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ABSTRACT Palm vein recognition is a high-security biometric. Outside the NIR capture box and contactless
palm vein recognition are more popular but challenging. The users feel comfortable outside the NIR capture
box but face more optical blurring brought by visible light. Contactless capture gestures solve the hygienic
problem but face the image rotation, position translation, and scale transformationwhichmakes classification
difficult especially in large-scale databases. To address these problems, we develop a wavelet denoising
ResNet, which consists of two models: the wavelet denoising (WD) model and the squeeze-and-excitation
ResNet18 (SER) model. TheWDmodel focuses on removing noise from skin scattering and optical blurring
from palm vein images. The WD model enhances the low-frequency feature into a deep learning feature by
residual learning technology. This strategy increases the weight of an effective handcrafted feature in the
deep learning network. The SER model overcomes rotation, position translation, and scale transformation
by selectively emphasizing classification features and weakening less useful features. To train and verify the
network, an inside box palm vein image database and an outside box palm vein image database are set up.
The Tongji contactless palm vein image database was also employed in the experiments. The validity and
superiority of our network are verified in a series of experiments.

INDEX TERMS Deep learning, biometrics, palm vein recognition, Resnet, wavelet decomposition, denoise.

I. INTRODUCTION
Palm vein recognition identifies a person by the structure
of vessels underneath palm skin [1]. The vessels absorb
more NIR (Near-Infrared Ray) light than the surrounding
tissues [2]. The vessels reflect less NIR light to the camera.
The shadow of vessels represents the structure of people’s
palm vein images. Palm vein recognition is high security.
First, the vascular structures disappear without blood flow-
ing. Second, as interior biological information and captured
under NIR, vein patterns are difficult copy. Third, palm veins
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are always concealed naturally, because people usually half
clench their fists.

Outside box and contactless palm vein recognition in
large-scale databases is the direction of this burgeoning
research field [3]. Outside the NIR capture box makes the
user feel comfortable but is affected by unstable and uneven
visible light. Visible light and NIR light scatter strongly
inside palm tissues [4], and a majority of palm vein images
inevitably contain noise and optical blurring, especially with
a non-NIR CCD camera. The vessels are obscure in these
images. It is difficult to simultaneously remove optical blur-
ring and preserve effective information. Most of the research
captures palm vein images in NIR capture boxes or lightproof
environments. This capture acquisition prevents the progress
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FIGURE 1. Schematic of the proposed method.

of palm vein recognition in practical scenarios. Contactless
image solve the hygienic problems but face image rotation,
position translation, and scale transformation, which makes
classification difficult, especially in large-scale databases.
The similarity in different classes and diversity in the same
class in large databases is the second difficulty. Motivated by
its practical value and the lack of good solutions, this paper
develops a deep neural network: wavelet denoising ResNet.
The architecture of the proposed network is shown in Fig. 1,
which is composed of ROI (region of interest) extraction,
the WD model and the SER model.

The WD model addresses the first problem. The
noise and optical blurring are mainly concentrated in the
high-frequency part. At the same time, some useful infor-
mation is preserved in the high-frequency part. The main
texture information of the palm vein image is concentrated
in the low-frequency part. We want to keep other infor-
mation without noise at high frequency. Traditional meth-
ods such as the 2-dimensional discrete wavelet transform
(2D-DWT) can extract low-frequency information without
other useful information. The WD model uses a deep con-
volutional neural network method and introduces residual
learning into the network to enhance the effective feature
representation. Residual learning imports the A sub-band
wavelet inverse transform image as a short connection into
the denoising deep learning network. This design filters out
some ambiguous representations for recognition. The result
of the palm vein image ROI after the WD model is shown
in Fig. 2.

SER model addresses the second problem. It overcomes
rotation, position translation, and scale transformation by
selectively emphasizing information features and weakening
less useful features. The ResNet component overcomes the
vanishing or exploding gradients in a large-scale database.
The squeeze-and-excitation component enhances the channel

FIGURE 2. Examples of palm vein ROI images processed by our method.
(a) Original ROI images. (b) Corresponding results by our method.

eigenvalues that are useful for the recognition task and sup-
presses the useless channel eigenvalues. It can distinguish the
diversity in the different classes.

The main contributions can be included in four aspects:
First, we propose an end-to-end deep network architecture

for outside box and contactless palm vein recognition. This
network architecture integrates feature extraction and clas-
sification into one deep learning network. It improves the
recognition performance of outside box and contactless palm
vein recognition.

Second, the WD model fuses a sub-band wavelet inverse
transform image into the deep learning network by residual
learning technology. Through this strategy, we improve the
weight of meaningful features and denoise the palm vein
image simultaneously. It enhances the effective feature rep-
resentation for recognition.

Thirdly, the SER model emphasizes the features which are
helpful for recognition and settle the problem of degradation,
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vanishing, or exploding gradients in a multilayer network.
The model provides a solution to the high inter-class simi-
larity and intra-class variation faced by contactless palm vein
recognition in large databases.

This paper is summarized as follows. Section II describes
related works. Section III explains ROI extraction and the
network structure, including the WD model and SER model.
Abundant comparison experiments on three databases are
reported in Section IV. Section V concludes.

II. RELATED WORK
Palm vein recognition has become popular due to the inherent
advantages of palm veins. It provides a variety of palm vein
feature description methods. They can be classified into two
groups: handcrafted methods and deep learning methods.

A. HANDCRAFTED METHODS
Handcrafted methods can be classified into four cate-
gories: geometry-based methods, texture-based methods,
local invariant-based methods, and subspace-based methods.

Geometry-based methods [5], [6] use the line feature or
point feature of the vasculature to describe the palm vein.
These approaches use vein information directly and response
structure information. However, when skin scattering and
optical blurring obscuring, some of the vessels or parts of the
vessels cannot be imaged. In addition, these approaches are
not invariant to rotation, scaling, or translation of the palm
vein images.

Texture-based methods [7]–[15] use statistical texture fea-
tures, such as Local Derivative Pattern (LDP), Local Binary
Pattern (LBP) and it’s variant or structure texture features.
Some approaches represent a grey histogram distribution of
the palm vein image but suppress positional information on
the palm vein texture. Compensation strategies are adopted
for the lost information. Sometimes the performance of these
approaches is also affected by weak texture palms.

Local invariant-based methods, [6], [16] such as Scale
Invariant Feature Transform (SIFT), ASIFT and RootSIFT,
are not sensitive to axis changes, scale, or rotation. These
approaches are mostly used for contactless recognition sys-
tems. While these approaches are not fast in speed.

Subspace-based methods, [17]–[20] project palm vein
images into subspaces. Subspace approaches, including Prin-
cipal Component Analysis (PCA), Linear Discriminative
Analysis (LDA), Independent Component Analysis (ICA),
take the identified object as a whole. Subspace coefficients
are taken as eigenvalues without prior knowledge.

These handcrafted approaches show excellent performance
in small-scale databases. In the large-scale database, they
suffer from the high inter-class similarity and intra-class vari-
ation. To address these problems, deep learning techniques
help considerably.

B. DEEP LEARNING METHODS
We classify deep learning methods used in palm vein recog-
nition into two groups: based on palm vein representation

and based on network design. The palm vein representation
category focuses on making discriminative and robust vein
representations by the deep learning method. The network
design category focuses on a good network structure to obtain
a good recognition performance.

Some literature has explored the method of palm vein
representation by deep learning methods. Pan et al. [21]
represented the palm vein feature by a multi-layer convolu-
tional feature concatenation with a semantic feature selector.
They kept the semantic information with high-level con-
volution, detailed information with low-level convolution,
and removed the background information. Wang et al. [22]
designed a model with multi-weighted co-occurrence repre-
sentation model. A convolution between an indicator filter in
a higher layer with a to-be-reweighted filter in a lower layer
and a redundancy-driven indicator filter selection algorithm is
designed. Wang et al. [23] adopted convolutional activations
as the regional representation of palm vein images. To obtain
more discriminative and robust feature representation, they
proposed a spatial weighting convolutional feature model.
QIN et al. [24] extracted vein features by an iterative deep
belief network (DBN). Zhang et al. [25] proposed the Palm-
RCNN scheme based on CNN. It used 6 convolutions and a
1 pooling operation to extract shallow layer features.

Other literature focuses on the network structure.
Lefkovits et al. [26] applied transfer learning and
fine-tuning techniques to AlexNet, VGG-16, SqueezeNet,
and
ResNet-50. They proposed conv4-fc2 and conv6-fc2 CNN
architectures as well. Chantaf et al. [27] use Inception
V3 and smaller VGGNet architectures in palm vein recog-
nition. After comparing the convolutional layers from
2-5, Trabelsi et al. [28] proposed the architecture of
a 3-layer CNN network. Wulandari et al. [29] imple-
mented the VGG16 and VGG19 for palm vein recognition.
Wan et al. [30] tested VGG19 for hand vein recognition
in practice. Bhilare et al. [31] used palm veins as a multi-
modal model for biometric recognition. During the match-
ing stage, the proposed method adopted the convolutional
layer along with subsampling, max-pooling, and rectifica-
tion layer. Thapar et al. [32] proposed PVSNet. Generative
domain-specific features were learned by an encoder-decoder
structure. After that, a Siamese network was taken as an
autoencoder. Kuzu [33] proposed a densely connected convo-
lution autoencoder way to increase the discriminative capa-
bility. It connected a supervised CNN with an unsupervised
autoencoder.

All these works improved the performance of palm vein
recognition. However, the study of outside boxes and con-
tactless palm vein recognition is still an area to research. Cap-
turing palm vein image under an unconstrained environment
is sanitary and comfortable. Among the above literature,
only Zhang et al. [25] and Chantaf et al. [27] did studies
of palm vein recognition under outside boxes and contact-
less image environments. There are still many problems to
research. Intending to address two challenging issues ( i. more
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FIGURE 3. Prepare for ROI location. (a) The original palm vein image.
(b) The filtering image from (a). (c) Binary image segmented from (b).
(d) Eight cross points on the hand contour.

optical brought by visible light, ii. image rotation,position
translation, and scale transformation which makes classifica-
tion difficult, especially in large databases ) of outside boxes
and contactless palm vein recognition, we proposed a wavelet
denoising ResNet for outside box and contactless palm vein
recognition.

III. METHOD
We explain our method fromROI extraction to theWDmodel
and SER model.

A. ROI EXTRACTION
Fig. 3, Fig. 4, and Fig. 5 show the extraction procedure of
the ROI. Fig. 3 (a) shows an original palm image from an
inside box database. It is denoised by the low-pass filter as
shown in Fig. 3 (b), and then the image is binarized as shown
in Fig. 3 (c). The palm contour is extracted by the expan-
sion method of binocular morphology. The contour image
in Fig.3 (d) is scanned by a vertical line from right to left.
As shown in Fig. 3 (d), when the vertical line crosses the hand
contour with 8 points, we record the position of these points
from p1 to p8.
We locate two key points A and B in the finger valley.

As shown in Fig. 4, Point A is in the valley of the index finger
and middle finger. Point B is in the valley of the ring finger
and pinkie. First, we fill in the palm contour with white pixels.
Point A is searched from point p2 to point p3 along with the
contour of the index finger and middle finger; there is a blue
arc. We take every point on the blue arc as the centre of a
circle. The radius of the circle is denoted as r. The length of
r equals one-third of p2p3. Comparing the number of white
pixels in these circles, we choose the maximum one. The
centre of that circle is point A, the valley of the index finger
and middle finger. If the number of maximum points is not
one, the first point we find is chosen. By this method, we can
find B.

FIGURE 4. Search the key points.

FIGURE 5. Locate and extract the ROI. (a) Determine the rotation angle.
(b) Rotate (a) with the angle α and determine the square. (c) Extract the
square from the rotated original image (Fig. 3(a)). (d) ROI.

Keypoint A(x1, y1) and keypoint B(x2, y2) are employed
for orientation normalization (Fig.5(a)). Connecting point A
and point B, we obtain line AB. The angle between line AB
and the vertical line is denoted as α.
We rotate the hand image by the angle α to normalize the

orientation variation, as shown in Fig. 5(b). The centre point
of rotation is the centre of Fig. 5 (a). We rotate the image by
the same angle for Fig. 3 (a). The centre of rotation is still
the centre of Fig. 3 (a). As shown in Fig. 5(b), we correspond
points A and B in Fig. 5(a) to points A’ and B’. The distance
from A’ to B’ is denoted as d. We make a square A’CDB’
with one side A’B’ and rotate Fig. 3 (a) with the same angle.
In the same position, we extract A’CDB’ from Fig. 5(c) and
resize A’CDB’ to 128pixels× 128pixels as the ROI, as shown
in Fig. 5 (d).

B. WD MODEL
Compared to inside box capture, outside box capture will
be affected by visible light. Under the spectral window
(700 nm-900 nm), the NIR absorption rate of haemoglobin
(haemoglobin including oxygen-containing haemoglobin and
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FIGURE 6. Schematic diagram of the incident light in skin tissue [34].

FIGURE 7. Light of different wavelengths penetration into skin.

deoxidizing haemoglobin) in the surrounding tissues is
weaker than the rate of the vein vessels [2]. Vessels absorb
more NIR light, so the vein structure forms a shadow in the
camera. The NIR light must penetrate the palm skin deep
enough to reach the blood vessel. There are four layers of
palm skin: stratum corneum layer, epidermis layer, dermis
layer, and subcutaneous layer [4], as illustrated in Fig. 6.
Incident light is reduced by specular reflection, scattering,
and diffuse reflection. Specular reflection, scattering, and
diffuse reflection come the into the skin scattering and opti-
cal blurring. Fluorescence also reduces the fidelity of vein
images. The penetration ability of visible light is weaker than
that of NIR light [34], as shown in Fig. 7. Visible light forms
more skin scattering and optical blurring. During outside box
palm vein image capture, we intensified the NIR light to
decrease the effect of visible light.

Skin scattering and optical blurring are mainly concen-
trated in the high-frequency part. We need to keep and
strengthen the texture information and remove the noise
factor. The traditional method applies 2D-DWT on ROI.
We adopt Haar as the kernel of 2D-DWT. As shown in Fig. 8,
the 2D-DWT decomposes image X into four sub-bands
(Band A, Band V, Band H, and Band D) [35]. The band A

FIGURE 8. Schematic diagram of the 2D-DWT. X is decomposed into four
sub-bands: average (Band A); horizontal (Band H); vertical (Band V); and
diagonal (Band D).

contains texture features for palm vein recognition. band D
represents the high-frequency information of the palm vein
image. It shows most of the noises. The classification exper-
iment on the band A did not enhanced the recognition accu-
racy because some useful information was ignored by the
band A. We need a network that cannot only remove skin
scattering and optical blurring but also strengthen A channel
information.

We proposed a WD model. This model adds handcrafted
information into the deep learning network. The handcrafted
information is an A sub-band wavelet inverse transform
image, which has low-frequency features. The deep learning
model has 17 layers, which learn how to denoise. It enhances
low-frequency information which benefits recognition by a
residual learning technique. The residual learning technique
also prevents vanishing and exploding gradient problems.
We also use batch normalization (BN) [36] to accelerate the
convergence of the trained model. Dilated convolution [37] is
adopted to capture more contextual information with a lower
computational burden.

Denoising network estimates the latent clean image x
from its noisy observation y. The denoising formula can be
expressed as y = x + µ. Here, µ is white Gaussian noise
added to the original image. Eq. (1) is the loss function to train
the WD model. The network parameters p can be learned as
follows:

l(p) =
1
N

N∑
i=1

‖f (yi, p)− (yi − xi)‖2. (1)

Here yi denotes the ith noisy observation and xi denotes
the ith original image. xi is the A sub-band wavelet inverse
transform image. Adaptive moment estimation (Adam) is
adopted as an optimizer in the WD model.

The structure of the WD model is shown in Fig. 1. The
kernel size of all the convolution layers is 3 × 3. The 1st
and 16th layers are composed of convolution and a rectified
linear unit (ReLU) activation function. The padding size of
these two convolution layers is 1, and the stride is 1. The
2nd, 5th, 9th, and 12th layers have the same structure. They
are composed of dilated convolution, batch normalization,
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and ReLU. The function of dilated convolution is to increase
the texture information and reduce the computational cost.
The padding is 2, the stride is 1, and the dilation is 2. The
last layer is the convolution layer. The padding size is 1, and
the stride is 1. The other layers are composed of convolution,
batch normalization, and ReLU. The padding is 1, the stride
is 1. There is a shortcut connection in the WD model. This
shortcut connection enhances texture features from the previ-
ous layer. It retains the low-frequency information. Through
this shortcut connection, we input the handcrafted informa-
tion into the deep learning network.

C. SER MODEL
Outside box and contactless palm vein recognition in
large-scale databases suffer from high inter-class similarity
and intra-class variation. Too simple a neural network (e.g.,
3 layers) cannot achieve good performance. Increasing the
depth of the network can improve the accuracy of the results.
However, with the deepening of the depth, there will be two
problems [38]. The deeper the depth is, the gradient will
decay, and the error intensity will be propagated back by
multiplying the weight, and the weight will be smaller and
smaller. Resnet gives a good solution to these two problems.
Also, this recognition model suffers from high inter-class
similarity and intra-class variation. The proposed model must
address three problems. The first one is the vanishing or
exploding gradients. The second problem is degradation. The
third problem is to enhance the classification feature.

Therefore, we propose the SER model. The model
takes ResNet18 as the backbone plus the squeeze-and-
excitation(SE) model. ResNet can settle the problem of van-
ishing or exploding gradients by normalization [39]. The
degradation is addressed by the residual learning frame-
work [40]. ResNet can also retain more of the low-level fea-
tures (such as texture features, structure features and object
edges feature) [41], [42]. SENet [43] addresses the third
problem by considering the eigenvalues channel relation-
ship. Without introducing new spatial dimensions, we adopt
the ‘‘eigenvalues recalibration’’ method to explain the inter-
dependence relationship among the eigenvalue channels.
Through deep learning, the model can obtain the degree of
importance of the different channels. The eigenvalues useful
for classification are enhanced, and useless eigenvalue are
suppressed.

We apply the SE model after two convolutions on the
residual block of the ResNet18 network.

The squeeze operation is:

zc = Fsq(uc) =
1

W × H

W∑
i=1

H∑
j=1

uc(i, j). (2)

Here, zc demonstrates the statistical value of the c-th chan-
nel of feature u. C is the channel number of feature u. The
dimension of each channel is the same, and we represent it as
W ×H . uc is the c-th feature map after the 2nd Conv layer of
the residual block.

TABLE 1. The network architecture of the SER model.

The excitation operation is:

s = Fex(z,W ) = σ (W2δ(W1z)). (3)

where δ is a ReLU activation function, σ is a sigmoid func-
tion,W1 ∈ R

C
r ×C is the fully connected layer for dimension-

ality reduction, W2 ∈ RC×
C
r is the fully connected layer for

dimensionality increase, and r = 16.
The output of the residual block layer is:

x̃c = Fscale(uc, sc) = scuc. (4)

where xc is the final output of the SEmodel, and Fscale(uc, sc)
refers to channel-wise multiplication between the scalar sc
and the feature map uc.
The network structure is described in Table 1.
The input image size is 128 pixels× 128 pixels. The kernel

size of the first convolution layer is 7 × 7. The convolution
kernel size of other layers is 3 × 3. There are 5 blocks in
the SER model. Except for block1, the other blocks include
two residual modules. We implement average pooling on
the feature map after the last SE layer. The output dimen-
sion of the SE module is expressed in the brackets follow-
ing fc. An eigenvector of 2,048 dimensions results from full
connection. The classification probability is represented by
softmax.

IV. EXPERIMENTS AND RESULTS
In this section, we introduce the experiments and results
from the following aspects: A. Databases and experimental
environments, B. WD model, C. SER model, and D. ablation
experiment and running time.

The general idea is described in the following. First,
we train the WD model on a self-built box palm vein
image database (marked as Database I). We use images from
Database I as clean images and synthesize noisy images by
adding Gaussian noise. To evaluate the denoising effect of
the WD model, we conduct a quantitative experiment on
Database I and a qualitative experiment on a self-built out-
side box palm vein image database (marked as Database II).
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FIGURE 9. Structure diagram of the inside box palm vein image
acquisition prototype.

FIGURE 10. Inside box palm vein image capture device.

Second, we train the SER model on Database II. To demon-
strate the performance of the WD model, the paper com-
pares it with some other classical palm vein recognition
methods on Database II and a Tongji contactless palm vein
database (marked as Database III) [25]. Finally, an ablation
experiment and time cost experiment on Database II are
reported.

A. DATABASES AND EXPERIMENTAL ENVIRONMENTS
We use three databases in this paper: Database I, Database II,
and Database III.

1) DATABASE I
We need a benchmark database with clean/noisy palm vein
image pairs to train WD. Since there is not a public database
that satisfies our requirements, we make one. The clean palm
vein images come from our previous work [44]. In [44] we set
up an inside box palm vein image database with 1,500 images
from 250 volunteers. Fig. 9 shows the structure diagram of
the inside box palm vein image acquisition device. In the
image capture system, an 850 nm LED array was chosen
as the active light source, and an OV5116 CMOS camera
was chosen as the camera. Fig. 10 shows the demonstra-
tion of the inside box palm vein image capture prototype.
The corresponding noisy palm vein images were synthesized
with white Gaussian noise. We describe this in the following
experiments. Fig. 11 shows the clean palm vein image from
Database I.

FIGURE 11. Clean palm vein image from database I.

FIGURE 12. Outside box and contactless palm vein image acquisition
prototype.

2) DATABASE II
To show the performance of the proposed approach for out-
side box and contactless palm vein recognition, we set up
an outside box and contactless palm vein image database:
Database II.

We adopted an MV-VD120SM 1/2’’ CCD camera as the
camera of this self-developed palm vein image acquisition
prototype. The resolution of an image was 1, 280 pixels ×
960 pixels pixels. The active light source part was a two-strip
light source of 850 nm LED sets. The device is shown
in Fig. 12.

During palm vein image capture, the volunteers held their
hands on the capture device, palm facing the camera with
approximately 20 cm on the device. Different from other
databases, our capture environment was indoors and did not
avoid visible light. We did not collect images in a darkroom
or inside a box. Our research team conducted contactless
palm vein image capture, which included 5,300 images from
the hands of 265 individuals who participated in both visits.
All the images were collected in both sessions. The average
interval between the 1st and 2nd image acquisitions was
approximately one week. Each volunteer provided 20 images.
Two hands were captured. Five images of each palm vein
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FIGURE 13. Palm vein images from dataset II.

were acquired in each stage. The age distribution of volun-
teers was from 18 to 56 years old. The image samples of
Database II are shown in Fig. 13.

We can see in Fig. 13 that the image quality is not
as good as Fig. 11 because it is affected by the visible
light.

3) DATASET III
To obtain an objective evaluation, we consider five open
access palm vein databases: the Chinese Academy of Sci-
ences’ Institute of Automation (CASIA) [45], the PolyU
Multispectral Palmprint Database (PolyU) [46], the VERA
Palmvein Database (VERA) [47], PUT database (PUT) [26]
and the Tongji contactless palm vein image database. The
CASIA, VERA, and Tongji databases are contactless palm
vein databases. CASIA is an inside box database. The VERA
palm vein database only provides the first 50 individuals.
Therefore, we evaluated our method on the Tongji contactless
palm vein image database [48] (Database III).

Database III contains 12,000 palm vein images from
600 palms. All the images were captured with 940 nm light.
The image quality in the Tongji dataset is much better than
that in Database II because they adopted an NIR CCD camera
(JAI AD-80 GE). The image samples of Dataset III are shown
in Fig. 14.

4) EXPERIMENTAL ENVIRONMENTS
Our experimental environment is described in Table 2.

B. WD MODEL
First, we train the parameters of theWDmodel on Database I.
Second, we compare quantitative results with other denoising
methods on Database I. Finally, we compare the visually
qualitative results with other denoisingmethods onDataset II.
Several representative traditional denoising methods and

FIGURE 14. Palm vein images from dataset III.

TABLE 2. Experimental environment.

deep learning denoising methods with published codes are
selected for comparison: BM3D [49], LSM_NLR [50],
NL_means [51], DIP [52], ECND [53], and DNCNN [54].

1) TRAINING THE WD MODEL ON DATABASE I
The clean palm vein image is obtained from Database I. This
kind of image method avoids visible light and the image
quality is good. We extract ROIs from these clean palm
vein images as the ground truth (GT). The noisy image is
synthesized with white Gaussian noise [53], [54] of different
levels (σ = 10,15,25). In our experiment, when the white
Gaussian noise σ = 10, the images are most likely the
outside box image. We use the noisy image as training data.
The structure of the WD model is described in part B of
METHOD III.

We randomly split Database I into a training set of 1,200
(200× 6) images and a validation set of 300 (50×6) images.
To avoid overfitting, we perform data augmentation in two
ways: (1) randomly rotate the image by ±5◦, and (2) flip the
image horizontally or vertically with a probability of 0.5.

The initial parameters of the WD model are set as follows:
the learning rate equals 0.001, beta_1 is set to 0.9, beta_2 is
set to 0.999, and epsilon is 1× 10−8. The number of batches
is selected as 64. The number of epochs is 200 for the trained
model.
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TABLE 3. Quantitative results of different state-of-the-art methods
evaluated on Database I.

2) COMPARISON WITH OTHER DENOISING METHODS ON
DATABASE I
The WD model compared denoising evaluation indicator
and visually quantitative results with some state-of-the-art
denoising methods. Two evaluation indicators are adopted:
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM).

Quantitative results are reported in Table 3. It shows the
average PSNR and SSIM metric values of state-of-the-art
methods and our method.

The PSNR of the WD model is higher than the other
compared methods from 0.1255 to 1.7555. The SSIM metric
value is 0.9248, higher than the other comparedmethods from
0.0005 to 0.0899. These results demonstrate the efficiency of
the WD model.

To visually demonstrate the results obtained by these meth-
ods on Database I, we randomly choose two sample images
for testing. A comparison of the quantitative results is pre-
sented in Fig.15.

3) TESTING THE WD MODEL ON DATABASE II
We also illustrate the results of the WD model and several
popular methods on Database II, a real noisy image database.
Fig. 16 shows the comparison of visually qualitative results.

C. SER MODEL
We selected the parameters of the SERmodel from the exper-
iments on Database II. For some state-of-the-art methods
applied in different image capture environments, we compare
the proposed method with some classical methods that have
been applied in palm vein recognition in Dataset II and
Dataset III.

We use accuracy (Acc) and equal error rate (EER) as the
evaluation metrics, which are widely used in biometrics [23],
[24]. Accuracy is the ratio of the number of correct predic-
tions to the number of test samples. EER is the equilibrium
point where FRR equals FAR. FRR is the ratio that a bio-
metric system incorrectly rejects to the number of genuine
samples. FAR is the ratio that a biometric system falsely
accepts to the number of forged samples [55]. A lower EER
indicates better performance.

1) EXPERIMENTS ON DATABASE II
We randomly split Database II into a training set (530 × 7
images) and a validation set (530 × 3 images). To avoid

FIGURE 15. Comparison of quantitative results on database I. (a) GT.
(b) Noise image. (c) BM3D. (d) LSM_NLR. (e) NL_means. (f) ECND.
(g) DNCNN. (h) WD model.

overfitting, we perform data augmentation in two ways:
(1) randomly rotate the image by ±5◦ and (2) change bright-
ness, contrast and saturation by 0.5 separately. The parame-
ters in the network are set as Table 1. The other parameters are
set as follows. The input image size is 128 pixels× 128 pixels.
The learning rate is 0.01. Cross-entropy is adopted as the
loss. The number of batches is 32. The number of epochs
is 100.

The wavelet denoising ResNet is compared with some
other classical deep learning palm vein recognition algo-
rithms [25], [27], [29], [40], and [30]. We compare the train-
ing and validation process of our method with these methods
on Database II, as shown in Fig. 17.

In Fig. 17, we note that the overall classification accuracy
increases as the number of iterations increases. All of the
accuracies are nearly stable during epoch 100. Our method
is the most stable during the training process and validation
processes. By contrast, Fig. 18 denotes the loss change trend
on Database II.

Fig. 18 demonstrates that the overall validation accuracy
increases until it tends to stabilize as the number of iterations
increases. We load the model of the methods and compare
their validation accuracies. The validated accuracy of each
network is shown in Table 4.

Table 4 shows that the proposedmethod outperforms all the
other five methods by a margin ranging from 0.91% to 4.35%
on accuracy. Such a performance gain demonstrates that the
wavelet denoising ResNet is a promising direction for outside
box and contactless palm vein recognition.

We also compare the ROC curve and EER with some
deep learning algorithms that have been used in palm vein
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FIGURE 16. Comparison of visually qualitative results on dataset II. (a) Original images. (b) BM3D.
(c) LSM_NLR. (d) DNCNN. (e) ECND. (f) DIP. (g) WD model.

TABLE 4. Comparison of accuracy with classical methods on database II.

recognition. We perform one-to-many matching among test
images (100 × 6 = 600 images). First, we take test
images into thewell-trained proposed network. Then, through
the output of block 5, we obtain a feature vector with

2,048 dimensionsV (i)
=

[
p(i)1 , p

(i)
2 , . . . , p

(i)
2048,

]T
correspond-

ing to each palm vein ROI image I (i). We match the distance
between different images with the Euclidean distance of the
feature vector V (i). The intra-class matching number is 1,500
(100 × C1

6 × C1
5/2), and the inter-class matching number

is 178,200 (100 × 99 × C1
6 × C1

6/2 ). We calculate FAR
and FRR as [23], [24], [54], [55], and we draw the ROC
curve. We draw the ROC curves for the other comparison
methods, as shown in Fig. 19. By adjusting the recognition
threshold to 0.5975, FAR equals FRR. We record the EER of

TABLE 5. Comparison of EER with classical methods on database II.

the proposed method. In the same way, we record the EER of
the comparison methods. The results are shown in Table 5.

Table 5 demonstrates that the wavelet denoising ResNet
method outperforms all the other five compared methods by
a large margin ranging from 1.22% to 2.78% on EER. The
reason is that the proposedmethod fuses effective handcrafted
features into the deep learning network by residual learning
technology and enhances the classification features by eigen-
value recalibration.

2) RECOGNITION PERFORMANCE ON DATABASE III
This section tests the performances of the proposed net-
work applied to Database III. The trained parameters on II
are directly applied to this database. Table 6 demonstrates
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FIGURE 17. Training and validation sets accuracy change trend of
comparison methods on database II. (a) Ref [29]. (b) Ref [27]. (c) Ref [25].
(d) Ref [40]. (e) Ref [30]. (f) proposed.

FIGURE 18. Training and validation sets loss change trend of comparison
methods on database II. (a) Ref [29]. (b) Ref [27]. (c) Ref [25]. (d) Ref [40].
(e) Ref [30]. (f) proposed.

the comparison of accuracy with classical methods on
Database III.

Table 6 demonstrates that the proposed method outper-
forms the other fivemethods by amargin ranging from 0.68%
to 1.59% accuracy on Database III. The reason is that the
image quality in Database III is better than Database II.

FIGURE 19. Comparison of ROC curves with classical methods on
database II.

TABLE 6. Comparison of accuracy with classical methods on database III.

TABLE 7. Comparison of EER with classical methods on database III.

With the same one-to-many matching methods, we com-
pare the ROC curve and EER with some deep learning
algorithms on Database III. We draw the ROC curves of
these methods in Fig. 20. The EER of these networks is
shown in Table 7. Table 7 demonstrates that the wavelet
denoising ResNet method outperforms the other five com-
pared methods by a margin ranging from 0.46% to 1.89% on
EER.

According to Table 7, the proposed network achieves the
best performance. However, the performance is slightly better
than [25] and [40]. This is because the quality of the image
in this database is better than that in Database II. Database III
captures part of the palm, and Database II contains the whole
hand. The height of the hand during capture was higher in
Database II than in Database III. The images in Database II
were affected by visible light more than the images in
Database III. Visible light brings more scattering noise and
blurring noise. The potential of the proposed method cannot
fully exploit the advantages.
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FIGURE 20. Comparison of ROC curves with classical methods on
database III.

TABLE 8. Ablation experiment result on database II.

TABLE 9. Average time consumption of our system on database II.

D. ABLATION EXPERIMENT AND TIME CONSUMPTION
To evaluate the effectiveness of individual components,
the following ablation studies on the proposed network are
conducted on Database II.

We conduct two comparative experiments: recognition
without the WD model, and the SER model without the
squeeze-and-excitation module. The experiment results are
shown in Table 8.

The WD model increases the recognition result by 1.18%.
The modification ResNet18 also slightly increases the recog-
nition performance.

Time consumption is another indicator to measure the
recognition system. The time consumption components of
our proposed network include the WD model and the SER
model. We run 100 images to calculate the average time con-
sumption on Database II in our experimental environment.
The result is shown in Table 9. Based on Table 9, the time
consumption is acceptable for a real system.

V. CONCLUSION
In the past, the majority of the research captured palm vein
images inside boxes or in dark environments. This kind of
image environment constrains the practicality of palm vein

recognition. Our research uses the power of deep learning
to denoise the influence of visible light and enhances the
performance of contactless recognition. This deep learning
network includes two models: the WD model and SER
model. The WD model is adopted to remove the noise of
skin scattering and optical blurring from palm vein images.
This strategy increases the weight of an effective handcrafted
feature in the deep learning network. The WD model com-
pared denoising evaluation indicator and visually quantita-
tive results with some state-of-the-art denoising methods.
The PSNR of WD model is 37.5328, which is higher than
the other compared methods from 0.1255 to 1.7555. The
SSIM metric value is 0.9248, higher than the other compared
methods from 0.0005 to 0.0899. Second, the SER model
overcomes rotation, position translation and scale transfor-
mation by selectively emphasizing classification features and
weakening less useful features. At the same time this model
addresses the problem of vanishing or exploding gradients,
and degradation. A self-built inside box palm vein image
database (Database I) and an outside box palm vein image
database (Database II) are set up to train and validate the
network. A public outside box and contactless palm vein
database (Database III) is also employed to demonstrate the
superiority and robustness of our network. The proposed deep
learning network decreases the EER to 0.88 in Database II
and 0.41 in Database III. This work explores the practice of
palm vein recognition.
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