methods to over-

come the computation limitations include approximation and
pre-computations. In the approximation method, the applica-
tion designer relies on the small set of supported operations
to approximate the desired value, at the cost of sacrificing
precision. For example, approximating the square root func-
tion can be achieved by counting the number of leading zeros
through longest prefix match [99]. It would be beneficial
for P4 developers to have access to a community-maintained
library which encompasses P4 codes that approximate var-
ious complex functions. In the pre-computations method,
values are computed by the control plane (e.g., switch CPU)
and stored in match-action tables or registers. Future work
can explore methods that automatically identify the complex
computations that can be pre-evaluated in the control plane.
After identification, the data plane code and its corresponding
control plane APIs can be automatically generated.

D. NETWORK-WIDE COOPERATION
The SDN architecture suggests using a centralized controller
for network-wide switches management. Through centraliza-
tion, the state of each programmable switch can be shared
with other switches. Consequently, applications will have
the ability to make better decisions as network-wide data is
available locally on the switch. The problem with such archi-
tecture is the requirement of having a continuous exchange
of packets with a software-based system. As an alternative,
switches can exchange messages to synchronize their states
in a decentralized manner.

Consider Fig. 26 which shows an in-network DDoS
defense solution. Each switch maintains a list of senders and
their corresponding numbers of bytes. A switch compares the
number of bytes transmitted from a given flow to a threshold.
When the threshold is crossed, the flow is blocked and the
device is identified as a malicious DDoS sender. Assume that
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FIGURE 26. (a) Local detection of DDoS attacks. (b) network-wide detection of DDoS attack.

the network implements a load balancing mechanism that
distributes traffic across the switches. In the scenario where
switches do not consider the byte counts of other switches
(Fig. 26 (a)), the traffic of a DDoS device might remain under
the threshold. On the other hand, when switches synchronize
their states by sharing the byte counts (Fig. 26 (b)), the total
number of bytes is compared against the threshold. Conse-
quently, the total load of a DDoS device is considered. This
example demonstrates an application that heavily depends on
network-wide cooperation and hence motivates the need for
state synchronization.
Current and Future Initiatives: Arashloo et al. [361] pro-

posed SNAP, a centralized stateful programming model that
aims at solving the synchronization problem. SNAP intro-
duced the idea of writing programs for ‘‘one big switch’’
instead of many. Essentially, developers write stateful appli-
cations without caring about the distribution, placement, and
optimization of access to resources. SNAP is limited to one
replica of each state in the network. Sviridov et al. [362],
[363] proposed LODGE and LOADER to extend SNAP and
enable multiple replicas. Luo et al. [364] proposed Swing
State, a framework for runtime state migration and manage-
ment. This approach leverages existing traffic to piggyback
state updates between cooperating switches. Swing State
overcomes the challenges of the SDN-based architecture by
synchronizing the states entirely in the data plane, at line
rate, and without intervention from the control plane. There
are several limitations with this approach. First, there are no
message delivery guarantees (i.e., packets dropped/reordered
are not retransmitted), leading to inconsistency in the states
among the switches. Second, it does not merge the states
if two switches share common states. Third, the overhead
can significantly increase if a single state is mirrored several
times. Finally, there is no authentication of data or senders.
Xing et al. [365] proposed P4Sync, a system that migrates
states between switches in the data plane while guarantee-
ing the authenticity of the senders and the exchanged data.
P4Sync addresses the limitations of existing approaches.
It guarantees the completeness of the migration, ensuring that
the snapshot transfer is completed. Moreover, it solves the
overhead of the repeatedly retransmitted updates. An inter-
esting aspect of P4Sync is its ability to control the migration
traffic rate depending on the changing network conditions.
Zeno et al. [366] presented a design of SwiShmem, amanage-

ment layer that facilitates the deployment of network func-
tions (NFs) on multiple switches by managing the distributed
shared states.

The future work in this area should consider handling
frequent state migrations. Some systems require migration
packets to be generated each RTT, causing increased traffic
overhead and additional expensive authentication operations.
For instance, P4Sync uses public key cryptography in the con-
trol plane to sign and verify the end of the migration sequence
chain (2.15ms for signing and 0.07ms to verify using
RSA-2048 signature). Frequent migrations would cause this
signature to be involved repeatedly. Another major concern
that should be handled in future work is denial of service.
Even with migration updates authentication, changes in the
packets cause the receiver to reject updates, leading to state
inconsistency among switches.

E. CONTROL PLANE INTERVENTION
Delegating tasks to the control plane incurs latency and
affects the application’s performance. For instance, in con-
gestion control, rerouting-based schemes often use tables to
store alternative routes. Since the data plane cannot directly
modify table entries, intervention from the control plane
is required. The interaction with the control plane in this
application hampers the promptness of rerouting. Another
example are methods that use collisions-free hashing. For
example, cuckoo hash [374], which rearranges items to solve
collisions, uses a complex search algorithm that cannot run on
the switch ASIC, and is often executed on the switch CPU.
Ideally, the control plane intervention should be minimized
when possible. For example, to synchronize the state among
switches, in-network cooperation should be considered.
Current and Future Initiatives: The design of the inter-

action between the control plane and the data plane is fully
decided by the developer. Experienced developers might have
enough background to immediately minimize such interac-
tion. Future work should devise algorithms and tools that
automatically determine the excessive interaction between
the control/data planes, and suggest alternative workflows
(ideally, as generated codes) to minimize such interac-
tion. Operations that could be delegated to the data plane
include failure detection and notification and connectivity
retrieval [360].
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F. SECURITY
When designing a system for the data plane, the developer
must envision the kind of traffic a malicious user can initiate
to corrupt the operation of the system. This class of attacks
is referred to as sensitivity attacks as coined in [216]. Essen-
tially, an attacker can intelligently craft traffic patterns to trig-
ger unexpected behaviors of a system in the data plane. For
instance, a load balancer that balances traffic through packet
headers hashing without cryptographic support (e.g., modulo
operator on the number of available paths) can be tricked by
an attacker that craft skewed traffic patterns. This results in
traffic being forwarded to a single path, leading to congestion,
link saturation, and denial of service. Another example is
attacks against in-network caching. Caching in data plane
performs well when requests are mostly reads rather than
writes. If an attacker continuously generates high-skewed
write requests, the load on the storage servers would be
imbalanced. If the system is designed to handle write queries
on hot items in the switch, a random failure in the switch
causes data to be lost. Further, an attacker can also exploit
the memory limitation of switch and request diverse values,
causing the pre-cached values to be evicted.
Current and Future Initiatives: To mitigate against sensi-

tivity attacks, a developer attempts to discover various unpre-
dicted traffic patterns, and accordingly, develops defense
strategies. Such solution is highly unreliable, time consum-
ing, and error-prone. Recent efforts [216] aimed at auto-
matically discovering sensitivity attacks in the data plane.
Essentially, the proposed system aims at deriving traffic
patterns that would drive the program away from common
case behavior as much as possible. Other efforts focused
on architecting defenses in the data plane that perform dis-
tributed mode changes upon attack discovery [215]. Future
work in this direction should consider achieving high assur-
ance by formally verifying the codes. Additionally, the sta-
bility of the data plane should be carefully handled with
fast mode changes; future work could consider integrating
self-stabilizing systems for such purpose. Finally, future work
should provide security interfaces for collaborating switches
that belong to different domains. It is also worth exposing
sensitivity attack patterns for different application types so
that data plane developers can avoid the vulnerabilities that
trigger those attacks in their codes.

G. INTEROPERABILITY
Programmable switches pave the way for a wide range of
innovative in-network applications. The literature has shown
that significant performance improvements are brought when
applications offload their processing logic to the network.
Despite such facts, it is very unlikely that mobile operators
will replace their current infrastructure with programmable
switches in one shot. This unlikelihood comes from the fact
that major operational and budgeting costs will incur.
Current and Future Initiatives: Network operators might

deploy programmable switches in an incremental fashion.
That is, P4 switches will be added to the network alongside

FIGURE 27. Example of using taps in a campus network to compute the
round-trip time in the data plane. (1) The traffic is passively collected by
the P4 switch; (2) the switch calculates the round-trip time by using its
high-precision timer (see [95] for details on how to associate the
SEQ/ACKs to compute the RTT); (3) the switch report the RTT samples to
an external server.

the existing legacy devices. While this solution seems sim-
plistic at first, studies have showed that partial deployment
leads to reduced effectiveness [189]. For instance, the accu-
racy of heavy hitter detection schemes is strongly affected
by the flow visibility. The work in [189] devised a greedy
algorithm that attempts to strategically position P4 switches
in the network, with the goal of monitoring as many dis-
tinct network flows as possible. The F1 score is used to
quantify correctness of switches placement. Other works that
focused on incremental deployment include daPIPE [375],
TraceILP/TopoILP [371]. Future work in this area should
consider generalizing and enhancing this approach to work
with any P4 application, and not only heavy hitter detection.
For instance, a future work could suggest the positioning
of P4 switches in applications such as in-network caching,
accelerated consensus, and in-network defenses, while tak-
ing into account the current topology consisting of legacy
devices.

Amin et al. [376] surveyed the research and development
in the field of hybrid SDN networks. Hybrid SDN comprises
a mix of SDN and legacy network devices. It is worth noting
that the same key concepts and advantages of hybrid SDN
networks can be applied to incremental P4 networks.

Recent efforts are also considering network taps as a mean
to replicate production network’s traffic to programmable
switches for analysis [88]. Network TAPs replicate pack-
ets and do not alter timing information and packet orders,
which may occur with other schemes such as port mirror-
ing operating at layer 2 and layer 3 [377]. ConQuest [88]
taps on the ingress and egress links of a legacy router and
uses a P4 switch to perform advanced fine-grained queue
monitoring techniques. Note that legacy routers only sup-
port polling the total queue length statistics at a coarse time
interval, and hence, cannot monitor microbursts. By tapping
on legacy devices and processing on P4 switches, operators
can benefit from the capabilities of P4 switches without
the need to fully replace their current infrastructure. This
method can be used in a variety of in-network applications
(e.g., RTT estimation (see Fig. 27), network-wide telemetry,
DDoS detection/mitigation, to name a few). Finally, it is
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worth mentioning that TAPs are not expensive and a single
P4 switch can service many non-programmable devices.

H. PROGRAMMING SIMPLICITY
Writing in-network applications using the P4 language is
not a straightforward task. Recent studies have shown that
many existing P4 programs have several bugs that might lead
to complete network disruption [232]. Furthermore, since
programmable switches have many restrictions on memory
and the availability of resources, developers must take into
account the low-level hardware limitations when writing the
programs. This process is known to be based on trial and
error; developers are almost never sure whether their program
can ‘‘fit’’ into the ASIC, and hence, they repeatedly try to
compile and adjust their codes accordingly. Such problem is
exacerbated when the complexity of the in-network applica-
tion increases, or when multiple functions (e.g., telemetry,
monitoring, access control. etc.) are to be executed concur-
rently in the same P4 program. Additionally, code modular-
ity is not simple in P4; the programmers typically rewrite
existing functions depending on the constraints of the current
context. All the aforementioned facts affect the cost, stability,
and correctness of the network on the long run.

For several decades, the networking industry operated
in a bottom-up approach, where switches are equipped
with fixed-function ASICs. Consequently, little to no pro-
gramming skills were needed by network operators. With
the advent of programmable switches, operators are now
expected to have experience in programming the ASIC.2

Current and Future Initiatives: Since programming the
ASIC is not a straightforward task, future research endeav-
ours should consider simplifying the programming workflow
for the operators and generating code (e.g., [345]–[352]).
For instance, graphical tools can be developed to translate
workflows (e.g., flowcharts) to P4 programs that can fit into
the hardware.

A noteworthy work (P4All [353]) proposed an extension
to P4 where operators write elastic programs. Elastic pro-
grams are compact programs that stretch to make use of
the hardware resources. P4All extends P4 to support loops.
The operator supply the P4All program along with the tar-
get specifications (i.e., constraints) to the P4All compiler.
Afterwards, the compiler analyzes the dependencies between
actions and unrolls the loops. Then, it generate the constraints
for the optimization based on the target specification file.
Next, the compiler solves an optimization problem that maxi-
mizes a linear utility function and generates an output P4 pro-
gram for the target. The authors considered Tofino target in
their evaluations. While P4All offered numerous advantages,
it is still far from being ready to be used in practice. First,
it assumes that programmers are able to write representative

2Note that most vendors (e.g., Barefoot Networks) provide a program
(switch.p4) that expresses the forwarding plane of a switch, with the typical
features of an advanced layer-2 and layer-3 switch. If the goal is to simply
deploy a switch with no in-network applications, then the operators are not
required to program the chip. They just need to install a network operating
system (NOS) such as SONIC [378] or FBOSS [379]).

utility functions and assign their weights. Second, it assumes
that the programmer is aware of the workload (which is
needed to write the utility function). The authors suggested
that future work could investigate a dynamic system that uses
measurements to change the utility functions. Finally, P4All
does not support multivariate and nonlinear functions. All the
aforementioned limitations can be explored in the future.

I. DEEP PROGRAMMABILITY
Disaggregation is enabling network owners and operators to
take control of the software running the network. It is pos-
sible to program virtual and PISA-based switches, hardware
accelerators, smartNICs, and end-hosts’ networking stacks.
Further, acceleration techniques such as the Express Data
Path (XDP) and Berkeley Packet Filter (BPF) are being used
to accelerate the packet forwarding in the kernel. Addition-
ally, acceleration techniques are used to address the perfor-
mance issues of Virtual Network Functions (VNFs) running
on servers [380], [381].

The malleability of programming various network com-
ponents is shifting the trend towards deep programmability,
as coined byMcKeown [53], [382]. In deep programmability,
the behavior is described at top and partitioned and executed
across elements. The operators will focus on ‘‘software’’
rather than ‘‘protocols’’; for example, functions like rout-
ing and congestion control will be described in programs.
Software engineering principles will be routinely used to
check the correctness of the network behavior (from unit test-
ing to formal/on-the-fly verification). Fine-grained telemetry
and measurements will be used to monitor and troubleshoot
network performance. Stream computations will be accel-
erated by the network (e.g., caching, load balancing, etc.).
Further, networks will run autonomously under verifiable,
closed-loop control. Finally, McKeown envisioned that net-
works will be programmed by owners, operators, researchers,
etc., while being operated by a lot fewer people than today.

There are many open challenges to realize the vision of
deep programmability. Consider Fig. 28. The control plane
is managing the pipeline of programmable switches, NICs,
and virtual switches, which are programmed by P4 through a
runtime API (e.g., P4Runtime). The challenge is how to write
a clean code that can be moved around within the hardware
pipeline, and can run at line rate.

FIGURE 28. Network as a programmable platform. Large cloud or ISP
example [53].
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Current and Future Initiatives: Fig. 29 shows an example
of congestion control application with deep programmability.
In loss-based congestion control (e.g., NewReno, CUBIC),
packet drops and duplicate ACKs are used to indicate con-
gestion. Such signal is ideally observed by the kernel of
the end-host. In delay-based congestion control (e.g., TCP
Vegas, TIMELY), RTT is used as the primary signal for
congestion, and thus, high-precision timers must be used to
get accurate estimations. This is ideally done in the NIC.
Other network-assisted congestion control (e.g., HPCC) rely
on the queue occupancy in the switch. Note that such mech-
anism modifies the packet headers, and therefore, both the
NIC and the kernel should be aware of it (hence the green
arrows in the figure). To be able to automate the process
of partitioning functions into the network, systematic meth-
ods and algorithms should be carefully devised. There is an
immense expertise in userspace and kernel space program-
ming. However, general purpose code cannot be easily ported
to the hardware since it might not fit. Hence, there is a need
for methods that constrain the programming so that it will
work on feedforward loop-free pipeline. McKeown discussed
a strawman solution [53] to the problem where the whole
pipeline (sequence of devices) is expressed in a language
(e.g., P4); the pipeline specification includes the serial depen-
dencies between the devices. The externs of P4 will be used
to invoke general purpose C/C++ code running on the CPU.
Further, P4 will be used to define the forwarding behavior
of the code that will be accelerated by the hardware. Future
work should explore more sophisticated methods for solving
the partitioning problem, while considering the constraints of
the hardware and the current networking landscape. Note that
tremendous efforts from academia and the industry are being
spent on the Pronto project [343], [344], which can be consid-
ered as an example of the deep programmable architecture.

J. MODULARITY AND VIRTUALIZATION
Programmable data plane were originally designed to execute
a single program at a given time. However, there is no doubt
that in today’s networks, operators often require multiple
network functions to run simultaneously on a single physi-
cal switch. A challenge that operators face when changing
data plane programs is the connectivity loss and the service
downtime/interruption [383].

Cloud providers are now aiming to offer on-switch network
functions as services to a diverse set of cloud customers.
Such needs introduce various challenges including resource
isolation (memory and resources should be dedicated to a
specific function), performance isolation (the performance
of a network function must not impact other functions), and
security isolation (network function must not read other func-
tion’s data).
Current and Future Initiatives: P4 programs and functions

should become more modular so that programmers can easily
integrate multiple services into the hardware pipeline. Cur-
rent research efforts on data plane virtualization are being
proposed in the literature. For instance, Hyper4 [384] pro-

FIGURE 29. Deep programmability, congestion control example. [53]

vides a general purpose P4 program that can be dynamically
configured to adopt new behavior. Essentially, P4 programs
are translated into table entries and pushed to the general pur-
pose program, enabling hot-pluggability. Hyper4 uses packet
recirculation to implement the hot-pluggable parser, and
therefore, suffers from performance degradation. Many other
data plane virtualization systems have been proposed since
then (e.g., HyperV [354], P4VBox [355], P4Visor [346],
PRIME [356], P4click [357], MTPSA [358], etc.).

Han et al. [359] performed packet latency measurements
on HyperVDP and P4Visor (processor isolation is not sup-
ported). Their results show that the overall latency is deter-
mined by the P4 program that has the highest latency.
To remediate this problem, resource disaggregation methods
(e.g., dRMT [367]) can be used. Other challenges that could
be explored in the future include performance degradation
that result from packet recirculation, lack of flexibility for live
reconfiguration, frequent recompilations, loss of states during
data plane reconfiguration, etc.

K. PRACTICAL TESTING
Verifying the correctness of novel protocols and applications
in real production networks is of utmost importance for engi-
neers and researchers. Due to the ossification of production
networks (cannot run untested systems), engineers typically
rely on modeling and mimicking the network behavior in
a smaller scale to test their proof-of-concepts. One way to
model the network is through simulations [385]; while sim-
ulations offer flexibility in customizing the scenarios, they
cannot achieve the performance of real networks since they
typically run on CPUs. Another way to model the network
is through emulations [386]–[388]. Emulators run the same
software of production networks on CPU and offer flexibility
in customization; however, they produce inaccurate measure-
ments with high traffic rates and are bound to the CPU of the
machine. Finally, emulating testbeds on a smaller scale might
produce results different than production networks.
Current and Future Initiatives: TurboNet [372] is a note-

worthy approach that leverages the power of programmable
switches to emulate production networks at scale while
achieving line-rate performance. TurboNet emulates both the
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data and control planes.Multiple switches can be emulated by
slicing a single switch, separating its ports, and dividing the
queue resources; this enables TurboNet to scale beyond the
number of ports. TurboNet can emulate background traffic,
link loss, link delay, etc. Future work in this area could
consider further methods that consume less resources than
TurboNet. Also, future work should avoid interrupting the
emulation whenever the network emulation conditions are
being changed.

P4Campus [389] is another promising work that demon-
strates how researchers can test and evaluate their novel
ideas on campus networks. P4Campus aims at encourag-
ing researchers to migrate from simulation/emulation to an
implementation of hardware switches. Second, it advises on
replaying campus traffic and run experiments against the pro-
duction data. The authors of P4Campus are working towards
supporting multiple targets, program virtualization, and dif-
ferent topologies. Furthermore, they foresee that their testbed
will be expanded to other institutions where P4Campus will
be adopted. This will pave the way for more collabora-
tion between researchers, especially since the applications of
P4Campus (e.g., microbursts detection, heavy hitter, live traf-
fic anonymization, flow RTT measurement, etc.) are already
available to the public [390].

L. HUMAN INVOLVEMENT
The complexity of managing and configuring today’s net-
works is continuously increasing, especially when the net-
works are large [391]. Applications are demanding enhanced
security, high availability, and high performance. Networks
today are opaque and require acquiring some ‘‘dials’’ and
configuring ‘‘knobs’’. This is typically done without really
understanding what is happening in the network; such pro-
cess and the complexity of network management inevitably
increases the risk of errors (e.g., operator errors). Hence
the question, ‘‘If we are operating a large network, can we
completely remove the human?’’.
Current and Future Initiatives: Many techniques and

architectures have been proposed to answer this question.
In the past few years, the research community started explor-
ing the concepts of ‘‘Self-driving networks’’, ‘‘Zero-touch
networks’’, and ‘‘Knowledge-Defined Networking’’ [370],
[392]–[394]. The networking industry in the upcoming years
may be shifting towards the closed-loop control architecture
(Fig. 30) [1]. Note that it is not easy to realize the vision of
completely automating networks. There are three pieces that
need to be addressed to close the loop and make networks
more autonomous and intelligent.

• The ability to observe packets, network state and code,
in real time (at the nanosecond scale). Observing packets
has already started with packet telemetry and measure-
ments (Sections VI, VII-B). It is possible with pro-
grammable switches to detect and visualize microbursts;
this was not possible in the past. Furthermore, per-packet
examination is now possible, giving better visibility into
the behavior of the network.

FIGURE 30. Closed-loop network. [1], [53], [382]. The packets sent from
forwarding devices packets (e.g., through INT), the network state, and the
code are being measured and validated. The feedback is used by the
control plane to generate new behaviors (new control code, new
forwarding code, new states), and to verify that the operation is matching
the intentions.

• The ability to generate new control and forwarding
behavior on-the-fly to correct errors. Techniques such as
header space analysis (HSA) (Section XII) allows build-
ing a model of the forwarding behavior of every switch
in the network based on the program that describes its
behavior, and the state that it currently contains. This
allows determining and formally proving if two devices
can communicate for instance.

• The ability to verify generated code and deploy it
quickly. While the first two pieces already have some
progress, this third piece need further advancements. It is
advised to explore software engineering techniques to
generate, optimize and verify the code.

XIV. CONCLUSION
This article presents an exhaustive survey on programmable
data planes. The survey describes the evolution of networking
by discussing the traditional control plane and the transi-
tion to SDN. Afterwards, the survey motivates the need for
programming the data plane and delves into the general
architecture of a programmable switch (PISA). A brief
description of P4, the de-facto language for programming
the data plane was presented. Motivated by the increasing
trend in programming the data plane, the survey provides a
taxonomy that sheds the light on numerous significant works
and compares schemes within each category in the taxonomy
and with those in legacy approaches. The survey concludes
by discussing challenges and considerations as well as vari-
ous future trends and initiatives. Evidence indicates that the
closed nature of today’s networks will diminish in the future,
and open-source and the deep programmability architecture
will dominate.
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