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ABSTRACT State-of-charge (SOC) estimation of lithium-ion batteries in portable devices without sensing
the current is considered in this study. Unlike the traditional approach of separate estimation of the SOC and
current, we firstly reformulate the problem as state estimation for the nonlinear system with an unknown
input which refers to the current in this study, then a novel variational Bayes-based unscented Kalman filter
(VB-UKF) is proposed to simultaneously estimate the SOC and the current input for the nonlinear lithium-ion
battery system. Verifications of the SOC estimation performance are made by the experiments under the
pulsed-discharge profile and urban dynamometer driving schedule profile. Experimental results show that
the proposed VB-UKF algorithm is superior to the unscented recursive three-step filter (URTSF) in terms
of convergence rate and estimation accuracy of the SOC and current. And the SOC root mean square errors
of VB-UKF are bounded within ±3% after convergence which indicates the feasibility and effectiveness of
the proposed method.

INDEX TERMS Battery, state-of-charge, unknown current, unscented Kalman filter, variational Bayes.

I. INTRODUCTION
Recently, lithium-ion batteries have experienced explosive
growth for use in a wide range of applications, from portable
devices to large-scale high-power energy storage systems [1].
To prevent the abuse usage and make the most of the bat-
tery, a battery management system (BMS) must be properly
developed. As one of the key tasks of the BMS, accurate
estimation of battery state-of-charge (SOC) which quantifies
the remaining battery capacity is significant for battery health
monitoring [2], charging pattern optimization [3], [4], effec-
tive equalization control [5] and fault diagnosis [6]. However,
it is impossible to directly measure the SOC because the
battery itself is a closed system. Generally, it needs to be
estimated from the current and voltage measurements.

Extensive researches have been conducted to improve
the SOC estimation accuracy while reducing the computa-
tion complexity. The open circuit voltage (OCV) and the
ampere-hour (Ah) integration methods are two most conven-
tional direct methods for the SOC estimation. They are simple
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and easy for implementation. Nonetheless, the precision of
the Ah integration method suffers from the erroneous initial
SOC value and error accumulation due to noise and drift. The
OCV method requires a sufficient resting time to guarantee
that the battery terminal voltage measurement is approxi-
mately equal to the OCV value, which makes it infeasible for
online estimation. To overcome the weaknesses of the direct
methods, the model-based estimation approaches have been
put forward. Such methods can basically be implemented in
two steps.

Firstly, an accurate battery model is established to describe
the battery dynamic characteristics. Two representative types
of battery models are electrochemical models [8], [9] and
equivalent circuit models (ECMs) [10]–[12]. The electro-
chemical models are highly accurate but with high com-
plexity and heavy computation load in implementation. The
ECMs use simple electrical elements, such as resistors and
capacitors, to mimic the battery dynamic behaviors. There-
fore, it is simple, intuitive and more practical than others.
Among the ECMs, the first-order resistor-capacitor (RC)
model and the second-order RC model are two most popu-
lar models due to their high precision and simple structure.
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With the increase of the order of the RC model, the model
accuracy will be improved, however, at the cost of additional
calculation load. In order to further improve the accuracy
of the battery model, reference [13] has considered the hys-
teresis effect and the current drift of the lithium battery.
In addition, the model parameter identification method is
crucial for the ECM model reliability and accuracy. One
widely used method is the offline parameterized look-up
tables which use the stored data to update and calibrate model
parameters according to different SOC, temperature and even
health status. Hua et al. [14] further considered the param-
eter dependence on the current load and proposed a novel
parameter identification method with a parameter switching
scheme. Another way of identifying parameters is to use the
online methods such as the recursive least squares methods
[15], [16] and the dual Kalman type filters [17], which can
make real-time corrections of the battery parameters under
various operating conditions.

Secondly, the adaptive filters or observers, such as
extended Kalman filter (EKF) [17], [18], unscented Kalman
filter (UKF) [19], [20], particle filter (PF) [21], sliding mode
observer [22] and Luenberger observer [23] are employed to
estimate the SOC via the voltage, current, and temperature
measurements. Among these algorithms, EKF is the most
popular due to its low computational complexity and small
need in memory capacity. But, the estimation accuracy of
EKF may degrade for highly nonlinear systems on account
of the use of the first-order Taylor expansion. By compari-
son, a third-order Taylor expansion is utilized for the UKF
to enhance the SOC estimation accuracy but with heavier
computation load. Reference [24] gave the performance eval-
uation of the EKF, UKF, and PF for lithium battery SOC
estimation and showed that theUKF had the best performance
in accuracy. Meanwhile, to account for the measurement
uncertainty and modeling error, the Sage–Husa estimator is
combined with the square root unscented Kalman filter [19]
to improve the accuracy of the SOC estimation with adap-
tive adjustion of the values of the process and measurement
covariances. EI Din et al. [25] employed a multiple-model
EKF (MM-EKF) to estimate SOC under the uncertain mea-
surement noise statistics. In [26], [27], H infinity filters
were adopted to deal with the outliers in measurements.
Furthermore, a varational Bayes and Huber-based square root
cubature Kalman filter [20] for SOC estimation was brought
forward to simultaneously handle both modeling errors and
outliers in measurements.

However, there exists an issue when applying the adaptive
filters to the battery SOC estimation in low-cost portable
applications. That is these adaptive filters require the current
measurement as an input to estimate the SOC, but the current
sensor may not be equipped in portable devices because of the
restrictions in cost, volume and power. Therefore, develop-
ing a current sensor-less SOC estimation algorithm becomes
crucial.

One direct approach is to firstly estimate the current
using the battery electrical dynamics and then employ the

conventional adaptive filters to obtain the SOC estima-
tion. Putra et al. [28] designed a current estimation method
based on the Thevenin ECM and Cambron and Cramer [1]
employed an unknown input observer to estimate the current.
Chun et al. [29] extracted the estimated OCV and current
information from the filtered terminal voltage, and then cal-
culate the battery SOC using the Ah integration method.
However, these methods either utilized a very simple battery
model consisting of only a resistor and a capacitor, or adopted
a linear relationship between OCV and SOC. These sim-
plifications will bring about precision reduction of the bat-
tery model, thus enlarging the current and SOC estimation
errors.

A novel treatment is to regard the current as an unknown
input and reformulate the SOC estimation problem as opti-
mal filtering problem of nonlinear systems with an unknown
input in both the state and measurement equations. Based on
this, an unscented recursive three-step filter (URTSF) [30]
was proposed in our previous work. It combined the
minimum-variance unbiased estimator and the unscented
Kalman filter to estimate the state and current input. However,
URTSF used the weighted least squares method to estimate
the input, which may bring large performance degradation
when the measurement errors are largely caused by the mea-
surement noise.

Actually, the Bayesian approach is the most general
method for state estimation with some uncertainties. How-
ever, it is often computationally complicated. One effective
approximation method is the variational Bayesian (VB) infer-
ence method, which approximates the joint posterior with
a product of tractable marginal posteriors by virtue of the
variational ideas [31]. Some researchers have developed this
method for state estimation with unknown statistical prop-
erties of the measurement noise [32], [33]. In [34], the VB
method was proposed for state estimation of linear systems
with unknown inputs. In this study, the VB approachwas used
to approximate the joint posterior of the state and the input,
and then a recursive filtering algorithm combined with the
UKF for nonlinear systems was derived. It can achieve the
simultaneous estimation of the SOC and current, and has a
better SOC estimation performance than the URTSF under
different operating conditions.

Themain contribution of this study is: (1) The SOC estima-
tion problem without current measurement is novelly refor-
mulated as the optimal filtering problem of nonlinear system
with an unknown input, and the VB method combined with
the UKF is proposed to solve this problem; (2) Compared
with URTSF which estimates the current using weighted
least squares, the proposed algorithm realizes simultane-
ous estimation of the SOC and current for the nonlinear
lithium-ion battery system; (3) Pulsed-discharge test and
urban dynamometer driving schedule (UDDS) test are con-
ducted to verify the SOC estimation performance. Experi-
ment results show that the proposed VB-UKF outperforms
URTSF in terms of convergence rate and SOC estimation
accuracy.
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The remainder of this paper is arranged as follows. The
battery is modeled in Section II. In Section III, the VB-based
UKF algorithm for joint estimation of SOC and current is
presented. Section IV provides the experimental results and
analysis of the proposed algorithm. Finally, Section V reports
the conclusions.

II. BATTERY MODEL AND PARAMETER IDENTIFICATION
A. BATTERY MODEL
It is well known that an accurate battery model is critical for
the performance of SOC and parameters estimation. There-
fore, various battery models have been raised, among which
the first-order RC and second-order RC ECM models are
the two most commonly used battery models. Reference [10]
pointed out that the first-order RC has excellent reliability,
while the second-order RC has better accuracy of ECM,
and these two have almost the same SOC estimation accu-
racy, but the second-order RC is much more complicated
than the first-order RC. Therefore, considering the compu-
tation capacity in portable applications, we make a trade-off
between model accuracy, reliability and computation cost,
and select the first-order RC model shown in Fig. 1 as the
battery model.

FIGURE 1. First-order RC model of the battery.

In the figure, Uoc denotes the OCV, Ut refers to the battery
terminal voltage, IL stands for the load current, R0 indi-
cates the ohmic internal resistance. A parallel RC network
composed by the polarization resistance Rp and polarization
capacitanceCp is used to capture the battery relaxation effect,
Up describes the polarization voltage. Based on this model
and the Kirchhoff’s law, the battery electrical behavior can
be written as follows:

Ut = Uoc − Up − ILR0, (1)

U̇p =
IL
Cp
−

Up
RpCp

, (2)

Generally, the SOC is calculated using the Ah integral
method as:

SOCt = SOCt0 −
1

Qrate

∫ t

t0
ηcIL,tdt, (3)

where,Qrate and ηc represent the rated capacity and Coulomb
efficiency respectively.

Discretizing (1)-(3), the discrete-time state-space equa-
tions are expressed as:

xk+1 = f (xk , IL,k )+ wk , (4)

yk = h(xk , IL,k )+ vk , (5)

where, x = [SOC,Up]T is the state vector, wk and vk
represent the Gaussian process noise with covariance Qk and
measurement noise with variance Rk , respectively. They are
both zero-mean noises, without any shifts. That is, we do
not consider the outliers and the shift noise in this study.
f (·) and h(·) represent the state transition function and mea-
surement function, respectively, expressed as

f (·) =

[
1 0

0 e
−
1t
τp

][
SOCk
Up,k

]

+

[
−
η1t
Qrate

Rp(1− e
−
1t
τp )

]
IL,k , (6)

h(·) = UOC (SOCk )− Up,k − IL,kR0, (7)

where, 1t is the sampling period, τp = RpCp. UOC (SOCk )
describes the OCV-SOC nonlinear relationship.

B. PARAMETER IDENTIFICATION
The first-order RC battery model contains three parameters:
R0, Rp, Cp and the OCV-SOC relationship. To identify these
parameters, the following test procedure was designed:

1) EXPERIMENTAL SETUP
The experimental battery is a SAMSUNG ICR18650
lithium-ion battery with a rated capacity and rated voltage of
2600 mAh and 3.63 V, respectively. The experimental plat-
form consists of a battery test system (NEWARE BTS4000)
and a personal computer for controlling the test system and
collecting the test data.

2) OCV-SOC CURVES DETERMINATION
A pulsed-discharge test was implemented to determine the
OCV-SOC curve and the model parameters. (a). First, fully
charge the battery to 100% SOC and stand for 1 hour. Then
the OCV value can be obtained by measuring the terminal
voltage. (b). Discharge the battery for 10 seconds with a 1/3C
constant current rate and measure the terminal voltage after
resting for 30 minutes. (c). Continue to discharge until 5%
of the nominal capacity is consumed, and rest for 1 hour,
then measure the OCV. (d). Repeat steps (b)-(c) till the lower
cut-off voltage is reached.

After the above pulsed-discharge test, the OCV measure-
ment corresponding to each SOC point were collected. Based
on the tested data, the OCV-SOC relationship was character-
ized using a seventh-order polynomial model in Equation (8),
and the measured voltage and fitted curve are presented
in Fig. 2. It is clear that R-square is close to 1 which
indicates good curve fitting [35]. This result shows that
the measurement data were well fitted to the seventh-order
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FIGURE 2. The OCV-SOC relationship curve.

polynomial model.

Uoc(SOC) = 3.082+ 8.008× SOC − 61.8× SOC2

+ 278.5× SOC3
− 691.2× SOC4

+ 945.2× SOC5
− 666.5× SOC6

+ 189× SOC7. (8)

3) BATTERY PARAMETERS DETERMINATION
From the terminal voltage response to the pulsed current
in step (b), as shown in Fig. 3, the battery model param-
eters can be identified. At the instant the discharge cur-
rent is loaded, the terminal voltage is rapidly reduced from
U1 to U2. This is mainly attributed to the ohmic internal
resistance. With the continuous discharge, the voltage drops
slowly from U2 to U3 as a result of a polarization reaction
by Rp and Cp. When the discharge stops, the voltage rises
quickly from U3 to U4. After standing for a period of time,
the battery voltage tends to be stable.

FIGURE 3. The terminal voltage and current curve of one single pulse
discharge cycle.

From the above analysis, the ohmic internal resistance can
be obtained as:

R0 =
U1 − U2

IL
. (9)

The voltage variations from U4 to U5 can be regarded as
the zero-input response of the RC circuit. Thus, the terminal

voltage response can be written as

Ut (t) = Uoc − Up(0)exp(−t/τp), (10)

where, Uoc is the OCV, Up(0) is the initial polarization volt-
age. Up(0) and τp can be obtained using the least squares
algorithm.

During the discharge process from t1 to t2, the terminal
voltage decreases slowly from U2 to U3. This stage can be
regarded as the zero-state response of the RC circuit. Thus,
the voltage response can be written as:

Ut (t) = Uoc − RpIL(1− exp(−t/τp))− R0IL , (11)

Rp can be obtained using the least squares algorithm. Cp can
then be calculated. The identified battery model parameters
R0, Rp, Cp are shown in Table 1.
Using the cftool toolbox inMatlab, the fitting functions can

be obtained as follows:

R0 = −12.72+ 16.1SOC + 34.68e−0.7576SOC (12)

Rp = −24.54+ 101.2SOC + 42.31SOC2
− 116.2

× SOC3
− 101.8SOC4

+ 123.6SOC5

+ 58.47e−4.107SOC (13)

Cp = 1371− 1.193e4SOC + 7.774e4SOC2
− 2.027e5

× SOC3
+ 2.259e5SOC4

− 8.978SOC5 (14)

Based on these fitting functions, the battery parameters can
be calculated at each SOC point. But it should be noted that
these fitting functions are obtained based on the experiment
data from a brand new battery under the room tempera-
ture. With the variations of the temperatures and the health
status, the battery parameters will greatly change, which
may no more fit the above functions. However, this weak-
ness can be surmounted by establishing the fitting functions
under different temperatures and states of health, as part of
future work.

C. MODEL VALIDATION
The battery model was validated through comparing
the measured and estimated terminal voltages under the
pulsed-discharge and UDDS tests, as shown in Fig. 4.
The maximum modeling error is less than 10 mV in the
pulsed-discharge test, while an error of less than 3 mV is
observed in the UDDS test. In both two tests, the maxi-
mum errors appear during periods of transient current, but
under the steady-state current condition, the modeling errors
tend to be 0 mV. These findings indicate that this ECM
model is sufficient to simulate the electrical behaviour of the
battery.

III. SOC ESTIMATION ALGORITHM WITH UNKNOWN
CURRENT INPUT USING VARIATIONAL BAYESIAN
METHOD
As we know, Bayesian approach is a general method for
optimal filtering of systems with unknown parameters. How-
ever, it is usually difficult to obtain the analytical solution
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TABLE 1. The identified parameters of the battery model.

due to high complexity. Recently, the variational Bayes (VB)
method [34], [36] has been proposed to approximate the joint
posterior at a low computational cost. It is a useful tool to
solve the problem of state estimation with unknown input.

First, we rewrite the state and measurement equations for
SOC estimation as:

xk+1 = f (xk , dk )+ wk ,

yk = h∗(xk )+ Gkdk + vk , (15)

where xk ∈ Rn denotes the system state; yk ∈ Rp stands
for the measurement vector. dk ∈ Rm refers to the current,
it is an unknown input vector. wk and vk are process and
measurement noises which are Gaussian distributed with zero
mean and covariances Qk and Rk , respectively. h∗(xk ) =
Uoc(SOCk )− Up,k , Gk = −R0.
The basic idea of VB approach is to approximate the joint

posterior of xk and dk with the product of two tractable
marginal posteriors as:

p(xk , dk |y1:k ) ≈ Q(xk , dk ) = Qx(xk )Qd (dk ). (16)

Byminimizing the Kullback-Leibler (KL) divergence from
the exact posterior p(xk , dk |y1:k ) to the approximating poste-
rior Q(xk , dk ), Qx(xk ) and Qd (dk ) can be obtained as

Qx(xk )∝ exp
(∫

log p(yk , xk , dk |y1:k−1)Qd (dk )ddk

)
, (17)

Qd (dk )∝ exp
(∫

log p(yk , xk , dk |y1:k−1)Qx(xk )dxk

)
. (18)

For the above system (15), the likelihood of the measure-
ment at time k is

p(yk |xk , dk ) = N (yk ; h∗(xk )+ Gkdk ,Rk ), (19)

and we assume dk has Gaussian prior density by conjugacy,
that is

p(dk |y1:k−1) = N (dk ; µ̂k|k−1, 6k|k−1), (20)

and the prediction density of xk is

p(xk |y1:k−1) = N (xk ; x̂k|k−1,Pk|k−1). (21)

Then, the logarithm of (17) and (18) can be expanded as

logQx(xk ) =
∫

log p(yk , xk , dk |y1:k−1)Qd (dk )ddk

=

∫
log p(yk |xk , dk )p(xk |y1:k−1)

× p(dk |y1:k−1)Qd (dk )ddk

= −
1
2
〈(yk − h∗(xk )− Gkdk )TR

−1
k (yk

− h∗(xk )− Gkdk )〉dk −
1
2
(xk − x̂k|k−1)T

×P−1k|k−1(xk − x̂k|k−1)+ const, (22)

logQd (dk ) =
∫

log p(yk , xk , dk |y1:k−1)Qx(xk )dxk

=

∫
log p(yk |xk , dk )p(dk |y1:k−1)

× p(xk |y1:k−1)Qx(xk )dxk

= −
1
2
〈(yk − h∗(xk )− Gkdk )TR

−1
k (yk

− h∗(xk )− Gkdk )〉xk −
1
2
(dk − µ̂k|k−1)T

×6−1k|k−1(dk − µ̂k|k−1)+ const, (23)

where 〈·〉dk and 〈·〉xk denote the expectations with respect to
Qd (dk ) and Qx(xk ), respectively.

If the VB marginal distribution is Qd (dk ) = N (dk ; µ̂k|k ,
6k|k ), where, µ̂k|k stands for the mean value of the current
estimate at time k , 6k|k is a variance which reflects the
uncertainty range of the estimate. Using the formulas of the
product of twoGaussian probability density functions, we can
derive

6−1k|k = 6
−1
k|k−1 + G

T
k R
−1
k Gk ,

6−1k|k µ̂k|k = 6
−1
k|k−1µ̂k|k−1 + G

T
k R
−1
k (yk − h∗(x̂k|k )). (24)

Similarly, ifQx(xk ) = N (xk ; x̂k|k ,Pk|k ), after the lineariza-
tion processing of h∗(·), we can derive

P−1k|k = P−1k|k−1 + H
T
k R
−1
k Hk ,

P−1k|k x̂k|k = P−1k|k−1x̂k|k−1 + H
T
k R
−1
k (yk − Gk µ̂k|k ), (25)

where, Hk is the Jacobian matrix of h∗(·). x̂k|k denotes the
SOC estimate at time k , Pk|k is the covariance which quanti-
fies the uncertainty of the SOC estimate.
We note that (24)-(25) are coupled. If µ̂k|k is known,

(25) is actually the standard Kalman filter. It is the same
for (24) if x̂k|k is known. That is, the VB adaptive filter
for the systems with unknown input can be implemented
within the Kalman filter framework. Nevertheless, in view
of the nonlinear measurement equation and the coupling of
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FIGURE 4. Estimated and measured terminal voltages under different tests.

the system state and input, a nonlinear filter implementation
is requisite. As pointed out in [24], UKF has much better
performance than EKF in terms of accuracy and convergence
rate at the cost of more computation time than EKF. Con-
sidering the used simple first-order RC ECM, the estimated
state is only 2 dimensional, thus the use of UKF will impose
not so much computation burden but provide a significant
SOC performance boost. Therefore, we choose to iteratively
utilize the UKF to estimate the system state and the standard
KF to estimate the input. The flowchart of the proposed
algorithm VB-UKF is shown in Fig. 5. The filtering process
is summarized as follows.

Step 1. Initialize the state and input estimates and their
covariances: x̂0|0, P0|0, Q0, µ̂0|0, 60|0.

Step 2. Prediction (k = 1, 2, 3, . . .).
Step 2.1 Calculate sigma points and weights:


ξ0k−1 = x̂k−1|k−1
ξ ik−1 = x̂k−1|k−1 +

(√
(nx + λx)Pk−1|k−1

)
i

ξ
i+nx
k−1 = x̂k−1|k−1 −

(√
(nx + λx)Pk−1|k−1

)
i

i = 1, · · · , nx ,

(26)


Wm

0 = λx/(nx + λx)
W c

0 = λx/(nx + λx)+ (1− α2x + βx)
Wm
i = W c

i = 1/[2(nx + λx)], i = 1, · · · , 2nx ,

(27)

where, Wm
i and W c

i denote the weighted factors of the
mean and covariance, respectively; nx is the dimension
of the state vector. λx is a composite coefficient and
defined by λx = α2x (nx + κx) − nx . Here we assume
0 < αx < 1, κx = 0, βx = 2.
Step 2.2 Compute the predicted state value and its

covariance:

ξ ik|k−1 = f (ξ ik−1, µ̂k−1|k−1), (28)

x̂k|k−1 =
2nx∑
i=0

Wm
i ξ

i
k|k−1, (29)

Pk|k−1 =
2nx∑
i=0

W c
i (ξ

i
k|k−1 − x̂k|k−1)(ξ

i
k|k−1 − x̂k|k−1)

T

+Qk . (30)
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FIGURE 5. Flowchart of the proposed algorithm VB-UKF.

Step 2.3 Compute the predicted input estimate and its
covariance:

µ̂k|k−1 = ρµ̂k−1|k−1, 6k|k−1 = ρ6k−1|k−1, (31)

where, ρ is a scale factor with values satisfying 0 < ρ <

1. The value ρ = 1 corresponds to stationary current and
variance. The current fluctuates faster as the value of ρ
decreases.

Step 3. Update: first set: x̂(0)k|k = x̂k|k−1, P
(0)
k|k = Pk|k−1,

µ̂
(0)
k|k = µ̂k|k−1, and then for n = 0 : N − 1, iterate the

following update steps, where N refers to the number of
iterations, which depends on the accuracy requirement and
usually takes on values of 1-10.

Step 3.1 Calculate the predicted measurement:

yi,(n+1)k|k−1 = h∗(ξ ik|k−1)+ Gk µ̂
(n)
k|k , (32)

ŷ(n+1)k|k−1 =

2nx∑
i=0

Wm
i y

i,(n+1)
k|k−1 . (33)

Step 3.2 Calculate the innovation covariance and the
covariance of the innovation and the state:

P(n+1)yy,k =

2nx∑
i=0

W c
i (y

i,(n+1)
k|k−1 − ŷ

(n+1)
k|k−1)(y

i,(n+1)
k|k−1 − ŷ

(n+1)
k|k−1)

T

+Rk , (34)

P(n+1)xy,k =

2nx∑
i=0

W c
i (ξ

i
k|k−1 − x̂k|k−1)(y

i,(n+1)
k|k−1 − ŷ

(n+1)
k|k−1)

T .

(35)

Step 3.3 Calculate the state estimate and its
covariance:

K (n+1)
x = P(n+1)xy,k (P(n+1)yy,k )−1, (36)

x̂(n+1)k|k = x̂k|k−1 + K (n+1)
x (yk − ŷ

(n+1)
k|k−1), (37)

P(n+1)k|k = Pk|k−1 − K (n+1)
x P(n+1)yy,k (K (n+1)

x )T . (38)

Step 3.4 Calculate the input estimate and its covari-
ance using KF:

Kd = 6k|k−1GTk (Gk6k|k−1GTk + Rk )
−1, (39)

6k|k = 6k|k−1 − KdGk6k|k−1, (40)

µ̂
(n+1)
k|k = µ̂k|k−1 + Kd [yk − h∗(x̂

(n+1)
k|k )− Gk µ̂k|k−1].

(41)

Step 3.5. Until n = N − 1, set x̂k|k = x̂(N )
k|k , Pk|k =

P(N )
k|k , µ̂k|k = µ̂

(N )
k|k and end for.

Step 4. k → k + 1, return to Step 2 for the next time.

IV. EXPERIMENT AND ANALYSIS
Verification of the proposed VB-UKFmethod was conducted
by a pulsed-discharge test and UDDS test on the lithium-ion
battery. UDDS, also known as FTP72, simulates the urban
road driving conditions of vehicles, which can be used to test
the performance of the proposed algorithm under dynamic
operating conditions. Note that the cell current was scaled
down according to the cell tolerance in this study. The cur-
rent profiles of both tests are shown in Fig. 6. In each test,
the sampling periods of battery current and voltage were both

VOLUME 9, 2021 84657



J. Hou et al.: VB Based SOC Estimation for Lithium-Ion Batteries Without Sensing Current

FIGURE 6. Measured current under the pulsed-discharge and UDDS tests.

1 s and the real initial SOC value was 1.0. The real SOC
was obtained by the Ah integration method with the actual
measured current. Evaluation of the proposed algorithm was
conducted by comparison with URTSF algorithm in terms of
convergence time and SOC estimation accuracy. The mean
absolute error (MAE) and the root mean square error (RMSE)
after convergence were employed to indicate the SOC estima-
tion accuracy. The standard deviations of the SOC and current
estimates of VB-UKF are used to quantify the estimation
uncertainty caused by the difference between the real state
and the state estimation [37]. The convergence time refers to
the time after which most of the SOC estimation errors are
within the bound of ±5%.

A. EVALUATION IN PULSED-DISCHARGE TEST
The battery was discharged for 10 minutes at a rate of 0.5C
and rested for 30 minutes in one cycle of the pulsed-discharge
test. The total discharge process contains 10 cycles. Three
different initial SOC values, 1.0, 0.8 and 0.6 are assumed
to compare the convergence rate of these algorithms. The
measurement noise variance is 0.001 and the process noise
covariances are set as diag(10−6, 0.1) for SOC = 1.0 and
diag(10−4, 0.1) for SOC = 0.8 and SOC = 0.6.We assume
a diffuse prior for current as d0 ∼ N (0, 0.01) in the proposed
algorithm.

Fig. 7 shows the current estimation results under the
pulsed-discharge test. Clearly, VB-UKF has more accurate

current estimate than URTSF especially at the end of the
discharge. When SOC0 = 1, the maximum absolute errors
after convergence are 1.02A and 1.45A, and the MAEs are
0.18A and 0.25A for VB-UKF and URTSF, respectively.
Meanwhile, it can be seen that there is a large error when
an abrupt change occurs on the current. But the estimation
error quickly decreases during the resting time. It implies that
the rest period is helpful for improving the current estima-
tion accuracy. Besides, little differences are observed for the
current estimation errors and the uncertainty regions under
different initial SOC values. It reveals that the initial SOC
errors have no significant impact on the current estimation
accuracy for both VB-UKF and URTSF.

The SOC estimation results under different initial SOC
estimation errors are presented in Fig. 8. The statistical error
analysis and the convergence time of these algorithms are
summarized in Table 2. Obviously, the proposed VB-UKF
exhibited best performance in terms of convergence rate and
SOC estimation accuracy. As can be seen from the figure,
the degree of uncertainty increases slightly with the increase
of the initial SOC error. When the initial SOC values are 1.0
and 0.8, significant superiority of VB-UKF is observed. The
MAE and RMSE of VB-UKF are at least 30% smaller than
URTSF, and the convergence times are only about 1/7 and
2/5 of URTSF at SOC0 = 1 and SOC0 = 0.8, respectively.
But when SOC0 = 0.6, the convergence time of VB-UKF
increases dramatically and reaches to 11058s, which is com-
parable to the convergence time of URTSF, 10349s. This
is probably because that severe initial SOC errors need a
longer period of time to correct without the actual current
measurement. But once convergence, the MAE and RMSE of
both algorithms are smaller than 3%, which basically satisfy
the requirement of BMS.

TABLE 2. Error analysis and convergence time with different SOC0 in
pulsed-discharge test.

In addition, the SOC and current estimation results are
compared. When SOC0 = 1, URTSF has larger current
estimation errors than VB-UKF at the beginning of the dis-
charge, and correspondingly larger SOC estimation errors are
observed in Fig. 8(a) for URTSF. It shows that the precision of
the current estimation has an influence on the SOC estimation
accuracy. But when SOC0 = 0.8 and SOC0 = 0.6, the SOC
estimation errors in the beginning are mainly caused by the
initial SOC error. Once convergence, the current estimation
error becomes a more important influence factor for the SOC
estimation accuracy.
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FIGURE 7. Current estimation results in pulsed-discharge test with different initial values (SOC0).
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FIGURE 8. SOC estimation results in pulsed-discharge test with different initial values (SOC0).
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FIGURE 9. Current estimation results in UDDS test with different initial values (SOC0).
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FIGURE 10. SOC estimation results in UDDS test with different initial values (SOC0).
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B. EVALUATION IN UDDS TEST
Considering that the pulsed-discharge test is simpler than
the load conditions in actual use, a more dynamic operating
cycle, UDDS, is employed to verify the SOC estimation
performance without current measurement. For initial SOC
values 1.0, 0.8 and 0.6, the process noise covariances are
diag(10−6, 0.1), diag(10−5, 0.4) and diag(10−5, 0.1),
respectively.

The current estimation results are shown in Fig. 9. Appar-
ently, VB-UKF performs better than URTSF in the aspect
of estimation accuracy. The MAEs are 0.11A and 0.33A for
VB-UKF and URTSF, respectively, when there is no initial
SOC errors. And when SOC0 = 0.8 and SOC0 = 0.6, it can
be observed that the current estimation errors do not change
with the increase of the SOC estimation errors. It indicates
that the current estimations are almost not affected by the
SOC estimation results and the initial SOC errors for both
URTSF and VB-UKF.

Fig. 10 demonstrates the estimated results of SOC under
three initial SOC values. The error analysis and conver-
gence time of these two algorithms are given in Table 3.
It is clear that these two algorithms immediately converge
to 5% error bound at the correct initial SOC value. Mean-
while, from the angle of MAE and RMSE, we note that the
VB-UKF has better SOC estimation accuracy than URTSF.
When there are 20% initial SOC error, VB-UKF outperforms
URTSF significantly in convergence time and estimation
accuracy. As can be seen from Table 3, the convergence
time of VB-UKF is about half shorter than URTSF. How-
ever, when the initial SOC error increases to 40%, VB-UKF
needs 6928s to converge and URTSF needs 8362s to con-
verge, both of the convergence times are much longer
than these at SOC0 = 80%. Meanwhile, it can be seen
that the performance superiority of VB-UKF becomes not
obvious.

TABLE 3. Error analysis and convergence time with different SOC0 in
UDDS test.

C. DISCUSSION
From the experimental results in Figs. 7- 10, it is clear that
the SOC estimation errors are within the bound of ±5%
after convergence for both VB-UKF and URTSF, which
is effective and feasible for portable devices without the
current sensor. The MAEs of the current estimation are
nearby 0.2A, and they are almost not affected by the SOC
estimation results. On the contrary, the current estimation

accuracy has an influence on the SOC estimation accuracy
in the pulsed-discharge test. Larger SOC estimation errors
are observed in case of larger current estimation errors when
SOC0 = 1.

Meanwhile, we noted that the initial SOC error greatly
affects the SOC estimation performance. With correct ini-
tial SOC value, both algorithms can obtain fast convergence
and good SOC estimation accuracy although the VB-UKF
performs slightly better than URTSF. But as the initial SOC
error increases, the convergence speed slows down. This
phenomenon is more distinct for URTSF. When the initial
SOC error is 20%, VB-UKF performs much better than
URTSF in convergence speed and SOC estimation accu-
racy in pulsed-discharge test and UDDS test. These find-
ings indicate that VB-UKF is more accurate and robust
than URTSF since its simultaneous estimation of SOC and
current, which makes it better compensate the initial SOC
error.

However, we also noted that when the initial SOC error
continues to increase, VB-UKF has comparable performance
with URTSF. Much longer convergence time for VB-UKF
is observed. It shows the error correction ability is limited
due to the lack of actual current measurement, no matter for
VB-UKF or URTSF. However, fortunately, there is usually no
such large initial SOC error in portable applications. More-
over, the SOC offset can be gradually calibrated during rest
modes.

V. CONCLUSION
Current information is crucial for accurate SOC estimation of
the lithium-ion battery. However, the current sensor is often
not equipped in portable devices because of the constraints
in cost, volume and power. In this study, to estimate the SOC
accurately without measuring the current, a novel algorithm
of the VB-UKF is proposed. Firstly, by regarding the cur-
rent as an unknown input, the SOC estimation problem is
reformulated as optimal filtering of the nonlinear systemwith
an unknown input. Then, the variational Bayes method is
combined with the unscented Kalman filter to simultaneously
estimate the SOC and the current input for the nonlinear
lithium-ion battery system. Pulsed-discharge test and UDDS
test were conducted to validate the SOC estimation perfor-
mance. Experimental results show that theMAEs andRMSEs
of the SOC estimations of the proposed VB-UKF algorithm
are less than ±3% after convergence which reveals its fea-
sibility and effectiveness. Moreover, compared to URTSF,
VB-UKF exhibits much better SOC estimation performance
at small initial SOC errors and comparable performance at
large initial SOC errors in terms of accuracy and conver-
gence rate. But, the current estimation accuracy is almost
not affected by the initial SOC errors for both VB-UKF and
URTSF.

In addition, it is worth noticing that the SOC convergence
rate of the proposed algorithm will slow down at large initial
SOC errors since there is no current information. But various
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measures can be taken to reduce the initial SOC errors such
as resting the battery for a period of time, charging the
battery full and calibration by the OCV, so this weakness will
not affect the usefulness and advancement of the proposed
algorithm.
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