
Received May 12, 2021, accepted May 26, 2021, date of publication June 4, 2021, date of current version June 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086698

Maximizing Utilization and Minimizing Migration
in Thermal-Aware Energy-Efficient Real-Time
Multiprocessor Scheduling
LAURA ELENA RUBIO-ANGUIANO 1, ABEL CHILS TRABANCO 2, JOSÉ LUIS BRIZ VELASCO 2,
AND ANTONIO RAMÍREZ-TREVIÑO1
1CINVESTAV-IPN Unidad Guadalajara, Zapopan 45019, Mexico
2DIIS/I3A, Universidad de Zaragoza, 50018 Zaragoza, Spain

Corresponding author: Laura Elena Rubio-Anguiano (laura.rubio@cinvestav.mx)

This work was supported by the MINECO/AEI/ERDF (EU) under Grant PID2019 105660RB C21/AEI/10.13039/501100011033, in part
by the Aragón Government (T58_20R Research Group), and in part by the Construyendo Europa desde Aragón under Project ERDF
2014-2020. The work of Laura Elena Rubio-Anguiano was supported by CONACYT for providing a scholarship.

ABSTRACT This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal
and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints,
for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context
switches and migrations. It also provides an on-line controller able to manage system and task parametric
variations and soft real-time (SRT) tasks, always meeting the HRT task set constraints and the system
thermal bound. CAlECS maximizes CPU utilization to help avoid overprovisioning contributing to a low
SWaP factor. Its modular design allows the utilization of different modeling and scheduling approaches, and
makes the off-line and on-line components independent from each other to better suit the requirements of a
specific system. We experimentally show that the cyclic executive provided by CAlECS for HRT task sets
outperforms RUN, a reference off-line algorithm in terms of optimal number of context switches.

INDEX TERMS Real-time, scheduling, clustering algorithms, multiprocessors, Petri nets, control.

I. INTRODUCTION
Multiprocessor architectures are increasingly common in
embedded real-time (RT) systems because they help reduce
the SWaP-C factor (Space, Weight, Power and Cost). Current
cars encompass over 125 electronic control units (ECUs),
whose number is expected to grow as more and more fea-
tures are incorporated [1], [2]. The aerospace industry is also
familiar to this problem. Along with the cellphone market
and edge computing designs subject to RT constraints in
IoT (Internet of Things) ecosystems, all of them can ben-
efit from powerful, compact multiprocessor systems on a
chip (MPSoCs).

MPSoCs can be effective for avoiding overprovisioning.
They facilitate the design process in many aspects, but they
also entail tough problems which are easier to solve on
single-core chips. This happens with the optimal allocation

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

and scheduling of RT task sets, for which there are two known
approaches: partitioning and global scheduling. Partitioning
allocates tasks statically to CPUs with no migration. The
benefit of partitioning approaches is that we can resort to
the solid uniprocessor scheduling theory for hard RT (HRT)
schedulability analysis. The downside is a limit on the maxi-
mum 50% utilization bound [3], which heuristic approaches
can improve [4]. Alternatively, global scheduling allows jobs
to migrate among CPU cores, maximizing CPU utilization
and consequently reducing the number of required processor
units. The downside lies in the complexity of its implemen-
tation. It usually involves a high overhead in number of con-
text switches and migrations, often difficult to characterize,
which hampers the theoretical benefits of maximizing CPU
utilization.

Two other techniques try to balance the pros and cons
of partitioned and global scheduling. Clustered scheduling
divides tasks and cores into disjoint clusters so that jobs can
exclusively migrate within their cluster, reducing the size of

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 83309

https://orcid.org/0000-0002-6418-078X
https://orcid.org/0000-0003-4175-8873
https://orcid.org/0000-0001-5940-9837
https://orcid.org/0000-0001-6694-7289

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

the global scheduling problem. Semi-partitioned scheduling
allows some tasks to migrate across processors.

Finally, a more conservative approach is designing a
cyclic executive upon static partitioning. The automotive and
aerospace industry mostly rely in this scheme [5]–[7], which
leads to poor CPU utilization. Difficulties exacerbate when
considering thermal or energy constraints. Ad-hoc optimal
solutions are possible [8] but there is a lack of feasible, usable
helping tools to find a suitable schedule for a HRT task set
on a multicore processor maximizing CPU utilization and
honoring energy or thermal constraints.

A. CONTRIBUTIONS
We introduce in this paper a scheduling framework named
CAlECS (Clustered Allocation and Execution Control Sched-
uler) which encompasses two core contributions beyond the
framework itself. The first contribution is a method to cal-
culate a cyclic executive for a HRT task set on a multicore
chip optimizing CPU utilization while ensuring temporal
correctness at the lowest possible frequency, minimizing the
number of context switches and migrations, and honoring a
thermal bound. Following a clustered approach, we first try to
partition the HRT task set to maximize utilization with zero
migrations. To this end, we resort to a common binary pack-
ing (BPP) formulation. The novelty lies in that if a perfect full
partition is not found, we leverage a fluid global scheduler to
maximize CPU utilization, avoiding the drawbacks of global
scheduling in two ways. On the one hand, the result is a cyclic
executive, and therefore there are no calculations at runtime.
On the other hand, we keep the number of context switches
and migrations very low: in our experiments our solution
outperforms RUN, a global scheduler which is considered a
reference in this aspect [9].

The second contribution is a runtime controller that ensures
the accomplishment of the HRT task set constraints while
managing the admission of SRT aperiodic tasks, and the
rejection of small disturbances such as those produced by
parameter variations, for example. This controller takes as
an input a set of references derived by CAlECS from the
foregoing cyclic executive, leverages DVFS to throttle the
frequency in order to ensure temporal correctness, and avoid
the violation of a given thermal threshold, irrespective the
upper TDP (thermal design point) established by the chip-
maker. CAlECS constitutes a good starting point to design
either a standalone cyclic executive for a HRT task set or a
MIF (Minor Frame) in a collective hyperperiod.

B. EXTENDED SUMMARY
We model the whole system (RT tasks, processors and ther-
mal parameters) under a single formalism, namely Timed
Continuous Petri Nets (TCPNs). Leveraging the TCPN
model, we calculate the minimum CPU frequency (F∗)
required to meet the HRT constraints and the maximum
frequency (F+) that guarantees the thermal requirement of
the system. The ensuing stage packs HRT tasks into 1-size
bins (minor clusters) or into an integer number of bins of

size greater than one (major clusters), leveraging a Binary
Packing Problem (BPP) formulation, employing a Best-Fit
Descending (BFD) heuristic.
HRT tasks in minor clusters can be scheduled on a single

processor. We resort to EDF because of its optimality [10] but
other options are possible. To schedule the major clusters we
formulate a global scheduling problem over each cluster as
an Integer Programming Problem (IPP). We prove that this
IPP can be solved as an Linear Programing Problem (LPP),
and that if the LPP is solvable, then the solution is optimal.
The size of this LPP on a major cluster is far smaller and
consequently faster to solve than an LPP considering the
whole HRT task set. The resulting schedule consists in a
cyclic executive over the hyperperiod.

A run-time control system tracks the off-line schedul-
ing solution for the HRT task set controlling the admission
of SRT aperiodic tasks and managing small disturbances.
We compare CAlECS with RUN in the absence of SRT
aperiodic tasks or disturbances (for the comparison to be fair).
CAlECS results in fewer context switches and migrations and
requires minimum run-time support.

The whole process from the modeling stage to the simu-
lation and analysis of results is fully automated and can be
customized using Tertimuss, a simulation framework publicly
available, which includes a number of schedulers available
out-of-the-box [11]. The modular design of CAlECS allows
for the adoption of different thermal models, BPP solvers or
minor and major cluster schedulers.

Sec. II discuss the related work and the originality of the
proposal. Sec. III states the scheduling problem and notation.
Sec. III-A introduces a background and notation used for the
TCPN model in this paper. Sec. IV provides an overview of
CAlECS. In Sec. V the conditions for energy minimization
and thermal bound compliance are explained. Sec. VI details
the clustering process. Sec. VII to Sec. IX present the runtime
controller. Sec. X shows an example of the scheme demon-
strating the operation of the feedback controller. The exper-
imental comparison between RUN and CAlECS is found in
Sec. XI. Sec. XII summarizes the computational complexity
of the different algorithms. Finally, the conclusions for this
work are drawn in Sec. XIII.

II. RELATED WORK
The problem of finding a HRT multiprocessor scheduler
which accounts for energy and thermal constraints was
recently studied in [12]. The authors try to maximize
workload-per-joule (WPJ) subject to a thermal constraint.
The allocation of tasks to processors relies on an (enhanced)
variable-size bin packing algorithm (En-VSBP): the size of a
bin depends on the capability (frequency) of each core. The
number of cores running at a given frequency according to the
thermal-compliant WPJ maximization problem determines
the available number of bins of a given size. When there is
no bin size capable to fit a given task because of the high
utilization of the latter (named a heavy task), the task is
allocated to some available idle core, if such core exists. The

83310 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

purpose is to turn off other cores so that the frequency of the
newly allocated core can be increased without violating the
thermal constraint. Otherwise, the allocation fails.

The downside of the heuristic approach in [12] is that it
cannot ensure schedulability, and only explores a very small
portion of the solution space, yielding sub-optimal results.
Also, authors in [12] apply an abstraction of an RC ther-
mal and power model at the chip level, whereas we can
fine-tune thermal properties and dynamics by discretizing
the MPSoC or the relevant part of it with prisms as small
as desired [13], [14]. We provide a holistic formal model of
the system, whereas RC power and thermal models do not
provide a true integrated state model.

The core of our research resides in the exploitation of fluid
global scheduling. The latter relies on the idea of propor-
tionate fairness (Pfair) [15], PD [16], PD2 [17]. This type
of schedulers constitute the only known solution for multi-
processor scheduling which has been proved HRT and SRT
optimal for implicit deadline task sets, whereas no optimal
scheduler exists for constrained or arbitrary deadlines [18].
Simpler global schedulers like G-EDF are easier to imple-
ment but can only provide SRT optimality [19].

Pfair algorithms discretize time so that tasks can only run
for an integer number of quanta Q, distributing time quanta
among tasks so that the difference between the execution
time of every task and the fluid schedule (fluid error) is
smaller than the unit at any time. This usually leads to a
high number of context switches and migrations. Deadline
partitioning (DP) approaches such asDP-Fair [20] can lower
this overhead by limiting the scheduling points to the set of
all task deadlines. In this way, scheduling actions are only
taken at variable time intervals instead of at a fixed quantum.
U-EDF achieves even better results at the price of a loss of
optimality in CPU usage [21].

Authors in [22] also relay on DP to find an energy-efficient
scheduler based on mathematical optimization, in this case
for two heterogeneous processors. They formulate a general
case as a non-linear integer programming problem to obtain
a schedule, which yields algorithms with high computational
complexity. After assuming some system constraints, a linear
programming problem (LPP) solves the task workload and
a hetero-wrap algorithm solves the task ordering problem.
The optimization problem is solved in runtime, entailing a
non-negligible overhead even for a discrete set of frequencies.

A recent approach leveraging mathematical optimization
and open to energy implications is [23]. The proposal tar-
gets heterogeneous IoT systems. The authors pose a Mixed
Integer Linear Programming problem (MILP) similar to ours.
The formulation is interesting in its generality and in that
it encompasses security constraints besides energy, but it
obviates temperature and does not focus on maximizing the
utilization, actually resorting to a partitioning scheme.

A way to reduce the size of the LPP upon a DP basis
appears in [24] (which corrects [25]). The proposal is thermal
and energy-agnostic but provides a necessary and sufficient
schedulability condition. They apply DP and solve the LPP

on a time window of size 0 ≤ l ≤ 1. With arbitrarily small
sizes, the algorithm approaches the fluid concept. Another
recent work on energy-aware RT multiprocessor scheduling
based on DP is HEART [26]. The proposal does not take
temperature into account and leverages a series of heuristics
which entails an exponential complexity and can only explore
a limited subset of scheduling solutions. Other recent research
exploiting DP is LAA [27], in the context of dynamic tasks
systems, extended to SRT aperiodic tasks in [28]. They do not
deal with energy or thermal issues.

RUN (Reduction to Uniprocessor) is a non-fluid global
scheduler which achieves a notably low number of context
switches and migrations with an optimal utilization [9], [29],
[30]. We take it as an optimal reference (target) concerning
the number of context switches and migrations. It considers
feasible systems composed of independent implicit-deadline
periodic (not sporadic) tasks on homogeneous processors,
and transforms the multiprocessor RT scheduling problem
into a set of uniprocessor scheduling problems. RUN consid-
ers the utilization of a task (proportion of the period required
to execute each task instance or job, see Sec. III) and its dual.
Thus, if 0.6 is the utilization of a task, the utilization of its dual
is 0.4. During an off-line stage, RUN applies a pack operation
to find task groups with an aggregated utilization less or
equal to 1 (i.e. with maximum CPU utilization) which can
be allocated to a virtual processor. Then, the dual operation
follows after each successful pack operation.

The pack-dual operations continue until a single utiliza-
tion system is found. The algorithm guarantees convergence.
Then, RUN uses EDF to schedule each task group on-line,
reversing the pack-dual operations performed off-line. The
resulting schedule generates a small number of preemptions
and migrations.

QPS (Quasi-Partitioned Scheduling) [31] partitions the
system tasks intominor andmajor execution sets, depending
onwhether they require one ormultiple processors. QPS boils
down to a partitioned EDF in the case of minor sets, whereas
major sets are scheduled either by a set of QPS servers on
multiple processors, or by local EDF scheduler on a single
processor depending on execution requirements. QPS adapts
to the system load by monitoring major execution sets in
run-time. Like RUN, QPS partitions the system off-line and
generates the schedule on-line. If aperiodic tasks arrive to
the system, QPS needs to recompute the servers, unlike fluid
schedulers, which are more amenable to apply feedback con-
trol techniques, which is our case in this research. RUN and
QPS behave similarly in the absence of aperiodic tasks [30],
[32], and therefore we compare our cyclic executive
with RUN.

A close example of research formulating a BPP to solve the
RTmultiprocessor scheduling problem is [33]. They solve the
BPP for allocating tasks to processors according to clusters of
a given size. Instead, we solve the BPP iteratively to optimize
the size (utilization) of the clusters.

Feedback methods from control theory have been often
used for RT scheduling with different purposes. A recent

VOLUME 9, 2021 83311

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

example focusing on reliability in a RT system is [34]. The
proposed technique involves instrumenting the code of the
RT tasks, which influences on the WCET and utilization.
Instead, we relay on code-oblivious feedback control. This
approach has been mostly proposed for non-HRT systems.
Thus, authors in [35] dynamically allocate firm RT dynamic
tasks leveraging a PID (proportional-integral-derivative) con-
troller. First, they select the least utilized processor to dispatch
a task from a common task queue. Then, a per-CPU admission
controller performs a task schedulability analysis and applies
DVFS to the selected core. Once the computational demand
drops, the processor is brought to a lower frequency state.
In our case, the workload is known a priori. This makes
possible to generate a pre-schedule which is tracked by a
controller which modifies the frequency. We introduced a
similar approach in [13]. Although it was capable of man-
aging thermal and temporal constraints of HRT tasks, it did
not accounted for energyminimization and incurred in a great
number of context switches.

The CAlECS scheduling scheme stems from preliminary
results in [36], where the AlECS fluid global scheduler
is introduced. We now take an entirely different cluster-
ing approach nonetheless. Global scheduling only applies
to major clusters, thus ensuring zero migrations on minor
clusters. Additionally, we now provide full proofs and devel-
opment of the LPP solution presented in [36], which is a
conference paper with limited extension. The TCPN model
of the system we use in this research is based on [13], [14],
and [36] with changes on the flow of the execution transitions.
The thermal module within this model was validated with
Ansys R© in [37].

III. PROBLEM AND SYSTEM DEFINITION
Definition 1: Let T = {τ1, . . . , τn} be a set of n indepen-

dent periodic tasks under hard real time (HRT) constraints.
Each task is identified by the 3 − tuple τi = (cci, di, ωi),
where cci is the worst-case execution time in processor
cycles (WCET) which takes to complete any instance of the
task (job),ωi the period and di is the relative implicit deadline
(di = ωi) [38].
Let P = {CPU1, . . . ,CPUm} be a set of m identical pro-

cessors, with a discrete clock frequency F ∈ {F1, . . . ,Fmax}.
Without loss of generality, we assume that all task param-

eters, including task period and processor cycles are integers
and that any task can be preempted at any time. The set of
periodic tasks is scheduled up to the hyperperiod, which is
defined as the period equal to the least common multiple of
periods H = lcm(ω1, ω2, . . . , ωn) of the n periodic tasks.
A task τi executed on a processor CPUj at its maximum
frequency Fmax , requires ci =

cci
Fmax

processor time at every
ωi interval.

As in deadline partitioning approaches ([20]), we consider
the ordered set of all task deadlines to define scheduling inter-
vals. In this context we define the workload as the amount of
processor cycles that a task τ must execute during a given
time interval.

TABLE 1. System notation.

Definition 2: A task set is HRT schedulable under a given
scheduling algorithm iff the temporal constraints are always
satisfied, and SRT schedulable iff tardiness is bounded.
Definition 3: A task set is feasible iff there is at least a

scheduling algorithm under which the task set is schedulable.
A task set with implicit deadlines is feasible if the follow-

ing (sufficient) condition holds [15]:

U =
n∑
i=1

ci
ωi
≤ m (1)

where U is the system utilization and m is the number of
processors. Condition 1 is also necessary in the case of HRT
task sets [39].

In Sec. IX we also consider the arrival of asynchronous
aperiodic tasks that need to be executed on the system.
Definition 4: Let Ta = {τ a1 , . . . , τ

a
p } be a set of p indepen-

dent aperiodic tasks. Each task is identified by the 3 − tuple
τ ai = (ccai , d

a
i , r

a
i), in which cc

a
i (WCET) and d

a
i (deadline)

are known, but the arrival time rai is unknown.

A. BACKGROUND ON PETRI NETS
This section aims to provide basic definitions and concepts on
Timed Continuous Petri Nets (TCPN), the formal model used
in this work to represent tasks, CPUs, energy consumption,
temporal and thermal behavior. For a deeper insight on Petri
Nets see [40]–[42].
Definition 5: A Petri Net structure (PN) is a 4-tuple

N = (P,T ,Pre,Post) where P = {p1, . . . , p|P|} and T =
{t1, . . . , t|T |} are finite disjoint sets of places and transitions.
Pre and Post are |P| × |T | Pre− and Post− incidence

83312 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

TABLE 2. Notation for the TCPN model.

matrices, where Pre[i, j] > 0 (resp. Post[i, j] > 0) if there is
an arc going from pi to tj (or going from tj to pi), Pre[i, j] = 0
(or Post[i, j] = 0) otherwise.
Definition 6: A continuous Petri net (ContPN) is a pair

ContPN = (N ,m0) where N = (P,T ,Pre,Post) is a PN
and m0 ∈ {R+ ∪ 0}|P| is the initial marking.

Transition ti is enabled at m if ∀pj ∈ •ti,m[pj] > 0; and
its enabling degree is defined as enab(ti,m) = min

pj∈•ti

m[pj]
Pre[pj,ti]

.

Firing ti in a certain amount α ≤ enab(ti,m) yields a new
marking m′ D m+ αC[P, ti], where C = Post − Pre.
If m is reachable from m0 by firing the finite sequence

σ of enabled transitions, then m D m0 C C−→σ is named the
fundamental equation where −→σ ∈ {R+ ∪ 0}|T | is the firing
count vector, i.e −→σ [j] is the cumulative amount of firings of
tj in the sequence σ .
Definition 7: A timed continuous PN (TCPN) is a

time-driven continuous-state system described by the tuple
(N ,λ,m0) where (N ,m0) is a continuous PN and the vector
λ ∈ {R+ ∪ 0}|T | represents the transitions firing rates deter-
mining the temporal evolution of the system. Transitions fire
according to a certain speed, which is generally a function of
the transition firing rates and the current marking. Such func-
tion depends on the semantics associated to the transitions.
Under infinite server semantics, the flow through a transition
t (or t firing speed, denoted as f (m)) is the product of the
firing rate, λi, and enab(ti,m), the instantaneous enabling of
the transition, i.e., fi(m) = λi enab(ti,m).
The firing rate matrix is defined by 3 = diag(λ1, . . . ,

λ|T |). For the flow to be well defined, every continuous
transition must have at least one input place, so we assume
∀t ∈ T , |•t| ≥ 1. The min in the above definition leads

to the concept of configuration. A configuration of a TCPN
at m is a set of (p, t) arcs describing the effective flow of
each transition, and indicates that pi constrains tj for each arc
(pi, tj) in the configuration. A configuration matrix is defined
for each configuration as follows:

5j,i(m) =


1

Pre[i, j]
if pi is constraining tj

0 otherwise
(2)

f (m) = 35(m)m is the vectorial form of the flow of a
transition. The following fundamental equation describes the
dynamic behavior of a TCPN system:

ṁ = Cf (m) = C35(m)m (3)

A control action can be applied to (3) by adding a term u
to every transition ti such that 0 ≤ ui ≤ fi, indicating that its
flow can be reduced. Thus, the controlled flow of transition
ti becomes wi = fi − ui and the forced state equation is
ṁ = C[f − u] = Cw.

B. TCPN SYSTEM MODEL
This subsection introduces and updates the TCPN model
detailed in [13] encompassing processor cores (CPUs), task
arrival, thermal activity and power consumption, and allow-
ing the use of differential equations in control design. Fig. 1a
depicts a section of the model corresponding to a system with
n tasks (τi) and one processor (CPUj). The model has three
main sub-nets: a task arrival module 1©, a processor module
per processor in the system 2©, and the thermal model 3©. The
arrival modulemodels the fluid arrival of a periodic task to the
system, resorting to a transition whose firing rate represents
the period ω of the task.
Each processor module describes how tasks are allocated

to a processor and executed. The boundary transitions talloci,j
between a task andCPUmodules are firedwhen the scheduler
allocates task τi to processor CPUj. The task execution rate
is expressed as the flow f execi,j through transitions texeci,j , when
τi is being executed at processor frequency F .
To model the thermal activity, the MPSoC board is divided

into prismatic elements, as detailed in [13] and [37]. Pointer
3© from Fig. 1a shows the TCPN model of one of these
elements, which models conduction, convection and heat
generation in a specific chip area.

The dynamic behavior of the global model (Fig. 1) is
provided by the following equations:

ṁT = CT 3T 5T (m)mT + C
alloc
T walloc (4a)

ṁP = CP3P5P(m)mP + C
alloc
P walloc (4b)

˙mexec = f exec (4c)

ṁT = CT3T5T(m)mT + Ca3a5a(m)ma

+ Cexec
P f exec (4d)

ṁa = 0 (4e)

Cx, 3x, and 5x(m) are the incidence matrix, the firing
rate transitions and the configuration matrix (x = {T , T ,P})

VOLUME 9, 2021 83313

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 1. TCPN model integrating task 1©, processor 2© and thermal modeling 3©. (a) details the case for a single
processor, and (b) zooms out and extends the model for m CPUs.

of the thermal, task, and processor sub-nets respectively.
Each equation from system (4) represents a module from
the TCPN representation on Fig. 1. Eq. (4a) describes the
periodic arrival of each task, Eq. (4b) the processors behavior,
and Eq. (4c) the processors execution rate (i.e frequency).
Finally, Eq. (4d) represents the thermal evolution of the sys-
tem due to task execution, with Eq. (4e) indicating that the
environmental temperature keeps constant during observation
time (its derivative is neglected).

C. EQUATIONS IN SCALAR FORM
The dynamics of the marking of each place of the TCPN
model can be represented as the difference between the input
and output flows. Specifically the dynamics of markings
mbusyi,j , from places pbusyi,j , are given by (Sec. III-A):

ṁbusyi,j =
λalloci,j

η
midlei,j − u

alloc
i,j , (5)

where 0 ≤ ualloci,j ≤
λalloci,j
η
midlei,j . On the other hand, for the

design and simulation of the execution control the dynamics
of markings mexeci,j , from places pexeci,j , are conceived such that
the flow is constant and equal to the processors frequency F
when task τi is active on processor CPUj. Thus:

ṁexeci,j = λ
exec
i,j mbusyi,j − v

exec
i,j = σi,jF, (6)

where vexeci,j stands for a corrective parameter that can take any
real value and:

σi,j =

{
1 if mbusyi,j > 0

0 if mbusyi,j = 0.
(7)

D. THERMAL CONSTRAINT
The thermal dynamic behavior from the TCPN model on
Eq. (4d) can be written separately as:

ṁT = AmT + B′ma + PcpuBf exec

YT = ESmT (8)

where A = CT3T5T(m), B′ = Ca3a5a(m), YT is the
temperature at the center of each CPU and PcpuB = Cexec

P ,
such that Pcpu stands for the CPU power consumption.

The dominant component of power consumption in CMOS
technology is the dynamic power Pdyn given by Pdyn =
Ceff V 2

dd F , where Ceff is the effective switching capacitance,
Vdd the supply voltage and F is the frequency of the clock.
Given that Vdd ∝ F and k is a modeling constant, Pdyn can
be stated as:

Pdyn = kF3 (9)

Eq. (8) with Pcpu = Pdyn is used to derive the thermal
constraints, in order to keep the system temperature below a
given value Tmax . Since the schedule is periodic and it repeats

83314 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 2. Scheduler scheme.

every hyperperiod, so must be the thermal solution. For this
reason, we consider the temperature steady state (mTss), i.e.
with no change in temperature ṁT = 0. Hence,

mTss = −A−1(kF3Bwalloc + B′ma). (10)

In order to comply with the thermal constraint of the sys-
tem, the temperature in steady state must be less than or equal
to a maximum threshold (i.e. SmTss ≤ Tmax). Therefore:

−SA−1kF3Bwalloc ≤ Tmax + SA−1B′ma (11)

Eq. 11 provides the thermal constraint that the allocation of
tasks to processors (walloc) must fulfill, i.e walloc represents a
control variable. This equation includes the clock frequency
and the temperature bounds along with the allocated tasks,
which in the steady state are equivalent to the executed tasks.
Eq. 11 is used to compute the range of feasible operating
frequencies in Sec. V.

IV. OVERVIEW OF THE CAlECS SCHEDULING SYSTEM
This section will help the reader identify the elements of
CAlECS as we extend on them in further sections. The
CAlECS architecture appears in Fig. 2. The modules task
set conditioner, clustering, and pre-schedule process the HRT
task set, to yield an optimal schedule entirely off-line, ensur-
ing minimum energy consumption and honoring a thermal
bound. The modules get-reference and feedback controller
act on-line, at runtime. They guarantee the accomplishment
of the HRT and thermal constraints upon the arrival of SRT
aperiodic tasks or in the presence of disturbances.

The task set conditioner determines the schedulability of
the HRT task set on the available CPUs. It assumes that if
a schedule exists, it must be periodic, producing a periodic
thermal evolution of the system that reaches a stationary
state when the CPU clock frequency is adequately chosen.
Hence, it computes a frequency range taking advantage of the
steady state of a formal system model consisting in a Timed

Continous Petri Net (TCPN). The solution is in the range
[F∗,F+] of feasible clock frequencies. At these frequencies
the tasks are executed in the MPSoC without violating the
temporal and thermal constraints. This module also adds a
dummy task τ∗ to ensure that the integer CPU utilization is
equal to the number of processors m (i.e. the utilization is
100%) when the lowest possible frequency is selected.

Then, the clustering module partitions the task set into k
clusters Q1, . . . ,Qk in such a way that the task utilization sj
in cluster Qj is an integer and 6k

j sj = m. This module uses a
bin packing problem (BPP) algorithm based on the Best Fit
Descending (BFD) heuristic. Its computational complexity is
(m2
× log(n)× n), so it always finds a solution in polynomial

time. At worst, this module returns a single set Q1 and
s1 = m, even if there exists another integer partition with
more clusters.

The goal of the pre-schedule module is to find a feasible
schedule. It allocates a cluster Qj to sj processors. When
sj = 1 (minor cluster), Qj is assigned to a single CPU
and we resort to an EDF scheduling policy to find a feasible
schedule. If sj > 1 (major cluster), then Qj is assigned to
sj processors and the hyperperiod of the task cluster Qj is
partitioned according to the deadlines of tasks inQj. The task
load per deadline interval is computed by an Integer Linear
Programming Problem (ILP). The constraint set is described
by a unimodular matrix, therefore the ILP can be solved as
a linear programming problem (LPP), saving computational
time. Then, a Zero-Laxity policy finds a feasible schedule
from the computed task load. The set of all the schedules of all
clusters Qj yields a single feasible schedule for the HRT task
set, that could be implemented straightforward, as a simple
cyclic executive with minimum overhead, in the absence of
additional SRT sporadic tasks or system disturbances.

At runtime, the on-line module get-reference uses this fea-
sible off-line schedule to generate task-allocation references
for the next module. The Aperiodic manager inGet-reference

VOLUME 9, 2021 83315

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

is capable of accepting or rejecting SRT aperiodic tasks
leveraging a smart ZL policy, so that the temporal and thermal
constraints of the system are always met.

The feedback controller allocates and executes tasks.
It throttles the frequency to ensure that tasks are executed
according to their references. Moreover, it is able to reject
small disturbances consisting in short CPU detentions or
parameters deviations.

V. TASK SET CONDITIONER
The task set conditioner module checks that the HRT task set
T is schedulable on the available cores (Sec. III). Thismodule
yields a set of operating frequencies F = {F∗, . . . ,F+}.
F∗ minimizes the energy consumption, and F+ is the max-
imum permissible frequency at maximum utilization. This
frequency range ensures the accomplishment of the thermal
bound Tmax .
We leverage DVFS to vary processor frequency by select-

ing one from a finite set of a preset values, i.e. {F1, . . . ,Fmax},
and as a result minimize the system dynamic energy. The
average consumed energy in a processor is modeled by

Ej =
∫ ζ2

ζ1

PCPUj (F)dζ (12)

where PCPUj (F) represents the power consumed by CPUj.
It depends on the dynamic power Pdyn due to computational
activities of tasks (Eq. (9)), and on the static power Pleak due
to leakage. It is computed as: PCPUj (F) = Pdynj (F) + Pleakj ,
where Pleakj can be modeled as a linear function of tempera-
ture ([43]): Pleak = δT +ρ, with T as the CPUs temperature
and δ and α are modeling constants.
The CPU frequency that minimizes energy consumption

while meeting temporal constraints is (Proposition 1 in [14]):

F∗ = max{F1,
1
m

n∑
i=1

cci
ωi
}. (13)

provided that ∀i ui ≤ 1. At frequency F∗ the system utiliza-
tion is U =

∑n
i=1

cci
ωiF∗

= m and the processor frequency
is,

F∗ = min{F ∈ F |F ≥ F∗} (14)

given the nature of the discrete set of frequencies of the CPUs.
When computing F∗ (Eq. 13) we assume a fully utilized

system, but actual F∗ in Eq. 14 can make the execution faster,
causing the utilization to become below 100%, in those cases
we can introduce an idle task τidle, to ensure that system
utilization is 100%, discussed later in sec.VI-A.

To guarantee that the thermal constraint is also fulfilled,
we must comply with Eq. (11) at F = F∗. Otherwise,
the problem does not have a solution.

The maximum thermal frequency F+ ∈ F is the great-
est frequency at which all CPUs can operate at 100% of
utilization so that temperature meets the thermal constraint.
To compute F+, we first solve the optimization problem in

Eq. (15) to find the frequency upper bound Fc that satisfies
the constraints.

max Fc

s.t. −SA−1 kF3
cB
[
CC1
FcH

, . . . , CCmFcH

]T
≤ Tmax + SA−1B

′
ma

CCj
FcH

= 1 ∀j = 1, . . . ,m

F∗ ≤ Fc ≤ Fmax (15)

The first constraint establishes the thermal requirements as
in Eq. (11). CCj represents the cycles that CPUj must execute
per hyperperiod. We assume that the workload is equally dis-
tributed among CPUs. All CPUsmust work at their maximum
capacity, which is implied by the second constraint. The last
constraint bounds Fc to the actual clock frequency range of
the CPUs. Finally, the solution for F+ must be in the set F
of discrete frequencies. Thus, the processor frequency F+ is
calculated as:

F+ = max{F ∈ F |F ≤ Fc}. (16)

With the minimum frequency F∗ and the maximum ther-
mal frequency F+ we define the set of operating frequencies
that meet the thermal constraint as follows:

F s
= {F ∈ F |F∗ ≤ F ≤ F+}, (17)

VI. TASK CLUSTERING
The clustering module aims to reduce the number of job
migrations, constraining migration within clusters of proces-
sors. Clustering also downsizes the global scheduling prob-
lem, now reduced to each cluster. A desirable effect of the
algorithm in this module is that it usually reduces the number
of context switches as well. Theworst case appears when only
one cluster, containing all the processors, can be obtained.
In such case the global scheduling algorithm must deal with
the whole set of processors and tasks. The clustering problem
can be formally stated as follows.
Problem 1: Task Clustering. Given a task set T with n

tasks HRT-schedulable on m processors, find a partition Q =
{Q1, . . . ,Qk} of T into Q1, . . . ,Qk subsets (clusters) such
that they are pairwise disjoint and

⋃k
j=1Qj = T , the uti-

lization sj of tasks in cluster Qj (herein named the size of Qj)
is an integer, and 6jsj = m.

A clusterQj is aminor cluster if sj = 1, and amajor cluster
if sj ≥ 2. The tasks in a minor cluster can be allocated and
scheduled on a single processor.

A task set T which is HRT feasible before the partition,
will also be so after the partition, because the algorithm used
in the module ensures that the total utilization of each cluster
is equal to the number of processors allocated to it (Sec. III).
The algorithm can only handle systems with full utilization,
for which we resort to the scheme further described in this
section.

We pose the following constraint in order to find a combi-
nation of clustersQ of capacities s that ensures the maximum

83316 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

utilization for each cluster:(
n∑
i=1

ui ∗ xi,s,j

)
− xs,j ∗ s = 0 (18)

where, xi,s,j is a decision variable which is one if task τi is
assigned to cluster j of capacity s, and xs,j is also a boolean
variable which is set to 1 when the j − th cluster of size s is
selected. Eq. (18) considers all possible clustering scenarios,
hence there could be at most bms c clusters of size s, for
s = 1, . . . ,m. Constants n and m represent the total number
of tasks and the total number of processors respectively.

The next constraint guarantees that each task belongs to a
single cluster,

m∑
s=1

b
m
s c∑

j=1

xi,s,j = 1 (19)

Finally, the summation of cluster sizes should be equal to
the number of processors:

m∑
s=1

b
m
s c∑

j=1

xs,j ∗ s = m (20)

Eqs. (18,19, 20) define a space of possible solutions that
can be used to obtain a clustering with the lowest number
of migrations. However, finding that optimal point requires
the computation of the number of migrations generated by
each scheduler, rocketing the complexity of the problem.
Nonetheless, we can formulate an integer linear problem
upon the intuition that the number of migrations decreases
with the size of a cluster:

min
m∑
s=1

b
m
s c∑

j=1

xs,j ∗ ms−1

s.t. ∀s ∈ {1..m} ∀j ∈ {1..b
m
s
c}(

n∑
i=1

ui ∗ xi,s,j

)
− xs,j ∗ s = 0

∀i ∈ {1..n}
m∑
s=1

b
m
s c∑

j=1

xi,s,j = 1

m∑
s=1

b
m
s c∑

j=1

xs,j ∗ s = m

xi,s,j ∈ {0, 1}, xs,j ∈ {0, 1} (21)

The objective function from Eq. 21 maximizes the number
of clusters of the smallest possible size (starting with size
1) subject to the same constraints we had. This intuition
proved to be coherent with the experimental results presented
in Sec. XI.

We can approximate a solution to Eq. 21, i.e. to Prob. 1,
by posing a Bin Packing Problem (BPP) [44]. We first solve
the BPP for bins of size 1 (minor clusters). If there are bins
with a utilization lower than one, we solve the BPP again

considering bins of size 2 (i.e. clusters with k = 2), then 3 and
so on until no unallocated tasks are left.

We resort to a BFD (Best-Fit Descending) heuristic [44]
to solve the BPP but other solutions are possible (Alg. 1).
Actually, the problem can also be undertaken by leveraging
heuristics that solve the Knapsack Problem or the Cutting
Stock problem. We made some preliminary calculations and
found that the BPP formulation with the BFD heuristics
provided the most promising results for us. Our implemen-
tation has the added benefit of providing a small number of
processors required to execute the HRT task set T , which aids
to avoid overprovisioning, and opens up the chance for using
the extra cores for redundancy or for allocating non-RT tasks
in a mixed-criticality system.

Algorithm 1 Clustering Algorithm
1: Input T :Task set; m: Number of CPUs
2: Output A set of clusters;
3: Aux. functions
· SolveBPP(task set, binVolume) – Solves BPP for bins
with volume binVolume so that each bin has maximum
utilization;
· utilization(bin) – Returns the sum of the utilizations of
the tasks in the bin

4: Q = ∅,
5: binVolume = 1,
6: cpusToAssign = m,
7: tasksWithoutCluster = T
8: T = {T ∪ τidle|uτidle = m−

∑
ui}

9: while binVolume <= cpusToAssign do
10: SolveBPP(tasksWithoutCluster, binVolume)
11: for all bin ∈ bins do
12: if utilization(bin) == binVolume then
13: // Each cluster has (number of CPUs in cluster,

tasks in the cluster)
14: Q = Q ∪ (binVolume, bin)
15: tasksWithoutCluster = tasksWithoutCluster \bin

16: cpusToAssign = cpusToAssign− binVolume
17: end if
18: end for
19: binVolume = binVolume+ 1
20: end while
21: // Ensure that all tasks and CPUs are in a cluster
22: if cpusToAssign! = 0 then
23: Q = Q ∪ (cpusToAssign, tasksWithoutCluster)
24: end if

Finding an optimal solution to Eq. 21 requires that∑
ui = m. Therefore, Alg. 1 starts by adding an idle task

τidle to T such that its utilization is uτidle = m−
∑
ui (line 8).

Wemake the deadline of this task be equal to the hyperperiod,
so that it has always the lowest priority. Actually, it will never
be scheduled. Then, the procedure consists in solving a BPP
of size 1. While there are unassigned tasks left, the size of
the bin is increased by one and the BPP is solved over the

VOLUME 9, 2021 83317

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

remaining task subset. A group of tasks is assigned to a cluster
if the utilization of the bin containing them is maximum. The
variables cpusToAssign and tasksWithoutCluster represent,
respectively, the number of CPUs and tasks unassigned to
any cluster yet. Since this heuristic does not guarantee an
optimal solution of the BPP, the condition in line 22 from
Alg. 1 ensures that the last cluster contains any possible group
of tasks with total utilization y < m that failed to conform a
bin when binVolume = y.

A. IDLE TASK: OTHER OPTIONS
Adding a single dummy idle task τidle as in Alg. 1 line 8 is
just a simple solution, well suited to our scheduling scheme,
which in later stages can deal with aperiodic tasks and dis-
turbances. However, it does not always help minimize migra-
tions. Let us consider two tasks such that u1 = u2 = 0.8,
to be scheduled on two processors. Adding an idle task with
uidle = 0.4 leads to the solution in Fig. 3 (a), with a single
cluster holding all the three tasks τ1, τ2 and τidle. A global
scheduler could yield migrations over the two processors.
Alternatively, if we add two idle tasks with utilization equal
to 0.2, we reach solution (b) in Fig. 3, with two clusters of
size 1, that will be scheduled separately using EDF, with no
migrations.

FIGURE 3. Differences in clustering between the usage of one dummy
(forces one cluster) and two dummies (dummies are in gray).

VII. PRE-SCHEDULE
This section presents the scheduling of major clusters Qj of
size sj > 1.

A. WORKLOAD ASSIGNMENT
To solve the workload assignment for the HRT task set Qj,
we formulate a linear programming problem (LPP), where
each constraint captures a desired behavior for our schedule.
The solution to the LPP is a set X of xki that represents the
workload that every task τi in Qj should execute at every
scheduling interval I kSD, k = 1, .., α, as inDP-fair approaches.
Each scheduling interval is defined as the time between
consecutive task deadlines (sd), I kSD = [sdk−1, sdk). Each
task deadline sdk is in the ordered set of all job deadlines
SD = {sd0, . . . , sdα}, where sd0 = 0 and sdα corresponds
to the hyperperiod.

We define the absolute laxity of τi in cycles as cc∗i =
(ωiF∗)−cci, i.e, the cycles that task τi can remain idle before
compromising its deadline. The number of processor cycles
up to time sdk is computed as (sdkF∗) = qi(ωiF∗)+ri, where
0 ≤ ri < (ωiF∗) and qi ∈ Z , such that qi represents the
instances of τi up to sdk , and ri the amount of cycles that task
τi has been active since its last deadline (qiωi) and time sdk .
If ri = 0, then sdk is a deadline for τi.

The LPP is formulated in Eq. (22). Each constraint is
defined per scheduling interval and per task, up to the hyper-
period. The Maximum utilization constraint (M.c) ensures
that the system utilization per I kSD is 100%. The Execution
constraint (E.c) forces the individual task τi workload to
complete cci before its deadline. If τi has not reached its
deadline, the Laxity constraint (L.c) guarantees that the sum
of the workloads from its last deadline to the current I kSD
should be greater than ri − cc∗i , such that τi is not idle for
more cycles than its absolute laxity. And the parallelism of a
task is avoided due to the Sequential constraint (S.c).
Proposition 1: Given a task set T as in Def. 1, where

task utilization at F∗ is equal to the number of processors,
the solution of the LPP (22) is always a vector of inte-
ger numbers, and if each task τi is executed for exactly xki
cycles during the k-th interval, then an optimal schedule is
obtained.

max
n∑
i=1

α∑
k=1

xki

s.t ∀k
n∑
i=1

xki = sj × |I kSD| × F
∗ M.c

if ri = 0
k∑
j=γ

x ji = cci E.c

if ri 6= 0
k∑
j=γ

x ji ≥ max{0, ri − cc
∗
i } L.c

where γ is 1 or the last deadline interval

∀i xki ≤ |I
k
SD| × F

∗ S.c (22)

Proof: The execution constraint in LPP (22) ensures that
every task meets its deadline. Hence, if there is a solution,
then the workload allocation leads to a feasible schedule.
Furthermore, by Theorem 4 from [20], the schedule is also
optimal.

To prove that the solution for the LPP (22) is always
integer, wewill show that the restrictionmatrix is unimodular.
Let M · y = b be the constraints from LPP (22), where
y = [x h], x is the solution vector from the LPP, h represents
the vector of slack variables and M is the restriction matrix.
By construction,M has the form:

M =

 A ∅
B
Isc

Ih

 (23)

A represents the equality constraints, B the execution
constraints that resulted on inequalities, Isc the sequential

83318 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 4. Form of submatrix [A B]T .

constraints (one for each xki) and Ih corresponds to the
slack variables. By construction all constraints are linearly
independent among them, hence M is full row rank with
rank(M) = α(2n + 1) − 1, where α is the number of
scheduling intervals.

From the properties of totally unimodular matrices (TUM),
it is well known that the property of total unimodularity (TU)
holds under the adjoining of unit vectors [45]. Thus, M is
TUM if submatrix [A B]T is TUM.
Submatrix [A B]T has the particular form showed in Fig. 4.

It contains a special structure of −1s in stair. If we remove
all unit vectors from [A B]T but those in the stairs the TU
property still holds. Let this new matrix be M ′. The TU
property is also preserved under elementary row operations
with no scaling, then each row in the stair structures from
M ′ can be transformed to unit vectors. Thus it is sufficient to
prove that A is TUM.

We claim that A is TUM because it satisfies Theorem 3
from [46], with a row partition (T1 and T2) such that rows
associated with the Maximum utilization constraints (M.c)
are elements of T1 and the restrictions corresponding to the
Execution constraints (E.c) are in T2. �

B. ZERO LAXITY POLICY
The clock frequencies F∗, F+ and the workload X computed
previously determine that task τi must be allocated xki cycles
at frequency F∗ during the interval I kSD to satisfy the HRT
and thermal constraints. This implies that the frequency can
be throttled up toF+ without violating the thermal restriction.
However, the actual allocation of tasks to processors requires
a scheduling algorithm. In this work, we leverage the ZL
policy as posed in Alg. 2, following the results from Prop. 1.
Example 1: Suppose a task system T = {(3, 5), (6, 10),

(9, 15), (6, 10), (3, 5)} to be executed on m = 3 processors at
F∗ = 1. The system utilization is U = 3. H = 30 and the set
of deadlines is SD = {0, 5, 10, 15, 20, 25, 30}. The solution
from LPP (22) (per task τi and per I kSD) is

k=1 k=2 k=3 k=4 k=5 k=6

xki

i=1 3 3 3 3 3 3
i=2 3 3 5 1 5 1
i=3 5 1 3 3 1 5
i=4 1 5 1 5 3 3
i=5 3 3 3 3 3 3

Algorithm 2 ZLH Policy

1: Input I kSD – Scheduling intervals; X k – CPU cycles per
interval of each task; exki – Current execution P cycles in
interval t0 – Initial time tf – Final time

2: Output A feasible schedule;
k = 0,

3: for t = t0 to tf do
4: Compute the laxity of every active task
5: if reach I k+1SD then
6: k = k + 1;
7: Compute task priorities as: Jobs with Zero laxity

get higher priority, followed by jobs that are being
executed

8: Execute the m tasks with higher priority
9: else if reach a zero laxity then

10: Compute task priorities
11: Execute the m tasks with higher priority
12: end if
13: end for

Applying the zero-laxity policy (Alg.2) up to the hyperpe-
riod, we find the target schedule in Fig. 5a.

VIII. GET-REFERENCE
A. COMPUTING REFERENCES
The following task execution paths are computed from the
cyclic executive obtained off-line. They will serve as ref-
erences for the controller and will add robustness to the
scheduler. Fig. 5b shows the execution paths of τ1 on each
CPU for Example 1.

Given the nature of the scheduling problem, these exe-
cution paths are piecewise smooth functions, as shown
in Fig. 5b. Let define the execution path Ṙi,j per task τi on
CPUj as:

Ṙi,j(ζ) = F∗[Wi,j(ζ)] (24)

where ζ stands for time, F∗ is the operating frequency, and

Wi,j(ζ) =

{
1 if τi is executed on CPUj
0 otherwise

(25)

Furthermore, from the cyclic executive we can define a set
D = {d0, d1 . . . , dk , . . . , dh}with all the time stamps dk when
a context switch occurred, from d0 = 0 up to the hyperperiod
(dh), and

δk = [dk−1, dk) (26)

as the time interval between consecutive context switches dk
and dk+1, where k = 1, . . . , h. These intervals are of special
interest because they dictate when a task τi must complete
a certain execution cycles. We solve Eq. (24) at the end of
interval δk to compute such execution cycles:

Ri,j(dk) = Ri,j(dk−1)+ F ∗ [Wi,j(dk−1)](dk − dk−1) (27)

Consecutively, Ri,k (dk) represents the number of CPU
cycles that τi must execute on CPUj before being preempted.

VOLUME 9, 2021 83319

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 5. a) Schedule of system from Example 1. b) Execution paths
for τ1 on each processor. The vertical lines link context switches
from a) to b).

IX. FEEDBACK CONTROLLER
The formal problem addressed solved by the feedback con-
troller is stated as follows.
Problem 2: Control RT Scheduler (CRTS). Given the sys-

tem defined in Def.1, the CRTS problem consists in design-
ing a control law that tracks a feasible schedule computed
beforehand. Additionally, the controller should execute or
reject aperiodic tasks from Def. 4 upon arrival, subject to the
temporal and thermal constraints of the HRT task set.

The allocation and execution of the HRT tasks at runtime
is determined by the flow of transitions talloci,j and texeci,j respec-

tively. The markings mbusyi,j and mexeci,j represent the tasks allo-
cated and executed, and both constitute the variables under
control. The allocation and execution control will work per
δk interval.

A. ALLOCATION CONTROL
Let us define the vector allocation error Ealloc(ζ) as,

Ealloc(ζ) := [Ealloc1,1 , . . . , Eallocn,1 , . . . , Eallocn,m]T (28)

where each Ealloci,j (ζ) is computed as,

Ealloci,j (ζ) = mexeci,j (ζ)+ mbusyi,j (ζ)− Ri,j(dk) (29)

where dk−1 ≤ ζ < dk . Taking the time derivative of Eq. 29
and using Eqs. (5)- (6), the dynamics of each error is given
by:

Ėalloci,j (ζ) = ṁexeci,j + ṁ
busy
i,j =

λalloci,j

η
midlei,j − u

alloc
i,j . (30)

Proposition 2: Let ualloci,j be an ON/OFF control for sys-
tem (30), such that

ualloci,j =


λalloci,j

η
midlei,j if Ealloci,j (ζ) ≥ 0

0 if Ealloci,j (ζ) < 0
(31)

Then system (30) is stable and each Ealloci,j remains bounded
for all dk−1 ≤ ζ < dk .
Proof: To prove the stability, we assume that marking

midlej , from place pidlej , constrains transitions talloci,j . Hence,

a Lyapunov [47] candidate function V can be defined, sat-
isfying V (Ealloc) > 0, ∀ Ealloc 6= 0 and V (Ealloc) = 0 for
Ealloc = 0, as

V =
1
2
EallocTEalloc

Taking its time derivative yields:

V̇ = EallocT ˙Ealloc =
|T |∑
i=0

|P |∑
j=0

Ealloci,j Ėalloci,j

For each Ealloci,j there are two possible scenarios:

1. Ealloci,j ≥ 0. Then, ualloci,j =
λalloci,j
η
midlei,j , therefore

Ealloci,j Ėalloci,j = 0.

2. Ealloci,j < 0. Since Ealloci,j = −|Ealloci,j | and u
alloc
i,j = 0 we

can state that

Ealloci,j Ėalloci,j = −
λalloci,j

η
|Ealloci,j |m

idle
i,j ≤ 0.

because midlej ≥ 0 for all ζ . Consequently we can conclude
that V̇ ≤ 0 which implies that V (ζ) ≤ V (dk), ∀ dk−1 ≤
ζ < dk . Therefore Ealloc remains bounded for all dk−1 ≤
ζ < dk . �

B. EXECUTION CONTROL
The allocation control assigns tasks to processors, whereas
the execution control modifies the rate of execution. The
allocation control is an scheduler, and the execution control
modifies the frequency at which the processor should operate
to comply with the task execution. The frequency is an input
to the execution module of the TCPN model in Sec. III-B.
In accordance with the off-line calculations, we assume that
the CPUs are identical, they work at the same frequency and
the operating frequency F is in the set F = {F∗, . . . ,F+}.
In our model (Sec. III-B), each processor can only attend

one task at a time and parallelism is not allowed. Conse-
quently, the number of active tasks is |P|, and therefore there
must be |P| transitions texeci,j enabled. Accordingly, we define

mexec
active = A(δk)mexec (32)

where mexec stands for the vector that holds every element
mexeci,j , and A(δk) is a matrix with {0, 1} entries that depend on
the tasks which are active during the interval δk , defined in
Eq. (26). Thus,mexec

active holds only m
exec
i,j values corresponding

to the active tasks in the δk . Therefore, A(δk) has only one
nonzero element per row, and no more than one nonzero
element per column.

Then, the execution error of the active tasks Eexec will be
defined as:

Eexec(ζ) := A(δk)mexec
− R(dk) (33)

for all ζ ∈ δk , and R(dk) is the vector of elements Ri,j(dk)
computed from Eq. (27) corresponding to every active
tasks in δk .

83320 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

Using Eq. (33), the dynamics of the execution error is given
by

˙Eexec(ζ) = A(δk) ˙mexec(ζ) (34)

where A(δk) remains constant during each interval δk .
Proposition 3: Let F be the frequency at which all CPUs

work during the interval δk = (dk−1, dk], such that

‖Eexec(dk−1)‖
λ|δk |

≤ F (35)

where |δk | is the duration of interval δk . ThenEexec(ζ) reaches
zero before the end of the interval.
Proof: Let V be the candidate Lyapunov function:

V =
1
2
EexecTEexec. (36)

Deriving Eq. (36) and using Eq. (6),

V̇ = EexecTA(δk) ˙mexec(ζ)

= EexecTA(δk)σF = EexecT8F (37)

where σ is a vector containing all σi,j and 8 is a vector with
all |P| entries equal to 1. Then Eq. 37 can be rewritten as

V̇ =
|P |∑
j=1

EexecjF (38)

From proposition 2, ualloc restricts transitions talloc such
that only Ri,j(dk+1) tokens are available, where
δk = [dk−1, dk). Hence, Eexecj ≤ 0, for j = 1, . . . , |P|, and
therefore:

V̇ = −‖Eexec‖1F . (39)

From Eq. (36),

V =
1
2
EexecTEexec =

1
2
‖Eexec‖22

Solving for ‖Eexec‖,

‖Eexec‖2 = (2V)1/2, (40)

Using Eq. (39),

V̇ = −‖Eexec‖1F ≤ −λ‖Eexec‖2F
V̇ ≤ −λ(2V)1/2F (41)

By comparison with lemma [47], where ζ ∈ δk ,

dV
dζ
≤ −λ(2V)1/2F

V (ζ)∫
V (dk−1)

x−1/2dx ≤ −λ
√
2F
∫ ζ

dk−1
dτ

2V (ζ)1/2 − 2V (dk−1)1/2 ≤ −λ
√
2F(ζ − dk−1) (42)

Substituting V (ζ) from Eq. (40) and solving for ‖Eexec(ζ)‖
we obtain:

2
√
2
‖Eexec(ζ)‖ −

2
√
2
‖Eexec(dk−1)‖ ≤ −λ

√
2F(ζ − dk−1)

‖Eexec(ζ)‖ ≤ ‖Eexec(dk−1)‖ − λF(ζ − dk−1)

Solving for ζ when ‖Eexec(ζ)‖ = 0, we get

ζ ≤
‖Eexec(dk−1)‖

λF
+ dk−1

To ensure that task deadlines are met, the execution error
should be zero before the interval δk is over, thus

ζ ≤
‖Eexec(dk−1)‖

λF
+ dk−1 ≤ dk

Hence,

‖Eexec(dk−1)‖
λF

≤ dk − dk−1

‖Eexec(dk−1)‖
λ|δk |

≤ F

Any frequency that satisfies Eq.(35) is suitable to takeEexec
to zero before the interval δk is over. Therefore, F is chosen
as the smallest F ∈ F s (from Ec. (17)) such that Eq.(35) is
satisfied.

It is straightforward to prove by induction the stability of
Eexec up to the hyperperiod, as this Proposition holds for the
interval δ1 and therefore no error is carried over into the next
execution interval. Therefore,

||Eexec(ζ)||∞ ≤ max{|δ1|, . . . , |δh|}F∗.

�
Proposition 3 shows that when selecting the operating

frequency as in Eq.(35) the HRT tasks will not miss their
deadlines even when a bounded overload is present.

C. APERIODIC MANAGER
As stated before, the on-line control is capable to reject distur-
bances, due to this feature, and aperiodic tasks will be treated
as such by the execution controller. Namely, when an aperi-
odic task τap arrives to the system and if it is accepted, we will
simulate a disturbance on the processor CPUj assigned to
the τap, this way the controller will automatically update
the CPU frequency. When the HRT task that was originally
assigned to CPUj reaches its zero laxity, τap will be assigned
to the next available CPU . For this purpose, we first calcu-
late the frequency Fn required to serve both the HRT tasks
and the aperiodic task τap,

Fn = F +
cca
daU

(43)

where F is obtained from Eq. (35),U is the system utilization
and (cca, da) are the parameters of the aperiodic task τa.
If Fn ≤ F+, the aperiodic task is accepted, otherwise it is
rejected. Fn is now the minimum frequency acceptable in
order to reach every task deadline. Therefore the set F is
restricted to those F ≥ Fn. The aperiodic task manager is
described by Alg.3.

VOLUME 9, 2021 83321

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

Algorithm 3 Aperiodic Manager
1: Input U :System utilization; P: CPUs
2: Output Fn: frequency for aperiodic tasks;D: disturbance

3: Aux. functions
· LaxityInCPU(CPUj, t) – Returns laxity for τap at time
t ;

4: Fn = F + cca
daU

,
5: if Fn <= F+ then
6: accept=1; // Accept τap
7: end if
8: while accept == 1 do
9: if LaxityInCPU(CPUj, t)> 0 then

10: Assign τap to CPUj
11: Simulate Perturbation to CPUj
12: else
13: CPUj = next available CPU;
14: end if
15: if τap finishes execution then
16: accept=0; Fn = F∗;
17: Eliminate disturbance to CPUj
18: end if
19: end while

TABLE 3. Task set in the example. WCET (cci) and relative deadlines (di)
given in cycles.

FIGURE 6. BBP in Alg. 1: a) Iteration 1; b) Iteration 2.

X. PUTTING IT ALL TOGETHER: AN EXAMPLE
A. PROCESSORS AND HRT TASK SET
Consider the HRT task set in Tab. 3 with implicit deadlines,
to be scheduled on an MPSoC with six available cores.
Assume the cores can run at 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz and
3 Hz, just to be consistent with simple manageable WCETs
and periods (relative deadlines) of the task set, as a way of
example.

B. TASK SET CONDITIONER
The task set conditioner stage requires knowledge of the
processors layout, materials, thermal properties and the CPU

TABLE 4. Material properties.

FIGURE 7. Layout of the MPSoC board.

TABLE 5. Power frequency pairs.

operating frequencies. In this example, the MPSoC is com-
posed of six 1cm× 1cm siliconmicroprocessormounted over
a 7cm × 7cm copper board, as shown in Fig. 7. The thermal
properties of thematerials appear on Table 4 [37], where cp, ρ
and k stands for the specific heat capacity, density and thermal
conductivity coefficient, respectively.

The task utilization in Table 3 (ui) assumes that the operat-
ing frequency is set to F∗ = 1 Hz, as calculated by the Task
set conditioner following Eq. (14). Since the utilization of
every task is less than 1 and the total utilization (Utot = 4.4)
is less than the number of processors (m = 6), we only
need five out of the six processors to correctly run the HRT
task set. Therefore, CPU6 will be off for the remaining of
this example. Then, the optimization problem from Eq.(15)
yields F+ = 2.5 Hz as the maximum frequency that the
system stands with five cores running at maximum load and
the sixth core off, while keeping the MPSoC temperature
under Tmax = 110◦C . The equation that describes the power
dissipation for each core is assumed to be: Pdyn = C1 ∗F3

+

C2, where C1 = 0.8421 and C2 = 9.1579, Table 5 shows the
corresponding power frequency pairs.

C. TASK CLUSTERING
We now apply Alg. 1 to allocate the tasks to the five pro-
cessors maximizing utilization. Line 8 adds the idle task τidle
such that didle = 20 (Sec. VI). Since U − tot = 4.4 (Table 3)
and m = 5, the utilization of τidle = 0.6 and ccidle = 12.
The first iteration of Alg. 1 solves the BBP with bins (clus-

ters) of size (volume or capacity) binVolume = 1 using a
BFD heuristic. The size of each task constitutes its utilization.
This yields seven bins (Fig. 6 a), only one of which (Bin 7,
(C 1,1)) is fully utilized. The heuristics ensures that no bin
will be filled above its capacity. (C 1,1) can be allocated to a
single CPU (CPU1), and accordingly removed from the pool
of available cores, conforming a minor cluster.

83322 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 8. Scheduling the resulting clusters over their respective
hyperperiod.

Since the iteration number (1) is less than the number
of cores still available (4), the algorithm performs a sec-
ond iteration using bins of volume binVolume = 2. This
yields two major clusters, (Bin 1, (C 2,1)) and (Bin 2,
(C 2,2)) (Fig. 6 b) each of which requires two proces-
sors. Consequently, we can allocate CPU2 and CPU3 to
(C 2,1) (tasks τ3, τ4, τ7), and CPU4 and CPU5 to (C 2,2)
(tasks τ5, τ6, τidle). Each cluster can be scheduled using
any optimal global scheduler. The current number of avail-
able cores (0) is less than the iteration number (3), so the
algorithm ends.

D. PER-CLUSTER SCHEDULING
At the next step we apply the proper scheduler to each cluster.
Fig. 8 (CPU1) shows the result of applying EDF to (C 1,1)
(tasks τ1, τ2, hyperperiod equal to 20s), resulting in zero
migrations, since it is a single-core cluster. For the dual-core
clusters (C 2,1) and (C 2,2) we apply the AlECS global
scheduler (hyperperiod equal to 10s in both cases). Upon
the resulting per-cluster scheduling, we can now generate a
cyclic executive for the HRT task set T over its hyperperiod
(20s), replicating the scheduling in the case of clusters whose
hyperperiod is less than the hyperperiod of T (Fig. 9). Each
cluster hyperperiod is always a divisor of the hyperperiod of
the initial HRT task set. In a system with no on-line ape-
riodic task or disturbance management, this is the resulting
thermal-safe HRT schedule, at minimum frequency, with low
context switches and migrations, which can be implemented
as a cyclic executive in a straightforward manner.

E. GET-REFERENCE
In a system where we have to cope with SRT aperi-
odic tasks we can apply the on-line modules Get-reference
(Sec. VIII) and the feedback controller (Sec. IX). The input
to Get-reference is the output of the precedent module Pre-
scheduler, i.e. a cyclic executive (Fig. 9). The first step
consists in determining the set D up to the hyperperiod. Con-
sidering these intervals and the cyclic executive, we easily
obtain the cycles each task must run on each CPU at each
interval δk (Table 6). The references in this table are the input
for the on-line feedback controller at the next stage.

FIGURE 9. Cyclic executive for the HRT task set in Table 3.

TABLE 6. Intervals and task cycles per-interval δk and task obtained from
the cyclic executive in Fig. 9 and the intervals determined by the context
switches.

F. FEEDBACK CONTROLLER
In a real system running this example, the feedback controller
would behave just as described in Sec. IX, subject to the
arrival of SRT aperiodic tasks or the occurrence of small
run-time disturbances caused by parameter variations. This
might cause additional context switches.

To demonstrate the behavior of the feedback controller,
assume that an aperiodic task with a relative deadline of 9 s
and WCET of 7 s, when running at F = 1 Hz, arrives
at t = 1 s. In Fig.10 we see that the feedback controller
increases the frequency of the processors at t = 1 s to 1.5 Hz,
holding it up to t = 7 s, in order to allow the execution of
the aperiodic task. The feedback controller will be able to
execute the aperiodic task during this interval meeting the
timing constraints, then restoring the previous frequency and
the execution references at t=7s.

G. THERMAL MANAGEMENT
To demonstrate the proper behavior of our thermal control,
we have performed a simulation with the processor distribu-
tion shown in Fig. 7. The MPSoC is cooled down by forced
air, with a heat transfer coefficient of 500W/m2

∗ K [48].
Fig. 11 displays the temperature evolution at the center of

the cores when the system is running the cyclic executive.
Aligned side-by-side, Fig. 12 shows the temperature evolu-
tion at the same places when the systemmanages an aperiodic
task throttling the frequency during that interval. The core
temperature increases along the interval [1, 7], then decreases
when the frequency is set back to F∗, once normal execution
resumes.

VOLUME 9, 2021 83323

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 10. Execution of tasks with the admission of an aperiodic task.

XI. COMPARISON WITH RUN
CAlECS aims to maximize processor utilization and to min-
imize job migration and context switching. In this section
we compare the number of context switches and migrations
entailed by CAlECS, AlECS and RUN, the latter of which
is considered as an optimal reference (Sec. II). We include
AlECS because it is just the worst-case clustering solution of
CAlECS —the situation in which there is a single (major)
cluster encompassing the whole HRT task set and all the
CPUs.

A. SIMULATION ENVIRONMENT AND SETUP
We carry out the comparison using Tertimuss [11],
an open-source framework to model a RTmultiprocessor sys-
tem, simulate different RT schedulers, and process the results.
We only consider job preemptions as context switches.
We rule out job start and job termination events, since they
are independent of the scheduling algorithm. We compute a
migration when a job resumes execution on a CPU different
from the one on which it was previously running.

The task sets for the comparison are generated using the
UUniFast-discard algorithm [49]. The total utilization of each
task set is equal to the number of processors in the experi-
ment. Task periods are randomly selected between the divi-
sors of 60, to obtain amajor cycle of at most 60 s. The task sets
are executed on systems with 2 and 4 cores, with task-to-core
ratios of 4, 8, 12, 16, and 20. This amounts to 200 experiments
per combination, totaling 2000 experiments in all.

Tertimuss takes the WCET in cycles, and performs the
simulation on a cycle-by-cycle basis. Since RUN can yield

FIGURE 11. Processors temperature evolution of the cyclic executive.

fractional execution times, we apply some adjustments to
make the comparison feasible. Following the original descrip-
tion of the algorithm in [9], we implement RUN using a
Worst-Fit policy for the packing operation, the EDF pol-
icy for the scheduling of the servers, and the original task-
to-processor allocation policy. When applying EDF, deadline
ties in servers are either solved at random if no server has
run yet, or by choosing the server that was last executed,
otherwise. Since the three schedulers in the comparison are
optimal and the selected task sets are feasible, the three
schedulers obtain a feasible schedule in all experiments.

B. MIGRATIONS PER JOB
The boxplots in Fig. 13 summarizes the number of migrations
per job (Y-axis) as the number of tasks per processor (TPP)
varies (X-axis). Tab. 7 details the mean and the standard
deviation. A common trend to all the three schedulers under
comparison is that both the mean and the standard deviation
of migrations per job decrease as the number of processors
decreases and the TPP increases. These results support the
intuition discussed in Sec. VI, upon the rationale that a minor
cluster yields zero migrations.

83324 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 12. Processors temperature evolution of the cyclic executive with
the admission of an aperiodic tasks.

TABLE 7. Number of migrations per job depending on the
tasks-per-processor ratio (TPP).

AlECS achieves fewer migrations than RUNwith low TPP
ratios, but RUN outperforms AlECS with high TPP ratios
(16, 20). Also, the mean of migrations decreases faster in
RUN than in AlECS as the TPP increases. Last, AlECS fails
to reach zero migrations ever, while RUN yields a Q1 of zero
with high TPP ratios, also in the case of the 24/2 TPP, and
reaches a median of zero in the case 40 tasks executed in
two CPUs. However, the standard deviation is outstandingly
lower in AlECS than in RUN in all cases. The analysis of
the behavior of RUN with high TPP ratios shows that RUN

TABLE 8. Clustering performance.

manages to find a full partition of the task-set (minor cluster)
during its packing operation in a considerable amount of
experiments, leading to a zero migrations figure in those
cases.

The results prove that CAlECS outperforms AlECS and
RUN in all configurations because it is able to find as many
partitionable task-sets as RUN, while retaining the properties
of AlECS when scheduling major clusters. Also, it can reach
a median of zero migrations when the TPP ratio is high, even
yielding a Q3 of zero in the case of 80 tasks executed in four
CPUs. The standard deviation is lower in CAlECS than in
RUN but higher than in AlECS.

RUN is not specifically designed to find clusters, particu-
larlyminor clusters (achieving zeromigrations), but its ability
to find them often, when possible, allows RUN to reach the
zero migrations notch in cases where AlECS fails to do this.
The task clustering stage in CAlECS aims to find low-size
clusters, reaching zero migrations in more experiments than
RUN (Fig. 13). We can examine Table 8 to better understand
the clustering behavior of RUN and CAlECS (AlECS does
not apply clustering) and to assess the consistency of our
experimental results. The third column in this table shows
the number of clusters of each size (from 1 to 4 CPUs)
obtained for each TPP. For example, with 64 tasks on four

VOLUME 9, 2021 83325

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 13. Simulation results for the number of migrations/number of jobs.

TABLE 9. Number of preemptions per job.

processors, CAlECS finds a full partition (four minor clus-
ters) in 108 experiments, whereas RUN does it only 56 times.
In 85 experiments, CAlECS fits the HRT task set into two
minor clusters and a major cluster with two CPUs, whereas
RUN only finds that configuration in 20 experiments. This
trend holds for all design points, with CAlECS always finding
substantially more minor clusters (entailing zero migrations)
than RUN.

C. PREEMPTIONS PER JOB
The boxplots in Fig. 14 and Tab. 9 help to analyze the mean of
preemptions per job by experiment for each TPP configura-
tion. The results indicates that AlECS always perform better
than RUN on the average, yielding a lower standard deviation
and fewer outliers. However, there are some specific cases
where RUN outperform AlECS, such as when scheduling
8 tasks over twoCPUs, with RUNproviding aminimumvalue
of 0.09091 while AlECS reaches 0.2593. As for CAlECS,
it outperforms RUN and AlECS on the average, with a
slightly greater standard deviation than AlECS nonetheless.

As we observed with migrations, the mean of preemptions
and its standard deviation decreases in all the three schedulers
as the TPP ratio increases. Also, for each TPP ratio, the mean
of preemptions decreases with the number of CPUs.

XII. COMPUTATIONAL COMPLEXITY
This section gathers the computational complexity of the var-
ious parts of the proposed system as described in Fig. 2. The

off-line stages calculate theminimum andmaximum frequen-
cies, resolve the task clustering, and apply a pre-scheduling
which, depending on the container size of each cluster, fol-
lows the EDF or ZL dispatching rules. The on-line stage con-
sists on a continuous controller and the aperiodic manager.

A. OFF-LINE CALCULATIONS
The Task Set Conditioner (Sec. V) calculates the minimum
and maximum frequencies (F∗ and F+). Computing F∗ is
linear in the number of tasks O(n). The calculation of F+

requires solving a non-linear optimization problem, whose
number of iterations to find a solution depends on some
parameters such as the required convergence error and the
gradient weighting. To this end, we employ an interior point
algorithm. Tests show that it provides a good performance
and converges to the optimum in a very short time.

The computational complexity of our task clustering
(Sec. VI) depends on Alg. 1. The outer while loop (line 9)
iterates m times. At each iteration it first executes SolveBPP
(line 10), whose complexity is n × log(n). Then, it runs the
inner for loop. All instructions inside the inner for loop are
executed α×m times. Thus, the computational complexity of
Alg. 1 is of order O(m2

× n× log(n)).
Next, the complexity of solving Eq. (22) to compute the

workload per scheduling point is linear in xki , i.e. in n
2
× β,

where β = maxτi
H
wi
. Thus, it is in the order ofO(n2). Finally,

EDF or ZL (Alg.2) policies run in polynomial time.
Hence, all the algorithms in the off-line stage run in

polynomial time except, but the non-linear optimization.
As mentioned before, in our tests, the non-linear optimization
algorithm runs in a very short time.

B. ON-LINE COMPUTATIONS
References are only computed when a context switch occurs,
which results on gathering the appropriate execution require-
ment Ri,j(dk) (Ec. 27).

The feedback controller (Sec. IX) runs at every sampling
period, which depends on the minimum difference between
two consecutive di − di−1 from set D. Since the RT clock
routine is executed with a fixed period and more frequently

83326 VOLUME 9, 2021

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

FIGURE 14. Simulation results for the number of preemption/number of jobs.

than any other RT task, we propose to implement the feedback
controller routine as a call back (deferred function, softirq
or tasklet depending on the RT operating system), activated
at each RT clock routine execution. In this approach we
include a feedback controller routine per CPU . Thus, their
complexity is O(1), because it requires to solve Eqs. (31)
and (35), that have a fixed number of operations. A different
implementation approach may use a devoted CPU for the
feedback controller routine.

XIII. CONCLUSION
RT scheduling on multicore processors remains a chal-
lenge in many ways, all the more when temperature and
energy counts. One of the points is maximizing processor
utilization to avoid overprovisioning. Partitioned schedul-
ing approaches fall short in this aspect, whereas opti-
mal global schedulers are too complex to be effective.
Near-optimal solutions are possible by leveraging a mix of
ad-hoc techniques, but there is still a shortage of practical
methods and tools interesting enough for the industry to
adopt them.

CAlECS leverages the ability of known scheduling algo-
rithms to simplify the global scheduling problem, and the
power of a fluid model and feasible mathematical optimiza-
tion to account for thermal constraints and to maximize pro-
cessor utilization. It provides an off-line cyclic executive for
a HRT task set which is thermal-safe, energy efficient, easy
to implement and more effective than RUN. Our comparison
with RUN reveals that CAlECS is able to find more minor
clusters and more major clusters of smaller size, along with
the fact that the global scheduler AlECS performs particularly
well in lowering migrations in major clusters.

As a cyclic executive, the number of context switches
and migrations is known for the hyperperiod, and therefore
the WCET, which usually includes scheduling costs, can be
fine-tuned in future work to obtain a schedule with more
realistic bounds. This cyclic executive can feed an on-line
controller which manages the SRT aperiodic tasks, deals with
small disturbances, due to parameter variations for example.
In the future, it can easily fit a slack reclamation scheme. The
modular design of CAlECS permits designers to employ other
thermal models or schedulers.

REFERENCES
[1] K. Vipin, ‘‘CANNoC: An open-source NoC architecture for ECU consoli-

dation,’’ in Proc. IEEE 61st Int. Midwest Symp. Circuits Syst. (MWSCAS),
Aug. 2018, pp. 940–943.

[2] Intel. ECU Consolidation Reduces Vehicle Cost, Weight and
Testing. Accessed: May 1, 2021. [Online]. Available: https://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/ecu-
consolidation-white-paper.pdf

[3] D.-I. Oh and T. P. Bakker, ‘‘Utilization bounds for n-processor rate
monotone scheduling with static processor assignment,’’ Real-Time Syst.,
vol. 15, no. 2, pp. 183–192, 1998.

[4] A. Mascitti, T. Cucinotta, and L. Abeni, ‘‘Heuristic partitioning of real-
time tasks on multi-processors,’’ in Proc. IEEE 23rd Int. Symp. Real-Time
Distrib. Comput. (ISORC), May 2020, pp. 36–42.

[5] Specification 651: DesignGuide for IntegratedModular Avionics, ARINC,
Annapolis, MD, USA, 1997.

[6] N. Diniz and J. Rufino, ‘‘ARINC 653 in space,’’ in Proc. DASIA-DAta
Syst. Aerosp., vol. 602. Edinburgh, Scotland: ESA Publications Division,
May 2005.

[7] AUTOSAR. (2017). Specification of RTE Software. [Online]. Available:
http://www.autosar.org.

[8] B. B. Brandenburg and M. Gül, ‘‘Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS), Nov. 2016,
pp. 99–110.

[9] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, ‘‘RUN: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,’’ in
Proc. IEEE 32nd Real-Time Syst. Symp. (RTSS), Washington, DC, USA,
Nov. 2011, pp. 104–115.

[10] M. L. Dertouzos, ‘‘Control robotics: The procedural control of physical
processes,’’ in Proc. IFIP Congr. (IFIP), 1974, pp. 807–813.

[11] G. Desirena, L. Rubio, A. Ramirez, and J. Briz. (2019). Thermal-
Aware HRT Scheduling Simulation Framework. [Online]. Available:
https://webdiis.unizar.es/gaz/repositories/tertimuss.

[12] S. Sha, W. Wen, G. A. Chaparro-Baquero, and G. Quan, ‘‘Thermal-
constrained energy efficient real-time scheduling on multi-core
platforms,’’ Parallel Comput., vol. 85, pp. 231–242, Jul. 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167819118300280

[13] G. Desirena-Lopez, A. Ramírez-Treviño, J. Briz, C. Vázquez, and
D. Gómez-Gutiérrez, ‘‘Thermal-aware real-time scheduling using timed
Continuous Petri nets,’’ ACM Trans. Embedded Comput. Syst., vol. 18,
no. 4, p. 36, 2019.

[14] L. Rubio-Anguiano, G. Desirena-López, A. Ramírez-Treviño, and J. Briz,
‘‘Energy-efficient thermal-aware multiprocessor scheduling for real-time
tasks using TCPN,’’Discrete Event Dyn. Syst., vol. 29, pp. 1–28, Jul. 2019.

[15] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, ‘‘Proportion-
ate progress: A notion of fairness in resource allocation,’’ Algorithmica,
vol. 15, no. 6, pp. 600–625, Jun. 1996.

[16] S. K. Baruah, J. E. Gehrke, and C. G. Plaxton, ‘‘Fast scheduling of periodic
tasks on multiple resources,’’ in Proc. IPPS, 1995, p. 280.

[17] J. H. Anderson and A. Srinivasan, ‘‘Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks,’’ in Proc. 13th Euromicro Conf. Real-Time
Syst., 2001, pp. 76–85.

[18] N. Fisher, J. Goossens, and S. Baruah, ‘‘Optimal online multiprocessor
scheduling of sporadic real-time tasks is impossible,’’ Real-Time Syst.,
vol. 45, nos. 1–2, pp. 26–71, Jun. 2010.

VOLUME 9, 2021 83327

L. E. Rubio-Anguiano et al.: Maximizing Utilization and Minimizing Migration

[19] M. Leoncini, M. Montangero, and P. Valente, ‘‘A parallel branch-and-
bound algorithm to compute a tighter tardiness bound for preemptive
global EDF,’’ Real-Time Syst., vol. 55, no. 2, pp. 349–386, Apr. 2019.

[20] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt, ‘‘DP-fair: A unifying
theory for optimal hard real-time multiprocessor scheduling,’’ Real-Time
Syst., vol. 47, no. 5, pp. 389–429, Sep. 2011.

[21] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, ‘‘Reducing preemp-
tions and migrations in real-time multiprocessor scheduling algorithms by
releasing the fairness,’’ in Proc. IEEE 17th Int. Conf. Embedded Real-Time
Comput. Syst. Appl., vol. 1, Aug. 2011, pp. 15–24.

[22] M. Thammawichai and E. C. Kerrigan, ‘‘Energy-efficient real-time
scheduling for two-type heterogeneous multiprocessors,’’ Real-Time Syst.,
vol. 54, no. 1, pp. 132–165, Jan. 2018.

[23] J. Zhou, J. Sun, P. Cong, Z. Liu, X. Zhou, T. Wei, and S. Hu, ‘‘Security-
critical energy-aware task scheduling for heterogeneous real-timeMPSoCs
in IoT,’’ IEEE Trans. Services Comput., vol. 13, no. 4, pp. 745–758,
Jul. 2020.

[24] A. Bertout, J. Goossens, E. Grolleau, and X. Poczekajlo, ‘‘Template sched-
ule construction for global real-time scheduling on unrelated multiproces-
sor platforms,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2020, pp. 216–221.

[25] S. Baruah, ‘‘Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms,’’ in Proc. 25th IEEE Int. Real-
Time Syst. Symp., Dec. 2004, pp. 37–46.

[26] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘HEART: A heterogeneous energy-
aware real-time scheduler,’’ in Proc. 32nd Int. Conf. VLSI Design, 18th Int.
Conf. Embedded Syst. (VLSID), Jan. 2019, pp. 476–481.

[27] D. Doan and K. Tanaka, ‘‘A novel task-to-processor assignment approach
for optimal multiprocessor real-time scheduling,’’ in Proc. IEEE 12th
Int. Symp. Embedded Multicore/Many-Core Syst.-Chip (MCSoC), Hanoi,
Vietnam, Sep. 2018, pp. 101–108.

[28] D. Doan andK. Tanaka, ‘‘Adaptive local assignment algorithm for schedul-
ing soft-aperiodic tasks on multiprocessors,’’ in Proc. IEEE 25th Int.
Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2019,
pp. 1–6.

[29] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, ‘‘Multiprocessor
scheduling by reduction to uniprocessor: An original optimal approach,’’
Real-Time Syst., vol. 49, no. 4, pp. 436–474, Jul. 2013.

[30] D. Compagnin, E.Mezzetti, and T. Vardanega, ‘‘Putting RUN into practice:
Implementation and evaluation,’’ in Proc. 26th Euromicro Conf. Real-Time
Syst., Jul. 2014, pp. 75–84.

[31] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, ‘‘Quasi-partitioned
scheduling: Optimality and adaptation in multiprocessor real-time sys-
tems,’’ Real-Time Syst., vol. 52, no. 5, pp. 566–597, Sep. 2016.

[32] E. Massa, G. Lima, and P. Regnier, ‘‘Revealing the secrets of RUN and
QPS: New trends for optimal real-time multiprocessor scheduling,’’ in
Proc. Brazilian Symp. Comput. Syst. Eng., Nov. 2014, pp. 150–155.

[33] J. Mayank and A. Mondal, ‘‘Non-preemptive multiprocessor scheduling
for periodic real-time tasks,’’ in Proc. 7th Int. Symp. Embedded Comput.
Syst. Design (ISED), Dec. 2017, pp. 1–6.

[34] B. Kim and H. Yang, ‘‘Reliability optimization of real-time satellite
embedded system under temperature variations,’’ IEEE Access, vol. 8,
pp. 224549–224564, 2020.

[35] P. Dziurzanski and A. Singh, ‘‘Feedback-based admission control for
firm real-time task allocation with dynamic voltage and frequency scal-
ing,’’ Computers, vol. 7, no. 2, p. 26, Apr. 2018. [Online]. Available:
https://www.mdpi.com/2073-431X/7/2/26

[36] L. Rubio-Anguiano, G. Ramírez-Treviño, J. Briz, and A. Chils, ‘‘Real
time scheduler for multiprocessor systems based on continuous control
using timed continuous Petri nets,’’ IFAC-PapersOnLine, vol. 53, no. 4,
pp. 371–377, 2020.

[37] G. Desirena-Lopez, C. R. Vázquez, A. Ramírez-Ireviño, and
D. Gómez-Gutiérrez, ‘‘Thermal modelling for temperature control in
MPSOC’s using timed continuous Petri nets,’’ in Proc. IEEE Conf.
Control Appl. Part Multi-Conf. Syst. Control, Oct. 2014, pp. 2135–2140.

[38] S. Baruah, M. Bertogna, and G. Butazzo, Multiprocessor Scheduling for
Real-Time Systems. Secaucus, NJ, USA: Springer-Verlag, 2015.

[39] B. B. Brandenburg, ‘‘Scheduling and locking in multiprocessor real-time
operating systems,’’ Ph.D. dissertation, Univ. North Carolina Chapel Hill,
Chapel Hill, NC, USA, 2011.

[40] M. Silva and L. Recalde, ‘‘Redes de Petri continuas: Expresividad, análi-
sis y control de una clase de sistemas lineales conmutados,’’ Revista
Iberoamericana Automática Informática Ind., vol. 4, no. 3, pp. 5–33,
Jul. 2007.

[41] R. David and H. Alla, ‘‘Discrete, continuous and hybrid Petri nets,’’ IEEE
Control Syst. Mag., vol. 28, no. 3, pp. 81–84, Jun. 2008.

[42] M. Silva, J. Júlvez, C. Mahulea, and C. R. Vázquez, ‘‘On fluidization of
discrete event models: Observation and control of continuous Petri nets,’’
Discrete Event Dyn. Syst., vol. 21, no. 4, pp. 427–497, Dec. 2011.

[43] R. Ahmed, P. Ramanathan, and K. K. Saluja, ‘‘Necessary and sufficient
conditions for thermal schedulability of periodic real-time tasks under fluid
scheduling model,’’ ACM Trans. Embedded Comput. Syst., vol. 15, no. 3,
p. 49, 2016.

[44] D. S. Johnson, ‘‘Fast algorithms for bin packing,’’ J. Comput. Syst. Sci.,
vol. 8, no. 3, pp. 272–314, Jun. 1974.

[45] K. Truemper, Matroid Decomposition, vol. 6. Boston, MA, USA:
Academic, 1992.

[46] A. J. Hoffman and J. B. Kruskal, ‘‘Integral boundary points of convex
polyhedra,’’ in 50 Years of Integer Programming 1958–2008. Berlin,
Germany: Springer, 2010, pp. 49–76.

[47] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ, USA: Prentice-
Hall, 2002.

[48] P. Kosky, R. Balmer, W. Keat, and G. Wise, ‘‘Mechanical engineer-
ing,’’ in Exploring Engineering, P. Kosky, R. Balmer, W. Keat, and
G. Wise, Eds., 5th ed. New York, NY, USA: Academic, 2021, ch. 14,
pp. 317–340. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128150733000144

[49] R. I. Davis and A. Burns, ‘‘Priority assignment for global fixed priority
pre-emptive scheduling inmultiprocessor real-time systems,’’ inProc. 30th
IEEE Real-Time Syst. Symp., Dec. 2009, pp. 398–409.

LAURA ELENA RUBIO-ANGUIANO received
the B.Sc. degree in mechatronic engineering from
the Instituto Tecnológico de Estudios Superiores
de Monterrey, Mexico, in 2015, and the M.Sc.
degree in electrical engineering from the Cinvestav
Unidad Guadalajara, Mexico, in 2018. She is cur-
rently pursuing the Ph.D. degree with Cinvestav
and Universidad de Zaragoza, in co-tutelage.

ABEL CHILS TRABANCO received the B.Sc.
degree in computer engineering from the Univer-
sity of Zaragoza, Spain, in 2019, where he is cur-
rently pursuing the M.Sc. degree.

JOSÉ LUIS BRIZ VELASCO received the B.Sc.
and M.Sc. degrees in geology, the M.Sc. degree in
computer science, and the Ph.D. degree in com-
puter engineering from the University of Zaragoza
(UZ), Spain, in 1996. He is currently an Asso-
ciate Professor with the Department of Computer
and Systems Engineering and a Researcher at the
I3A Research Institute, UZ. His research interests
include memory hierarchy, processor microarchi-
tecture, and real-time systems. He is a member

of the GAZ Group and the Spanish Society of Computer Architecture
(SARTECO). He is also an Affiliate Member of the HiPEAC European
Network of Excellence.

ANTONIO RAMÍREZ-TREVIÑO received the
B.Sc. degree in electrical engineering from
Universidad Autonoma Metropolitana, Mexico
City, Mexico, in 1986, the M.Sc. degree from
Cinvestav, Mexico, in 1990, and the Ph.D.
degree from the University of Zaragoza, Spain,
in 1993. He is currently a Professor with
Cinvestav Unidad Guadalajara, Mexico. His
research interests include scheduling, analysis,
and control of discrete event systems, including

controllability, observability, and stability.

83328 VOLUME 9, 2021

