
Received April 12, 2021, accepted June 2, 2021, date of publication June 7, 2021, date of current version June 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086894

Camera and Lidar-Based View Generation for
Augmented Remote Operation
in Mining Applications
ELIJS DIMA , (Graduate Student Member, IEEE),
AND MÅRTEN SJÖSTRÖM , (Senior Member, IEEE)
Department of Information Systems and Technology, Mid Sweden University, 851 70 Sundsvall, Sweden

Corresponding author: Mårten Sjöström (marten.sjostrom@miun.se)

This work was supported by the Swedish Mining Innovation under Project 2019-05162, a joint funding venture with Vinnova, Formas, and
Swedish Energy Agency.

ABSTRACT Remote operation of diggers, scalers, and other tunnel-boring machines has significant benefits
for worker safety in underground mining. Real-time augmentation of the presented remote views can
further improve the operator effectiveness through a more complete presentation of relevant sections of the
remote location. In safety-critical applications, such augmentation cannot depend on preconditioned data,
nor generate plausible-looking yet inaccurate sections of the view. In this paper, we present a capture and
rendering pipeline for real time view augmentation and novel view synthesis that depends only on the inbound
data from lidar and camera sensors. We suggest an on-the-fly lidar filtering for reducing point oscillation
at no performance cost, and a full rendering process based on lidar depth upscaling and in-view occluder
removal from the presented scene. Performance assessments show that the proposed solution is feasible for
real-time applications, where per-frame processing fits within the constraints set by the inbound sensor data
and within framerate tolerances for enabling effective remote operation.

INDEX TERMS Augmented reality, disocclusion, Industry 4.0, lidar imaging, mining technology, real-time
rendering, remote operation, view synthesis.

I. INTRODUCTION
Industry 4.0 drives the transition to (semi-)autonomous,
remotely operated work even in traditionally conservative
industries such as construction and mining. While produc-
tivity is always a driving factor, another important aspect
is the safety and working environment of the operators of
on-site heavy machinery [1], [2]. Especially in underground
mining, use of remote operation centers and partial automa-
tion can significantly reduce operator risk and the operational
and capital expenditure associated with the mines [2], [3].
Changing from risky on-site, in-vehicle work to remote,
computer-assisted piloting can also mediate the complica-
tions of having an aging workforce andmake the employment
more attractive to younger generations. Incorporating remote
operation and contemporary methods of telepresence via Vir-
tual Reality (VR) and Augmented Reality (AR) is therefore
relevant to the future of the mining industry.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

The mining industry is currently transitioning to remote
operation. Due to the applied nature of the mining industry,
there usually is a resistance to high-level concepts, and a
desire for high-feasibility solutions with a high technical
readiness level. The applied state of the art for remote opera-
tion in mines is direct image (video) transmission, similar to
the systems described in [4]–[6]. Fig. 1a shows an example
of a remote system in a mine, where operators are shown
direct video feeds from on-machinery cameras, under various
connection methods (5G, wired ethernet) and video compres-
sion levels. However, going beyond the direct presentation of
camera views, there is potential in using AR, view synthesis,
and range sensing from Time-of-Flight (ToF) sensors such
as Light Detection And Ranging (lidar) to further enhance
the operator awareness of the on-site environment [7], [8].
The benefits of augmented and indirect views have been
investigated in other contexts such as underwater robot oper-
ation [9], forestry [6], hazard exploration [10], and satellite
repair [11], and are likely to be beneficial for mining as
well.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 82199

https://orcid.org/0000-0002-4967-3033
https://orcid.org/0000-0003-3751-6089
https://orcid.org/0000-0003-0618-7454

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 1. (a) Remote operation interface for a scaling machine in a Swedish mine, showing direct rendering of on-vehicle camera views. Photo provided
by Boliden AB. (b) Remote operation interface of the proposed system, showing rendering of direct, indirect, augmented and lidar views.

There is a need to explore the use of augmented and indirect
views for remote operation, in order to drive the innovation
in remote operation in the mining industry context and to
move the applied state-of-the-art beyond direct camera pre-
sentation. The feasibility of such a solution is, to large extent,
determined by the ability to perform all data processing,
fusion, and presentation within a real-time constraint set by
the inbound sensor data rate. We focus on the combination of
2-Dimensional (2D) cameras and lidars because both cameras
and lidars are increasingly used for control, mapping and
vehicle automation in similar industries [1], [4], [12], [13].
As we see it, the main challenge lies in generating ‘‘live’’
augmented and indirect views of a dynamic scene, with-
out relying on feasibility-compromising shortcuts such as
pre-conditioned data (e.g. pre-scanned point clouds), off-line
processing, extensive temporal delay, or green screens. More-
over, because of the mining industry’s safety requirements,
we cannot rely on hallucination of visually plausible image
sections that do not show the actual on-site environment.

The main contribution of this work is a real-time end-
to-end pipeline for capturing and rendering direct, indirect
and augmented operator views of a mine-line scene from
direct sensing. The system is focused on the technical and
feasibility aspects of capture, processing and view generation
for achieving real time performance, without ahead-of-time
recordings or learned data priors. A high-level overview of the
proposed pipeline is shown in Fig. 2, wherein lidar distance
measurements enable the novel view generation for indirect
views and in-scene occluder removal for augmented views.

The paper is outlined as follows. Section II covers the state
of the art related to our work in the domains of augmented
remote operation, view rendering, occlusion removal, and
depth upscaling. Next, an overview of our proposed system
is given in Section III, including the system constraints we
adhere to. The system details are given in Sections IV, V,
and VI. The system performance measurements are shown in
Section VII. The outcomes are discussed in Section VIII and
the overall conclusions are summarized in Section IX.

II. RELATED WORK
Augmented remote operation, or Augmented Telepres-
ence (AT) [14], denotes applications where video-mediated

communication is the enabling technology, but where addi-
tional data can be superimposed on or merged with the
captured camera view as in AR. Such augmentation can be
achieved on-site via using a see-through display and ren-
dering only 3-Dimensional (3D) approximations of specific
scene elements [15], or off-site via partial and full view
rendering [9], [16], [17] for non-transparent displays. Unlike
computer-generated imagery, this view rendering is at least
partly based on the content of camera views.

There are two important problems within view rendering
from multiple cameras, especially when involving sparse
depth sensors such as lidar. One is occlusion removal, and
the other is resolution mismatch between camera images and
scene geometry, which requires some form of depth upscal-
ing. This section gives an overview of augmented remote
operation, view rendering, occlusion removal and depth
upscaling works that have relevance or similarity towards our
application.

A. AUGMENTED REMOTE OPERATION IN
NON-ENTERTAINMENT CONTEXTS
View enhancement, or augmentation, is what distinguishes
augmented remote operation from conventional VR headset
based remote operation. Bejczy et al. [10], Yun et al. [5] and
Omarali et al. [16] are examples of conventional and aug-
mented operation, all aiming to improve the remote control
of a robotic arm. In [5], [10], camera views of the scene
are rendered to virtual display panels in a VR environment,
without any change to the camera view content. In contrast,
in [16], the camera views are fully replaced with a colored 3D
point cloud model of the scene. The model is partly generated
from the camera views, turning it into an extreme kind of view
augmentation. This concept is taken further in [17], where the
generated and presented 3D model of the scene is enhanced
with virtual tracking markers overlaid in the presented 3D
view.

An applied example of view-enhancing augmented remote
operation is shown in [9], where Bruno et al. demonstrate
a control interface for an underwater robotic arm. Disparity
from a stereo camera is used to create the 3D structure of the
scene. The 3D structure is shown in a separate view similar
to [16], [17], but it is also rotated and overlaid onto a 2D

82200 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 2. Proposed processing pipeline for rendering direct, indirect (novel), and augmented (disoccluded) views for remote
operation in mining. The order of execution is depicted in sequence (left to right).

camera view, where false-color of the 3D model represents
each pixel’s depth value in the camera view.

Each of these examples constructs an augmented view for
the operator. The augmentation relies on knowing the envi-
ronment geometry, and results either in a significant alteration
of parts of the presented viewpoint, or the rendering of an
entirely new view inferred from the recorded data. However,
in all these cases, high-resolution (i.e. densely sampled) depth
is available, either from high-resolution ToF-based RGB plus
Depth (RGB-D) sensors, or as disparity from rectified stereo
camera pairs. Having densely sampled depth points from
a high spatial resolution sensor reduces the computational
effort needed to generate an augmented view. In a system such
as ours, with non-rectified cameras and only sparse depth
sensing by lidar, such high-resolution depth is not readily
available.

B. VIEW RENDERING
View rendering for augmented telepresence is the process
of compositing the scene information from cameras with
additional information obtained from other sensors, presented
as 2D overlays or views of the 3D model related to the 3D
scene geometry. The basis for such rendering is multi-view
geometry [18] and novel view rendering from RGB-D via
Depth Image Based Rendering (DIBR) [19]. DIBR allows
to construct a point-based 3D model of the observed scene,
and project it to arbitrary virtual camera viewpoints. The 3D
model can also be used to create a textured 3D mesh, or to
anchor and orient the augmented rendering overlays into the
presented view. More recently, free viewpoint rendering is
converging with mesh-based rendering for enabling real-time
applications with multiple sensors as scene data sources,
as seen in [20], [21].

Rasmuson et al. [20] present a real-time processing
pipeline for free-viewpoint rendering for videoconferencing,

with focus on real time capability. They use several
non-rectified 2D videocameras and projective geometry to
construct a 3D mesh for a central object seen by all cam-
eras. Upon rendering to the novel 2D view, the mesh is
textured by a surface-normal dependent color blend from all
source cameras. All processing is performed in CUDA and
OpenGL, achieving as little as 14 ms per frame. However,
in order to reach real-time processing speed, they severely
limit the initial correspondence search space by using green-
screen background subtraction to compute a convex visual
hull, within which a 3D mesh is refined from coarse to fine
through iterative correspondence search along epipolar lines.
This requires both a greenscreen background, and a central
object-of-interest to be covered from at least two cameras at
a wide angle.Moreover, the processing is delayed by 5 frames
(167 ms at 30 fps) to support a temporal filter. Transient holes
in a current frame are filtered out by looking up the valid
points from the surrounding 5 plus 5 frames, thus adding
a fixed latency to the rendering as a tradeoff for reducing
geometry flicker.

Meerits et al. [21] triangulate a mesh from recorded dense
depth points of RGB-D sensors, instead of estimating a
mesh from point correspondences like [20]. The depth from
RGB-D sensors is converted to a point cloud and normals are
estimated for each point. A Moving Least-Squares (MLS)
method is used to jointly de-noise and rectify the clouds of
two RGB-D sensors. The clouds are individually triangulated
and stitched thereafter. Duplicate mesh overlaps are excluded
from the stitching process, and there is no limitation on the
scene content or foreground-background separation. How-
ever, with recordings from two RGB-D sensors of 640 by
480 resolution and all processing in GPU / OpenGL, the sur-
face estimation process still takes 163 ms per frame, prior to
final texturing and 2D view rendering; the majority of that
time is spent on the MLS surface reconstruction stage.

VOLUME 9, 2021 82201

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

C. OCCLUSION REMOVAL
We consider occlusion removal to be a specific type of view
augmentation, where unnecessary scene content is removed
from the operator view. The unknown set of pixels left after
removing an occluder from the view is a disocclusion. Small
disocclusions can be seamlessly filled with basic interpola-
tion filters [22], [23], whereas large disocclusion removal
can be addressed by image inpainting. A majority of con-
temporary inpainting approaches, e.g. as surveyed in [24],
either rely on content-trained deep networks to synthesize a
visually acceptable image section as in [25], or extrapolate
missing content by inpainting replicas of the structures or
texture patterns from the nearby vicinity [26].

Image inpainting methods, however, do not recover the
actual revealed scene content. To remove occlusions without
losing scene content, the scene must be multiply sampled
from either different viewpoints or different moments in
time. Different viewpoint sampling was used in e.g. [27]
to reduce holes (disocclusions) within a rendered view for
free-viewpoint 3D video synthesis. Due to all reference views
being rectified and coplanar, [27] uses patch warping instead
of full 3D reprojection. In contrast, temporal resampling for
RGBD inpainting was used in e.g. [28] to achieve real-time
occluder removal. The depth from a single-view RGB-D
stream is used to separate distinct objects in scene, and to
create a rectangular billboard plane in 3D space over the
occluder. The billboard is then painted over with color from
an earlier framewith the least matching error between the ear-
lier and current scene states (minus the occluder). Temporal
resampling, however, has limited viability when displaying a
fully up-to-date scene state is required.

D. DEPTH UPSCALING
The relatively low resolution of depth sensors is an issue
for RGB-D-based view rendering and occlusion removal,
because the depth sensor does not directly measure the depth
for each RGB pixel. Therefore, some processing is required
to upscale the spatial resolution for the measured depth. This
upscaling can be performed by tempo-spatial supersampling
of the depth data, with Inertial Measurement Unit (IMU) and
position-tracking [29]. However, this is only feasible for static
scenes andmoving sensors. For dynamic scenes, the prevalent
approach is to use the corresponding RGB image as guide for
depth upscaling [30]–[36].

Both [30] and [31] project the low-res depth as points
onto the RGB image plane, and use the RGB image edges
for global optimization penalty terms in a depth diffusion
process. Zakeri et al. [33] extend [31] to combine multiple
depth sensor readings, using both the RGB edges and stereo-
scopic consistency for the optimization penalty. However,
such global optimization methods are difficult to parallelize
[37], and tend to have prohibitive computational costs: [30]
reports 318.2 ms to upscale the depth from 160 × 120 px
to 810 × 610, and [31], [33] report up to 572.38 s for
depth upscaling to 960 × 540 px. Plank et al. [32] bypass

the optimization performance issue by treating upscaling as
a weighted interpolation of valid depths within a nearby
pixel patch. Edges from color image are used as preemptive
interrupts during the marching within the pixel patch. Such
upscaling can be effectively parallelized, and [32] report as
little as 100 ms on a mobile GPU and 8 ms on a desktop
GPU. However, [32] upscales a 288× 256 px depth image to
640 × 480 px, so the relative resolution increase is low and
interpolation kernels can be small. Furthermore, a specific
RGB-D camera is used where the depth and color sensors
are less than 1 cm apart, and reprojection artefacts prior to
upscaling are negligible and can be ignored.

Recently, the RGB-guided depth upscaling approach has
been combined with learned feature extraction and blending
through e.g. a Convolutional Neural Network (CNN) [34],
Residual Network (RN) [35], or a Conditional Random Field
(CRF) [36]. Ni et al. [34] extract the edges of an RGB image,
and perform bicubic upsampling on a low-resolution depth
map. Both are then fed through a dual-stream convolutional
network with two sets of learned feature extractors followed
by a sum layer. Chen and Gao [35] also use a two-stream
network, with one stream downsampling the RGB image to
the depth map resolution and upscaling it back to original
size, using downsampling weights as additional layers in the
upsampling stage. The second stream takes the depthmap and
uses the other stream’s upsampling weights as extra input for
its own upsampling layers. However, [34], [35] are designed
for single-view RGB-D scenes, where the depth map is con-
tinuous, regular, and object adjacency is preserved, unlike
lidar scans with irregular, discrete point samples. Weerasek-
era et al. [36] use a single-view depth-prediction CNN to
produce virtual input depth maps as parameterizations for the
CRF. Themethod is tested on RGB-D and lidar data, however
the results are dependent on training the depth predictor CNN
on a high-quality dataset of feature-rich scenes, which may
not be available in the context of mining. Moreover, [36]
report a CRF inference time of 100 ms for lidar upscaling to
609 × 160 resolution, plus a 50 ms overhead for generating
the CNN predictions.

III. SYSTEM OVERVIEW
We address the problem of generating a real-time remote
operator interface with augmented and indirect views in addi-
tion to the direct camera views, in an effort to demonstrate
the feasibility of such a system in the context of underground
mining. The system is designed to work with live 2D cameras
and a 360-degree scanning lidar, and to produce an aug-
mented view in which an object of interest (an occluder) is
removed from the view and replaced with the appropriate
background. We choose to not rely on estimated texture
inpainting or content generation from learned priors, because
for mining applications, it is crucial for the operator to see
the actual rock face with protrusions and cracks, instead of
seeing a similar-looking generated texture.

Figure 2 outlines the major parts of the proposed system,
which are separated into sensor data preprocessing (Sec. IV),

82202 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

view generation processing pipeline (Sec. V), and the final
viewport rendering (Sec. VI). At a high level, the sensor
preprocessing stageworks concurrently with the view genera-
tion pipeline, in order to reduce the processing time between
subsequent final render calls. The overall procedure is also
summarized in Algorithm 1. In general, we denote a 2D
image by I , a 2D depth map by D, a 2D edge map by E, and
a 3D point cloud by P.

Algorithm 1 High-Level Algorithm of the System
1: for every RGB camera i do F Sec. IV-A
2: I i← convert frame from YUY2 to RGB8
3: end for
4: for every Lidar j do F Sec. IV-B
5: Temporal normalization of scan packet sj

6: P j← Accumulate sj to lidar scan frame
7: end for
8: Set source view i = ’src’, target view i = ’trg’, source

cloud j = ’scl’, novel views ’n1’, ’n2’
9: Esrc

← Extract edges from Isrc F Sec. V-A
10: Dsrc

← Project Pscl to plane of Isrc F Sec. V-B
11: Dsrc

1 ← Remove piercing points from Dsrc
F Sec. V-C

12: Esrc
1 ← Refine Esrc using Dsrc

1 F Sec. V-D
13: Dsrc

2 ← Gen. dense depth from Dsrc
1 , Esrc

1 F Sec. V-E
14: P3d

← Proj. Dsrc
2 to 3D, remove transients F Sec. V-F

15: M trg
← Project occluder from P3d to trg as mask

16: Dtrg,Dn1,Dn2
← Project P3d to trg, n1, n2

17: In1, In2← Lookup color from Isrc using Dn1, Dn2
F

Sec. V-G
18: I trgaug← Lookup color from Isrc using Dtrg inM trg region
19: Present Isrc, I trg, I trgaug, In1, In2,Pscl

F Sec. VI

A. SYSTEM CONSTRAINTS
The system is designed around two non-rectified Basler
daA1600-60uc RGB cameras with mostly overlapping views
approx. 1.1 m apart, 3 m away from the scene background,
with an Ouster OS-1 360-degree scanning lidar near one of
the cameras, in order to mimic a sensor layout that might
be fitted to a mining machine (such as Jama SBU 8000E)
at half scale. The Ouster lidar has a 10 Hz scan frequency,
which sets a 100 ms constraint for real time generation for
the augmented and indirect views. According to [5], effective
remote operation is possible starting at 15 Frames per Second
(FPS), which means the actual constraint is 66 ms.

The mining setting implies a system unable to reuse a
pre-existing model of an already created mine tunnel, or a
pre-existing map of the rock surface. Both foreground and
background are to be considered potentially mobile, with
unknown prior geometry and non-diffuse 5200K LED illu-
mination pointing in the camera view direction. The scene
setup is shown in Fig. 3. The lidar and camera data streams
are sent either directly or via Ethernet LAN to a desktop with
a Ryzen 5 3600 CPU, 16GB of RAM and an Nvidia RTX
3060Ti GPU for all processing and rendering. The output
resolution of each of the generated views is equal to the

FIGURE 3. Test scene setup with cameras and lighting, with remotely
actuated robotic arm as in-scene occluder.

camera resolution (1600× 1200 px) for consistency between
the generated views and direct-from-camera video. Each of
the generated views is constructed in its own buffer to allow
different view layouts; the layout shown in Fig. 1a is just one
example of a potential operator view.

IV. CAPTURE AND PREPROCESSING
Preprocessing is distinct from the main processing pipeline
in that the preprocessing of newly arrived data occurs in
parallel with the main processing of previously arrived data.
Preprocessing focuses on resolving sensor-specific issues
of inbound sensor data formats and contents. For the 2D
cameras, this means converting the inbound raw data to the
32-bit RGB8 image format. For the lidar, this means assem-
bling and denoising the 360-degree scan of 1024× 64 points
with [X ,Y ,Z] coordinates.

A. THREADING AND CAMERA PREPROCESSING
Each incoming frame from each camera is either converted
from 24-bit planar YUY2 pixel format to 32-bit non-planar
RGB8 in case of direct connection, or decoded directly
to RGB8 from an inbound h.264 stream via a GStreamer
pipeline. Each camera is assigned its own handler thread
that consumes the inbound frames and passes the newest
RGB8 buffer onto the main thread, as shown in Fig. 2. Triple
buffering is used for the frame data passover to ensure that
the main render thread always has the most recent camera
frame available, with neither thread needing to wait for the
other. View rectification is not performed, because the direct
camera views still need to be displayed for the operator, and
rectification can significantly distort the viewing plane [20],
making such views unsuitable for direct presentation.

B. LIDAR TEMPORAL FILTERING
Each 360-degree lidar scan (i.e. lidar frame) is assembled
over 100 ms from a continuous stream of segments that are
recorded as the sensor is spun, and sent over Ethernet via
UDP. With spinning lidars and UDP streaming, both inter-
mittent packet loss and lidar point drift have to be handled
[38]. Furthermore, flash lidars such as the Ouster OS1 have
some error in the distance estimation of each beam, resulting

VOLUME 9, 2021 82203

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 4. (a) Randomly selected lidar point recording a static
environment, sampled over 36 frames, showing oscillation along the lidar
scan ray. (b) Same point, scan and samples as in (a), with filtering
described by (1). (c) Another randomly selected lidar point, showing
intermittent missing measurements (Y = 0) due to noise or packet loss.
(d) Same point, scan and samples as (c), with filtering described by (1).

in points that oscillate, i.e. shift closer/farther from frame to
frame. Figure 4a shows an example of such oscillation.

Correcting such error by temporal filtering at the frame
level would cause additional delay per frame (150 to 220 ms
in practice due to additional frame storage and frame format
conversions). Instead, we perform temporal noise filtering
and missing-packet handling by applying (1) at the segment
level during the frame assembly in the lidar low-level API.
Figure 5 illustrates this principle.

pn =



pn−1, if pn = ∅ ∨ pn = 0
pn, if pn−1 = ∅ ∨ pn−1 = 0

∨ |pn − pn−1| > ωdiff

pn−1ωtemp

+pn(1− ωtemp), otherwise

(1)

where p is a 3D point [X ,Y ,Z], n is the lidar scan iteration
(i.e. ‘‘frame number’’), ωdiff is the threshold of acceptable
point oscillation, and ωtemp is the weight of temporal smooth-
ing. In effect, (1) applies filtering on all points that appear to
oscillate, but not on the points that may contain actual scene
movement. This segment-level approach is used because at
the moment of new segment arrival, all pn and pn−1 for that
segment are readily available and do not require additional
buffering or storage of past frames. This adds less than 1 ms
to the segment update, fitting seamlessly within the time gap
between two successive segments.

Each full lidar frame, once accumulated, is passed
to the main processing thread via triple-buffering. Dur-
ing this handover, the axes of the lidar scan are trans-
formed to align the left-handed coordinate system of the
lidar with the right-handed coordinate system of the cam-
era calibration. The range scale is also converted from
meters to millimeters, and the point positions are trans-
formed to comply with the global coordinate system of all
sensors.

FIGURE 5. Accumulation of lidar scan P over time from a continuous
stream of small packets that cover a fraction of the scan range ϕ, and
packet denoising across frames without delaying the frame-to-frame time
interval. Number of depicted lidar packets is less than actual number of
lidar packets for a 360-degree frame.

V. PROCESSING PIPELINE
The main processing pipeline focuses on creating the indirect
novel views In1, In2, and the composite disoccluded view
I trgaug. Data inputs provided from the pre-processing stage
are the lidar scan Pscl and two camera views: the source
image Isrc and target image I trg. The processing can be
broken into sequential steps V-A to V-G, which are called
from the main render thread. As such, the execution time
of these steps determines the apparent frame rate of the
generated view content. Steps V-A to V-E focus on generating
a dense, high-resolution per-pixel depth for Isrc from the
initial, sparsely measured lidar depth. Steps V-F and V-G are
responsible for high-resolution depth projection and novel
view generation.

A. EDGE EXTRACTION
Upscaling the sparse lidar depth to a dense depth map is
dependent on using the structure of the Color (RGB) con-
tent as upscaling guide, similar to the upscaling methods
in [30]–[36]. The first step in extracting a usable guide struc-
ture is the edge extraction from the source RGB view Isrc.
A 3-pixel wide Canny filter from OpenCV [39] is used to
extract an edge image Esrc from a grayscale Isrc blurred
with a 5-pixel wide Gaussian kernel. Once extracted, Esrc

is copied to the GPU memory. The Canny filter is chosen
following the example of [31], as a fast way of obtaining the
first-approximation edges.

B. SPARSE POINT PROJECTION
The sparse depth measurements Pscl from the lidar are pro-
jected from 3D to the 2D image coordinates of Isrc, using the
’projectPoints()’ function in OpenCV. The 360-degree lidar
scan Pscl is reduced by approx. 50% prior to the projection,
by removing all points with a negative Z coordinate. This by
definition affects only out-of-view points, since Isrc serves as
the origin of the global coordinate system. The projected 2D
points that lie within the view frustum of Isrc are copied to
the GPU memory as a sparse depth map Dsrc; from here on,
all pipeline steps occur within the GPU domain.

C. PIERCE-THROUGH POINT REMOVAL
Pierce-through points are an inevitable consequence of 3D
to 2D down-projection in scenarios where the 3D scan has

82204 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 6. A lidar scan projected onto a camera view, exhibiting
‘‘pierce-through points’’ due to different positions of camera and lidar.
In highlighted areas, points belonging to background are projecting
between points belonging to a foreground object.

a different point of origin than the 2D projection, and par-
ticularly where the 3D measurement is sparse and irregular.
We use the term ‘‘pierce-through point’’ to refer to a point
on a more distant object projecting to a 2D position between
two points belonging to a less distant object. Fig. 6 shows an
example of pierce-through points.

Pierce-through points need to be detected and removed
from the sparse Dsrc depth map, before depth upscaling
can take place. A 16-by-16 pixel window with 4 quad-
rants (top-left, top-right, bottom-left, bottom-right as shown
in Fig. 7a) is centered on each non-empty pixel psrc of
Dsrc, and Algorithm 2 is applied to remove pierce-through
points and produce Dsrc

1 . In essence, we assume that if there
exist nearer points in diagonal quadrants, then psrc maps to
a pierce-through point due for removal. A depth threshold
ωthres is used to allow minor surface irregularities. A thresh-
old value of 250 mm is used in this paper.

Algorithm 2 Pierce-Through Point Removal
1: Given pixel psrc and quadrants q1, q2, q3, q4 in Dsrc:
2: for every q ∈ {q1, q2, q3, q4} do
3: Set flag(q): false
4: for every pixel p in q do
5: if p 6= 0 ∧ p < psrc − ωthres then
6: Set flag(q): true
7: end if
8: end for
9: end for

10: if
(
flag(q1) ∧ flag(q3)

)
∨
(
flag(q2) ∧ flag(q4)

)
then

11: psrc← 0
12: end if

D. DEPTH EDGE DETECTION AND MASKING
The Canny filter used in step V-A cannot distinguish between
a change in texture and a change in depth. We are only inter-
ested in edges which correspond to a change in depth, to use
those edges as guidance for depth upscaling. We therefore
mask the Canny edge map Esrc with an estimated mask of
depth edge regions, similar to [31]. Unlike [31], we have

FIGURE 7. (a) Search window for finding and removing pierce-through
points. The four smaller patterns illustrate the two cases that lead to
point removal, and two cases that do not. (b) Search window for finding
nearest depth points in top, bottom, left, right direction for the depth
edge detection kernel. Arrows indicate the search pattern in the four
cardinal directions.

irregular sparse depth in Dsrc
1 , so a map of depth disconti-

nuities (Mdisc) must be constructed. We do so by using a
custom kernel, shown in Fig. 7b, on each depth pixel psrc1
in Dsrc

1 to find the nearest depth in each of the four cardi-
nal directions (top, bottom, left, right). This kernel is used
because Dsrc

1 is irregularly populated and does not carry any
information about the location of nearest adjacent points.
Once a nearest-neighbor point pnn is found in at least one of
the four directions, a depth edge test in (2) is applied with a
depth threshold ωthres = 250 mm.

|psrc1 − p
nn
top| > ωthres ∨ |psrc1 − p

nn
bot.| > ωthres

∨|psrc1 − p
nn
left| > ωthres ∨ |psrc1 − p

nn
right| > ωthres

H⇒ psrc1 ≡ edge (2)

If psrc1 ≡ edge, a 10 by 10 pixel window around psrc1
is marked in Mdisc as a viable depth discontinuity. The
masked region is intentionally left large, as precise position
is expected to come from edges in Esrc. The resulting Esrc

1 is
created by removing all Esrc edges that do not lie in viable
discontinuity regions ofMdisc.

E. DEPTH UPSCALING
The depth upscaling step is a diffusion of known sparse depth
points in the depth map Dsrc

1 , using the edges in Esrc
1 as diffu-

sion guides. We treat this depth diffusion as an interpolation
problem in a manner similar to [32], in order to facilitate
fast computation (as compared to global optimization based
solutions). For each unknown depth po in Dsrc

1 , a kernel is
used to select valid neighboring known points. The selection
process is illustrated in Figure 8. For each neighboring known
point pn within the kernel, a narrowmarching ray is cast from
the position of pn to po, testing for edges in Esrc1 along the
ray path. Any encountered edge on the path from pn to po
disqualifies pn from the interpolation. Unlike [32], we also
expand the path width during edge search to three pixels
(best-fit pixel and two adjacent neighbors approximately
orthogonal to path direction) to avoid missing edges due to
aliasing.

The marching selection kernel produces the set D of the
valid depths pn for interpolation. The depth at the kernel

VOLUME 9, 2021 82205

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 8. Depth upscaling selection kernel. Missing depth in depth map
D is interpolated using Gaussian weights ω and boundary edges in E.
Unlike the kernel in Figure 7b, the upscaling kernel tests all depth points
within the search window.

origin po is interpolated according to (3).

po =

∑
∀pn∈D pnω

gauss
n∑|D|

m=0 ω
gauss
m

(3)

Weightsωgauss from an aligned Gaussian kernel are used to
prioritize the influence of the nearest known depths within the
interpolation window. The upscaled dense depth map Dsrc

2 is
composed of the known sparse depths ofDsrc

1 and interpolated
depths po of all positions ’o’ that were within kernel range of
at least one known depth.

F. FORWARD PROJECTION AND OCCLUDER MASKING
At this stage of the processing pipeline, we have the input
views Isrc, I trg and the dense depth map Dsrc

2 . The novel
view generation and the occluder removal relies on projecting
Dsrc
2 to a dense 3D point cloud P3d. The projection is done

according to Algorithm 3, based on the pinhole camera model
in multiview geometry [18].

Algorithm 3 2D to 3D Projection
1: Given depth map Dsrc

2 , origin C = [x, y, z] (with e.g.
C(2) = y), proj. matrix Psrc:

2: for each depth p ∈ Dsrc
2 at coord. (v, u) do

3: t ← [u; v; 1]
4: w← inverse(P)× t
5: w← w./w(4)
6: X ← (p−C(3))(w(1)−C(1))

(w(3)−C(3)) + C(1)
7: Y ← (p−C(3))(w(2)−C(2))

(w(3)−C(3)) + C(2)
8: Z ← p
9: end for

The dense 3D geometry allows us to specify an
‘‘occluder’’ as any geometry within a specific volume,
instead of color-keying or being dependent on green screens.
An occluder maskM trg is created by projecting all 3D points
W = [X;Y ,Z] within a volume of interest to the image plane
of I trg, using (4).

t trg = P trgW , where P trg
= [Ktrg][R|C]trg (4)

The projectionmatrix of the target viewP trg is known from
a prior offline calibration of corresponding camera’s intrin-
sics K and extrinsics R|C. A 3-by-3 pixel area around each
projected point’s coordinates t trg is included inM trg to avoid

small cracks in the occluder mask. The same projected points
are also used to form the depth mapDtrg. We similarly project
P3d to the image planes of In1, In2 as depth mapsDn1,Dn2 to
enable subsequent color lookup and view rendering.

The newly projected depth maps tend to have two issues
that need to be corrected before view rendering can take place.
The first issue is disconnected floating points, projected from
P3d wherever the upscaling process from Section V-E failed
to generate a sharp boundary on a depth discontinuity. Such
floating points are removed with Algorithm 4, using a search
window τ of 5-by-5 pixels and threshold τthres = 8. The sec-
ond issue is the inevitable small cracks that are created due
to the change of projection origin from ’src’ to ’trg’, ’n1’,
and ’n2’. These cracks are filled via Algorithm 5, which
tests whether a given point po in depth map D is surrounded
by significantly lower non-zero depths. If so, po is likely a
small disocclusion, and is replaced by linear interpolation of
neighboring depths.

Algorithm 4 Spurious Floating Point Removal
1: Given depth map D, window τ , threshold τthres:
2: for each non-zero depth po ∈ D do
3: for each non-zero pn ∈ τ centered on po do
4: c← c+ 1
5: end for
6: if c < τthres then
7: po← 0
8: end if
9: end for

Algorithm 5 Small Crack Detection and Filling
1: Given depth map D, window τ , threshold ωthres:
2: for each depth po ∈ D do
3: pl← nearest non-zero depth to left of po in τ
4: pr← nearest non-zero depth to right of po in τ
5: pa← nearest non-zero depth above po in τ
6: pb← nearest non-zero depth below po in τ
7: if ∃pl ∧ ∃pr ∧ |pl − po| > ωthres ∧ |pr − po| > ωthres

then
8: rl← coord. distance from po to pl
9: rr← coord. distance from po to pr

10: po← rrpl/(rr + rl)+ rlpr/(rr + rl)
11: end if
12: if
∃pa ∧ ∃pb ∧ |pa − po| > ωthres ∧ |pb − po| > ωthres then

13: ra← coord. distance from po to pa
14: rb← coord. distance from po to pb
15: po← rapb/(ra + rb)+ rbpa/(ra + rb)
16: end if
17: end for

G. COLOR LOOKUP VIA BACKPROJECTION
The last step in generating the In1, In2, I trgaug views is to
fetch the per-pixel color information from Isrc using the
dense depthmapsDn1,Dn2,Dtrg, in a reverse projection order
compared to the depth projection in Section V-F. The color

82206 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

is fetched via reverse projection (a.k.a. reverse lookup) to
avoid unnecessary distortion of the image texture. Disocclu-
sion filtering was necessary on the projected depth maps in
the forward projection of Section V-F. Performing the same
kind of processing on projected color can cause noticeable
artefacts, unless more time-consuming texture modeling is
employed; reverse-lookup helps to bypass this problem. The
lookup process is detailed in Algorithm 6, which combines
Algorithm 3 with (4). The disoccluded view I trgaug is composed
from I trg and Isrc in a manner similar to [28], where only
the pixels identified by the occluder maskM trg are re-painted
from Isrc.

Algorithm 6 Color Lookup via Backprojection

1: Given target depth map Dtrg, target origin
C trg
= [x, y, z], target proj. matrix P trg, source proj.

matrix Psrc, source image Isrc, empty target image I trg:
2: for each non-zero depth p ∈ Dtrg at coord. (v, u) do
3: t ← [u; v; 1]
4: w← inverse(P trg)× t
5: w← w./w(4)
6: X ← (p−C trg(3))(w(1)−C trg(1))

(w(3)−C trg(3))
+ C trg(1)

7: Y ← (p−C trg(3))(w(2)−C trg(2))
(w(3)−C trg(3))

+ C trg(2)
8: Z ← p
9: W ← [X;Y ;Z ; 1]
10: wsrc

← PsrcW
11: usrc← wsrc(1)/wsrc(3); vsrc← wsrc(2)/wsrc(3)
12: I trg at (v, u)← Isrc at (vsrc, usrc)
13: end for

VI. COMPOSITE VIEW RENDERING
The view rendering stage is the final processing necessary
before the original and generated views can be displayed
to the user. Each of the five views (Isrc, I trg, I trgaug, In1, In2)
is in a separate buffer after the main processing has taken
place, and their composition into a single render window is
done through the Visualization Toolkit (VTK) [40] library’s
windowingmanager. The buffer for each of the input views is,
prior to all processing, assigned to a VTK viewport by map-
ping the buffer contents to a VTK image class bound to the
viewport. This ensures that there is no unnecessary overhead
during the final render call, beyond sending a content update
notification.

The VTK window manager is also responsible for adjust-
ing the on-display resolution of all viewport contents accord-
ing to particular display resolutions and viewport layout. Due
to a quirk of VTK, the buffer contents for each image must be
vertically flipped. To avoid the overhead of flipping just prior
to rendering, the buffer content is instead reordered during
the color lookup stage described in Section V-G by inverting
the final indexing of the color assignment in Algorithm 6
step 12 at no extra cost. Since all processing up to this point
is completed on full-resolution sensor data, the completion
time for all steps in Sections IV and V is independent of the
display or viewport settings.

VII. RESULTS
We have recorded a number of sequences in two different
indoor environments, visible in Figures 3 and 6, with varying
amount of in-scene movement. The hardware specifications
are as described in Section III-A, and the image buffer resolu-
tion of each view - two original views from the cameras, and
three generated views - is set to 1600 × 1200 pixels, equiv-
alent to the camera sensor resolution. The rendered views
are arranged as shown in Figure 1b. For each environment,
the camera and lidar parameters were obtained by off-line
calibration based on [41], [42], followed by lidar position
refinement to reduce projection error. The world coordinate
origin is set at the camera recording Isrc.

A. PROCESSING TIME
The overall rendering frame rate is bounded by the processing
described in Section V because it is the limiting factor for
updating the rendered content, along with the sensor record-
ing rate (updating rendered content is only necessary if there
is any new sensor data). The lidar measurement normalization
of Section IV-B does not affect the completion of lidar scan
frames at 100 ms intervals, and therefore has no effect on
the frame rate. The view generation stages however do have
a time cost, which adds up to an average 47 ms per frame,
equivalent to approx. 21 frames per second. The timings
reported in Figure 9 are in order of execution, and include the
CUDA kernel launches, CUDA device synchronization, and
anymemory copy and set operations as needed for each stage.
Most of the processing time is taken by the initial edge extrac-
tion and by the depth edge masking steps (≈11 ms each).
The initial edge extraction time also includes time needed to
transfer the camera views and edge map from host to GPU
memory (≈1.5 ms). The final processing stages – dense
depth projection and reverse color lookup – take ≈10 ms
combined for all three generated views.

In particular, the time required to generate a high-resolution
depth map from the sparse lidar measurements is approx.
37 ms, with a significantly larger lidar-to-camera resolution
upscaling ratio than in e.g. [32]. A larger ratio indicates a
larger difference between lidar an camera resolutions, and
thus a sparser lidar depth when projected onto the image
plane. The performance of several similar methods focused
on depth upscaling is shown in Table 1. Due to the differ-
ences in scene and capture setups in [30], [32], [36] and
our experiment, we show the numbers as reported in [30],
[32], [36]. The lidar resolution information in [36] was not
mentioned, which we denote by ’?’ in Table 1. The lidar
resolution in Table 1 for our experiment is 240 × 64, since
that is the section of the 360-degree scan that maps into the
camera view and is used for the depth upscaling.

The time needed to execute the processing pipeline is not
greatly affected by varying the disocclusion size. Table 2
shows the average time per frame from three different scenes,
each with a different occluder. The slight increase in compu-
tation time is caused by the occluder mask generation and

VOLUME 9, 2021 82207

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 9. Performance breakdown of the proposed pipeline steps. Step 1: Edge extraction, Sec. V-A. Step 2: Sparse projection,
Sec. V-B. Step 3: Pierce-through point removal, Sec. V-C. Step 4: Depth edge masking, Sec. V-D. Step 5: Depth upscaling, Sec. V-E. Step
6: Forward projection, Sec. V-F. Step 7: Occluder masking, Sec. V-F. Step 8: Dense depth projection to novel views, Sec. V-F. Step 9:
Color lookup for novel views, Sec. V-G. Steps 8 and 9 are repeated for three views, denoted in the legend as ‘‘a,’’ ‘‘b,’’ and ‘‘c.’’

TABLE 1. Reported performance of depth upscaling from sparse to target
resolution, as per [30], [32], [36]. Upscaling ratio indicates the amount of
horizontal resolution increase. Time for our method covers stages V-A
to V-E.

TABLE 2. Frame render time (ms) with varying apparent size of
disoccluded scene object.

projection to the composite view, which is increasing the
calculation amount as disocclusion increases in scene; the
other stages of the processing pipeline are not affected.

B. OUTPUT AND FEATURE ABLATION
1) LIDAR TEMPORAL NORMALIZATION
Part of the perceived quality of a projected image is deter-
mined by the stability and consistency of the lidar measure-
ments. This avoids so-called flickering. Stability is measured
by the amount of missing point data within the lidar scan of
a scene, and consistency is measured by the lidar point oscil-
lation when scanning a static environment. Table 3 lists the
amount of missing points from three different scenes - a scene
with no motion, a scene with small motion of the robot arm,
and a scene with people walking. The unfiltered lidar scans
are compared to the scans filtered according to Section IV-B.
Our filtering (3) in Section IV-B cannot recover points that
are missing throughout the whole recording, e.g. from objects
too close to the lidar, but it can recover sporadically excluded
points. This is likely why the scene with large motion has
the most amount of recovered missing points: when there
is more movement in scene, measurements from more rays
in more lidar frames are dropped due to the ray crossing an

TABLE 3. Amount of missing lidar points in 3 scenes with varying amount
of in-scene motion, as percentage of all recorded points.

TABLE 4. Lidar! (Lidar!) point oscillation amplitude (meters) in scene
with no motion. The average, minimum and median amplitude per point
is calculated after removing outliers (points with amplitude greater than
three scaled median absolute deviations).

edge of the moving object and failing to get a consistent depth
measurement.

The lidar point oscillation, as illustrated in Figure 4a, can
lead to noticeable frame-to-frame instability of the projected
geometry. Table 4 shows the amplitude of the lidar point
oscillation during a recording of a completely static scene,
where the amplitude for each point is considered as the
distance between the nearest and farthest measurement for
each point during the whole recording. For completeness, two
comparisons are done, one including ‘‘more noisy’’ points
that are sporadically missing during the recording, and one
without the missing points, i.e. points that have a measured
distance in every lidar frame during the recording. In both
cases, the filtering approximately halves the oscillation of
distances for most points, reducing the median amplitude
from 6.6 and 8 cm to 3.4 and 4.3 cm, respectively.

Another measurement of lidar point stability is shown
in Table 5, listing the per-point oscillation between suc-
cessive frames, which would more directly contribute to
frame-by-frame differences in the projected geometry. Here
too the filtering approximately halves the point oscillation,
by reducing the median frame-to-frame oscillation from 1.4
and 1.6 cm to 0.6 and 0.7 cm, respectively.

82208 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 10. The different steps of our depth upscaling. (a) Initial sparse depth (each point upsized from 1 × 1 to 2 × 2 pixels for visibility,
best viewed digitally in color); (b) Simple splatting of sparse lidar points; (c) Splatting after pierce-through point removal; (d) Using a
color-derived edge map for interpolation bounding; (e) Adding depth-transition masking to edge map; (f) Steps ’a’ to ’e’ in (cropped)
region with background lidar points interleaving with foreground points; (g) Steps ’a’ to ’e’ in (cropped) region where RGB-derived edges
cause separation of smooth-surface depth.

TABLE 5. Lidar! point frame-to-frame oscillation amplitude (meters) in
scene with no motion.

2) DEPTH UPSCALING
As described in Sec. V, our depth upscaling is a combi-
nation of several stages. Figure 10 shows how the upscal-
ing results improve with each added stage. The least-effort
approach is to simply project the sparse lidar points as-is (see
Sec. V-B) with straightforward proximity-based point splat-
ting. Fig. 10b shows the outcome of such an approach. The
first notable improvement, shown in Fig. 10c is the addition
of pierce-through point removal, as described in Sec. V-C,
which prevents the interleaving of foreground and back-
ground elements, and approximates an acceptable baseline
depth map.

The integration of an edge-bounded nearest-depth interpo-
lation kernel (see Sec. V-A and V-E) is shown in Fig. 10d.
If the edges in color image correspond to object bound-
aries, then this may be sufficient. However as demonstrated
in [31], over-segmentation of the edge map is a signif-
icant risk and tends to result in excessive interpolation
blocking. Such over-segmentation leads to ‘‘missing’’ depth
points in between valid lidar measurements, where all nearby
measurements in the interpolation kernel are blocked by an
edge. The depth-transition masking stage (see Sec. V-D) is

added to remedy such an edge over-segmentation, resulting in
the depth map shown in Fig. 10e. The top and bottom regions
of the depth map are left unfilled, as no lidar measurements
are within acceptable proximity to provide support for depth
estimation.

3) OCCLUDER REPLACEMENT
The upscaled depth is used as projection basis for re-painting
the occluder-occupied pixels with data from another recorded
view. Figure 11b shows the repainting outcome of our
approach. For comparison, we show two other approaches
that might be considered as alternatives, direct view replace-
ment and patch shifting based on single measurement
(described below). For the sake of comparison, we assume
that color-keying can be used to identify the occluder mask
in these alternatives.

The direct view replacement implies a direct copy of pixel
data from the other view without any projective transform,
and is shown in Figure 11c. It has next to no performance
cost, since it is merely a buffer copy operation. However,
it is not a feasible solution in terms of producing a view
with a consistent geometry because it is highly unlikely that
the same 3D background geometry projects to the exact
same pixel coordinates in two cameras. Patch shifting, shown
in Figure 11d, uses a single central lidar measurement to
determine the horizontal and vertical disparity for shifting the
entire disocclusion patch in from the other view. The selected
patch therefore has uniform disparity throughout. Under a
rectified camera setup and sufficiently flat background, this

VOLUME 9, 2021 82209

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 11. Results of our occluder replacement (b) compared to original view (a), color-keying based view replacement (c) and patch shifting
based on single depth disparity (d).

may be a useful approach. However, with non-rectified views
the consistency of the revealed geometry is less accurate,
especially for surfaces that are on a depth gradient and thus
inconsistent with a uniform patch-wide disparity; this can be
seen on the skewed shadows behind the object in Figure 11d.
However, such uniform patch shifting does allow to repaint
areas lying outside the range of lidar beam spread - hence why
the base of the object is not wholly repainted in Figure 11b,
but is repainted in Fig. 11c and 11d.

For mining applications, using off-the-shelf solutions from
computer vision libraries can be preferable to adapting
purpose-built solutions. Therefore, we also show a compar-
ison lidar-based view generation by a simple direct lidar
meshing and texture projection in Figure 12 afforded by the
VTK function ’projectedTexture’. In this approach, the sparse
lidar points are used as mesh vertices without smoothing, and
the resulting mesh is used as the projection surface. Missing
lidar points are excluded, and irregular gaps between vertices
are filled in best-effort basis, connecting to nearest neighbors
within a limited proximity. It is worth noting that as-is, VTK’s
texture projection does not handle occlusion or projection
shadowing (the consequence of which is shown in Figure 12c,
and would require considerable rework.

VIII. DISCUSSION
The context of the mining industry made us focus on design-
ing a pipeline that avoids any sort of pre-recorded content

or view recreation from trained dictionaries. It cannot be
denied that the bulk of research activity related to RGB-D
data nowadays links to machine learning for depth (and view)
creation. However, following that path would have countered
the context in which we place our work, where presenting
real-looking yet inaccurate view is inherently dangerous. The
decisions in designing the presented pipeline are therefore
focused on using and relying on the data actually recorded
by the camera and lidar sensors.

The lidar temporal filtering was considered a necessary
component even though it relies on smoothing over time. The
oscillation and random dropout of supposedly static points
from the tested lidar led to inconsistencies from frame to
frame, which implies flickering in the presented views. In an
applied context, this could lead to operator distraction or
misinterpretation of the displayed scene.

The requirement of real-time performance directed the
depth upscaling component to the straightforward interpola-
tion method described in [32]. An optimization-based depth
diffusion similar to [30], [33], [37] would likely have reached
higher quality, but at the cost of more milliseconds per
frame. At the time of writing, the CUDA sparse LS-solver
implementation required to implement [31] was only avail-
able via host execution, i.e. processing on CPU rather than
the GPU, which compromises the real-time feasibility of that
approach. Therefore, the upscaling method, inspired by [32],
was selected and enhanced by bothwidening the edge-finding

82210 VOLUME 9, 2021

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

FIGURE 12. (a) Results of our view projection (a), 47ms for three views. (b) Results of lidar meshing and VTK projectedTexture method,
approx. 82 ms for single view. (c) Shows the problem of lacking self-occlusion in the projectedTexture projection in (b), causing the target
object to be visible on foreground and background geometry.

marching ray, as well as pre-filtering the reference edge map
with discontinuities in sparse depth.

Each step of the processing pipeline is developed as a
separate set of CUDA kernels, operating on numeric data
in general-purpose buffers. There may be further perfor-
mance gains by combining the stages, and by moving the
non-accelerated parts such as OpenCV’s edge detection onto
the GPU. At this point, the rendered viewport layout uses
VTK for adaptability; in case of a specific application with
a specific viewport design, the VTK framework can be
removed and the separate view buffers can be combined
during view generation. However, that would require moving
outside the scope of this feasibility study, and involve UX
design testing with specific operators for specific tasks.

IX. CONCLUSION AND FUTURE WORK
In this study, we have focused on demonstrating the real-time
feasibility of augmented rendering towards the mining con-
text, by presenting an end-to-end system that covers thewhole
processing chain, from sensors to the rendered views. A key
goal behind the system design was to avoid shortcuts such
as green screens, pre-recorded reference databases, or con-
tent inpainting based on learned priors. The use of such
priors may have increased the apparent render quality. How-
ever, the goal of this work was to investigate the feasibility
and technical readiness of augmented remote operation for
the mining industry, where presenting incorrect or mislead-
ing content to an operator may do more harm than good.
As such, the solutions presented in Sections III throughVI are
designed for handling the live sensor data within the real-time
limits imposed by said sensors. While our system does not
achieve as low render times as shown by [20], we avoid some
of the limitations imposed therein, such as the greenscreen
keying and background removal, and demonstrate an alter-
nate approach that still attains real-time performance within
the constraints outlined in [5].

In other non-entertainment contexts, augmented remote
operation appears to benefit the operators in terms of their
Quality of Experience (QoE) and task accomplishment,
as demonstrated in [6], [8]–[11]. The augmentation covered
by our system is a relatively simple viewmanipulation, meant
to explore the technical feasibility more than the specific

operator experience. Future work encompasses the assess-
ment of our system from a QoE perspective, with a more
direct focus on the interface layout and the visual design of
augmentations tailored to specific mining tasks.

ACKNOWLEDGMENT
The authors would like to thank J. Edlund at Mid Sweden
University for assistance in setting up the test environment
and contributing to the remote-control codebase for the exper-
imental demonstrator, L. Önnerlöv at Boliden Minerals AB,
and A. Nilsson at Jama Mining Machines AB for providing
themining industry’s perspectives and insights on experimen-
tal setup and practical considerations.

COMPLIANCE WITH ETHICAL STANDARDS
Conflict of interest On behalf of all authors, the corre-
sponding author states that there is no conflict of interest.

REFERENCES
[1] G. Carra, A. Argiolas, A. Bellissima, M. Niccolini, and M. Ragaglia,

‘‘Robotics in the construction industry: State of the art and future oppor-
tunities,’’ in Proc. 35th Int. Symp. Autom. Robot. Construction (ISARC),
Jul. 2018, pp. 1–8.

[2] F. Sánchez and P. Hartlieb, ‘‘Innovation in the mining industry: Techno-
logical trends and a case study of the challenges of disruptive innovation,’’
Mining, Metall. Explor., vol. 37, pp. 1385–1399, Jul. 2020.

[3] C. Sganzerla, C. Seixas, and A. Conti, ‘‘Disruptive innovation in digital
mining,’’ Procedia Eng., vol. 138, pp. 64–71, Jan. 2016.

[4] P. Tripicchio, E. Ruffaldi, P. Gasparello, S. Eguchi, J. Kusuno, K. Kitano,
M. Yamada, A. Argiolas, M. Niccolini, M. Ragaglia, and C. A. Avizzano,
‘‘A stereo-panoramic telepresence system for construction machines,’’
Procedia Manuf., vol. 11, pp. 1552–1559, Jan. 2017.

[5] Y. Yun, S. J. Lee, and S.-J. Kang, ‘‘Motion recognition-based robot
arm control system using head mounted display,’’ IEEE Access, vol. 8,
pp. 15017–15026, 2020.

[6] K. Brunnström, E. Dima, T. Qureshi, M. Johanson, M. Andersson, and
M. Sjöström, ‘‘Latency impact on quality of experience in a virtual reality
simulator for remote control of machines,’’ Signal Process., Image Com-
mun., vol. 89, Nov. 2020, Art. no. 116005.

[7] V. Kohn and D. Hardborth, ‘‘Augmented reality—A game changing tech-
nology for manufacturing processes,’’ in Proc. 26th Eur. Conf. Inf. Syst.
(ECIS), 2018, pp. 1–18.

[8] E. Dima, K. Brunnström, M. Sjöström, M. Andersson, J. Edlund,
M. Johanson, and T. Qureshi, ‘‘Joint effects of depth-aiding augmentations
and viewing positions on the quality of experience in augmented telepres-
ence,’’ Qual. User Exper., vol. 5, no. 1, pp. 1–7, Dec. 2020.

[9] F. Bruno, A. Lagudi, L. Barbieri, D. Rizzo, M. Muzzupappa, and
L. De Napoli, ‘‘Augmented reality visualization of scene depth for aid-
ing ROV pilots in underwater manipulation,’’ Ocean Eng., vol. 168,
pp. 140–154, Nov. 2018.

VOLUME 9, 2021 82211

E. Dima, M. Sjöström: Camera and Lidar-Based View Generation for Augmented Remote Operation

[10] B. Bejczy, R. Bozyil, E. Vaičekauskas, S. B. K. Petersen, S. Bøgh,
S. S. Hjorth, and E. B. Hansen, ‘‘Mixed reality interface for improving
mobile manipulator teleoperation in contamination critical applications,’’
Procedia Manuf., vol. 51, pp. 620–626, Jan. 2020.

[11] B. P. Vagvolgyi, W. Pryor, R. Reedy, W. Niu, A. Deguet, L. L. Whitcomb,
S. Leonard, and P. Kazanzides, ‘‘Scene modeling and augmented virtuality
interface for telerobotic satellite servicing,’’ IEEE Robot. Autom. Lett.,
vol. 3, no. 4, pp. 4241–4248, Oct. 2018.

[12] G. Mastrorocco, R. Salvini, and C. Vanneschi, ‘‘Fracture mapping in chal-
lenging environment: A 3D virtual reality approach combining terrestrial
LiDAR and high definition images,’’ Bull. Eng. Geol. Environ., vol. 77,
no. 2, pp. 691–707, May 2018.

[13] L. Chun-Lei, S. Hao, L. Chun-Lai, and L. Jin-Yang, ‘‘Intelligent detection
for tunnel shotcrete spray using deep learning and LiDAR,’’ IEEE Access,
vol. 8, pp. 1755–1766, 2020.

[14] F. Okura, M. Kanbara, and N. Yokoya, ‘‘Augmented telepresence using
autopilot airship and omni-directional camera,’’ in Proc. IEEE Int. Symp.
Mixed Augmented Reality, Oct. 2010, pp. 259–260.

[15] C. Xue Er Shamaine, Y. Qiao, J. Henry, K. McNevin, and N. Murray,
‘‘RoSTAR: ROS-based telerobotic control via augmented reality,’’ in Proc.
IEEE 22nd Int. WorkshopMultimedia Signal Process. (MMSP), Sep. 2020,
pp. 1–6.

[16] B. Omarali, B. Denoun, K. Althoefer, L. Jamone, M. Valle, and
I. Farkhatdinov, ‘‘Virtual reality based telerobotics framework with depth
cameras,’’ in Proc. 29th IEEE Int. Conf. Robot Human Interact. Commun.
(RO-MAN), Aug. 2020, pp. 1217–1222.

[17] D. Lee andY. S. Park, ‘‘Implementation of augmented teleoperation system
based on robot operating system (ROS),’’ in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2018, pp. 5497–5502.

[18] R. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[19] W. Sun, L. Xu, O. C. Au, S. H. Chui, and C. W. Kwok, ‘‘An overview of
free view-point depth-image-based rendering (DIBR),’’ in Proc. APSIPA
Annu. Summit Conf., 2010, pp. 1023–1030.

[20] S. Rasmuson, E. Sintorn, and U. Assarsson, ‘‘A low-cost, practical acqui-
sition and rendering pipeline for real-time free-viewpoint video communi-
cation,’’ Vis. Comput., vol. 37, no. 3, pp. 553–565, 2020.

[21] S. Meerits, V. Nozick, and H. Saito, ‘‘Real-time scene reconstruction and
triangle mesh generation using multiple RGB-D cameras,’’ J. Real-Time
Image Process., vol. 16, no. 6, pp. 2247–2259, Dec. 2019.

[22] C. Fehn, ‘‘Depth-image-based rendering (DIBR), compression, and trans-
mission for a new approach on 3D-TV,’’Proc. SPIE, vol. 5291, pp. 93–104,
May 2004.

[23] C. Vázquez, W. J. Tam, and F. Speranza, ‘‘Stereoscopic imaging: Filling
disoccluded areas in depth image-based rendering,’’ Proc. SPIE, vol. 6392,
Oct. 2006, Art. no. 63920D.

[24] O. Elharrouss, N. Almaadeed, S. Al-Maadeed, and Y. Akbari, ‘‘Image
inpainting: A review,’’Neural Process. Lett., vol. 51, no. 2, pp. 2007–2028,
2019.

[25] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari, ‘‘Peeking behind
objects: Layered depth prediction from a single image,’’ Pattern Recognit.
Lett., vol. 125, pp. 333–340, Jul. 2019.

[26] S. M. Muddala, R. Olsson, and M. Sjöström, ‘‘Disocclusion
handling using depth-based inpainting,’’ in Proc. 5th Int.
Conf. Adv. Multimedia, (MMEDIA), Venice, Italy: International
Academy, Research and Industry Association (IARIA), Apr. 2013,
pp. 136–141.

[27] S. Li, C. Zhu, and M.-T. Sun, ‘‘Hole filling with multiple reference
views in DIBR view synthesis,’’ IEEE Trans. Multimedia, vol. 20, no. 8,
pp. 1948–1959, Aug. 2018.

[28] M.-L. Wu and V. Popescu, ‘‘RGBD temporal resampling for real-time
occlusion removal,’’ in Proc. ACM SIGGRAPH Symp. Interact. 3D Graph.
Games, May 2019, pp. 1–9.

[29] S. Yang, B. Li, M. Liu, Y.-K. Lai, L. Kobbelt, and S.-M. Hu,
‘‘HeteroFusion: Dense scene reconstruction integrating multi-sensors,’’
IEEE Trans. Vis. Comput. Graphics, vol. 26, no. 11, pp. 3217–3230,
Nov. 2020.

[30] D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruether, and H. Bischof, ‘‘Image
guided depth upsampling using anisotropic total generalized variation,’’ in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 993–1000.

[31] S. Schwarz, M. Sjostrom, and R. Olsson, ‘‘A weighted optimization
approach to time-of-flight sensor fusion,’’ IEEE Trans. Image Process.,
vol. 23, no. 1, pp. 214–225, Jan. 2014.

[32] H. Plank, G. Holweg, T. Herndl, and N. Druml, ‘‘High performance time-
of-flight and color sensor fusion with image-guided depth super reso-
lution,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,
pp. 1213–1218.

[33] F. S. Zakeri, M. Sjöström, and J. Keinert, ‘‘Guided optimization framework
for the fusion of time-of-flight with stereo depth,’’ J. Electron. Imag.,
vol. 29, no. 5, Oct. 2020, Art. no. 053016.

[34] M. Ni, J. Lei, R. Cong, K. Zheng, B. Peng, and X. Fan, ‘‘Color-guided
depth map super resolution using convolutional neural network,’’ IEEE
Access, vol. 5, pp. 26666–26672, 2017.

[35] R. Chen and W. Gao, ‘‘Color-guided depth map super-resolution using a
dual-branch multi-scale residual network with channel interaction,’’ Sen-
sors, vol. 20, no. 6, p. 1560, Mar. 2020.

[36] C. S. Weerasekera, T. Dharmasiri, R. Garg, T. Drummond, and I. Reid,
‘‘Just-in-time reconstruction: Inpainting sparse maps using single view
depth predictors as priors,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 1–9.

[37] P. Harish, V. Vineet, and P. Narayanan, ‘‘Large graph algorithms for
massively multithreaded architectures,’’ Int. Inst. Inf. Technol. Hyderabad,
Hyderabad, India, Tech. Rep. IIIT/TR/2009/74, 2009.

[38] Y. Song, H. Zhang, Y. Liu, J. Liu, H. Zhang, and X. Song, ‘‘Background
filtering and object detection with a stationary LiDAR using a layer-based
method,’’ IEEE Access, vol. 8, pp. 184426–184436, 2020.

[39] G. Bradski and A. Kaehler, ‘‘Learning OpenCV: Computer vision with the
OpenCV library,’’ O’Reilly Media, 2008.

[40] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit,
4th ed. New York, NY, USA: Kitware, 2006.

[41] Z. Zhang, ‘‘A flexible new technique for camera calibration,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330–1334, Nov. 2000.

[42] J. Heikkila and O. Silven, ‘‘A four-step camera calibration procedure with
implicit image correction,’’ in Proc. IEEEComput. Soc. Conf. Comput. Vis.
Pattern Recognit., Jun. 1997, pp. 1106–1112.

ELIJS DIMA (Graduate Student Member, IEEE)
was born in Liepaja, Latvia, in 1990. He received
the B.Sc. and M.Sc. degrees in computer engi-
neering and the Licentiate degree in computer
and system sciences from Mid Sweden Univer-
sity, Sundsvall, Sweden, in 2013, 2015, and 2018,
respectively, where he is currently pursuing the
Ph.D. degree in computer and system sciences
with the Realistic 3D Research Group.

Since 2015, he has been an Undergraduate
Supervisor and a Course Assistant with the Department of Information and
Communication Systems, Mid Sweden University. His research interests
include multi-view and light field capture and rendering, synchronization,
calibration, modeling, data fusion and capture operation of multi-camera
systems and mixed-sensor systems, integration and application of such sys-
tems, real-time visual presentation through augmented reality, telepresence,
the combination thereof, the quality of experience, and technical design
aspects for such systems with relation to industrial contexts.

MÅRTEN SJÖSTRÖM (Senior Member, IEEE)
received theM.Sc. degree in electrical engineering
and applied physics from Linköping Univer-
sity, Sweden, in 1992, the Licentiate of Tech-
nology degree in signal processing from the
KTH Royal Institute of Technology, Stockholm,
Sweden, in 1998, and the Ph.D. degree in mod-
eling of nonlinear systems from EPFL, Lausanne,
Switzerland, in 2001.

He was an Electrical Engineer with ABB,
Sweden, from 1993 to 1994, and a Fellow with the CERN, from 1994 to
1996. In 2001, he joined Mid Sweden University, where he was appointed as
an Associate Professor and a Full Professor in signal processing, in 2008 and
2013, respectively. He founded the Realistic 3D Research Group, in 2007.
He has been the Head of the Research Subject Computer Engineering with
Mid Sweden University, since 2013. His current research interests include
multidimensional signal processing and imaging, system modeling, and
identification.

82212 VOLUME 9, 2021

