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ABSTRACT Compressed sensing (CS) can speed up the magnetic resonance imaging (MRI) process and
reconstruct high-quality images from under-sampled k-space data. However, traditional CS-MRI suffers
from slow iterations and artifacts caused by noise when the acceleration factor is high. Currently, deep
learning has been introduced to address these issues. Although some improvements have been achieved,
the reconstruction problem under high under-sampling rates has not been solved. Thus, our study proposed
a novel CS-MRI reconstruction method called RSCA-GAN. The generator of RSCA-GAN is a residual
U-net consisting of both spatial and channel-wise attention. The proposed RSCA-GAN was compared to the
zero-filling, DAGAN, RefineGAN, and RCA-GAN using both cartesian and non-cartesian under-sampling
masks on brain and knee datasets. The sampling rates of cartesian masks are 25%, 16.7%, and 12.5%
and the sampling rates of spiral and radial masks are 30%, 20%, and 10%. Peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) and normalized mean square error (NMSE) were used to evaluate the
reconstructed image quality, and the rank-sum test was adopted to evaluate the significant difference among
different approaches. P < 0.05 indicated statistical significance. The results demonstrated that RSCA-GAN
outperforms the other approaches for all the quantitative metrics. Thus, RSCA-GAN exhibits excellent
reconstruction performance at high under-sampling rates and is suitable for clinical applications.

INDEX TERMS Compressed sensing, magnetic resonance imaging, generative adversarial network, spatial

and channel-wise attention, cyclic consistency loss, deep residual block.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a medical imaging
technique with the characteristics of non-invasiveness, non-
radiation, and high contrast. However, the acquisition speed
of MRI data is limited by two factors: a) physical aspects,
(gradient strength and magnetic field strength) and b) phys-
iological aspects such as nerve stimulation [1]. The pro-
longed scan makes the patient feel uncomfortable, and will
cause motion artifacts. Hence, accelerated MRI is clini-
cally significant. The main reason for the long scanning
time is that the data is collected line-by-line in k-space
(frequency domain and Fourier space of the image) [2].
Although some hardware improvements have been made
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to reduce the MRI scan time such as echo-planar imaging
sequence [3] and parallel imaging techniques [4], the acquisi-
tion time is still long [2]. Moreover, the theory of compressed
sensing [5]-[10] has also been introduced to MRI recon-
struction. However, CS-MRI has not been applied for clinical
measurements [11]. The main reasons [12] are as follows:
1) CS-MRI under-sampling has the assumption of signal
incoherence; 2) The transform domain is extremely shallow,
and the image details related to the biological tissue could not
be collected; 3) Non-linear optimization algorithms require
a long time for iterative calculations; 4) Hyper-parameters
need to be selected for over-regularization, making the recon-
structed image blurry or causing obvious artifacts.

Recently, with the development of generative adversar-
ial network (GAN) [13], several methods [14]-[16] are
proposed to improve the image quality with modified
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FIGURE 1. (a) Framework of KU Block. KU: k-space under-sampled. FR: Fourier transform block. IFR: inverse Fourier transform block. (b) Framework
of the proposed method. The generator of the network is connected with two residual autoencoders, SCUNet. Each SCUNet is composed of spatial and
channel-wise attention, and residuals were used to increase the depth of the network. The discriminator is composed of six layers that were used to

determine the true or false of the image.

CS-MRI reconstruction. DCGAN [17] replaced the structure
of the generator and discriminator with CNN to better extract
the image features. WGAN [18] uses Wasserstein distance
as the optimization method during training. Then, cycleGAN
[19] is used to solve the problem under conditions that two
images are not in pairs. Yang et al. [20] proposed a novel deep
de-aliasing generative adversarial network (DAGAN) for fast
CS-MRI reconstruction. Chen et al. [21] proposed a new
model based on GAN (PTGAN) to convert T2-weighted MRI
images into PD-weighted MRI images without disrupting
the structure and texture of the image. RefineGAN [22] is
a combination of cyclic consistency, U-net [23] and deep
residual CNN [24]. Two residual U-nets were used as a
generator to perform end-to-end MRI reconstruction, which
deepens the network of the generator. Han et al. [25] proposed
atwo-step GAN for the generation and improvement of tumor
brain magnetic resonance images. Moreover, many studies
have applied attention mechanism to the image reconstruc-
tion field. Spatial and channel-wise attention based CNN
(SCA-CNN) [26] was applied for natural image process-
ing. The attention mechanism extracts the details of the
image and assigns different weights to the channel or
spatial feature maps. Huang et al. [27] used channel-wise
attention in the up-sampling of U-net for MR image
reconstruction.

Based on the above studies, we proposed a GAN based
framework called RSCA-GAN, which combines residual
U-net with spatial and channel-wise attention, to accelerate
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MRI reconstruction and eliminate the artifacts caused by
highly under-sampling rates.

Il. METHOD

A. K-SPACE UNDER-SAMPLING BLOCK

The overall framework of our method is illustrated in
Figure 1. We designed a k-space under-sampled (KU) block
as shown Figure 1(a), which input the GT image Sgr and
under-sampling mask R of the module, and the output was
zero-filling image Szr. There are two sub-modules in the
KU block, namely Fourier transform R (FR) block and
inverse Fourier transform R (IFR) block. The FR block
transforms the GT image from the time domain to fre-
quency domain by Fourier transform and uses mask R to
obtain the under-sampled k-space samples. Subsequently,
the under-sampled image in the frequency domain is trans-
formed into the time domain by the inverse Fourier transform
of the IFR block to obtain the zero-filling image Szr. The IFR
block is represented as follows:

IFg = F* (Fg) = F* (F (Sgr)  R) ey

where Fg represents the formula of the FR block, F stands
for Fourier transform, and F* represents the inverse Fourier
transform.

Figure 1(b) shows that the generator architecture of our
proposed method is composed of two residual SCUNets with
attention mechanism. Each coding block has two layers, and
each decoding block has three layers. The first two layers are
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FIGURE 2. Architecture of residual SCUNet. The encode block is indicated by green, and the decode block is indicated by blue. The 4D tensor is used as
input, using the 2D convolution with filter size of 3 x 3 and stride of 2. The number of feature maps is defined as feature number = 64. The residual
block is represented by orange, which is used to increase the depth of the network. SCA block is indicated in yellow composed of spatial and channel

attention.

composed of residual blocks with short-skip connections, and
the third layer of the decoded block is the SCA block. The
generator network is depicted in Figure 2.

B. GENERATIVE ADVERSARIAL NETWORK

The proposed method is based on GAN. The main structure
of GAN is composed of a generator G and a discriminator D.
The generator generates a fake image by inputting informa-
tion in real image, which is used to fool the discriminator.
The work of the discriminator is to judge the real/fake images
generated by the generator. For the image generated by the
generator, the result of the discriminator is fake. For the real
image, the result of the discriminator is real. The generator
is constantly learning to generate images infinitely close
to the real image, and the discriminator is constantly opti-
mized to judge the image generated by the generator. Thus,
in the process of continuous generation and discrimination,
the adversarial loss function is generated, and the network is
continuously optimized by generating the adversarial loss of
function, which is expressed as follows:

Luv= E [1 —1logD(G(Szr)]|+ E
yePg IS

Paata

[log D(Scr)l (2)
where Pg represents the data distribution learned by the
generator, Py, represents the data distribution of MR
image training set. ¥ = G (Szp)) represents the MR
image generated by the generator. E, [logD(SGr)] repre-
sents the expected value of the discriminator for real image
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discrimination, and we expect that the discrimination result
is closer to 1. E; [1 — log D (G (Szr))] denotes the expected
value of the discriminator for the generated image discrim-
ination. We expect the discrimination result to be close to
0, such that the discriminator and the generator constitute
antagonistic training.

C. CYCLIC DATA CONSISTENCY LOSS

Ideally, if there are sufficient datasets for training, any exist-
ing image Sgg reconstructed by the generator can be mapped
to the zero-filling reconstruction Szr through the network.
Therefore, under the condition of the limited training dataset,
if we want to correctly map zero-filling data Szr[m] and
completely reconstruct Sgg[m], m indicates mapping and
strengthens the bridge between the datasets; an additional
constraint was used: cyclic data consistency loss L. It was
composed of two losses and appears in a cyclic manner: the
first term is the under-sampling frequency domain loss Ly,
which is used to ensure that the difference between r[i] and
rgeli] is the smallest. Ly can be expressed as:

L¢(G) = MAE (r[i], rgelil) 3)

where r[i] is the acquired samples in the frequency domain,
then r[i] obtains Szr[i] through the IFR block, and finally,
the generator outputs the reconstructed image Sge[i]. rreli]
is the under-sampled reconstructed image obtained by Sgg[i]
through the FR block. MAE means mean-absolute error.
The second term L; is the MAE loss in image space, which
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FIGURE 3. Architecture of spatial attention and channel-wise attention. The white feature maps represent the initial feature maps, and the colored
feature maps represent the activated feature maps. The feature maps firstly activate the spatial attention and pass through the channel-wise attention

module, finally obtaining fully activated feature maps.

is used to ensure that Sgr[j] and Sgg[j] are as similar as
possible, L; can be expressed as:

Li(G) = MAE (Sgr[jl, SreljD “

where Sgrlj] is the GT image, Sge[j] is the reconstructed
image by the generator, and the input of the generator is
Szr[j], obtained by FR and IFR blocks. Therefore, L., can
be expressed as:

Lee(G) = Lr(G) + Li(G) &)

According to the generative adversarial loss (2) and cyclic
data consistency loss (5), the total loss function of the pro-
posed method is expressed as:

Lgrsca = Laav(G, D) + ALf(G) + nLi(G) (6)

where A and 7 are super-parameters that stabilize make Ly (G)
and L;(G). In the experiment, we fixed the values of A and 7,
as A = 1.0 and n = 10.0.

D. GENERATOR ARCHITECTURE

As shown in Figure 1(b), the generator of our method is
composed of two SCUNet modules. Each module consists
of long skip connected residual blocks, encoding blocks,
decoding blocks, and SCA. We used SCA after the decoding
block in the up-sampling process. As shown in Figure 2,
each encoding block and decoding block is composed of
two cascaded short-skip connection residual blocks. SCUNet
consists of four encoding blocks, four decoding blocks, and
a 2D convolution layer. Among them, the encoding block
is green, and the decoding block is blue. The 4D tensor is
used as input, with 2D convolution layer, filter size of 3 x 3,
and stride of 2. The corresponding encoder and decoder are
connected by a global long skip connection. Each local short
skip connection residual block is orange, which can be used
to increase the depth of the network. It is composed of three
convolutional layers (conv0, convl, and conv2) and one SCA
block. Among them, conv0 is a convolution with stride of 1,
filter size of 3 x 3. Conv1 and conv0 have the same stride and
filter size, but the number of feature maps is feature number/2.
The stride, filter size, and feature number of conv2 are the
same as those of conv0. The output of conv2 is used as the
input of the SCA block. The structure of the SCA block will
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be introduced in the following section. Each encoding block
adopts a down-sampling method, while each decoding block
adopts an up-sampling method. After each layer of decoding
blocks, a SCA block is used to extract the details of the image.
The input of each SCA block comes from the decoding block
of the same layer, and the output is used as the input of the
next block. After the last SCA block, a 2D convolution is
used, and stride is 1. In order to obtain the output image
with the same size of the input image, the same mode is
used in the convolution operation. The dual cascade generator
is applied, although one generator can also complete end-
to-end operations, i.e., from zero-filling MRI image to the
final reconstructed image. However, in some iterative meth-
ods, additional operations are required to substantiate these
findings. Therefore, similar to the recurrent neural network,
the double cascade generator can also be regarded as a recur-
rent network.

E. SPATIAL AND CHANNEL-WISE ATTENTION

The method based on self-attention [28] mechanism has
demonstrated that attention module can make the network
to extract the detailed information from the MR image and
reconstruct an image close to the GT image. Meanwhile,
the attention mechanism in GAN facilitates GAN to generate
images that fulfill the clinical medical standards. Previous
studies have shown [29]-[33] that channel-wise attention
in GAN can be used to reconstruct more details in MR
images than other methods without channel-wise attention.
However, the spatial attention has been neglected by these
approaches. The spatial attention can facilitate the accurate
location of effective information and enhances the learning
efficiency of the neural network, thereby ensuring that the
details in the MR image are not missed. Thus, according to
the SCA-CNN [26] and UCA [27], we added spatial atten-
tion and channel-wise attention to GAN and used SCA in
multiple modules. The structure diagram of SCA is illustrated
in Figure 3.

1) SPATIAL ATTENTION

First, all input feature maps are calculated the mean value
at the same position, which decreases the number of chan-
nels to one. Thus, the shape of initial feature maps is trans-
formed from WxHxC to WxHx1, where W is width, H is
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height. F; is the spatial visual feature of i-th position, where
i=[1,2,...,m] and m = W xH. Then, the feature maps are
passed to the attention module and the weights of spatial
visual features are randomly assigned at different positions
as Ws. The sigmoid activation function is applied to acquire
the spatial attention map. The final feature maps are obtained
by a skip connection. Thus, the spatial attention can be
expressed as follows:

Osa = sig (mat (Ws, Fs;) +Bs) @ F )

where mat represents the multiplication of matrix Wg and
matrix Fs;, ® represents the multiplication of the correspond-
ing elements in the two matrices, sig is the sigmoid activation
function, and By is the bias term.

2) CHANNEL-WISE ATTENTION

A global average pooling is first applied to the feature maps
obtained from ®gy4, and the results can be expressed as F¢;
(i=[1,2,...,c], c means the number of channels). Also, random
weights W¢ are assigned to different channels and sigmoid
activation function are adopted to obtain the channel-wise
attention map (1 x 1xC). Thus, the channel-wise attention
can be expressed as:

Osca = sig (mat (We, Fci) + Bc) ® Osa (8)

where B¢ is the bias term.

3) SPATIAL-CHANNEL ATTENTION
Fs and F¢ are both linear functions, Vg and W¢ can be
expressed as follows:

Ug = Fs (Osa, F) ©)
Ve = Fc (Osca, Ys) (10)

Therefore, S-C is expressed as:
A=T(F, Vs, ¥c) (11)

where A represents the final feature maps, and 7 represents
the process function, indicating that the feature map F obtains
the attention weight with respect to spatial attention and
channel-wise attention.

F. DISCRIMINATOR ARCHITECTURE

As shown in Figure 1(b), the discriminator D consists of six
layers. The middle four layers share the same structure of the
encoding block of generator G. The first layer is composed
of 2D convolution and Leaky ReLU layer, and the last layer
is 2D convolution layer. There are two different results of the
discriminator. One is D (Sg7) = 1 and the otheris D (Sgg) =
D (G (Szr)) = 0.

Ill. EXPERIMENT

A. MODEL TRAINING

We used tensorpack [34] for training, which is a visualization
toolkit for neural network training based on tensorflow [35].
The graphics processing unit (GPU) used for training and
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testing was NVIDIA Tesla V100 (4 cores, each with 16 GB
memory). The optimizer used the ADAM algorithm [36], [37]
for 300 epochs with learning rate le~*. The batch size is
100 and the total training time was about 6 h.

B. MRI DATASET

The brain datasets were obtained from Calgary Campinas
brain MR raw data repository [38], containing 35 partic-
ipants. 2500/3500 MRI brain slices were used for train-
ing, and the remaining were used for testing. The knee
datasets were obtained from Stanford Fully Sampled 3D FSE
Knees repository [39], containing 20 subjects. Among them,
1800/2000 slices were used for training, and the remaining
for testing. The matrix size of all the image were reshaped
to 256 x 256. All fully-sampled k-space data were retro-
spectively under-sampled using cartesian sampling with sam-
pling rate of 25%, 16.7%, and 12.5%. We also used another
two non-cartesian trajectory, spiral and radial undersampling
masks. Each mask includes three sampling rates, 30%, 20%,
and 10%.

C. EVALUATION METHOD

We compared the proposed method RSCA-GAN with
DAGAN, RefineGAN, and RCA-GAN under different sam-
pling rates. The RCA-GAN is modified on UCA [27], using
only channel-wise attention. The hyperparameters selection
of DAGAN [20] and RefineGAN [22] is based on the previ-
ous works. The PSNR, SSIM and NMSE values were used to
evaluate the performance of the reconstruction results. Mean-
while, the rank-sum test [40] method was used to test the
significant difference among each method. P<0.05 indicates
statistical significance.

IV. RESULTS

Figure 4 shows the brain reconstruction results of different
methods using the Cartesian under-sampling mask with AF
of 4x, 6, and 8 x. When the AF is 4 and 6, ZF has obvious
aliasing artifacts. Although DAGAN eliminates most of the
artifacts and displays clear brain structure, the error map still
shows blurring. The RefineGAN, RCA-GAN, and the pro-
posed RSCA-GAN can reconstruct brain images well. How-
ever, both the error map and the quantitative value indicates
that the RSCA-GAN shows the best performance. When
the AF is 8, ZF is extremely blurry. Meanwhile, the details
of the brain cannot be distinguished well in DAGAN.
However, RefineGAN removes the aliasing artifacts well
and shows acceptable reconstruction result. And RCA-GAN
shows better image quality than RefineGAN since it adopts
channel-wise attention. The error map indicates that the
proposed RSCA-GAN shows the best quantitative values and
sharper edge of grey matter in brain.

Figure 5 shows the knee reconstruction results of dif-
ferent methods using the Cartesian under-sampling mask
with AF of 4x, 6x, and 8x. When the AF is 4 and 6,
ZF presented obvious artifacts and could not distinguish the
detail structures of knee. The error map shows that there
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RefineGAN RCA-GAN RSCA-GAN

FIGURE 4. The brain reconstruction results of different methods using the Cartesian under-sampling mask with AF of (a) 4x, (b) 6x,
and (c) 8x. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, res ectlvely The 15t, ath, and 7th
rows show the reconstruction results, the 279, 5”' and 8" rows show the zoomed-in area and the 379, 6th, and 9t" rows show the
error maps for various reconstruction images and the corresponding under-sampling masks.
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RefineGAN RCA-GAN RSCA-GAN

FIGURE 5. The knee reconstruction results of different methods using the Cartesian under-sampling mask with AF of (a) 4x, (b) 6x,
and (c) 8x. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, respectively. The 15, 4th, and 7th
rows show the reconstruction results, the 279, 5th, and 8t rows show the zoomed-in area and the 379, 6th, and 9t rows show the
error maps for various reconstruction images and the corresponding under-sampling masks.
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(c) 10%

RefineGAN RCA-GAN RSCA-GAN

FIGURE 6. The brain reconstruction results of different methods using the radial under-sampling mask with sampling rates of (a) 30%, (b) 20%, and
(<) 10%. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, respectively. The 15¢, 379, and 5% rows show the
reconstruction results, the 219, 4th, and 6" rows show the error maps for various reconstruction images and the corresponding under-sampling masks.

still existed significant differences between DAGAN and GT.
The RefineGAN and RCA-GAN shows better results than
DAGAN. Moreover, as shown in the zoomed-in area, our
proposed RSCA-GAN shows the best results with the least
error, especially in the edge area of the knee. When the AF
is 8, the RSCA-GAN outperforms the other methods with
the highest PSNR and SSIM. Besides, as we can see from
the error maps, the RSCA-GAN restores more details such as
blood vessels.

Figure 6 and Figure 7 shows the brain reconstruction
results of different methods using the radial and spiral
under-sampling mask with sampling rates of 30%, 20%,
and 10%, respectively. As the sampling rate decreases,
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ZF displays increasingly obvious artifacts. Although the over-
all brain structure is recovered by DAGAN, the edge informa-
tion is still blurred. RefineGAN and RCA-GAN can recon-
struct the images well, but the reconstructed images are still
very noisy and some details are lost. When the sampling rate
is 10%, RSCA-GAN shows the best reconstruction results.
It can be seen from the error map that edge details of brain
are well recovered. Meanwhile, the PSNR and SSIM values
are significantly improved relative to the RCA-GAN.

Figure 8 and Figure 9 shows the knee reconstruction
results of different methods using the radial and spiral
under-sampling mask with sampling rates of 30%, 20%, and
10%, respectively. As the sampling rates decreases, aliasing
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(a) 30%y,

(b) 20%

(c) 10%

RefineGAN

RCA-GAN RSCA-GAN

FIGURE 7. The brain reconstruction results of different methods using the spiral under-sampling mask with sampling rates of (a) 30%, (b) 20%, and
(c) 10%. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, respectively. The 15t, 3r d, and 5t rows show the
reconstruction results, the 279, 4th, and 6t rows show the error maps for various reconstruction images and the corresponding under-sampling masks.

artifacts become increasingly apparent in the ZF. DAGAN
is able to recover most parts of the knee structure, but the
errormaps indicate that the reconstruction results still contain
residual artifacts. RefineGAN, RCA-GAN, and RSCA-GAN
all can obtain acceptable reconstruction results. However,
the reconstruction of RSCA-GAN is better in terms of details
and edges of the image. In addition, the lower the sampling
rate, the larger the difference among them.

Table 1 and Table 2 show the quantitative assessment of
PSNR, SSIM, and NMSE values (mean and standard devi-
ation) of brain and knee test images obtained with differ-
ent reconstruction methods under different sampling rates
with different masks, respectively. The quantitative param-
eters show that RSCA-GAN is significantly better than the
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other methods (P<0.05). Meanwhile, we found that the gap
between RSCA-GAN and other methods shows more obvious
as the sampling rate decreases.

V. DISCUSSION
The current study proved the feasibility of RSCA-GAN to
reconstruct highly under-sampled MRI using both Carte-
sian and non-Cartesian trajectories. The RSCA-GAN com-
bines the spatial attention, the channel-wise attention and
the residual U-net. In terms of all the quantitative metrics,
our proposed RSCA-GAN outperforms the DAGAN, Refine-
GAN, and RCA-GAN.

Previous studies [41], [42] have demonstrated that resid-
ual U-net could remove the aliasing artifacts and preserves
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(b) 20%

RefineGAN RCA-GAN RSCA-GAN

FIGURE 8. The knee reconstruction results of different methods using the radial under-sampling mask with sampling rates of (a) 30%, (b) 20%, and
() 10%. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, respectively. The 15¢, 3" d, and 5t rows show the
reconstruction results, the 277, 4", and 6! rows show the error maps for various reconstruction images and the corresponding under-sampling masks.

the image details well. The generator of our proposed
RSCA-GAN is a variant of residual U-net. The U-net [23]
model was first proposed to solve the problem of image
segmentation. The long skip connection transfers the use-
ful information of the input image to the up-sampling lay-
ers, which restore the loss of image details caused by the
down-sampling process. The spatial and channel-wise atten-
tion used in our method also utilized long skip connections to
fine-tune the output at each stage. This long skip connection
is similar to the residual network, which directly passes the
input image information to the output through a short skip
connection, preventing the loss of image details. The network
only needs to learn the difference between the output and
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the input image, thereby simplifying the difficulty of network
learning. In addition, the residual network also could increase
the depth of the network.

Our main contribution is to add spatial and channel-wise
attention to the residual U-net and refine the framework of
the generator. Each encoding and decoding block consist
of two short skip connection residual blocks with spatial
and channel-wise attention. The attention mechanism is to
make the network with human characteristics, so that it can
focus on the useful information and ignore other useless
information. And the results proved that the RSCA-GAN
can better restore the image details. The UCA framework
[27] only applied channel-wise attention in the residual U-net
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RefineGAN

RCA-GAN RSCA-GAN

FIGURE 9. The knee reconstruction results of different methods using the spiral under-sampling mask with sampling rates of (a) 30%, (b) 20%, and
(c) 10%. From left to right, the images are GT, ZF, DAGAN, RefineGAN, RCA-GAN, and RSCA-GAN, respectively. The 15, 379, and 5 rows show the
reconstruction results, the 279, 4th, and 6" rows show the error maps for various reconstruction images and the corresponding under-sampling masks.

for MRI reconstruction. Zhu et al. [43] showed that spatial
attention can be applied to GAN and reconstruct desired
MR images. However, the study did not use channel-wise
attention. Previous study [26] has demonstrated the feasibility
of applying spatial attention and channel-wise attention to
CNN for natural image captioning. Thus, inspired by the pre-
vious study [44], our proposed RSCA-GAN also adds spatial
attention before channel-wise attention in the residual U-net.
The spatial attention mechanism [45] enable the network to
learn how to pay attention to useful information in image
space. Severe aliasing artifacts will appear when MR images
suffer from highly under-sampling, but some clear structure
is still retained in the images. Spatial attention can make

VOLUME 9, 2021

the network to focus on the useful information, so that the
network can restore the image details more accurate. The
role of the channel attention mechanism is to assign different
weights to each channel, allowing the network to focus on the
important features and suppress the unimportant ones.

We applied the channel-wise attention after spatial atten-
tion in our proposed RSCA-GAN. Thus, it can be deduced
that the neural network first obtains the information of the
position in the feature maps through spatial attention mod-
ule. And then, the effective information of that position is
passed to channel attention module. However, if there is no
spatial attention module before the channel-wise attention
module, the network cannot accurately locate the position of
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TABLE 1. Quantitative assessment of PSNR, SSIM, and NMSE (x10~7) values (mean and standard deviation) of brain test images obtained with different
reconstruction methods under different sampling rates with different masks. SR: sampling rate.

Mask SR Metric ZF DAGAN RefineGAN RCA-GAN RSCA-GAN
PSNR 25.18(0.68) 26.87(2.30) 32.73(0.94) 33.06(1.01) 33.14(1.02)
25% SSIM 0.72(0.02) 0.85(0.01) 0.90(0.01) 0.91(0.01) 0.91(0.01)
NMSE 7.33(0.95) 5.44(2.51) 1.31(0.33) 1.22(0.34) 1.20(0.32)
PSNR 24.47(0.67) 25.16(1.62) 30.77(0.84) 31.02(0.87) 31.11(0.83)
cartesian 16.7% SSIM 0.70(0.02) 0.77(0.01) 0.87(0.02) 0.88(0.01) 0.89(0.01)
NMSE 8.63(1.11) 7.62(2.34) 1.97(0.44) 1.91(0.43) 1.89(0.40)
PSNR 23.09(0.68) 24.02(1.36) 28.32(0.80) 29.47(0.83) 30.49(0.83)
12.5% SSIM 0.69(0.02) 0.73(0.02) 0.84(0.01) 0.85(0.01) 0.86(0.01)
NMSE 12.13(9.42) 9.76(2.38) 5.24(2.83) 4.51(2.75) 3.40(2.41)
PSNR 28.83(0.72) 28.09(2.33) 35.21(1.05) 35.22(1.09) 36.98(1.06)
30% SSIM 0.73(0.02) 0.82(0.02) 0.92(0.01) 0.92(0.01) 0.93(0.01)
NMSE 3.16(0.41) 3.31(2.49) 0.74(0.18) 0.74(0.19) 0.67(0.18)
PSNR 26.47(0.64) 26.96(1.90) 32.83(0.94) 33.07(0.95) 33.95(0.93)
radial 20% SSIM 0.65(0.02) 0.78(0.02) 0.89(0.02) 0.90(0.01) 0.91(0.01)
NMSE 5.43(0.66) 5.47(2.41) 1.27(0.25) 1.20(0.49) 1.13(0.26)
PSNR 23.14(0.57) 24.15(1.32) 28.23(0.87) 29.22(0.85) 30.19(0.84)
10% SSIM 0.52(0.02) 0.71(0.03) 0.82(0.02) 0.83(0.02) 0.84(0.02)
NMSE 11.61(1.19) 9.45(2.23) 3.13(5.72) 2.94(5.45) 2.76(5.31)
PSNR 29.55(0.71) 29.87(2.79) 38.61(0.82) 38.76(0.90) 39.84(0.86)
30% SSIM 0.83(0.01) 0.87(0.01) 0.95(0.00) 0.95(0.00) 0.96(0.00)
NMSE 2.68(0.35) 2.55(2.55) 0.34(0.06) 0.32(0.06) 0.21(0.07)
PSNR 26.62(0.63) 28.87(2.29) 35.11(0.85) 35.66(0.87) 36.68(0.84)
spiral 20% SSIM 0.73(0.01) 0.80(0.04) 0.92(0.01) 0.92(0.01) 0.93(0.01)
NMSE 5.26(0.61) 4.34(2.51) 0.69(0.14) 0.66(0.13) 0.59(0.13)
PSNR 22.96(0.57) 25.09(1.59) 30.91(0.84) 31.95(0.92) 32.09(0.89)
10% SSIM 0.60(0.02) 0.76(0.03) 0.86(0.02) 0.88(0.01) 0.89(0.01)
NMSE 12.16(1.14) 7.73(2.33) 1.97(0.36) 1.56(0.36) 1.50(0.35)

Bold, the best results.

TABLE 2. Quantitative assessment of PSNR, SSIM, and NMSE (x10~7) values (mean and standard deviation) of knee test images obtained with different
reconstruction methods under different sampling rates with different masks. SR: sampling rate.

Mask SR Metric ZF DAGAN RefineGAN RCA-GAN RSCA-GAN
PSNR 27.88(1.70) 2731(545) 36.83(1.33) 37.00(1.12) 37.07(1.12)
25% SSIM 0.76(0.03) 0.86(0.06) 0.91(0.01) 0.91(0.01) 0.92(0.01)
NMSE 8.21(2.80) 8.61(4.18) 1.25(0.03) 1.21(0.03) 1.19(0.02)
PSNR 27.36(1.63) 26.85(5.28) 34.73(1.25) 34.95(1.16) 35.28(1.27)
cartesian 16.7% SSIM 0.74(0.03) 0.80(0.07) 0.88(0.02) 0.88(0.01) 0.89(0.02)
NMSE 9.19(2.89) 9.68(4.29) 2.06(0.06) 1.96(0.06) 1.80(0.04)
PSNR 28.11(1.29) 29.85(1.57) 30.81(1.16) 31.65(1.27) 32.08(1.12)
12.5% SSIM 0.74(0.04) 0.81(0.02) 0.81(0.02) 0.82(0.03) 0.83(0.02)
NMSE 8.10(1.82) 5.53(1.41) 4.58(1.84) 3.68(1.80) 3.25(1.28)
PSNR 32.69(1.13) 35.02(1.39) 36.21(1.29) 36.57(1.24) 37.39(1.20)
30% SSIM 0.80(0.03) 0.87(0.02) 0.89(0.02) 0.89(0.02) 0.90(0.02)
NMSE 2.81(0.65) 2.06(0.44) 1.24(0.25) 1.19(0.24) 1.09(0.23)
PSNR 30.77(1.15) 33.69(1.51) 34.72(1.30) 34.91(1.14) 35.83(1.20)
radial 20% SSIM 0.75(0.03) 0.84(0.02) 0.86(0.02) 0.86(0.01) 0.87(0.01)
NMSE 4.38(0.98) 2.84(0.86) 1.77(0.41) 1.69(0.40) 1.62(0.41)
PSNR 27.95(1.24) 30.38(1.61) 31.89(1.04) 31.95(1.08) 32.82(1.04)
10% SSIM 0.68(0.04) 0.79(0.03) 0.81(0.02) 0.81(0.02) 0.82(0.02)
NMSE 8.36(1.74) 4.13(2.70) 3.42(1.00) 3.35(1.07) 3.17(0.92)
PSNR 33.48(1.12) 36.19(1.35) 38.49(1.33) 38.79(1.41) 39.07(1.30)
30% SSIM 0.86(0.02) 0.90(0.01) 0.92(0.01) 0.92(0.01) 0.93(0.01)
NMSE 2.34(0.52) 1.07(0.31) 0.74(0.15) 0.72(0.15) 0.68(0.17)
PSNR 30.97(1.14) 34.88(1.39) 36.75(1.27) 36.83(1.39) 37.81(1.30)
spiral 20% SSIM 0.81(0.03) 0.88(0.02) 0.90(0.02) 0.90(0.02) 0.91(0.02)
NMSE 4.16(0.88) 1.78(0.68) 1.10(0.22) 1.04(0.24) 0.98(0.22)
PSNR 27.84(1.20) 32.12(1.46) 34.42(1.22) 34.64(1.44) 35.14(1.33)
10% SSIM 0.73(0.03) 0.82(0.02) 0.85(0.02) 0.85(0.03) 0.86(0.02)
NMSE 8.55(1.64) 3.45(2.23) 1.88(0.42) 1.86(0.43) 1.81(0.47)

Bold, the best results.

the useful information. Although it is also possible to assign
channel attention weights by learning all spatial information,
the learning efficiency of neural networks is low, and some
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image details will be missed. Therefore, we used spatial atten-
tion before channel-wise to resolve the problem of partial
image detail loss caused by allocating weights in all spaces.
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Therefore, consistent with the previous findings [26], [45],
the RSCA-GAN suggested better reconstruction results than
RCA-GAN, which means that using channel-wise attention
after spatial attention can obtain higher image quality than
only using channel-wise attention.

RefineGAN has demonstrated that better reconstructed
images will be obtained using two cascaded generators com-
pared to using only one generator. Therefore, our method
also adopts two residual U-nets with attention modules as
the generator of the network, which deepens the depth of the
generator to extract more image details. Besides, the results
show that RSCA-GAN can obtain the optimal reconstruction
regardless of whether the sampling mask is Cartesian or non-
Cartesian. This indicates that the reconstruction process is
more similar to image denoising and is independent of the
image contents.

Nevertheless, our study has some limitations. First,
the input of the network is a single-channel image, while
the images obtained in clinical scanners are multi-channel.
Thus, it is necessary to synthesize the multi-channel MR
image into a single-channel, which increases the workload.
In the future study, we aim to change the input of the net-
work from single-channel to multi-channel, which is con-
sistent with clinical routine requirement. Second, the net-
work uses supervised learning during network training.
Thus, we should use an unsupervised training method in
the network when it is difficult to obtain fully-sampled
data.

VI. CONCLUSION

In this study, we proposed a modified generative adversarial
network called RSCA-GAN by combining spatial and
channel-wise attention for CS-MRI reconstruction. This
method can reconstruct MR images under high accel-
eration factors with both Cartesian and non-Cartesian
under-sampling masks. The results demonstrated that
RSCA-GAN outperforms the other approaches for all the
quantitative metrics. Thus, the application of RSCA-GAN in
clinical practice is promising.
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