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ABSTRACT Rockburst is a common geological disaster in mines, tunnels, deep underground engineering,
and during excavation, mining, and construction. Rockburst frequently occurs as the depth of burial increases,
and its early warning technology is in urgent need of further development. At present, the most effective
monitoring and analysis method of rockburst is microseismic technology, which detects a large number
of rock micro-fracture signals through geophones. The identification of microseismic monitoring data
is an essential part of microseismic data processing. It is necessary to identify effective microseismic
signals from considerable monitoring data for subsequent early warning. Aiming at the identification of
rock micro-fracture signals, this thesis proposes a microseismic data identification method based on the
Deep Convolution Neural Network Inception (DCNN-Inception) algorithm. The algorithm uses an existing
Convolutional Neural Network (CNN) model, adding Inception structure in the middle of the model to form
a DCNN-Inception model. A data set was established depending on the actual measured data of Baihetan
Hydropower Station, and CNN and DCNN-Inception were employed to identify effective microseismic
signals. The results demonstrate that the DCNN-Inception algorithm is better than CNN in recognition
accuracy and can effectively identify effective microseismic signals. It provides an essential foundation for
the identification of microseismic abnormal signals of rock microfracture and the early warning of rock
rupture precursors and is of practical significance for the study of rockburst warning technology.

INDEX TERMS Rock micro-fracture signals, deep convolution neural network, inception structure,

microsiesmic signal recognition, accuracy and loss rate.

I. INTRODUCTION

With the development of China’s economy and the strategy
of large-scale development of the western region, the soci-
ety’s demand for various resources continues to rise, and
the scale of resource extraction continues to expand. South-
western China has huge reserves of oil and gas resources,
mineral resources, and hydropower resources, which need
to be extensively developed and utilized. Its development
intensity and construction scale have developed to the deep
underground [1]-[5]. Consequently, engineering geological
disasters caused by deep problems are increasing. The rock-
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burst problem induced by high ground stress is the most
prominent. Rockburst is the sudden and violent release of
the elastic strain energy accumulated in the hard and brit-
tle rock mass under the action of construction excavation
and unloading under high ground stress conditions, causing
the rock to burst and eject. This leads to problems such
as falling rocks, landslides, tunnel collapse, casualties, eco-
nomic losses, and cracks in the construction of the foun-
dation. How to effectively predict and prevent rock bursts
has become the common focus of underground engineer-
ing construction and rock mechanics research. Microseismic
monitoring is a new type of monitoring technology developed
internationally in the 1990s for the rockburst phenomenon
of deep-buried tunnels [6]-[8]. It can be used for geological
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disaster monitoring, mine pressure monitoring, and stability
monitoring of deep-buried tunnels. The principle is to first
receive microseismic signals generated by rock mass rupture
through arranging geophone arrays in certain areas; second,
the time-frequency analysis method is used to obtain informa-
tion such as the time and source intensity of the microseismic
event; finally, the location algorithm is used to accurately
locate the microseismic event, determine the development
location of the rock mass fracture surface, and evaluate the
frequency of microseismic events in a certain area and the
source intensity to realize the function of tunnel excavation
rockburst disaster prediction. However, the current micro-
seismic signal acquisition process is usually accompanied
by project construction, and there is a certain chance that
interference signals such as artificial blasting, mechanical
construction vibration, and environmental noise will be col-
lected. The energy of these signals is usually much greater
than that of microseismic signals, resulting in submerging
useful signals. The signal collected by the geophone is a
mixture of microseismic signals and interference noise sig-
nals [9]-[11]. How to quickly and accurately separate the
microseismic signal from it and effectively and accurately
identify plays a significant role in the location of rock fracture
micro-seismic events and is the premise of tunnel excavation
rockburst prediction. The research on the recognition algo-
rithm of microseismic signals is of great significance.

The micro-seismic monitoring technology can delineate
disaster risk areas in time through real-time monitoring of
rock mass rupture, realizing disaster prediction and pre-
vention to a large extent. This plays a crucial role in
reducing casualties and in some apartments such as geo-
logical disaster monitoring, mining, and mine safety. In the
recognition of microseismic events, researchers worldwide
have conducted many years of research and have achieved
many significant research results. Longjun et al. [12] used
time-frequency analysis to discover that the main frequency
of microseisms is 18-70Hz, the main frequency of artificial
blasting is 60-100Hz, and the main frequency of electrical
noise is 5S0Hz. Allmann et al. [13] used the Fourier trans-
form method to investigate periodic stationary signals and
obtained the amplitude-frequency characteristics of the mine
microseismic signal, providing a foundation for preliminary
identification of rock rupture and blasting vibration signals.
Quan-Jie and Fu-Xing [14] studied microseismic signals and
revealed that the energy of blasting signals and the energy of
rock rupture signals were mostly concentrated at 375-500Hz
and 0-125Hz, respectively. Guoyan ef al. [15] explored the
dimensions of microseismic signals and discovered that the
box dimensions of blasting signals are mainly distributed
in 1.5-1.6; the box dimension of the rock micro-fracture
signal is mainly distributed below 1.4; the box dimensions
of electromagnetic interference microseismic signals are con-
centrated in 1.7-1.8. Wenwu et al. [16] used Fourier transform
to analyze the blasting and microseismic signals and obtained
the power spectrum and amplitude-frequency characteristics,
revealing that the microseismic signal reached the maximum
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amplitude in the range of 20-30Hz, and the blasting signal
reached the maximum amplitude at 10Hz. Regarding the
recognition of microseismic signals, with the development
of pattern recognition and artificial intelligence, computer
software, SVM, linear discriminant, and Bayesian methods
have been used to recognize microseismic signals. Dargahi-
Noubary [17] established a non-stationary stochastic model
to build an earthquake identification model and construct a
secondary identification. Marambio et al. [18] applied logis-
tic regression and neural network to the recognition of micro-
seismic and blasting events and constructed a recognition
model with 13 waveform parameters as characteristic values.
Jeffrey et al. [19] constructed a microseismic event classifi-
cation and recognition model based on principal component
analysis by extracting the frequency domain characteris-
tics, duration characteristics, and statistical characteristics
of microseismic events, and its classification accuracy rate
reached 90%-95%.

In recent years, with the development of artificial neu-
ral networks and image recognition, more and more pat-
tern recognition methods have been used by researchers in
microseismic data recognition research. Quanjie et al. [20]
established an algorithm for range and scale-free fractal box
size by studying the fractal characteristics of microseismic
signals to identify mechanical vibration waveforms, blast-
ing waveforms, and rockburst waveforms of SVM networks.
Professor Yinju applied the genetic neural network algo-
rithm to natural earthquakes and artificial blasting events
early on [21]. CNN algorithm is currently one of the most
commonly used algorithms in the field of image recogni-
tion research. In 1998, LeCun proposed CNN. In 2012,
Hinton’s research team used the CNN model to participate
and won the championship of the I-mageNet image classi-
fication competition. To solve the problem of distinguish-
ing gastric cancer and gastritis from magnifying endoscopy
(MENBI), and narrowband imaging, Horiuchi et al. [22]
presented a ME-NBI image classification scheme based on
CNN image recognition. The experimental results indicated
that the accuracy of the scheme can reach 85.3%. Besides,
Salgado et al. [23] put forward a high-precision automatic
classification system for eight groups of peripheral blood
cells using the CNN-Inception method, and the experiments
revealed that its accuracy rate was 86% when using Vgg-
16 to extract features. Dokht et al. [24] provided an CNN
algorithm based on double optimization to improve the recog-
nition accuracy and convergence speed of the CNN algorithm.
Liao Enhong et al. proposed a new food image recognition
model, China Food-CNN, and adopted CNN recognition to
accurately classify food. The experimental results demon-
strated that the model’s recognition accuracy of food images
was 69.2% [25]. Hong et al. [26] presented a small sample
bark image recognition scheme based on CNN to solve the
problems of few image training samples and low recognition
rate in the process of bark image classification. The experi-
mental results indicated that the accuracy of the scheme on
the MNIST data set, ImageNet data set, and the CIFAR-10
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FIGURE 1. Structure model of CNN for microseismic signals. Convolutional neural network includes input layer of
microseismic image, convolution layer of feature extraction, pooling layer of feature compression, full connection
layer of information connection and final classifier layer.

data set was 92%, 90%, and 93%, respectively. Furthermore,
Jiazheng et al. [27] offered a scheme of breast histopatholog-
ical image classification based on CNN and wavelet decom-
position images.

This paper proposes a method of using CNN to recognize
images to process microseismic data. CNN has long been
one of the core algorithms in the field of image recognition
and can effectively handle some large-scale data classifi-
cation problems. During the rock microseismic monitoring
process, a quantitative data signal is generated. The signal
is three-component microseismic data and interference noise
data, with certain characteristic parameters. Then, these char-
acteristic parameter data are visualized to form a picture
data set. Next, CNN is employed to extract feature values
in the picture and perform classification learning. Particu-
larly, feature extraction can manually input images of dif-
ferent categories into CNN. Finally, the test set is classified.
On this basis, deep learning is added, the network structure is
migrated, and the DCNN-Inception network is formed. The
above steps are repeated to complete the identification of
microseismic signals. At present, the test results indicate that
the accuracy of DCNN-Inception can reach more than 90%,
which is better than that of the ordinary CNN model.

Il. METHOD AND DATASET SOURCE

A. CONVOLUTIONAL NEURAL NETWORK FUNDAMENTALS
IN MICROSEISMIC SINGLE

The full name of the CNN algorithm is convolutional neural
network, which is a feedforward neural network. It is gener-
ally composed of a data input layer, a convolutional calcula-
tion layer, a pooling layer, and a fully connected layer. It is a
neural network using convolutional operations to replace tra-
ditional computing methods [28]-[32]. The network structure
model of CNN is illustrated in Figure 1.

The data input layer mainly inputs the microseismic signals
image. The convolutional layer is for microseismic image’s
feature extraction. The feature value can be obtained using
the convolution kernel to extract the features of the image.
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The convolution formula is expressed as formula 1:

2, ) =f(x,y) * g(x,y)=mznf (x—m,y—n) % g (m,n)
1

The pooling layer is for microseismic image’s feature
compression to extract main features. The fully connected
layer connects all the features together using softmax func-
tion [33]-[35]. The commonly used classification method is
expressed as formula 2:

yl=fwx—1)+0b) (@)

The mathematical expression of Softmax is provided in
formula 3:

L eL
as-

J
A *
B. ROCK MICROSEISMIC DETECTION AND DATA SOURCE
In the rock micro-seismic monitoring system for deep-buried
tunnels, the first step is to collect micro-seismic events
collected at the construction site. The signals collected by
microseismic events mainly include microseismic signals and
interference noise signals. The source of the microseismic
monitoring signal is the microseismic monitoring activity
during the construction of the 1# tailrace tunnel of the Upper
Baihetan Hydropower Station on the Jinsha River at the
junction of Sichuan and Yunnan, China. The main monitoring
location is exhibited in Figure 2.

The monitoring geophone is installed near the excavation
face. After the microseismic sensor is installed, the host mon-
itoring device is placed in a suitable location. In the monitor-
ing of the tailwater construction branch tunnel, the instrument
is placed at the point of avoid the explosion. In the monitoring
of the tailwater connecting tunnel, the instrument is placed
in the tailwater construction branch hole that has been exca-
vated. Besides, the connection status of the system was tested
after completing the instrument installation. The monitoring
instrument host installation diagram and microseismic sensor
installation diagram are illustrated in Figure 3.
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FIGURE 2. (a) Monitoring cavern plane graph. The tailrace tunnel is
arched and its dimensions are indicated in the graph. (b) Monitoring
cavern location graph. The blank circle represents the single component
sensor position, the black real circle represents the three component
sensor position, and the cube represents the monitoring station position.
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FIGURE 3. (a) Monitoring system installation. It is real monitoring
equipment. (b) Monitoring cavern condition. It is a real photo of the
monitoring site.

The microseismic monitoring period is from June 1,
2017, to November 5, 2017, about 5 months. There are
506,485 microseismic events monitored, and 32,562 effective
microseismic events can be identified. To avoid the repeti-
tiveness of the recorded data, the microseismic signals are
collected in time series, with a certain degree of randomness,
temporality, and some Gaussian noise. The main collection
for a period of time is the statistics of microseismic events,
as presented in Figure 4.

It can be observed from the monitored microseismic
events that the collected microseismic signals are all mixed
three-component signals, including multiple signals and
interference noise signals. In the monitoring software, there
are monitoring information of single-component detectors
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FIGURE 4. (a) Time history of microsiesmic event number. It is a 24-hour
statistical chart of system monitoring. Blue represents that the magnitude
energy of microseismic is less than 1.0, and green represents that the
energy is greater than 1.0 (b) Statistical chart of microsiesmic event
detection. It represents the total statistical quantity of microseismic data,
including original data, effective events and final positioning.
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FIGURE 5. Waveform of microseismic signals on the monitoring software.
It describes the signals of the same microseismic event detected by
multiple sensors. Blue, green and red represent the waveforms obtained
by the three component detector respectively, and monochrome is the
single component detection waveform.

and three-component detectors. The signals are showed more
geophones in a microseismic event are illustrated in Fig. 5.
The mixed signal of active source signal and microseismic
signal produced by blasting event can be found in Figure 7.
It is known that the seismic source is on the heading face. The
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FIGURE 7. Accuracy graph of CNN network recognition based on training
set and validation set. Red line represents the training set data, and blue
line represents the verification set data. The data reached 90% after

700 iterations, and finally reached 91.2%.

microseismic events, the waveform, starting time, amplitude
and travel time of the collected microseismic signals can be
observed in the monitor.

The data set contains microseismic data, active source data
and noise data. In other classified databases, 60% of the
extracted data is used as training set for training network,
30% of the extracted data set is used for verification, and the
remaining 10% is used for testing.

C. THE PRINCIPLE OF DEEP CONVOLUTIONAL NEURAL
NETWORK INCEPTION

DCNN-inception, also known as inception learning, is also
a CNN model. This architecture increases the depth and
width of the network with a small amount of calculation.
Simply increasing the model depth will cause the model to
be too large, too many parameters, and easily over-fitting.
The solution can be to replace full connections using sparse
connections, or even replace the convolutional layer with
a sparser convolution. For the Inception model structure,
the sparse parameter reduction effect can be achieved, and
the performance of the dense matrix optimization in the hard-
ware can also be used. The main idea is to find the optimal

89394

TABLE 1. DCNN-Inception structure for microseismic event recognition.

l;y type Kernel Size STRIDE Output

1 Input _ . 3 mapsof 128*128
neurons

2 CovRelul 5%20 - 16 maps of 118%122
neurons

3 CovRelu2 5*%20 - 16 maps of 78%96
neurons

4 Maxpooll | 2*2 (2,2) 16 maps of 58*76
neurons

5 CovRelu3 5%20 — 16 maps of 38*46
neurons

6 CovRelu4 5*%20 — 16 maps of 28*36
neurons

7 Maxpool2 | 2*2 (2,2) 16 maps of 17*23
neurons

8 Mixedl-10 | — — —

9 Maxpool3 | 2*2 (2,2) 16 mapsof 6*10
neurons

10 FC1-2 — — 188 neurons

11 Softmax — — 3 neurons

local sparse structure in the convolutional visual network that
can be approximated. Using a large convolution kernel will
spread more regions in space. Consequently, the correspond-
ing clusters will decrease, and the number of clusters will
decrease as the convolution kernel increases. To avoid this
problem, the output filter bank with multiple convolutional
layers added to the Inception structure will be concatenated
into a filter bank [36]—[38]. The specific structure is exhibited
in Fig. 6.

The 4 branches of DCNN-Inception were merged through
an aggregation operation at the end, and a very efficient
sparse structure conforming to the Hebbian principle was
constructed. It contains three different sizes of convolution
and a maximum pooling, increasing the adaptability of the
network to different scales, improving accuracy, and prevent-
ing overfitting. It has multiple stacked structures. Therefore,
in the last few layers of the entire model, their spatial con-
centration will decrease when higher abstract features are
captured by higher layers. The filter structure using multi-
core convolution can help extract features in more detail and
improve accuracy [39]-[41]. The DCNN-Inception micro-
seismic signal recognition network designed in this paper
mainly includes an input layer, 4 convolutional layers, 3 max-
imum pooling layers, 10 mixed Inception layers, 2 fully
connected layers, and 1 softmax output layer. Each of the
10 mixed layers includes an AvgPool layer, two Conv layers,
a max pool layer, and a Fully Connect layer.

The network structure is presented in Table 1. Specifically,
the number of microseismic categories is 2, the number of
channels is 3, the number of training data is 5000, the number
of training steps is 100, the learning rate is 0.01, and the
computer used is Intel(R) Core(TM) i7-6700HQ 2.60GHz
(CPU), 16G memory. It took 1.5 hours to complete the micro-
seismic signal identification work. The network structure of
the DCNN-Inception algorithm is provided in Table 1:
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FIGURE 8. (a) Accuracy rate of CNN network recognition. (b) Loss ate of
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Ill. RESULT

The established CNN neural network is used for training and
recognition. First, the microseismic data collected at Baihetan
is converted from ASC format to XLS format. Then, the data
in XLS is read into a NumPy array format. The different
signal data is randomly distributed in 35524 microseismic
events; 60% of the data is taken as the training data, 30%
of the data is taken as the validation set data, and 10% of
the data is taken as the test set after the model training is
completed. Then, data training is performed on the model of
the set network parameters. After 1 hour of training and more
than 20 iterations of training, the recognition accuracy of the
training set reached more than 90%, and the operation was
stopped. Afterward, the verification is performed on the data
added to the verification set. Fig.7 presents the accuracy of
CNN network recognition on the training set and validation
set data.

Finally, the trained and verified CNN network is tested,
and the test set data is input into the established recognition
network. The specific recognition accuracy and loss rate are
exhibited in Fig. 8.

The curve is displayed on the test set. After 5000 iterations
of the data, the step size is 100. Then, the CNN network
model is basically balanced, and it makes no sense to per-
form calculations backward. The accuracy rate and the loss
rate remained at 0.853 and 0.304, respectively. Therefore,
the recognition effect of CNN network training achieves the
goal, and the ideal recognition effect is obtained.
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FIGURE 9. Accuracy graph of DCNN-Inception network recognition based
on training set and validation set. Red line represents training set data
and blue line represents verification set data. The data reaches 90% after
200 iterations, and finally reaches 95.8%.

Based on the established four-layer convolutional CNN
network, the Inception structure is added to identify the
microseismic data of Baihetan to verify whether the network
is better than the CNN network. The data set is imported
in the same NumPy array format. Then, the data is divided
into a training set, validation set, and test set in turn. The
data is trained through the set network parameters. When the
network is iterated to 100 times, the recognition accuracy of
the training set reaches 0.95. Stop the calculation, and then
the data added to the verification set is verified. The accuracy
of DCNN-Inception network recognition on training set and
validation set data is illustrated in Fig. 9.

In the research of DCNN-Inception recognition accuracy
of training set and verification set, it is found that the accuracy
of the network has exceeded 80% after about 200 iterations
and 95% after about 700 iterations.

Finally, the trained and verified CNN-Inception network
is tested, and the test set data is input into the established
recognition network. The specific recognition accuracy and
loss rate are presented in Fig. 10.

The curve is displayed on the test set. The accuracy rate
rose slowly in the iterative process. After 5000 iterations
of the model, there is no stable situation in the CNN net-
work. Therefore, we decided to adjust the step size to 300.
The model began to converge after 12,000 iterations. The
final model accuracy reached 0.924 on the verification set,
and the loss was reduced to 0.174. The accuracy of the
model has been improved a lot after the network parameters
were modified. This fully verifies that the network with the
DCNN-Inception structure can extract more detailed features,
and the classification ability of the model is significantly
improved.

IV. DISCUSSION

We established a data set of the mixed data of microseis-
mic and noise in the microseismic event monitored by Bai-
hetan Hydropower Station and used the CNN network and
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FIGURE 10. (a) Accuracy rate of DCNN-Inception network recognition.
(b) Loss rate of DCNN-Inception network recognition. The recognition
accuracy is 92.4% and the loss rate is 17.4%.

TABLE 2. Recognition of microseismic signals by CNN and DCNN
inception networks.

Training set validation set Testing set

Accuracy rate of 0912 0.912 0.853
CNN
Accuracy rate of 0.958 0.958 0.924
DCNN-Inception
Lossrate of CNN 0.334 0.334 0.304
Loss rate of 0.152 0.152 0.174

DCNN-Inception

DCNN-Inception network for identification. The network
parameters are trained and constructed through the training
set and the validation set. The accuracy rate obtained is
provided in Table 2.

The effects of different learning aspects of two different
DCNN:-Inception algorithms on the recognition effect are
compared, and the main recognition results are presented
in Table 3:

As demonstrated by the above two tables, the CNN net-
work has a simple structure and its training speed is better
than that of the DCNN-Inception network; it only took 1 hour
to complete the training, and the accuracy rate on the valida-
tion set reached a height of 0.90; besides, the model started to
reach the optimal solution after 5000 iterations. The DCNN-
Inception network structure is complex; after 300 steps,
the training time reached 4.5 hours; after 16000 iterations, the
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TABLE 3. Application of two networks using different methods of
identification results (Event: data legth 3000).

DCNN-inception

Data group CNN algorithm algorithm
Batch size 32 32
Learningrate 0.01 0.005
Iteration period 20 300
Lossrate 0.334 0.152
Accuracy rate 0912 0.958
Learningtime 1h 4.5h

Result
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FIGURE 11. (a) The white noise data image. (b) The random noise data
image. Gaussian white noise is regular and has the same number of
extreme points. Random noise is irregular, random and uncertain.

result was obvious convergence; an accuracy of 0.924 was
achieved on the verification set, and the loss was reduced
to 0.174. Compared with the CNN network structure, the
accuracy of the DCNN-Inception model is increased by
2.4%. Although the training time of DCNN-Inception is long,
the feature fitting ability of microseismic data is stronger than
that of the CNN network, the feature extraction ability is
strong, and the accuracy rate is significantly improved.

In order to improve the recognition accuracy of DCNN
network, and further improve the data set. The research used
Python language code to generate a large number of random
and Gaussian white noise to enhance the data set. This method
makes the data set more robust and completes the data expan-
sion. The generated image is shown in Figure 11.

The DCNN algorithm is established in this paper. The main
algorithm flow chart is shown in Figure 12.
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3-layer convolution and 1-layer maximum pooling layer of further feature
extraction, and then 10 layer hybrid migration layer, which is used to
optimize the network, suppress over fitting, and finally enter the classifier
layer for classification.
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FIGURE 13. (a) Accuracy rate of CNN network using training set and
verification set compare. (b) Loss rate of CNN network using training set
and verification set compare. The dot represents the training set data and
the line represents the verification set data. The fluctuation of the
verification set is larger than the training set, the recognition accuracy is
95%, and the loss rate is 9.8%.

In order to further explain the algorithm, we randomly
select data from the collected data set to verify the two
algorithms, and calculate the accuracy and loss rate using
the training set and the test set. The main figures are shown
in figures 13 and 14.

In order to further explain the recognition effect of DCNN-
Inception algorithm, the researchers used confusion matrix
method to analyze the classification results, mainly randomly
selected data from the collected data for testing. The main
analysis results are shown in Table 4.
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FIGURE 14. (a) Accuracy rate of DCNN-Inception network using training
set and verification set compare. (b) Loss rate of DCNN-Inception network
using training set and verification set compare. The dot represents the
training set data and the line represents the verification set data. The
fluctuation of the verification set is consistent with that of the training
set, the recognition accuracy is 98.2%, and the loss rate is 8.6%.

TABLE 4. The results of DCNN-INCEPTION algorithm classification by
confusion matrix method.

True\Test Active blasting Micrpseismic Noise
source signal
Active blasting 24 6 2
source
Microseismic 3 32 1
signal
Noise 1 0 22

V. CONCLUSION

In this paper, the one-year microseismic monitoring data of
Baihetan Hydropower Station is used as the main research
object, the collected microseismic signals and noise signals
in the microseismic events are taken as the data set, and CNN
network and DCNN-Inception network are employed to iden-
tify the signals. It can be concluded that both convolutional
neural network algorithms can identify the microseismic
event. Specifically, the DCNN-Inception model algorithm
is better than the CNN network in recognition accuracy.
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However, its training time is longer, and a large amount of
data is needed to perfect the network. Its network model
has strong feature extraction capabilities for microseismic
data and can effectively identify microseismic signals. This
provides an essential foundation for the identification of
microseismic anomaly signals and early warning of rock
micro-fracture, and it is of practical significance for the inves-
tigation of rockburst early warning technology.

DATE AND RESOURCES

In this work, the microseismic data is from monitor detection
in BaiHetan Hydropower Station 1# tunnel tube in this study.
The time period of microseismic monitoring data of BaiHetan
Hydropower Station is from May to October in 2018. We use
CNN-inception framework for Python, to train deep convo-
lutional networks at the github website. These dates do not
involve a conflict of interest.
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