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ABSTRACT An image signal processor (ISP) is a dedicated processor that transforms raw data obtained
from camera sensors into an image that satisfies the requirements of a specific application or use case.
An ISP typically has many tuning parameters due to the complexity of the image transformation. Until now,
these are generally tuned by human experts manually, and this work takes a great deal of time. This paper
proposes an application-level automatic ISP parameter tuning system. In particular, this paper focuses on a
rear view monitoring (RVM) camera that is mounted on the rear side of the vehicle to prevent backovers in
advanced driving assistance systems (ADAS). The proposed system consists of four steps. The first step is
the input image generation, which captures a virtual scene including the test site and vehicle body whose
three-dimensional (3D) models are created according to the test requirements and vehicle design. The second
step is ISP processing, which transforms the input image into an ISP output image (RVM image) according
to the ISP specification in the RVM system. The third step is to evaluate the RVM image’s fitness using
evaluation criteria (EC) functions. Finally, ISP parameters are tuned by the grid-to-random search method.
In the experiment, the proposed system is evaluated by using the 3D modeling data of six different test
vehicle types. Experimental results show that the proposed system can effectively obtain the usable ISP
parameters’ values that satisfy all RVM requirements for a given situation, regardless of test vehicle type,
within 2∼3 hours.

INDEX TERMS Automatic parameter tuning, grid-to-random search, image signal processor (ISP), rear
view monitoring camera.

I. INTRODUCTION
An image signal processor (ISP) is a dedicated processor that
transforms raw data obtained from camera sensors into an
image that satisfies the requirements of a specific application
or use case. An ISP performs a role that reduces the workload
of the central processing unit (CPU) by being in charge of
pre-processing or post-processing of the image. Therefore,
it is an indispensable part of the real-time embedded imple-
mentation of image-related products. An ISP hasmany tuning
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parameters, and it is a very critical and difficult problem to set
these parameters to appropriate values. ISP parameter tuning
can be divided into three levels depending on its purpose:
Image quality-level, computer vision algorithm-level, and
application-level.

Image quality-level tuning is to find the optimal values of
ISP parameters that generate an image suitable for the human
visual system on a device that captures or displays an image
such as a webcam, a mobile phone camera, and so on. This
includes color demosaicking, denoising, white balance, color
space conversion, tone mapping, and color enhancement [1].
At this time, general image quality is a research field that
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has been studied for a long time and is evaluated by a metric
often used for image quality assessment such as mean square
error (MSE), signal-to-noise ratio (SNR), structural similarity
index measure (SSIM) [2], visual SNR [3], subjective quality
factor (SQF) [4], and so on [5]. Image quality-level tuning is
currently the most common ISP parameter tuning.

Computer vision algorithm-level tuning is to find the opti-
mal values of ISP parameters that maximize the performance
of the computer vision algorithms such as object detection
and image segmentation. How this controls image trans-
formation is similar to that of image quality-level tuning.
However, the difference is that the evaluation criterion is
not visibility but the performance of the computer vision
algorithm. For example, an ISP parameter tuning specialized
for pedestrian detection algorithms can be applied for edge
enhancement and contrast enhancement steps to maximize
detection accuracy.

Finally, application-level tuning is to find the optimal
values of the ISP parameters that generate an image that
satisfies specific application requirements. For example, let’s
consider a camera/video image system (C/VIS) for heavy
vehicles, which is a system that replaces side mirrors with
cameras to minimize blind spots around the vehicle and
provide an additional view that is difficult for the driver to
acquire directly. C/VIS has an essential requirement that the
size, position, and speed of objects captured by the camera
remain the same as the mirror [6], [7]. However, there is no
direct way to set the ISP parameters to transform the image
to satisfy this requirement in the image quality-level and
computer vision algorithm-level tuning. Therefore, it needs a
way to use application-level requirements directly as evalua-
tion criteria. Application-level ISP parameter tuning includes
new components for image transformation, such as geometry
transformation and image warping, and handles new ISP
parameters such as field of view (FOV), zoom, scale, and
shift. Moreover, it uses a new metric specialized to the appli-
cation requirements as an evaluation measure for optimizing
ISP parameters.

Typically, an ISP consists of several blocks of transforma-
tion and filtering to improve and modify the output image,
and each block includes many ISP parameters. ISP parameter
tuning is usually based on a manual tuning method in which a
human expert adjusts the parameters repeatedly through trial
and error until the fitness of the output image is satisfied. This
manual tuning is a very cumbersome and time-consuming
method. Recently, to overcome this problem, research on
automating ISP parameter tuning is gradually increasing,
and there is a research case [8] in which automatic tuning
outperforms manual tuning.

Previous works on automatic ISP parameter tuning are at
the early stages, and the number is relatively small. At the
image quality-level tuning, previous works have proposed
a method of automating ISP parameter tuning only for
some basic processes such as denoising, demosaicking, and
sharpening [3], [9], [10]. Nishimura et al. [9] proposed an
automated ISP parameter tuning method for image quality.

The covered ISP consists of the four processing blocks,
including noise reduction, demosaic, and sharpening, and
ISP parameters consist of kernel size and coefficients used
in each block. The optimal values of the ISP parameters
are obtained by using Mean Absolute Difference and SSIM
between the output image and the reference image as metrics.
Portelli and Pallez [10] proposed an automatic ISP param-
eter tuning method for image enhancement. The covered
ISP consists of noise reduction and sharpening, and ISP
parameters consist of coefficients used in single filters. The
optimal values of the ISP parameters are obtained by using
visual noise and visual acutance as image quality metrics.
Hevia et al. [3] proposed an automatic ISP parameter tun-
ing method for image quality. The covered ISP consists of
noise reduction and sharpening, and ISP parameters consist of
denoise scales, denoise edge softness, weight, and so on. The
optimal values of the ISP parameters are obtained by using
modulation transfer function, visual SNR, and SQF as image
quality metrics.

At the computer vision algorithm-level tuning, previous
works mainly focused on computer vision algorithms utilized
in the automotive field [8], [11], [12]. Yahiaoui et al. [11]
proposed an automatic ISP parameter tuning method for
improving pedestrian detection performance. The covered
ISP consists of sharpening and contrast enhancement, and
the ISP parameters consist of Laplacian filter’s coefficients
and clip limits of histogram equalization. Pedestrian detection
performance is evaluated by intersection over unit (IOU), and
the optimal values of the ISP parameters are obtained by using
true positive rate and false positive per frame as detection
results.Mody et al. [12] proposed an automatic ISP parameter
tuning method to generate a high-quality image utilized in
automated driver assistance systems (ADAS). The covered
ISP parameters consist of analog gain, noise filter, sharpness,
defect correction, and contrast, and the optimal values of
the ISP parameters are obtained by using color accuracy
as a measure. Mosleh et al. [8] proposed an automatic ISP
parameter tuning method to improve the performance of the
2D object detection algorithm. The covered ISP consists of
typical ISP blocks, and ISP parameters consist of parameters
of most ISP blocks such as white balance, demosaicking,
denoising, sharpening, and tone mapping. The optimal values
of the ISP parameters are obtained by using mean average
precision (mAP) and mean average recall (mAR) as object
detection results and panoptic quality as panoptic segmenta-
tion results.

To the best of our knowledge, there is no prior work for
automatic ISP parameter tuning at the application level. This
paper proposes an application-level automatic ISP param-
eter tuning system. In particular, we focus on a rear-view
camera used in rear view monitor (RVM) system that is
designed to prevent backovers in ADAS. An RVM system
provides a rear blind spot image that drivers cannot obtain
directly. RVM images should meet the requirements pre-
sented in federal motor vehicle safety standard (FMVSS)
No. 111 [13]. FMVSSNo. 111 is a standard guideline for rear
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FIGURE 1. Overall process of RVM camera ISP parameter tuning: (a) manual tuning, (b) proposed automatic tuning.

visibility proposed by the National Highway Traffic Safety
Administration (NHTSA).

In the case of manual tuning, it absolutely needs to set
up a test site in advance, consisting of a test vehicle with a
rear-view camera, 7 test objects, a fixed trajectory guideline,
and so on. Furthermore, a human expert should iteratively
perform the ISP parameter adjustment until the usable value
is obtained while checking whether the output image satisfies
the RVM application requirements. During the iterative task,
the human expert should measure the length or area of the
test object captured in the image by a pixel to determine the
fitness of each output image while adjusting the values of ten
or more ISP parameters related to lens distortion correction
and image warping. In addition, if the test vehicle type,
camera specification, or camera mounting location changes,
the entire ISP tuning process must be repeated in the same
manner for the new situation. Thus, manual tuning is a very
cumbersome task that requires considerable effort and time.
To alleviate the complexity of manual tuning, this paper
proposes a system that automatically and efficiently tunes the
ISP parameters regardless of vehicle types and camera speci-
fications by simulating the test site and modeling the physical
rear-view camera and the entire ISP processing. Fig. 1 shows
a comparison of the typical manual tuning process and the
proposed automatic tuning process.

The proposed system is composed of four steps. In the
first step, the test site environment is modeled in 3D, and
the input image is captured with a virtual camera. In the sec-
ond step, the input image is transformed into an ISP output
image (RVM image) specified by a set of ISP parameters.
In the third step, the fitness of the RVM image is evaluated

by evaluation criteria (EC) functions that reflect the RVM
application requirements. In the last step, the usable ISP
parameters are obtained by the grid-to-random search-based
parameter optimization method.

In the experiment, the proposed system is evaluated using
3D modeling data of 6 different vehicle types. Experimental
results show that the proposed automatic tuning system can
effectively obtain the ISP parameter values that meet all RVM
application requirements for a given situation, regardless of
vehicle type, within 2∼3 hours. The proposed system is
designed to enable tuning regardless of vehicle type and
camera specifications and includes several useful functions
required in actual tuning situations, such as checking interme-
diate results, saving intermediate results, and stopping tuning
in the middle.

II. APPLICATION REQUIREMENTS OF REAR VIEW
MONITORING CAMERA
A. CONFIGURATION OF THE TEST SITE
Configuration of the test site presented in FMVSS No.111 is
as shown in Fig. 2. Seven cylindrical test objects are located at
the positions behind the vehicle named A through G. The test
objects have different markings according to their positions
as shown in Fig. 3. The test objects at positions A to E are
marked with a horizontal stripe of 150mm width in the top of
the cylinder, as shown in Fig. 3(a).

The test objects at positions F and G are marked with
a vertical stripe of 150mm width from the top to bot-
tom of the cylinder, as shown in Fig. 3(c). In addition to
the requirements of FMVSS No. 111, a fixed trajectory
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FIGURE 2. Arrangement of the test vehicle and test objects at the test site presented in FMVSS No. 111.

FIGURE 3. The dimensions and markings of test objects: (a) horizontal
stripe marking, (b) test object dimension, (c) vertical strip marking.

FIGURE 4. Arrangement of a fixed trajectory guideline and a calibration
pattern board at the test site according to the customer’s requirements.

guideline and a calibration pattern board are installed at the
test site according to the customer’s requirements, as shown
in Fig. 4.

B. APPLICATION REQURIEMENT DETAILS
RVM application requirements consist of FMVSS No. 111
[14] and additional customer’s requirements. Table 1 explains
the details for two types of requirements.

III. RVM IMAGE ACQUISITION
In manual tuning, the RVM image acquisition process con-
sists of test site setting, RVM camera, and ISP. In order to
implement this process identically, the proposed automatic

TABLE 1. RVM application requirements.

tuning system is designed with the following three corre-
sponding steps: 3D modeling for the test site, RVM camera
modeling, and ISP modeling. Fig. 5 shows the corresponding
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FIGURE 5. Diagram of the corresponding relationship between manual tuning and the proposed automatic tuning for the RVM
image acquisition process.

relationship between manual tuning and the proposed
automatic tuning as a diagram.

A. TEST SITE MODELING
The test site is modeled based on the coordinate systemwhere
X -axis is the driver’s seat direction, the Y -axis is the ground
direction, and the Z -axis is the vehicle’s backward direction.
3D model data for vehicle bodies (bumper, garnish, and
trunk), a rear-view camera, cylindrical test objects, a fixed
trajectory guideline, and a calibration pattern board are iden-
tically created as an actual test site by a simulation tool,
as shown in Fig. 6. The simulated data are composed of 3D
coordinate points that make up the mesh. These are cre-
ated before tuning according to the vehicle type and camera
specifications.

FIGURE 6. Test site modeling.

B. RVM CAMERA MODELING
For automatic tuning, it needs to model a virtual camera
(referred to as P camera in this paper) that replaces a rear-view
camera. The P camera model is created using the intrinsic and
extrinsic parameters of an actual rear-view camera. The RVM
system generally uses a fisheye-lens camera. So, P camera’s
lens distortion is modeled using the most commonly used
equidistance projection model [15], [16].

Firstly, it performs to project a 3D data for the test site
to P camera using the perspective projection model. If P is
a projection matrix that transforms a point (X , Y , Z ) on the

world coordinate system to a point (x, y) on the image plane,
the projection formula is as follows: x

y
1

 = P


X
Y
Z
1

 (1)

[x y 1]T is a vector representing a point on the homogeneous
image coordinate system, and [X Y Z 1]T is a vector repre-
senting a point on a homogeneous world coordinate system.
The projection matrix P is decomposed as follows:

P = K [R|t] =

 fx 0 cx
0 fy cy
0 0 0

  r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


(2)

K is an intrinsic parameter matrix of the camera and the
rigid transformation [R|t] is an extrinsic parameter matrix of
the camera.

To reflect a fisheye lens distortion on the P camera model,
the equidistance projection model is applied for a point on the
image plane obtained by a perspective projection model. The
equidistance projection model is calculated as follows:

rd = f θ (3)

rd is a distance from a principal point to a point on an image
plane, θ is an incidence angle of light from the object based
on the optical axis, and f is a focal length. The equidistance
projection result can be obtained from the perspective projec-
tion result as follows:

The first is to calculate the incidence angle of light from the
coordinates of the perspective projected image points using
the relationship between the two models. The second is to
calculate the distance rd between the image point and the
principal point by substituting the incidence angle θ and the
given focal length into equation (3). If the x and y coordinates
of the fisheye projection image are calculated from rd , a final
fisheye projection image can be generated. Fig. 7 shows the
actual image taken from a rear-view camera and the virtual
image acquired from the P camera.
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FIGURE 7. Comparison between an actual camera image and a virtual
camera image: (a) actual fisheye lens camera image, (b) P camera image.

IV. ISP MODELING
To model ISP functions, this paper assumed the following
two camera models: A camera (meaning an actual camera)
model and V camera (meaning a virtual camera) model. That
is, it was assumed that the input image was acquired with
the A camera, and the resulting image was taken with the
V camera to generate an output image, as shown in Fig. 8.
In other words, the ISP undertakes a conversion from A
camera to V camera, which is composed of fisheye lens
distortion correction and virtual pan-tilt-zoom (PTZ). Since
the P camera substitutes for a role of the actual fisheye lens
camera, the P camera output image (i.e., ISP input image)
contains fisheye lens distortion. The lens distortion correction
facilitates subsequent geometric transformation by eliminat-
ing this distortion. Fig. 9 shows the fisheye lens distortion
correction process except for virtual PTZ. Here, it should be
noted that the lens distortion correction in our ISP model is
not aimed at generating a perfect pinhole camera image as
is generally done in the field of computer vision. It may be
physically impossible to transform a rear-view camera image
with an ultra-wide view into a perfect pinhole camera image.
Since the fisheye lens distortion correction here aims to
improve the driver’s situational understanding by displaying
the output image on a monitor with a limited size, it is not

FIGURE 8. ISP modeling.

FIGURE 9. Fisheye lens distortion correction in the ISP model.

TABLE 2. ISP parameters for the RVM camera.

important whether it is a perfect pinhole camera image, but
whether it meets the RVM application requirements. Virtual
PTZ simulates that a real PTZ camera captures scenes in
different directions and different magnifications according to
pan, tilt, and zoom. In general, the virtual PTZ receives a
high-resolution wide-angle image and outputs the part cor-
responding to the parameter of the PTZ camera. In this paper,
the pan, tilt, zoom, pose (theta, phi), and image offset of
the virtual image plane are considered as shown in Fig. 10.
Fig. 10 shows the virtual PTZ with the fisheye lens distortion
effect removed, and Table 2 summarizes ISP parameters for
the fisheye lens distortion correction and virtual PTZ.

Table 3 shows the effect of each ISP parameter on the
image transformation operating inside the ISP. In the A
camera lens view column of Table 3, the area in the input
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FIGURE 10. Virtual PTZ in the ISP model.

image corresponding to the output image (RVM image) is
represented by a green line. The FOV and RAD determine
the size of the ROI, which is the area (enclosed by green
line) to be used as the output image. V shift and H shift
moves the position of the ROI vertically and horizontally.
Zoom functions to enlarge or reduce the image. Advanced H
shift, V shift, H scale, and V scale function to finely adjust
the shape and position of the ROI. The remaining H pan,
V pan, and Tilt determine the orientation direction of the
virtual PTZ camera, and Advanced theta and phi determine
the pose of the image plane. In this paper, according to the
customer’s requirements, 5 ISP parameters (H pan, V pan,
Tilt, Theta, and Phi) related to angle are fixed to zero and
only the remaining 9 parameters are dealt with.

V. EVALUATION CRITERIA FUNCTION
Evaluation criteria (EC) functions are defined as a measure to
quantitatively evaluate how well a specific ISP parameter sat-
isfies the RVM application requirements. The EC functions
consist of EC functions for FMVSSNo.111 and EC functions
for customer’s requirements (regarding vehicle body, a fixed
trajectory guideline, and a pattern board). Each EC function is
defined so that the corresponding requirements are reflected,
and results of EC functions will be summarized into one
number, i.e., final score (called an EC score). The details of
the EC functions are as follows.

EC function 1 is a function that evaluates the requirements
of FMVSS No.111 and consists of four sub-EC functions

related to FOV and image size. The contents of the four
sub-EC functions are as follows (Fig. 11):

1-1) Check whether the lower 150 mm × 150 mm area of
the vertical stripe marked on the test objects located
at the positions F and G (the rectangular area con-
nected to the corners ® to ± in Fig. 11) is visible
in the RVM image. Outputs 1 if it is visible, and 0
otherwise.

1-2) Calculate the area of the vertical stripe of the test
objects located at the positions F and G in the RVM
image (the rectangular area connected to ¬ -  - ® -
¯ - ° - ± - ¬ in Fig. 11). The larger the ratio (�)
of the calculated area to the entire area of the RVM
image, the better.

1-3) Find the position of the top point among the test
objects located at positions A, B, and C and calculate
the vertical distance d from that point to the top of the
image. Next, the ratio of d to the vertical length of the
image must be 15% or more.

1-4) Calculate the area of the horizontal stripe of the test
object located at the position B (w×h). The larger the
ratio (�) of the calculated area to the entire area of
the RVM image, the better.

EC function 2 is a function that evaluates the customer’s
requirements and consists of four sub-EC functions related
to vehicle body conditions. The contents of the four sub-EC
functions are as follows (Fig. 12):
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TABLE 3. Effect of ISP parameters on image transformation.

2-1) Measure the vertical length (tc) of the bumper at the
center of the horizontal axis of the RVM image. It is
preferred that the ratio (%) of tc to the vertical length
of the RVM image is between 4 and 8 %.

2-2) Calculate the average of the vertical lengths tl and
tr of the bumper at the left and right ends of the
RVM image. It is preferred that the ratio (%) of the
average value to the vertical length of the RVM image
is between 8 and 16%.

2-3) The smaller the difference between the vertical
lengths tl and tr , the better.

2-4) Checks whether a vehicle body such as a garnish or
trunk is visible on the upper part of the RVM image.
Outputs 0 if visible, and 1 otherwise.

EC function 3 is a function that evaluates the customer’s
requirements and consists of two sub-EC functions related to
the fixed trajectory guideline. The contents of the two sub-EC
functions are as follows (Fig. 12):
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FIGURE 11. Description of EC function 1 related to the requirements of FMVSS No.111.

FIGURE 12. Description of EC function 2 and 3 related to customer’s
requirements.

3-1) Calculate the distance between theX coordinate of the
center point of the second horizontal guideline from
the rear of the vehicle and the X -axis center coordi-
nate of the RVM image. The smaller the calculated
distance, the better.

3-2) Calculate the Y coordinate of the center point of the
third horizontal guideline from the rear of the vehicle.
It is preferred that the ratio (%) of the calculated Y
coordinate to the vertical length of the RVM image is
between 45 and 55%.

EC function 4 is a function that evaluates the customer’s
requirements and consists of one sub-EC functions related
to the calibration pattern board. The content of the sub-EC
function is as follows:

4-1) It is preferred that the ratio of the width to the height
of the calibration pattern board is between 0.9 and 1.1.

The outputs of the EC functions are set to convert the values
measured in the function into a score of 0 or 1 based on
the threshold value determined by a human expert. However,
if using the EC functions outputting a binary score, it is
impossible to search usable (even not perfect) ISP parameters
when there is no perfect ISP parameter values. Frequently,

what the operator really wants to do is to find the best
ISP parameter values under a given conditions. In order to
solve this problem, we propose a method to apply a sigmoid
function to the output stage of each EC function so that all
EC functions output real numbers between 0 and 1. However,
since most of the EC functions defined in this paper have two
thresholds (maximum and minimum values), it is difficult
to use the sigmoid function having a single threshold as
it is. Therefore, a bidirectional sigmoid function with two
thresholds was proposed by combining two basic sigmoid
functions as shown in (4).

f (x) =
1

1+ e−c1×(x−c2)
×

1
1+ ec3×(x−c4)

(4)

c1 and c3 represent the slope of each sigmoid function,
c2 and c4 represent the minimum and maximum thresholds,
respectively, and the graph of the bidirectional sigmoid func-
tion is shown in Fig. 13. In the case of an EC function
with one threshold, c2 or c4 is set to infinity. In this paper,
the proposed bidirectional sigmoid function is placed at the
output stage of eleven EC functions, and all functions are set
to output real numbers between 0 and 1. The coefficients of
the bidirectional sigmoid function are set differently for each

FIGURE 13. Graphs of bidirectional sigmoid functions with different
slopes when c2 is -10 (minimum value) and c4 is 10 (maximum value).
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EC function according to the customer’s decision. The EC
score is calculated as the product of all EC function outputs.

VI. ISP PARAMETER OPTIMIZATION
This paper proposes a grid-to-random search method to
optimize the ISP parameters. This method consists of two
steps, coarse search and fine search, as shown in Fig. 14.
In the coarse search step, grid search is performed sparsely
by assigning relatively large values to the search range and
step size. First, the parameter space is divided into a grid
using the ISP parameter initial value, search range, and step
size, and then ISP parameter candidate sets are generated.
Next, the EC function results for the parameter candidate
sets are sequentially calculated. To this end, according to
each candidate parameter set, an RVM image is generated
and an EC score is calculated by applying all EC functions
to the image. EC scores for all candidate sets are sorted in
descending order, and the top N parameter sets are output as
the result of the coarse search step. Here, N is the number
of parameter sets that are obtained in the coarse search step.
The N ISP parameter sets obtained in the coarse search step
become the initial values of the ISP parameters in the fine
search step.

FIGURE 14. Proposed ISP parameter optimization method.

In the fine search step, random search is performed densely
by assigning relatively small values to the search range and
step size. It is well known that random search is advantageous
in optimizing high-dimensional parameters because it has
more search times than grid search in the important param-
eter axis when using the same amount of computation [17].
Furthermore, random search has the advantage that it is possi-
ble to check the intermediate result during the search process
and stop the search at any time. For this reason, the random
search was applied in the fine search step. In the fine search
step, the ISP parameter candidate sets are generated randomly
as much as the specified number of searches (T ) within the
fixed search range. According to each candidate parameter
set, an RVM image is generated and an EC score is calculated
by applying all EC functions to the image. EC scores for all
candidate sets are sorted in descending order, and the top M
parameter sets are output as the result of the fine search step.
Finally, one final parameter set among the M candidates is
determined by human expert.

VII. EXPERIMENTS
The proposed system was evaluated with 3D simulation data
of six vehicle types. These data consist of rear-view camera
(P camera) parameters and 3D coordinates for vehicle bodies,
cylindrical test objects, a fixed trajectory guideline, and a
calibration pattern board. Test vehicles are composed of six
different types, and body shape and the mounting position of
the rear-view camera are different according to the type of
vehicle. Vehicles A, B, C, and F are sedans, and vehicles C
and E are sport utility vehicles (SUVs). Fig. 15 shows 3D sim-
ulation data for four test vehicles from A to D. Test vehicles
E and F, which are unreleased models, are not included in this
figure due to security concerns.

FIGURE 15. 3D simulation data for four test vehicles (red point: rear-view
camera, blue: bumper, green: garnish, light blue: trunk).

A. OPTIMIZATION PARAMETER SETTING
The proposed ISP parameter optimization method needs to
set up optimization parameters that consist of the number
of outputs (N ) of the coarse search step and the number of
searches (T ) of the fine search step. These two parameters
determine how many initial positions are to be searched for
in the fine step and howmany are needed to search around the
initial positions, and as a result, they can influence the search
time and the fitness of the RVM image. In the actual situation,
a human expert will set the optimization parameters accord-
ing to the given situation, but in this paper, the parameters are
set empirically to derive the experimental results within the
allowable range of processing time and performance. In order
to set the optimization parameters, we performed an experi-
ment to measure the EC score and processing time by chang-
ing the number of coarse steps results (N ) and the number of
fine steps searches (T ) for one vehicle type (test vehicle A).
Fig. 16(a) shows EC scores according to N , and also EC
scores when the T (legend number) is different. In this
paper, the threshold (=0.002) set within the acceptable range
determined by the customer’s expert is indicated by a solid
horizontal line. As shown in Fig. 16(a), it can be seen that the
tendency of increasing or decreasing EC scores according to
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FIGURE 16. Graphs for EC score and processing time: (a) EC scores
according to optimization parameters for test vehicle A, (b) processing
time according to optimization parameters for test vehicle A.

optimization parameters N and T does not appear clearly due
to the influence of random search performed in the fine step.
However, when N and T is 1 and 1000 respectively, the EC
scores are smaller than the threshold, andwhen T is more than
20000, the EC scores are greater than the threshold. On the
other hand, in the case of the processing time, it can be seen
that the processing time increases as T increases, as shown
in Fig. 16(b). Based on these results, the optimization param-
eter was set so that the search time was minimized while the
EC score is stably obtained more than the threshold, as shown
in Fig. 16(a). In our experiments, N is set to 2, and T is set to
20000.

B. ANALYSIS OF EC FUNCTION RESULTS FOR
RVM IMAGE OF THE TEST VEHICLE A
The result of each EC function for the RVM image obtained
from the proposed ISP tuning system was analyzed. The four
EC functions (EC 1-1, 1-2, 1-3, and 1-4) corresponding to
the requirements of FMVSS No. 111 obtained high scores
close to 1. Among the EC functions corresponding to the cus-
tomer’s requirements, EC 2-3, 2-4, 3-1, and 4-1 obtained high
scores close to 1, but EC 2-1, 2-2, and 3-2 obtained low scores
less than 0.5. Checking themeasured value of the EC function

that obtained a low score, the value is within the accept-
able range offered by the customer’s experts. Nevertheless,
the reason why the low score was obtained is analyzed by
the influence of the coefficients of the bidirectional sigmoid
function. In summary, all sub-EC functions of EC function 1
related to the essential requirements obtained high scores, and
EC functions 2 to 4 related to customer’s requirements also
obtained stable results within the range allowed by human
experts.

EC function 1: FMVSS No. 111 requirements

1-1) Since the lower 150 mm × 150 mm portion of the
vertical stripe of test objects located at positions F
and G is visible in the RVM image, the score is 1
(Fig. 17(a)).

1-2) The area ratio of the vertical stripe of test objects
located at positions F andG is 26.12�, and since this
value is sufficiently large, the score is 1 (Fig. 17(b)).

1-3) The ratio of the length d is calculated as 25.70 %, and
since this value is more than 15%, the score is 0.99
(Fig. 17(c)).

1-4) The area ratio of the horizontal stripe of test object
located at position B is calculated as 0.2 �, and
since this value is sufficiently large, the score is 0.91
(Fig. 17(d)).

EC function 2: Customer’s requirements for vehicle body

2-1) The ratio of the bumper’s vertical length at the center
on the horizontal axis of the RVM image is calculated
as 3.45 %, and since this value is less than 4%,
the score is 0.16 (Fig. 18(a)).

2-2) The ratio of the average of the vertical lengths of the
bumper at the left and right ends of the RVM image
is calculated as 17.75%, and since this value exceeds
16%, the score is 0.009 (Fig. 18(a)).

2-3) The difference of the vertical lengths of the bumper at
the left and right ends of the RVM image is measured
as 1.08 pixel, and since this value is sufficiently small,
the score is 0.99 (Fig. 18(a)).

2-4) Since the vehicle body such as a garnish or trunk is
not included in the upper part of the area (areamarked
with red line in Fig. 18(b)) used as the RVM image,
the score is 1.

EC function 3: Customer’s requirements for a fixed
trajectory guideline

3-1) The distance between the X coordinate of the second
horizontal guideline center point and the X -axis cen-
ter coordinate of the image ismeasured as 0.09 pixels,
and since this value is sufficiently small, the score is
0.99 (Fig. 19(a)).

3-2) The vertical length ratio of the Y coordinate of the
third horizontal guideline is calculated as 55%, and
since this value falls within the range of 45∼55%,
the score is 0.5 (Fig. 19(b)).

EC function 4: Customer’s requirement for a calibration
pattern board
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FIGURE 17. Results for EC function 1: (a) EC 1-1 result, (b) EC 1-2 result, (c) EC 1-3 result,
(d) EC 1-4 result.

FIGURE 18. Results for EC function 2: (a) EC 2-1 result, (b) EC 2-2 result.

4-1) The ratio of the width and height of the calibration
pattern board is calculated as 1.08, and since this
value falls within the range of 0.9 to 1.1, the output
value is 0.7 (Fig. 20).

Finally, we compare actual images obtained by the actual
camera and virtual images obtained from the proposed auto-
matic ISP parameter tuning system. Fig. 21(a) and (b) show
the input image captured in the actual test environment
and the RVM image output through the ISP, respectively.
Fig. 21(c) and (d) show the virtual image acquired by the
P camera and the RVM image output by the ISP model,
respectively. Comparing Fig. 21(a) and (c), it can be seen that

FIGURE 19. Results for EC function 3: (a) EC 3-1 result, (b) EC 3-2 result
(dashed line: center line).

FIGURE 20. Results for EC function 4-1.

the virtual image is quite similar to the actual image. In the
samemanner, comparing Fig. 21(b) and (d), it can be seen that
the RVM image obtained in the proposed system is also quite
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TABLE 4. Input images and RVM images for five test vehicles.
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FIGURE 21. Input image and RVM image: (a) input image acquired by
actual RVM camera mounted on real test vehicle, (b) RVM image obtained
through ISP from an actual input image, (c) input image acquired by
simulated P camera, (d) RVM image obtained through ISP model from a
simulated input image.

similar to the actual RVM image. These results demonstrate
that the proposed ISP parameter tuning system can provide
usable ISP parameters that can be sufficiently applied in real
vehicles.

C. ISP PARAMETER OPTIMIZATION RESULTS FOR
ANOTHER FIVE TEST VEHICLES
We performed ISP parameter optimization for another five
vehicle types from B to F and obtained an RVM image
for each vehicle type by using the resultant ISP parameters,
as shown in Table 4. At first, the initial values of the ISP
parameters and the optimization parameters are set the same
as those of test vehicle A. Next, the ISP parameters for each
test vehicle are automatically tuned by the proposed system.
Finally, the RVM image is generated by using the resultant
ISP parameters. Table 4 shows input images including a
grid (red line) indicating an area used for the RVM image
and resultant RVM images. As a result of the experiment,
all five vehicle types satisfy all requirements of FMVSS
No. 111. Also, customer’s requirements are satisfied within
the allowable range offered by human experts.

Since the six test vehicle types have different vehicle
body shapes and different RVM camera mounting locations,
the input images captured in different environments have
different test object arrangements. Nevertheless, the proposed
system can obtain the usable values of the ISP parameters
suitable for each test vehicle in hours, regardless of vehicle
types. These results demonstrate that the proposed system is
quite efficient compared to manual tuning in terms of test
site setting, repetitive labor given to human experts, and the
working time. Finally, Table 5 shows the processing time for
six vehicle types. The processing time was measured with
an Intel Core i7-7700 CPU with 16.0GB RAM. Average
tuning time of the six vehicle types is about 142 minutes.
Considering that the human expert took 1∼2 working days,

TABLE 5. Processing times for six test vehicles.

it can be seen that the working time can be drastically
reduced. As shown in Table 5, the reason why the processing
time is different according to the vehicle type is that the
number of points of the simulation data used is different. That
is, as the number of data points increases, the processing time
increases.

VIII. CONCLUSION
This paper proposed an automatic system that searches the
usable ISP parameter values for the rear-view camera to
satisfy the requirements of the RVM application. For this,
we developed an algorithm that automatically evaluates the
fitness of the RVM image and searches usable values of the
ISP parameters. Experimental results proved that the pro-
posed system effectively reduces the effort and time required
by improving the optimization performance of the ISP param-
eters and reducing the workload from 1∼2 working days
to several hours. In addition, the proposed system provides
a method to check whether the camera specifications and
locations can satisfy the requirements of the RVM application
in the vehicle design stage before the actual vehicle is con-
structed. Future works include 1) automatic setting of param-
eters for bidirectional sigmoid functions, 2) normalization or
automatic setting of EC function thresholds, and 3) dimension
reduction of parameter space through analysis of dependency
between ISP parameters.
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