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ABSTRACT Discriminative correlation filter (DCF) has achieved promising performance in visual tracking
for its high efficiency and high accuracy. However, DCF trackers usually suffer from some challenges, such
as boundary effects and appearance changes. In this paper, we propose a novel correlation tracking method
via spatial-temporal constraints and structured sparse regularization. Firstly, we introduce the background-
aware selection strategy to extract real negative examples, and penalize the filter coefficients close to
the boundary locations for spatial protection, both of which can alleviate the boundary effects. Secondly,
we restrict the filters with structured sparse regularization to handle the local appearance changes, and exploit
temporal consistent constraint on the filters to address the global appearance changes. Finally, we employ the
alternative direction method of multipliers to optimize our correlation tracking model. In our optimization
framework, we combine grayscale, color names, histogram of orientation gradient with deep features for
appearance learning to improve the discrimination. Meanwhile, we penalize spatial constraint and structured
sparse regularization alternatively based on occlusion detection to enhance processing efficiency. The
qualitative and quantitative experiments are conducted on the OTB dataset. Experimental results demonstrate
that the proposed tracker has better performance than other state-of-the-art trackers.

INDEX TERMS Object tracking, correlation filter, spatial-temporal constraints, structured sparse regular-
ization, deep feature.

I. INTRODUCTION
Visual tracking is essentially a motion estimation problem.
As a hot topic in the computer vision field, it plays an impor-
tant role in many realistic applications, such as video surveil-
lance, autonomous driving, and human-computer interaction.
However, visual tracking is still a challenging task in some
complicated scenarios, as the target undergoes deformation,
occlusion, rotation, illumination variation, and background
clutter.

Discriminative correlation filter (DCF) based trackers have
received significant attention for the competitive performance
in recent benchmarks. The core idea of DCF tracking is
to construct cyclically shifted samples, so that fast Fourier
transform in the frequency domain can be used to accelerate
the tracking speed. Many advanced tracking methods based
on DCF have been developed in recent years. Zheng et al. [1]
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develop a multi-task deep dual correlation filters based
method for visual tracking, which takes full advantage of the
multi-level features of deep networks. Li et al. [2] present an
adaptive multiple contexts correlation tracking framework,
which utilizes a sigmoid spatial weight map to control the
influence of local contexts. Yuan et al. [3] introduce a metric
learning model in the correlation tracking framework to solve
the target scale problem. Wang et al. [4] jointly compress
and transfer CNN models within a knowledge distillation
framework for real-time correlation tracking. Yuan et al. [5]
present a self-supervised learning based tracker in a deep
correlation framework, which can improve the representa-
tional ability. Moorthy et al. [6] estimate the target location
based on the distribution of correlation response. Fan et al. [7]
learn the correlation filter on a larger search region for
robust tracking without the distraction of the interference
region. Yuan et al. [8] propose a particle filter redetection
based correlation tracker, which can redetect the unreliable
object location. Yuan et al. [9] learn temporal regularized
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correlation filters to adapt to the change of the tracking
scenes. Huang et al. [10] propose a constrained multi-kernel
correlation tracking filter, which uses spatial constraints to
address the unwanted boundary effects.

DCF trackers usually suffer from some undesired issues,
including boundary effects, drastic appearance changes of the
target object, to name a few [11]–[13]. One issue in DCF
based trackers is the boundary effects caused by cyclically
shifted sampling. The artificial negative examples can affect
the discriminative ability of the learnedmodel, and reduce the
robustness of correlation tracking. To avoid the risk of track-
ing drift, related works have been focused on by researchers.
Bolme et al. [14] weight the image by a cosine window,
so that the pixel values near the edge gradually reduce to
zero. Ji and Wang [15] exploit spatial prior information to
penalize correlation filter coefficients, which can obtain a
larger set of negative samples to learn a more discriminative
model. Feng et al. [16] consider tracking reliability and object
saliency in the energy function of DCF, which reflects the
spatial-temporal information effectively. Galoogahi et al. [17]
extract real negative examples from the background to learn
filters, which demonstrates superior accuracy. Li et al. [18]
incorporate temporal and spatial regularization into DCF
tracking, and instead of the single sample with multiple
training samples. Danelljan et al. [19] penalize correlation
filters coefficients with a spatial regularization component to
address the effects of the periodic assumption.

Drastic appearance changes of the target object are the
main challenge for robust tracking. The abrupt appearance
changes due to deformation, partial and full occlusion,
motion blur, in-plane and out-of-plane rotation, scale vari-
ation, and illumination variation can affect the stability of
object tracking. Great progress has been made in recent years
in solving these problems. Xu et al. [20] present a temporal
consistency preserving model to keep the global structure
in the manifold space and preserve appearance diversity.
Sun et al. [21] introduce the ROI pooled features into the cor-
relation tracking, which can offer robust target representation.
Sui et al. [22] leverage anisotropic filter response to replace
Gaussian-shaped response in the tracking model, which can
adapt the abrupt appearance changes. Huang et al. [23]
restrict the rate of alteration in response maps to suppress
the aberrances happening. Dai et al. [24] propose an adaptive
spatial regularization scheme to respond to the appearance
variations reliably.

The existing correlation trackers have achieved a lot in
dealing with the challenges of boundary effects and appear-
ance changes, but few trackers consider both global and local
appearance changes of the target simultaneously. To solve this
problem, we present a spatial-temporal constraints and struc-
tured sparse regularization based formulation for correlation
tracking. Comparative evaluations are performed on the OTB
benchmark. The experimental results validate the robustness
and effectiveness of our tracker against some state-of-the-art
DCF trackers.

The main contributions of this work include:

• To alleviate the boundary effects, we introduce the
background-aware selection strategy to extract real neg-
ative samples, so that the tracking process can apply real
foreground and background information. Furthermore,
we penalize the filter coefficients close to the boundary
locations for spatial protection.

• To learn the appearance changes of the target object,
we restrict the filters with structured sparse regulariza-
tion to cope with the local appearance changes (e.g.,
due to deformation, occlusion), and exploit temporal
consistent constraint on the filters to tackle the global
appearance changes (e.g., due to illumination variation,
motion blur).

• Our correlation tracker can be optimized in the Fourier
domain via the alternative direction method of multipli-
ers (ADMM). To strengthen the discrimination ability,
we combine grayscale, color names (CN), histogram of
orientation gradient (HOG) with deep CNN features for
tracking training. To enhance the processing efficiency,
we penalize spatial constraint and structured sparse reg-
ularization alternatively based on occlusion detection.

The remainder of this paper is organized as follows:
Section II reviews the related correlation trackers, and gives
a detailed description of our proposed tracking model.
In Section III, the implementation details are presented. The
qualitative and quantitative results are depicted and ana-
lyzed in Section IV. Finally, the conclusion is addressed in
section V.

II. SPATIAL-TEMPORAL CONSTRAINTS AND
STRUCTURED SPARSE REGULARIZATION FOR DCF
TRACKING
A. ORIGINAL MULTI-CHANNEL DCF TRACKING MODEL
The original multi-channel DCF tracker [25] can be obtained
by optimizing the following formula,

argmin
w

1
2

∥∥∥∥∥y−
D∑
d=1

xd ∗ wd
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2

2

+
λ

2

D∑
d=1

∥∥∥wd∥∥∥2
2
, (1)

where y ∈ RN is the desired Gaussian-shaped response, xd ∈
RN and wd ∈ RN denote the feature map and the filter in the
d-th channel, D is the dimension of feature channels, λ is a
regularization parameter, and ∗ denotes the spatial correlation
operator.

The original multi-channel DCF tracker suffers from
unexpected spatial boundary effects caused by cyclically
shifted sampling. To solve this problem, the representative
approaches are BACF [17] and STRCF [18].

B. REVISIT BACF
BACF learns the multi-channel DCF by minimizing the opti-
mization problem,

argmin
w

1
2

∥∥∥∥∥y−
D∑
d=1

Bxd ∗ wd
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2

2

+
λ
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2
, (2)
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where B ∈ RM×N is a binary cropping operator used to select
the midM elements of the feature sample. Usually,M � N .
BACF applies the real foreground and background samples

rather than cyclically shifted samples for DCF learning so as
to resolve the boundary effects.

C. REVISIT STRCF
STRCF learns the optimal filters by minimizing the cost
function,

argmin
w

1
2

∥∥∥∥∥
D∑
d=1

xdt ∗ w
d
− y
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2

2

+
1
2

D∑
d=1

∥∥∥f • wd∥∥∥2
2

+
λ

2
‖w− wt−1‖2 , (3)

where f is the spatial regularization matrix, wt−1 denotes
the correlation filters in the (t − 1)-th frame. In Eq.3, the
last two terms penalize the spatial regularization and the
temporal regularization respectively. In addition, to inhibit
the boundary effects, STRCF can also alleviate the impact
of occlusion by keeping the DCFs close to the former ones.

D. OUR CORRELATION TRACKING MODEL
Motivated by BACF and STRCF, we present a spatial-
temporal constraints and structured sparse regularization
based correlation tracking model as follows:

argmin
w

1
2
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D∑
d=1

Bxdt ∗ w
d
− y

∥∥∥∥∥
2

2

+
η

2
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2

+
λ

2
‖w− wt−1‖2 + (1− η)

D∑
d=1

∥∥∥wd∥∥∥
2,1
, (4)

where ‖·‖2,1 denotes the L2,1 norm, which carries out the
L2-norm on the filters firstly, then calculates the L1-norm to
realize structured joint sparse. η is a binary parameter,

η =

{
0, if PSR ≤ σ
1, otherwise.

(5)

The value η is set based on the Peak to Sidelobe Ratio
(PSR) of the response map, σ is an experiential threshold.

In model (4), the first three terms are based on BACF and
STRCF, which depict convolution error, spatial constraint,
and temporal consistency, respectively. The last term is our
novel idea which represents structured sparse regularization.

In this optimization, the first term describes the squared
error between the actual output and the desired Gaussian-
shaped response. We utilize the BACF method to extract real
negative examples densely from the background, and then
the tracking process can apply the true foreground and back-
ground information. This can help to acquire more reliable
filter coefficients and alleviate the boundary effects.

The second term employs the STRCF method to restrain
the filters with spatial regularization weights, which makes
the filters to learn more weights for the reliable features of the
central regions, and penalize the unreliable features close to

the boundary regions. This constraint strategy can relieve the
boundary effects issue effectively via spatial regularization.

The third term introduces the temporal consistency con-
straint on the filters. Based on the STRCF method, we con-
sider the historical information of the target appearance, and
force the filters to change smoothly across successive frames.
This penalty item profits to reduce redundant uncorrelated
information, thereby can adapt the global appearance changes
(e.g., due to illumination variation, motion blur) of the target
object.

The last term restricts the filters with structured sparse
regularization. The standard L1 sparse regularization of the
filters can manage the major local appearance changes
of the target object. However, variable selection based on
L1-norm can only be carried out for a single variable, because
the correlation between continuous variables cannot be con-
sidered. Therefore, we utilize L2,1-norm to impose a struc-
tured sparse regularization on the filters, which can exploit
the relationship between the filters jointly through all the
feature channels. This joint regularization can avoid small and
dense errors, which is more effective to cope with the local
appearance changes (e.g., due to deformation, occlusion) of
the target object.

To enhance the tracking efficiency, we penalize spatial con-
straint (the second term) and structured sparse regularization
(the last term) alternatively based on occlusion detection.
Here, we utilize the PSR value of the response map to check
for occlusion.

III. OPTIMIZATION
The model in Eq. 4 is a convex optimization problem.
The optimal global solution can be found via the ADMM.
We introduce a slack variable g, and then the model
can be expressed equivalently in an augmented Lagrange
formulation,

L (f , g, s) =
1
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∥∥∥∥∥
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2
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2
‖w− wt−1‖2 ,

s.t. w = g (6)

where s,γ are the Lagrange vector and penalty factor.
To integrate the equality constraint into the formulation,
we introduce h = s/γ . Then, the objective function can be
reformulated as follows:

L (f , g, h) =
1
2
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D∑
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Bxdt ∗ w
d
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+
γ

2

D∑
d=1

∥∥∥wd − gd + hd∥∥∥2 + λ
2
‖w− wt−1‖2 .

(7)

This formulation can be decomposed into some subprob-
lems. Then, the ADMM can solve these subproblems alter-
nately as follows,

w(i+1)=argmin
w

∥∥∥∥∥
D∑
d=1

Bxdt ∗ w
d
− y

∥∥∥∥∥
2

2

+γ ‖w− g+ h‖2

+ λ ‖w− wt−1‖2

if η = 1

g(i+1) = argmin
g

D∑
d=1

∥∥∥f · gd∥∥∥2
2
+ γ ‖w− g+ h‖2

elseif η = 0

g(i+1) = argmin
g

D∑
d=1

∥∥∥gd∥∥∥
2,1
+
γ

2
‖w− g+ h‖2

end
h(i+1) = h(i) + w(i+1) − g(i+1).

(8)

Next, we introduce the solution of each subproblem in
detail.
Subproblem w: To enhance computing efficiency, we learn

the correlation filters in the frequency domain. Therefore,
the subproblem w need to be rewritten based on Parseval’s
theorem as follows,

ŵd = argmin
ŵd

∥∥∥Bx̂dt � ŵd − ŷ∥∥∥22 + γ ∥∥∥ŵ− ĝ+ ĥ∥∥∥2
+ λ

∥∥ŵ− ŵt−1∥∥2 . (9)

The superscript ˆ represents the discrete Fourier transfor-
mation (DFT), the operator � denotes element-wise multi-
plication. This minimization problem requires to be solved
for each channel respectively. The closed-form solution can
be obtained by setting the derivative of Eq. 9 to zero, then

ŵd =
x̂dt � ŷ

∗
+ λŵt−1 + γ ĝ− ĥ

x̂dt � x̂
d∗
t + λ+ γ

, (10)

where superscript ∗ denotes conjugate transpose operation.
Finally, w can be obtained by the inverse DFT.
Subproblem g: To update the slack variable g, we firstly

perform occlusion detection based on the PSR value of the
response map.

If there’s no occlusion, we set the value η = 1 to enhance
the spatial constraint. That is to solve the second sub-equation
in Eq.(8). The solution g can be calculated as,

g = (FTF + γ I )−1(γw+ γ h), (11)

where F is constituted by jointing D diagonal matrices
Diag(f ).

FIGURE 1. Qualitative results on three sequences with deformation.

If there is occlusion, we set the value η = 0 to perform the
structured sparse regularization as the third sub-equation in
Eq. (8), which can be separated for each spatial feature,

gj = argmin
gj

∥∥gj∥∥2,1 + γ2 ∥∥wj − gj + hj∥∥2 (12)

Then, the solution g can be computed by

g = max
(
0, 1−

1
γ ‖f + h‖2

)
(f + h). (13)

Updating γ : The penalty parameter γ is updated by

γ (i+1)
= min(γmax, ργ (i)), (14)

where γmax is the maximum value of γ , ρ denotes the scale
factor. ρ > 1 can accelerate the convergence.
Complexity Analysis: The subproblem w requires perform-

ing DFT and inverse DFT operation in O(DMN log(MN ))
complexity. For the subproblem g, the computational cost for
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FIGURE 2. Qualitative results on four sequences with rotation.

the spatial constraint is O(DMN ) when there’s no occlusion,
the computational cost for the structured sparse regularization
by element-wise operation is O(1) when there’s occlusion.
The overall complexity of our optimization framework is
O(KDMN log(MN )) where K represents the maximum num-
ber of iterations.

FIGURE 3. Qualitative results on three sequences with occlusion.

IV. EXPERIMENTS
On the OTB benchmark, our tracker is compared with 9 state-
of-the-art trackers including STRCF [18], SRDCF [19],
LADCF [20], RPCF [21], MCPF [26], SITUP [27],
LMCF [28], SAMF-AT [29], and CSR-DCF [30]. The source
codes and the results of these trackers are provided pub-
licly. The experiments are conducted on some challeng-
ing videos (basketball, couple, panda, biker, dragonbaby,
kitesurf, skater, bird2, coke, and rubik). These videos are
classified according to their main challenging factors includ-
ing deformation, rotation, and occlusion, which can lead to
global or local appearance changes of the tracked object
respectively. We test our Matlab implementation on a PC
machine with an Intel Core i5 running at 2.40GHz. The track-
ing speed of our tracker is listed in Table 1. The qualitative
and quantitative results show the superior effectiveness and
robustness of our tracker.
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FIGURE 4. Performance in precision over sequences with deformation, rotation and occlusion.
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FIGURE 4. (Continued.) Performance in precision over sequences with deformation, rotation and occlusion.

TABLE 1. Tracking speed of our tracker.

A. IMPLEMENTATION DETAILS
1) FEATURE EXTRACTION
To enhance the discrimination of our correlation tracker,
we combine hand-crafted features (grayscale features,
31-channel HOG features, 10-channel CN features) with
deep CNN features for object representation. Then, the
multi-channel features are weighted by a cosine window to
eliminate the discontinuity from the cyclic shifts.

2) PARAMETER SELECTION
We set the regularization parameter as λ = 15, experiential
threshold as σ = 20. As for the ADMM, the maximum
number of iterations is set to 2, the number of scales and
scale step is set to 5 and 1.0. The initial penalty factor γ (0),
maximum penalty factor γmax, and scale factor ρ are set to 1,
0.1 and 10 respectively.

B. QUALITATIVE RESULTS
Figures 1-3 present the qualitative tracking results of the
compared trackers on 10 benchmark videos. We sort the
results under the main challenging factors in the videos.

1) DEFORMATION
In the basketball sequence, the man undergoes deforma-
tion, background clutters, out-of-plane rotation, and illu-
mination variation. Figure 1(a) depicts some representative
results. The target scales obtained by STRCF, SRDCF, SITUP
and SAMF-AT trackers have different degrees of deviation
(e.g., #320 and #604). Furthermore, the target bounding
boxes estimated by STRCF and SAMF-AT trackers deviate
from the target to some extent. The couple sequence con-
tains scenes with deformation, background clutters, and fast
motion. Figure 1(b) shows that the results of SITUP, LMCF,

MCPF and SAMF-AT trackers drift away from the couple
in some moments, such as around #95. The panda sequence
suffers from deformation, scale variation, and low resolution.
Figure 1(c) reports that the results of STRCF, SRDCF, SITUP,
LMCF and SAMF-AT trackers drift to the other areas around
#700 and #980. All targets in these three sequences experi-
ence global appearance changes. For these challenges, our
tracker exploits temporal consistent constraint on the filters to
address the problem. We can complete the tracking success-
fully, and obviously outperform most of the other trackers.

2) ROTATION
In the biker sequence, the target face undergoes out-of-plane
rotation, motion blur, and out-of-view simultaneously.
Figure 2(a) presents some representative results. Most track-
ers cannot locate the object effectively when there is both
out-of-plane rotation and motion blur (e.g., #70), and also
cannot accomplish the tracking task successfully when the
target face is out of view (e.g., #85 and #142) except for
RPCF, MCPF, and our trackers. The dragonbaby sequence
involves in-plane rotation, out-of-plane rotation, out-of-view,
and motion blur. In Figure 2(b), we can see that the tar-
get baby has strong appearance variations when he moves.
SRDCF, LMCF and CSR-DCF trackers cannot overcome the
challenge for out-of-view around #28. In addition, STRCF
and SITUP trackers cannot handle out-of-plane rotation
and motion blur simultaneously (e.g., #49). In the kitesurf
sequence, the sportsman suffers from out-of-plane rota-
tion, in-plane rotation, and illumination variation. As shown
in Figure 2(c), STRCF, SITUP, LMCF, and SAMF-AT track-
ers lose the object under drastic out-of-plane rotation (e.g.,
#59, #66, and #83). In the skater sequence, the skater does
frequent in-plane rotation and out-of-plane rotation as shown
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TABLE 2. CLE of the trackers.

TABLE 3. OS rate of the trackers (%).

in Figure 2(d). LMCF and SAMF-AT trackers drift some-
times, but can retrace the object finally. All targets in these
sequences go through abrupt appearance changes. For these
challenges, RPCF and our trackers can achieve favorable
results. RPCF introduces the ROI pooled features to offer
robust target representation. Our tracker penalizes the appear-
ance information via spatial constraint strategy to overcome
the effect.

3) OCCLUSION
In the bird2 sequence, the fast-moving target not only suffers
from frequent occlusion, but also has self-induced appear-
ance changes. Figure 3(a) gives some representative results.
STRCF, LADCF, SITUP, and SAMF-AT trackers lost the
bird and track the shelter in turn (e.g. #73, #90). Further-
more, LMCF tracker cannot detect the target as it moves
and turns. In the coke sequence, the coke bottle undergoes
occlusion, illumination variation, and fast motion as shown
in Figure 3(b). Most of the trackers can detect the target
robustly, whereas the SRDCF tracker drifts off the object after

occlusion (e.g. #291). Moreover, the target scales acquired
by MCPF tracker have deviation (e.g., #252 and #291).
In the rubik sequence, the rubik undergoes occlusion, scale
variation and rotation as shown in Figure 3(c). When these
challenging factors exist simultaneously, most of the trackers
cannot acquire the target effectively except for RPCF, SITUP,
and ours (e.g. #1997). In these sequences, our tracker can
successfully track the target under occlusion mainly due to
the structured sparse regularization.

C. QUANTITATIVE RESULTS
The tracking performance is evaluated quantitatively under
two metrics: precision and success.

The precision is measured by the center location error
(CLE), which is computed as the Euclidean distance between
the center of the predicted tracked object and the ground
truth bounding box. Figure 4 depicts the CLE curve for
different trackers over sequences with deformation, rotation
and occlusion respectively. By comparison, we can conclude
that our tracker outperforms SRDCF, SITUP, and SAMF-AT
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FIGURE 5. Performance in success over sequences with deformation, rotation and occlusion.
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FIGURE 5. (Continued.) Performance in success over sequences with deformation, rotation and occlusion.

trackers in dealing with deformation, outperforms STRCF,
SRDCF, SITUP, LMCF and SAMF-AT trackers in dealing
with rotation, and outperforms STRCF, SRDCF, LMCF, and
SAMF-AT trackers in dealing with occlusion.

The success is measured by the overlap rate (OR), which
is defined as

OR =
area(ROIT ∩ ROIG)
area(ROIT ∪ ROIG)

, (15)

where ROIT and ROIG denote the areas of the tracked bound-
ing box and the groundtruth box, area(·) denotes the area
of the box in pixels, ∩ and ∪ denote intersection and union
operations of boxes. The success rate is the percentage of
frames where OR value exceeds the specified threshold. Usu-
ally, overlap threshold is set to 0.5. Figure 5 demonstrates
the success plot for the compared trackers. The results tell us
that our tracker has the superior performance over STRCF,
SRDCF, SITUP, SAMF-AT, and CSR-DCF trackers when
facing deformation challenge, surpasses STRCF, SRDCF,
SITUP, LMCF, SAMF-AT, and CSR-DCF trackers when
facing rotation challenge, and surpasses STRCF, SRDCF,
SITUP, LMCF, and CSR-DCF trackers when facing occlu-
sion challenge.

The detailed quantitative comparison results are presented
in Table 2 and Table 3. The best and the second best results
for the metric are marked in bold-face, and the last row
lists the average tracking performance of the trackers. For
CLE, the smaller the result, the more precise the tracker is.
However, in terms of overlap success (OS) rate, the higher
the value, the more successful the tracking. From the results,
it can be seen that our tracker basically obtains the best
or the second best performance in the light of both pre-
cision and success. For the average performance, the top
3 trackers are our tracker with 9.1 in precision and 67.2%
in success, RPCF with 9.9 in precision and 64.2% in success,
MCPF with 15.9 in precision and 61.4% in success. There-
fore, it is reasonable to conclude that our tracker is more
robust to above challenges than many other state-of-the-art
trackers.

V. CONCLUSION
In this paper, we develop a novel correlation tracking algo-
rithm based on spatial-temporal constraints and structured
sparse regularization. Our tracker involves several key techni-
cal elements as follows. We introduce the background-aware
selection strategy to extract real negative examples from
background, and learn more reliable features in central
regions via weighted spatial constraint, which all alleviate
the boundary effects problem. Furthermore, we constrain the
filters with structured sparse regularization to cope with
the local appearance changes, and employ temporal consis-
tent constraint on the filters to adapt the global appearance
changes. Finally, we utilize the ADMM technique in the
Fourier domain for online tracking optimization. To enhance
the tracking efficiency, we penalize spatial constraint and
structured sparse regularization alternatively via occlusion
detection. Qualitative and quantitative results on bench-
mark sequences have verified the robustness of our tracker,
especially for complex deformation, rotation, and occlusion
challenges.

REFERENCES
[1] Y. Zheng, X. Liu, X. Cheng, K. Zhang, Y. Wu, and S. Chen, ‘‘Multi-

task deep dual correlation filters for visual tracking,’’ IEEE Trans. Image
Process., vol. 29, no. 10, pp. 9614–9626, Oct. 2020.

[2] F. Li, H. Zhang, and S. Liu, ‘‘Correlation filters with adaptive multiple
contexts for visual tracking,’’ IEEE Access, vol. 8, pp. 94547–94559,
May 2020.

[3] D. Yuan, W. Kang, and Z. He, ‘‘Robust visual tracking with correlation
filters and metric learning,’’ Knowl.-Based Syst., vol. 195, May 2020,
Art. no. 105697.

[4] N. Wang, W. Zhou, Y. Song, C. Ma, and H. Li, ‘‘Real-time correlation
tracking via joint model compression and transfer,’’ IEEE Trans. Image
Process., vol. 29, no. 4, pp. 6123–6135, Apr. 2020.

[5] D. Yuan, X. Chang, P.-Y. Huang, Q. Liu, and Z. He, ‘‘Self-supervised
deep correlation tracking,’’ IEEE Trans. Image Process., vol. 30, no. 12,
pp. 976–985, Dec. 2020.

[6] S. Moorthy, J. Y. Choi, and Y. H. Joo, ‘‘Gaussian-response correlation filter
for robust visual object tracking,’’ Neurocomputing, vol. 411, pp. 78–90,
Oct. 2020.

[7] N. Fan, J. Li, Z. He, C. Zhang, and X. Li, ‘‘Region-filtering correlation
tracking,’’ Knowl.-Based Syst., vol. 172, pp. 95–103, May 2019.

[8] D. Yuan, X. Lu, D. Li, Y. Liang, and X. Zhang, ‘‘Particle filter re-detection
for visual tracking via correlation filters,’’Multimedia Tools Appl., vol. 78,
no. 11, pp. 14277–14301, Jun. 2019.

82684 VOLUME 9, 2021



D. Tian et al.: Correlation Tracking via Spatial-Temporal Constraints and Structured Sparse Regularization

[9] D. Yuan, X. Shu, and Z. He, ‘‘TRBACF: Learning temporal regularized
correlation filters for high performance online visual object tracking,’’
J. Vis. Commun. Image Represent., vol. 72, Oct. 2020, Art. no. 102882.

[10] B. Huang, T. Xu, S. Jiang, Y. Chen, and Y. Bai, ‘‘Robust visual tracking
via constrained multi-kernel correlation filters,’’ IEEE Trans. Multimedia,
vol. 22, no. 11, pp. 2820–2832, Nov. 2020.

[11] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, ‘‘Accurate scale
estimation for robust visual tracking,’’ in Proc. Brit. Mach. Vis. Conf.,
Sep. 2014, pp. 1–5.

[12] H. K. Galoogahi, T. Sim, and S. Lucey, ‘‘Correlation filters with limited
boundaries,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 4630–4638.

[13] M. Zhang, J. Xing, J. Gao, and W. Hu, ‘‘Robust visual tracking using joint
scale-spatial correlation filters,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2015, pp. 1468–1472.

[14] D. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, ‘‘Visual object
tracking using adaptive correlation filters,’’ in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 2544–2550.

[15] Z. Ji and W. Wang, ‘‘Correlation filter tracker based on sparse regulariza-
tion,’’ J. Vis. Commun. Image Represent., vol. 55, pp. 354–362, Aug. 2018.

[16] W. Feng, R. Han, Q. Guo, J. Zhu, and S. Wang, ‘‘Dynamic saliency-aware
regularization for correlation filter-based object tracking,’’ IEEE Trans.
Image Process., vol. 28, no. 7, pp. 3232–3245, Jul. 2019.

[17] H. K. Galoogahi, A. Fagg, and S. Lucey, ‘‘Learning background-aware
correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1135–1143.

[18] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, ‘‘Learning
spatial-temporal regularized correlation filters for visual tracking,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4904–4913.

[19] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, ‘‘Learning spatially
regularized correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 4310–4318.

[20] T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler, ‘‘Learning adaptive discrimina-
tive correlation filters via temporal consistency preserving spatial feature
selection for robust visual object tracking,’’ IEEE Trans. Image Process.,
vol. 28, no. 11, pp. 5596–5609, Nov. 2019.

[21] Y. Sun, C. Sun, D. Wang, Y. He, and H. Lu, ‘‘ROI pooled correlation
filters for visual tracking,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 5783–5791.

[22] Y. Sui, Z. Zhang, G. Wang, Y. Tang, and L. Zhang, ‘‘Exploiting the
anisotropy of correlation filter learning for visual tracking,’’ Int. J. Comput.
Vis., vol. 127, no. 8, pp. 1084–1105, Aug. 2019.

[23] Z. Huang, C. Fu, Y. Li, F. Lin, and P. Lu, ‘‘Learning aberrance repressed
correlation filters for real-time UAV tracking,’’ in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 2891–2900.

[24] K. Dai, D. Wang, H. Lu, C. Sun, and J. Li, ‘‘Visual tracking via adaptive
spatially-regularized correlation filters,’’ in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4670–4679.

[25] J. F. Henriques, R. Caseiro, P.Martins, and J. Batista, ‘‘High-speed tracking
with kernelized correlation filters,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[26] T. Zhang, C. Xu, and M.-H. Yang, ‘‘Multi-task correlation particle filter
for robust object tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 4335–4343.

[27] H. Ma, S. T. Acton, and Z. Lin, ‘‘SITUP: Scale invariant tracking using
average peak-to-correlation energy,’’ IEEE Trans. Image Process., vol. 29,
pp. 3546–3557, Jan. 2020.

[28] M. Wang, Y. Liu, and Z. Huang, ‘‘Large margin object tracking with cir-
culant feature maps,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4021–4029.

[29] A. Bibi, M. Mueller, and B. Ghanem, ‘‘Target response adaptation for
correlation filter tracking,’’ in Proc. Eur. Conf. Comput. Vis., Oct. 2016,
pp. 419–433.

[30] A. Lukezic, T. Vojir, L. C. Zajc, J. Matas, and M. Kristan, ‘‘Discriminative
correlation filter with channel and spatial reliability,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6309–6318.

DAN TIAN received the M.S. degree in con-
trol theory and control engineering and the Ph.D.
degree in system simulation and application from
Northeastern University, China, in 2006 and 2015,
respectively. Since 2006, she has been with
Shenyang University, where she is currently a Pro-
fessor with the Information and Engineering Col-
lege. From 2015 to 2020, she held a postdoctoral
position with Tianjin University. She is the first
author of more than 20 articles and hosts Natural

Science Foundation of China, in 2017. Her main research interests include
computer vision and digital image processing. She is a member of China
Simulation Society. She received the Second Prize of the Municipal Natural
Science Academic Achievement, in 2020.

SHOUYU ZANG received the B.S. degree in
logistics engineering from the Huaiyin Institute
of Technology, China, in 2019. She is currently
pursuing the degree in logistics engineering with
Shenyang University. Her main research interest
includes video image processing.

BINBIN TU received the M.S. degree in com-
puter technology from Shenyang Aerospace Uni-
versity, China, in 2011, and the Ph.D. degree
in measurement techniques and instruments from
the Shenyang University of Technology, China,
in 2019. Since 2003, she has been with Shenyang
University, where she is currently an Associate
Professor with the Information and Engineering
College. She is the first author of more than five
articles and hosts Natural Science Foundation of

Liaoning Province, in 2020. Her main research interests include signal pro-
cessing and pattern recognition. She received the third prize of theMunicipal
Natural Science Academic Achievement, in 2019.

VOLUME 9, 2021 82685


