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ABSTRACT Recently there has been a new emerging trend in using the technology of Named Data
Networking (NDN) on wireless sensor networks (WSNs) to improve data-centric communications over
WSNs. The usage of the NDN notion in WSN for such communications can be advantageous in many
respects ranging from ensuring secure data collection without using the nodes’ location and several nodes
to possible delivery of sensory data by utilizing the cached data in intermediate components of the network.
On the other hand, WSN being a resource-constrained, energy-starved network, the data communication
mechanism must be low-overhead in terms of computation and communication overheads. Thus, we propose
integrity preserving low overhead query handling over NDN-based WSN. We make the scheme low overhead
by judicious use of the NDN data structure Content Store (CS), Pending Interest Table (PIT), Forwarding
Information Base (FIB) in a few strategically placed nodes. We also make the data collection secure by
applying an existing Light-weight One-way Cryptographic Hash Algorithm (LOCHA) on the collected
data. The performance of the scheme is analyzed theoretically in terms of communication, computation,
storage overheads. We also simulate the entire query processing scheme including request and response
forwarding in Cooja, the Contiki network simulator. Simulation results show that our scheme does not
compromise with network performance such as packet loss rate, network lifetime, end-to-end delay, etc.
while achieving the design goal of making the scheme energy saving which establishes that the scheme is
readily implementable in real life mote e.g., Tmote Sky. Finally, all the results are compared with three
competing schemes and the results confirm our scheme’s supremacy in terms of both design performance as
well as network performance.

INDEX TERMS Data integrity, hierarchical clustering, named data networking, query processing, wireless
sensor network.

I. INTRODUCTION

Data-centric communication [1], [2] plays an important role
in wireless sensor networks (WSNs) by enabling sensory
content delivery without revealing the identity of the sensors.
For example, in developing query-driven applications in
WSN [3], attribute-based naming is necessary to specify the
properties of data in a query. However, there is no stan-
dard naming scheme for various complex applications in the
literature, which limits the deployment of the data-centric
approaches in practice for WSNs [4]-[9]. In the meantime,
named data networking (NDN) has emerged as a promising

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

field to cope with the usage of today’s internet which follows
data-centric communication [10], [11]. This receiver-based
model in the NDN fits naturally into data-centric WSNs [12].

Unlike IP networks, NDN uses hierarchical data names
instead of IP addresses for data delivery. The hierarchical
naming structure of NDN makes routing and forwarding eas-
ier for data retrieval. Here, communication is initiated from
the receiver end, called a consumer. A node in the network
which can serve the requested data is called a producer.

The data transfer takes place by exchanging requests
(interest) and response packets (data) between consumers
and producers. Each of the nodes maintains three data struc-
tures namely CS, PIT, and FIB. The nodes store some
of the recently received data in their CS, which is called
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in-network caching. Also, before forwarding any interest
towards producers, each node checks for the interest in their
PIT. The usage of these features with the help of such
data structures reduces communication overheads thereby
reducing energy consumption, which finds its applicability in
the energy-constrained network like WSN. Also, NDN uses
digital signatures on data packets to preserve data integrity
thereby enhancing security [12], [13].

Due to the data-centric nature of WSN applications, a lot of
research has been done on querying and tasking sensor nodes
to answer both real-time and non-real-time queries [2], [9].
Also, the nodes in WSN are limited in computational capa-
bility. But a recent trend is observed in using the technol-
ogy NDN on WSN to improve data-centric communications
over WSNs [12], [14]. In most applications, the nodes are
deployed in the open area thereby remaining unattended and
prone to attack. Thus, the need of securing data during com-
munication in such an environment is of utmost importance.
This motivates us to develop a low-overhead secure query
processing scheme over NDN-based WSN.

We consider a hierarchical clustered architecture of WSN
over which query-based application is running. We propose
an integrity preserving and low-overhead query han-
dling scheme applying NDN techniques on hierarchical
cluster-based WSN (IPLQueeN). We make the scheme low
overhead by judicious use of the NDN data structure in a
few strategically placed nodes. We also make the data col-
lection secure by applying an existing Light-weight One-way
Cryptographic Hash Algorithm (LOCHA) [15] to the col-
lected data.

The main contributions of our work are as follows:

« Developing a query processing scheme over the hierar-

chical clustered architecture of WSN.

o The scheme is made low overhead by judicious use of the
NDN data structure in a few strategically placed nodes
in the network.

o The data transfer is made secure by applying a
low-overhead hash algorithm LOCHA.

« Evaluating the performance of our scheme using Cooja,
the Contiki network simulator.

The rest of the paper is organized as follows. Section II
discusses a few related works on WSN, NDN and,
NDN-based WSN. The system model and some background
studies are presented in Section III. Section IV explains the
proposed IPLQueeN. Performance analysis of the scheme
is done in Section V. We conclude the work in Section VI
highlighting the future scope.

Il. RELATED WORK
We firstly review a couple of works on low overhead query
processing over WSN.

In work [2], a query processing technique over wireless
sensor networks (WSN) is proposed which improves energy
efficiency and storage space optimization in the network. The
user’s input queries in the server in simple SQL-like language
which describes how the data to be collected and how users
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combine and summarize it. The declarative queries provide
an easy-to-interface and energy-efficient execution approach.
The simulation of the scheme shows that it works well in a
controlled environment. Authors in the other works [3], [4]
propose secure query processing that preserves basic security
properties like authentication, data integrity, privacy. The
works consider a query-driven application platform where the
sink forwards query messages towards member nodes (MNs)
via cluster heads (CHs) or aggregation nodes (ANs). Upon
receiving the responses, each CH/AN aggregates the data and
forwards it to the sink. While forwarding, the data from dif-
ferent MNs are aggregated and encrypted resulting in reduced
data transmission and data protection, respectively. The per-
formance results show the schemes are low overhead in terms
of storage, communication, and computation. Also, the works
in [5], [6] propose energy-efficient clustering schemes that
reduce the transmission delay and energy consumption in the
network. The schemes either adopt the conventional methods
and/or algorithms or hybridize the concepts of conventional
algorithms. The methods also compare the risk probability,
data security with other state-of-the-art schemes. The com-
parative analysis shows an improvement of the proposals over
other conventional artworks in terms of all the overheads.

In another work [7], the authors propose a reliable and
energy-efficient query-driven routing protocol that routes
the request and response packets with low overheads. Here,
the Base Station (BS) can choose the optimal path towards
the target sensor node as it has a global view of the entire
network topology consisting of the Euclidean Distances of
neighboring nodes. While forwarding, instead of attaching
the path with the request packet, a special mechanism is pro-
posed. The mechanism provides a single integer value which
is considered as the route’s summary. Each intermediate node
applies a specific function on this value to infer its successor
until reaching the targeted sensor node. To reach a node,
a single route is not always selected, instead, the routing task
is distributed depending on the number of times the sensor
nodes are involved. The simulation results and the com-
parison with other state-of-the-art methods have shown that
our routing protocol balances the routing load, increases the
network lifetime, and reduces energy consumption. Authors
in [8] introduce a query processing method to improve the
amount of valid data transmitted in the network. Firstly,
they run some verifications using network connectivity and
synchronization (among nodes) before injecting any query
in the network. Then they propose a query processing model
which adds new clauses for execution deadlines and ensures
data validity for each query and response, respectively. To do
the same, the method considers the query processing time,
query response time and response transmission time. Then
the authors also develop a data validity control algorithm that
verifies the data validity time defined in the corresponding
query.

Like WSN, NDN also works based on named data regard-
less of the identity of the node in the network. Thus, a few
works on query processing over NDN are also reviewed.
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The authors in work [16] state that though the patricia
trie is widely used in the implementation of forwarding
table for its memory efficiency, the choice of trie granu-
larity is important. They compare the three different trie
granularities - bit level, byte/character level, and component
level. They evaluate the results based on a collection of
datasets and performance metrics. To do this, the authors
also introduce a new tool, called NameGen, which uses a
Markov-based name learning model and generates pseudo-
real datasets with different tunable name characteristics. The
results show that bit-level trie can be considered as the best
choice in terms of low memory requirement. Otherwise for
fast look-up and update operations such as insertion, deletion,
either of the character or component level trie is preferred.
In a couple of works [17], [18], the authors introduce a
special type of patricia trie data structures such as speculative
and fingerprint-based patricia that can scale variable-length
name forwarding to a large volume of prefixes. The structures
make query searching and data forwarding faster and easier.
The experimental results show that with the use of such a
compact data structure, FIBs with a few million entries can
fit in SRAM resulting in reduced searching time during query
processing. The works in [19], [20] address the challenges of
high storage, look-up, and communication overheads in the
NDN routing method. To do the same, instead of storing the
Link-State DataBase (LSDB) in all the routers, it is kept in
some selective special nodes. The non-special nodes store a
partial database only. The concept of the dominating set is
used to select the special nodes. Algorithms are proposed for
Data forwarding and update over simple network structures
like grid networks as well as for real-world networks. The
performance of the schemes is evaluated in terms of the
overheads and the results show significant improvement over
conventional schemes of NDN.

In another work [21], a simple protocol namely Real-time
Data Retrieval (RDR) is proposed which can efficiently
retrieve real-time data with minimal delays. To do the
same, RDR provides the necessary information to consumers
with the use of metadata packets. The information includes
the “most recent” frame number, the number of interests
that need to be pipelined to achieve timely retrieval of all
frames, and frame segments that are produced in real-time.
A real-time producer publishes metadata about its data pro-
duction periodically or in response to interests. In interest
packets, RDR makes use of the flags like ““FreshnessPeriod”
and “MustBeFresh” to let the consumers retrieve the fresh
metadata. It limits the time the valid responses can stay in
router caches as they cross the network, and it can also be
effectively used to defend against overloads such as receiving
redundant requests from the same node within a specified
time.

Finally, we review a few works on query processing over
NDN-based WSN utilizing the advantages of NDN notion in
ad-hoc networks such as WSN.

In [22], a lightweight variant of CCN (Content-Centric
Networking) protocol is proposed for WSNs namely
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CCN-WSN. Many aspects of the protocol are revised to cope
with the memory, computation constraints, and communica-
tion pattern of WSN such as follows. The message format
is redesigned. Messages are received and sent through Faces
which are either a network interface or an interface to a local
application. Then, a flexible naming strategy is proposed
which extends the functionality of content names to add a
small amount of data in interest messages. The evaluation
results show that this lightweight variant is suitable for usage
in WSNs. The authors claim that it is much more intuitive than
other related approaches due to the stringent usage of interest,
content, and implicit routing within the CCN domain. Using
CCN on top of IEEE 802.15.4 in the future can provide an
efficient solution with fewer overheads. In [23] the authors
consider a caching method during query processing for wire-
less NDN-IoT networks namely pCASTING (probabilistic
caching strategy for the internet of things). The method works
with the freshness of data and considers the storage, energy
constraints of WSN nodes. The evaluation results show that
it outperforms the traditional NDN caching strategy in terms
of data retrieval and network energy efficiency.

In [24], a Dataset Synchronization protocol for WSN
(DSSN) is designed. Here, sensor nodes are divided into
groups, and each group has a shared dataset. The DSSN
ensures to keep the group’s latest dataset always accessible
from its active sensors through the dataset synchronization
within each group. It enables dataset state synchronization
utilizing the state vector that combines sensor names and
data sequence numbers to represent all data produced by one
sensor node and it also utilizes NDN’s Interest aggregation
and Data caching to optimize energy consumption. In another
set of works [25]-[28], the authors present a query pro-
cessing/Interest forwarding scheme in WSN with the notion
of the basic NDN forwarding strategy. The schemes aim
to reduce communication overheads in the network thereby
reducing energy consumption and increase network lifetime.
To achieve the same, the schemes avoid unnecessary flooding
and reduce hop count to forward the interest towards the pro-
ducer. The work in [25] is inspired by the data-centric directed
diffusion routing technique of WSN whereas in dual-mode
switching [26] flexibly switching from one mode to another
depends on whether interest is found in Consumer FIB or
not. The schemes in [27], [28] propose to use geographical
location to retrieve the data. The simulation results show that
the schemes outperform the state-of-the-art works in WSN by
using NDN’s forwarding strategy.

Summarily, the works from [2]-[8] discuss query-
processing techniques in WSN. Though they try to lower
down the overheads in terms of energy, they use the broadcast
nature of communication for query forwarding, which incurs
adecent amount of energy. Besides, the nodes in conventional
schemes require high energy consumption in search of the
best path. Now the works [16]-[21] in NDN address several
issues such as complex routing and forwarding, high look-up,
update, storage, and communication overhead during query
processing. Out of these, a couple of works [16]-[18] discuss
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TABLE 1. Summary of related works.

Category Related Commun  Computation  Storage Energy Delay Packet Network Data
Work ication overhead overhead loss Lifetime Security
overhead
WSN [2] Low - Low Low - - - -
[3] Low Low Low Low - - - High
[4] Low Low Low Low Low Low High High
[5] Low Medium Low Low Low Low - High
[6] - - - Low Low - - High
[7] Low - - Low - - High -
[8] Medium - - Low Low - - -
NDN [16] - - Low - - - - -
[17] - - Low - - - - Medium
[18] Low - Low - - - - -
[19] Low - Low - - - - -
[20] - Low Low - - - - -
[21] - - High - Low - - High
NDN- [22] Low - Low - - - - Low
WSN [23] Low - - Low Low - High -
[24] Low - - Low - Medium - -
[25] Low - - Medium - - - -
[26] Low - - Low - - High -
[27] Low - - Low Low - - -
[28] Low - - High - - Medium -

special structures like patricia trie to reduce look-up, update,
storage overheads but may produce incorrect query forward-
ing. Another couple of works [19], [20] lack in provid-
ing evaluation results with real-world networks using a real
dataset. Whereas [21] discuss a real-time data retrieval pro-
tocol that reduces data retrieval delay and limits the caching
time of the valid data. But the method does not provide any
full cache management policy to decide the priorities of data
removal. Further, the works [22]-[28] in NDN-based WSN
reduce communication overheads, energy consumption, data
retrieval delay in nodes by decreasing flooding overhead.
Out of them, a few [22] lack lightweight security measures
and a few [23] still follow a periodic broadcast mechanism
to forward the generated query towards sensor nodes in the
network. A few schemes also suffer from packet losses and
decreased data availability due to packet collisions [24].
The directed diffusion-based technique [25] incurs significant
energy due to its broadcast nature of Interest forwarding and
the other method [26] is silent about the complexity of its
switching technique for the decision of interest flooding. The
works in [27], [28] are not discussed for complex scenarios or
large-scale networks. The related studies on query processing
over WSN, NDN and, NDN-based WSN are compared and
summarized in TABLE 1.

lll. SYSTEM MODEL

This section provides network architecture along with back-
ground studies on using NDN in WSN and the low overhead
hash algorithms.

A. NETWORK ARCHITECTURE

We consider a hierarchical network that is divided into several
regions with individual region heads (RHS). Each of the
regions in turn is divided into several clusters with individual
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cluster heads (CHs). This architecture is the most widely
used architecture for energy-efficient data communication.
Moreover, considering such a multilevel hierarchical archi-
tecture, many nodes can be accommodated within the net-
work [20]. Figure 1 shows such a system model. Here the
entire area is divided into five regions and each of the regions
has a varying number of clusters. The area covered by aregion
is shown by the dotted outer circle whereas the inner circle is
shown in the figure representing the communication range of
an RH. All the CHs of a region are within the communication
range of the RH. Nodes are deployed throughout the network
area and form a cluster in a self-organizing manner. Unlike
other sensor nodes in the network, the sink is a powerful node
in terms of storage, computation, and energy consumption.
Users interact with the network by the sink. We assume the
nodes are static and deployed randomly in an area.

B. BRIEF ON NDN
The main building block of NDN is the named content
chunk. Any packet in the network whether it is interest or
data must have a name. Instead of announcing IP prefixes,
a node in NDN announces name prefixes for the content
that the node can serve. The names of interest and corre-
sponding data packets must be the same, and they are always
hierarchically structured. For example, the temperature of
today in the Haldia industry belt may be structured as - tem-
perature/haldia_industrial_zone/belt_001/today, where */”
is not part of the name but specifies a boundary between
the name components. The NDN nodes see the boundaries
between the components; they do not know the meaning of a
name [10], [11].

In NDN, each node/router stores the three data struc-
tures Content Store (CS), Pending Interest Table (PIT)
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@ Region Head

@ Cluster Head

FIGURE 1. System model.

and, Forwarding Information Base (FIB) [13]. Here, each
router/node has the CS to cache data packets passed by
and, therefore, frequently requested content by consumers is
cached at multiple routers in the network. NDN supports data
distribution and data sharing with the help of such in-network
content caching. This content caching at routers enables data
delivery to consumers from the nearest location with minimal
latency and thereby improves overall network performance.
On the other hand, PIT keeps track of the past requests which
are received but un-responded. This gives NDN a significant
feature. It helps in forwarding decisions on how to handle an
interest without the knowledge of the source or destination.
Further, the FIB is a routing table that maps name components
to interfaces. Whenever an interest arrives, an NDN router
first checks its CS. If the corresponding data exists in the CS,
the router returns the data packet on the interface from which
the interest came. Otherwise, the router searches the name
in its PIT, and if a matching entry exists, it only adds the
incoming interface and does not forward the interest again.
If there is no such PIT entry, a new entry is created. Then the
router forwards the interest towards the data producer based
on information in the FIB. On the contrary, data packets take
the reverse path of interests. When a data packet reaches a
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router, the router searches and deletes the matching PIT entry
and forwards the data to all downstream interfaces listed in
that PIT entry. It then removes the PIT entry and caches the
data in CS.

In the proposed scheme, we adopt the concept of the cur-
rent NDN routing protocol NLSR (Link State Routing for
Named data) [29] to incorporate the advantages of such a
protocol in ad-hoc networks like WSN. After reviewing the
routing protocols of several ad-hoc networks such as WSN
and MANET [30]-[32], it has been noticed that to reduce
the energy consumption in the routing of such networks, the
in-built NDN features can be used.

The use of CS, PIT in a node can reduce the unnecessary
communications in interest/query processing and thus the
energy requirement. The hash digest creation of each data
packet maintains the message integrity and thus provides data
security in such networks. However, as NDN routing is not
meant for such ad-hoc networks, we modify the NDN routing
to make it implementable in WSN.

C. USING NDN IN WSN

As WSN is a resource-constrained network, we propose to
use the NDN data structures only in selective nodes of the
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FIGURE 2. Interest and data packet format.

network. The sink node and the RH contain the CS which
consists of (INTEREST, DATA) implying the interest name
and the corresponding content, respectively. However, CHs
do not maintain any CS considering these nodes are resource-
constrained. The PIT entries are the same in the sink,
RH, cluster head (CH), and these consist of (INTEREST,
TIME_STAMP) where TIME_STAMP implies the time
instance at which interest is forwarded towards the producer.
The sink node has one more attribute CONSUMER implying
the requesting consumer. The FIB entry of sink is consist-
ing of a region or landmark name (REGION/L_MARK),
location (RH_LOC/L_LOC), id (RH_ID/LOC_ID), radius
(R_RADIUS) whereas the FIB of RH consists of CH location
(CH_LOC), id (CH_ID), and radius (C_RADIUS) of the CHs
under the RH. The sensor nodes within a CH do not need to
maintain any data structures. It is assumed that each RH of
the network knows the RH_LOC of all other RHs. Like NDN
nodes, there is the existence of data structures like CS, PIT
in WSN nodes. These structure-based features saves energy
by reducing searching for producer’s data in the network.
Further, in NDN, each data is digitally signed while sending
it back from the producer towards the consumer. In NDN,
for the creation of the hash digest in the signature, a hash
function like SHA-256 is used. But it is not a suitable hash
function to be used in energy-starved networks like WSN.
Thus, we use an existing lightweight hash (LOCHA) [15] in
place of SHA-256, only to create a digest of each data.

D. BRIEF ON LOCHA

This section provides a brief overview of LOCHA which
has been developed with a target to produce a hash-digest
with a fixed and relatively small length for the energy-starved
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environment such as WSNs. It is a lightweight, one-way,
cryptographic hash algorithm where the nodes can success-
fully run the algorithm with low energy. The hash algorithm
LOCHA is made lightweight by using low overhead opera-
tions such as MOD, SWAP, etc. The scheme also uses two
substitution tables to obscure the relationship between the
plain text and the ciphertext. The algorithm also fulfills all the
basic properties such as preimage resistance, collision resis-
tance of a one-way unkeyed hash function. However, to avoid
imposing high computation and communication overheads,
instead of creating any signature, the digest is sent along with
the original data to check message integrity.

E. PACKET FORMAT

We consider the packet formats shown in Figure 2 for our pro-
posed query handling scheme. Figure 2 (a) shows the interest
packet format which consists of the header and payload. The
header size (according to the RIME protocol stack used in
Contiki) is 48 Bytes (0-47) [37]. The remaining in the interest
packet is the payload. The payload is the interest name con-
sisting of the hierarchical structure - /named-data/region/sub-
region/range/date/. The sub-region and range are the optional
attributes as shown in the figure. Thus, based on the queries
the interest may have 3-5tuples. Though the scheme is not
application-specific, here the push-based queries such as
environment monitoring are considered where information
on temperature, humidity, toxic gases, etc. are enquired and
retrieved. So, the size of named data is considered to be
a maximum of 15 Bytes (48-62). The query may ask for
such information about a region. We consider that a region
may have multiple sub-regions. For example, an industrial
area may have several industrial belts. In our system model
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(Section III.A), the sub-region in the interest packet implies a
cluster. If a query intends to retrieve data from a specific sub-
region, then the sub-region is specified in the query, and the
data is retrieved from the corresponding cluster. Otherwise,
the data is retrieved from the entire region. The sizes of region
and sub-region are considered to be a maximum of 24 Bytes
(63-86) and 10 Bytes (87-96) respectively. Further, a query
may involve a range if the requested information is about a
specified range. The size of the range is considered to be a
maximum of 12 Bytes (97-108). Finally, the date attribute
contains either the current date or today in a real-time query.
However, the non-real-time query contains any previous date
or range of dates. So, the size of the date is considered to be
a maximum of 17 Bytes (109-125). Thus, the maximum size
of the interest packet size is 48 + 15 + 24 + 10 + 12 +
17 = 126 Bytes.

Figure 2 (b) shows the data packet format which con-
sists of the header and the payload. The header size
is 48 Bytes (0-47). The payload is a 3-tuple entry. It consists
of the interest/data name, data value (retrieved response i.e.,
the content), and the hash digest of the data. As mentioned
earlier, the maximum size of interest name is 78 Bytes
(48-125). The size of the data value is considered to be
4 Bytes (126-129) as it should be float. The hash digest
is obtained by applying the hash function LOCHA to the
data value. The function produces 96 bits or 12 Bytes
(130-141) digest. Thus, the maximum size of the data packet
is 48 + 78 + 4 + 12 = 142 Bytes.

IV. INTEGRITY PRESERVING LOW-OVERHEAD QUERY
HANDLING OVER NDN BASED WSN

This section provides the proposed scheme Integrity
Preserving Low-overhead Query handling over NDN-based
WSN (IPLQueeN). It handles both real-time and non-real-
time queries in hierarchical cluster-based WSN.

A. PRINCIPLE OF OPERATIONS
The entire query processing scheme has two phases:
o Query phase or Interest forwarding
« Response phase or Data forwarding
The activities in Interest forwarding, in turn, occur in three
phases as follows:
« Sink-RH
« RH-CH
« CH-Sensor
Similarly, the activities in Data forwarding occur in three
phases in reverse order of the activities in Interest forwarding.
« Sensor-CH
« CH-RH
« RH-Sink

1) INTEREST FORWARDING

Sink-RH: For a real-time query, whenever an interest reaches
the sink, firstly it checks the CS and if the data is not found
subsequently it checks PIT. If the same interest is not pending
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in PIT, it searches the FIB to know the corresponding RH, and
accordingly, the interest is forwarded to the respective RH.
The interest may also ask for retrieving data from multiple
regions. Such interests specify a region and a range around the
region (Ryuery) for the intended data. In such cases, the sink
checks all RH_IDs to find which regions fall within the range
specified in the interest. Then the interest is forwarded to all
such respective RHs, for which the following condition (1) is
true.

\/(x,- —xY + (i — ¥)* < R RADIUS + Ryuery, (1)

where (x;, y;) is the RH_LOC specified in the query and
(x/,y}) is the RH_LOC which needs to be checked for
overlapping.

For a non-real-time query, firstly CS of the sink is checked
for the intended data. If the same is not found, it is checked
in PIT to find whether the same interest is already requested.
If it is already pending, the interest is not forwarded again,
only the incoming interface is added; otherwise, a new entry
for the interest is created. Subsequently, FIB is checked to
retrieve the RH_LOC(s) according to the region specified in
interest. Then the interest is forwarded to the RH(s).

RH-CH: For areal-time query, when an interest reaches an
RH, the PIT of the RH is searched. If the matching entry is
not found, FIB is searched to find the corresponding CH_IDs.
Accordingly, the interest is forwarded to the respective CHs
for which the following condition (2) is true.

\/(xi — x> + i — Yi)* < Ryuery @

where (x;;, y;;) is CH_LOC under the RH with location (x;, y;).
The R_RADIUS is the radius of the region for which the
condition is being checked. Now, if the specified region in
interest is also overlapping with multiple regions (checked
by equation (1)), then all the clusters of those regions may
or may not come within the range. The CH_IDs of the over-
lapped regions fall within the specified region, are found by
condition (3). In this case, also, the RHs forward the interest
to the respective CHs for which the following condition (3) is
true.

\/(Xi —x)* + (i — V)’ < C_RADIUS + Ryuery ~ (3)

where the (xlfj, y;j is the location of the overlapped (other)
region clusters and C_RADIUS is the cluster radius.

For a non-real-time query, the RH checks its CS to retrieve
the requested data. If the data is not found in CS, the interest
is discarded.

CH-Sensor: If a CH receives interest from its RH, the
interest is forwarded to all the sensor nodes under the cluster.

An example scenario showing how the regions can be
overlapped for a real-time query is presented in Figure 3.

2) DATA FORWARDING
Sensor-CH: Upon receiving the interest, a sensor node
(within a cluster) applies LOCHA to the collected sensory
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FIGURE 3. Overlapping of regions/clusters.

data and generates the digest. Then, it adds the digest with
the data and sends the response to the CH.

CH-RH: The CH receives the signed data from multiple
sensor nodes, verifies each data applying the same LOCHA.
If the verification is successful, the CH aggregates the data
received from the nodes and applies the LOCHA on the
aggregated data. The response is forwarded toward the RH.

RH-Sink: Similar to the CHs, RH also aggregates data
received from each CH under it after successful verification
of each of the data using LOCHA. Next, the aggregated data
and the generated hash digest are sent to the sink. The sink
may receive the data from a single RH or multiple RHs.
However, it finally verifies the data and upon successful
verification, it sends back the data to the requesting consumer.
While the intended data against interest is received by CHs
and subsequently by RHs and sink, the corresponding interest
entries in each PIT are deleted.

We observe from the above discussion that in our proposed
scheme data is retrieved based on the region specified in the
interest. It does not contradict the notion of NDN which con-
siders data irrespective of who requests/delivers it implying
location or the address of the producer is not important. Here,
unlike IP networks, for the successful execution of the query
processing, only the location coordinates of the nodes are
used locally, instead of the IP addresses.

B. ALGORITHMS
The Interest forwarding and Data forwarding algorithms con-
sidering both real-time and non-real-time queries are running
in different components of the network architecture such as
sink, RH(s), CH(s), etc. Thus, the algorithm is presented from
a global view mentioning the activities (in sequence) of each
of the components involved during processing a query.

The notations presented in TABLE 2 are used in the
algorithms.

1) ALGORITHM FOR INTEREST FORWARDING
In the interest/query forwarding, once a real-time query or
interest reaches a sink, it is forwarded, based on the regions
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TABLE 2. Table of notations.
Notation Meaning
1 Interest
D Data
Ryuery The range specified in the query(interest)
Dgigest Digest on D from one sensor node

specified in the interests. Now the designated RHs under the
sink receives the query. Then the RHs, in turn, forward the
query toward their required CHs. The CHs finally, broadcast
the query to the corresponding sensor nodes under them.
Upon receiving the interest, the nodes within a cluster retrieve
the corresponding data. So, the sink, some of the RHs, their
CHs, and sensor nodes get involved in the query processing.
But, due to the in-network caching mechanism of NDN, for
a non-real-time query, the corresponding data can be found
in CS of sink or RHs. So, in this case, CHs and nodes within
a cluster need not participate in query processing. The algo-
rithm for Interest forwarding from the sink to sensor nodes is
as follows.

2) ALGORITHM FOR DATA FORWARDING

During the query response phase, the hash function LOCHA
is applied on each data transmitted from producer towards
consumer i.e., from sensor nodes towards the sink. The data
along with its digest are forwarded back to the sink following
the exact reverse path of the interest. While traveling back,
the function is applied in each node to verify the received
data. Thus, the integrity of the data is preserved at each hop
along the reverse path. Once the data at each node is received
and verified, the corresponding PIT entry is deleted from the
node. In this manner, whenever the RHs and sink receive it,
they keep a copy of the data in their respective CS. Finally, the
sink sends the data to the requesting consumer. The algorithm
for Data forwarding from the sensor node to sink is as
follows.
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Algorithm for Interest Forwarding: /*Action executed by Sensor node*/
Begin 40. Receive I
/* Action executed by Sink */ 41. Retrieve D
1. Receive I [*Functions*/
2. if (Is_nonrealtime(/) == True) 42. Ts_nonrealtime(/)
[*non-real-time query*/ 43, if((date != current date)||(date != today))
3. if (NonRealTimeQuery (I, Consumer) == True) 44. return True
4. exit 45, else
5. else 46. return False
6. Forwarding_decision(/) 47. end if
7. endif 48. NonRealTimeQuery(/, Receiver)
8. else /* real-time query */ 49 Check CS
9.  Forwarding_decision (I) 30. If I found
10. end if 51. Send D to Receiver
/* Action executed by RH */ 52. return True
11. Receive I 53. else
[* non-real-time data */ 54. D not found
12. if (Is_nonrealtime(/) == True) 55. return False
13. if (NonRealTimeQuery(/, Sink) == False) 56. end if
14. Send back D not found 57. Forwarding_decision(/)
15. exit 58. if(Check_PIT(I) == True)
16. end if 59. Retrieve RH_ID from FIB
/* real-timedata */ 60. Forward 7 to RH_ID
17. else 61. if(Rjyery exists in 1)
18. if (Check_PIT(/) == True) 62. for each RH_ID’ of FIB
19. if (Ryyery exists in 1) /* RH_ID’ = RH id of region other than the
20. if (same region) region specified in query */
/*Checking overlapping of CHs within same 63. RealTimeQuery(/, C1,
region”/ RH_ID, RH_ID")
21. for each CH_ID of FIB 64. end for
22. RealTimeQuery(/, C2, 65. end if
RH_ID,CH_ID) 60. end if
/*C2 = Condition (2)*/ 67. Check_PIT(I)
23. end for 68. if (I present in PIT)
24. else /*Checking overlapping of CHs of 69. if(Sink) /* the function runs in Sink */
different region */ 70. Add requesting consumer
25. for each CH_ID of FIB 71. return True
26. RealTimeQuery(/, C3, 72. else /* the function runs in RH */
RH_ID,CH_ID) 73. Discard I
/* C3 = Condition(3)*/ 74. return False
27. end for 75. end if
28. end if 76. else
29. else 77. Create a new PIT entry
30. for each CH_ID of FIB 78. return True
31. Forward I to CH_ID 79. end if
32. end for 80. RealTimeQuery(/,Condition,REF_location,
33. end if FIB_location)
34. end if 81. Retrieve RADIUS from FIB  /*R_RADIUS if at
35. endif Sink and C_RADIUS if at RH */
/* Actions executed by CH */ 82. Check condition
36. Receive I 83. if true
37. if (Check_PIT(I) == True) 84. Forward I to FIB_location
38. Forward I to all Sensor nodes 85. end if
39. end if End
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Algorithm for Data Forwarding:
Begin
/* Action executed by Sensor node */

1. Apply LOCHA on D to create Dygigest
2. Send D and Djgesr to CH

/* Action executed by CH */
3. foreach D, Dgjgess from ngepgor

I*Rgensor = no. of sensor nodes within a Cluster */

4. if(Verify(D, Dyjges:) == True)

5. Add in Dyprayt  /* Daprayt is array of D
from all sensor nodes */

6. end if

7.  end for

8 Remove I from PIT

9. Data_forward(Dasrayt, fsensor» RH)
/* Action executed by RH */

10. for each D, Dyjgess from ncy
/*ncyg= no. of CHs within a Region */

11. if(Verify(D, Dyjges:) == True)

12. AddinDgyray2  /*Darrayz is array of D from
all CHs*/

13. end if

14. end for

15. Remove I from PIT
16. Data_forward(Dgrray2, nch, Sink)

/* Action executed by Sink */

17. for each D, Djges; from ngpy
/*ngryg = no. of RHs*/

18. if(Verify(D, Dyjges:) == True)

19. Addin Dysray3  /*Darrays is array of D from
all RHs */

20. end if

21. end for

22. Remove I from PIT
23. Data_forward(Duyray3, nre, Consumer)

[*Functions*/
24. Verify(D, digestl)
25. Apply LOCHA on D to create digest2
26. if(digest] == digest2)
27. return True
28. else
29. return False
30. end if

31. Data_forward(D,,,, ng, Receiver)
/* ng = number of nodes */

32. Create data = Aggregate D, [i]
/*i=1,2,..., ng, Dy is array of Ds*/

33. if CS exists
/* if CS exists in the sender node */

34, Add data in CS

35. end if

36. Apply LOCHA on data to create digest

37. Send data and digest to Receiver

End
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C. ILLUSTRATIVE EXAMPLES

Let us consider a WSN with 84 nodes. We consider 4 RHs
with 4 CHs each and 4 sensor nodes under each of the
CHs. Thus, there are 4(RHs) + 16 (CHs) + 64 (sensor
nodes) = 84 nodes. The values of R_RADIUS and
C_RADIUS are taken as 50 meters and 20 meters respec-
tively. The proposed IPLQueeN is illustrated with the help
of two examples — one real-time query and one non-real-time
query. Figure 4 presents the sequence diagram of the example.

1) EXAMPLE OF REAL-TIME QUERY

Let us consider an interest INT1 = ‘temperature [haldia
_industrial_zone /around_50m [today’ retrieves the today’s
average temperature of the area around 50 meters of the head
of region haldia_industrial_zone i.e., RH1. So, it asks for the
data in real-time. Figure 4 (a) presents the Interest forward-
ing and Data forwarding phase for INT1. Now, following
the algorithm (Section IV.B.1), the steps for forwarding the
interest are as follows.

As the Date in the interest is ‘today’, and as
there is no such data in CS and subsequently no
pending interest in the PIT, the interest ‘tempera-
ture/haldia_industrial_zone/around_50m/today’ is added to
the PIT. Then, the location of RH1is found from the FIB of the
sink. Then condition (1) is checked with Ry;ery = 50 meters,
R_RADIUS = 50 meters, and the regionRH2is found to be
overlapping with RHI1. So, the interest is sent to RH1 and
RH2. This is as per lines 7-10 of the Algorithm.

In RH1 (Algorithm line 11-35), as the data is not found in
CS and subsequently in PIT, a new PIT entry is created. Then,
condition (2) is checked, and it is found from the FIB of RH1
that clusters CH1, CH2, CH3, CH4 come under 50 meters
range (of RH1 location). In RH2, after adding the PIT entry,
condition (3) is checked with C_RADIUS = 20 meters to
find the overlapping clusters of that region. As a result, the
clusters CHS and CH8 of RH2 are found within 50 meters
range of RH1. The interest is forwarded to the clusters within
the specified range from the corresponding RH1 and RH2.
Following lines 36-39 of the Algorithm, in CH1, the interest
is added to the PIT as a new entry. Then, the interest is
forwarded to all sensor nodes under it. The same operations
are performed in CH2, CH3, CH4, CH5, and CHS8 as shown
in Figure 4(a). Now, the steps for forwarding the data are as
follows.

According to the Algorithm (Section IV.B.2, Algorithm
lines 1-2), each sensor node within a Cluster senses the
temperature (the data) and applies LOCHA on it to create
the digest. Then, each node sends the data and the digest to
its CH.

Now, each of the CH1, CH2, CH3, CH4 under RH1 and
CHS, CHS8 (Algorithm lines 3-9) under RH2 verify the data
with the help of LOCHA. The corresponding PIT entries
are removed. Then each CH aggregates all the data received
from the sensor nodes under them and creates a digest on the
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FIGURE 4. Example of real-time and non-real-time query processing in IPLQueeN.
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aggregated data. The aggregated data and the digest are then
forwarded to the respective RHs. Figure 4(a) shows the Data
forwarding phase by CH1 only.

Next, similar to the CHs, both the RH1 and RH2
(Algorithm lines 10-16) verify the received data. Then the
corresponding PIT entries are removed, and data is added
in CS. The RHs compute the aggregated data received from
all the corresponding CHs. Next, they create the digest on
the aggregated data and forward the data and the digest to
the sink. Finally, the sink verifies (Algorithm lines 17-23)
the data received from both the RHs and, upon successful
verification, the data is added in the respective CSs and
the corresponding PIT entries are removed. Then, the sink
computes the average temperature which is sent back to the
requesting Consumer.

2) EXAMPLE OF NON-REAL-TIME QUERY

Let us consider an interest INT2 = ‘temperature [haldia
_industrial_zone/18.4.20 — 20.4.20’ retrieves the
temperature of the 3 days (18.4-20.4) from the indus-
trial_zoneregion of haldia. So, it asks for the data in non-real-
time. Figure 4(b) presents the Interest and Data forwarding
phase for INT2. The data against this interest may be found
in the CS of the sink or the RH. The steps for forwarding the
interest are as follows.

As the interest is not in CS and subsequently not in PIT of
the sink, the interest femperature [haldia_industrial_zone/
18.4.20 — 20.4.20 is added to the PIT of sink following
the Algorithm (Section IV.B.1; lines 1-10). The location
of haldia_industrial_zonei.c., RH1 is then found from the
FIB and the interest is forwarded to RHI. Following the
Algorithm (line 11-16), the temperature of RH1 for 18.4-20.4
is retrieved from the CS. Now, the steps for forwarding the
data are as follows.

According to the Algorithm (Section IV.B.2; line 10-16),
the RH1 computes the average temperature (Avg_temp) and
the digest. Then the data Avg_temp and the digest are sent
to the sink from the RH1. The sink verifies the Avg_temp
(line 17-23), and upon successful verification, INT2 is deleted
from PIT; subsequently, the data is added in CS. Then it is
sent to the requesting Consumer.

D. JUSTIFICATION IN FAVOUR OF LOW OVERHEAD CLAIM

We claim that the proposed scheme IPLQueeN is low over-
head. The reasons are stated as follows.

o Unlike flat architecture, the number of participating
nodes in the proposed hierarchical structure in our
scheme is quite low as no interest broadcast is required to
receive data. It results in low communication overhead.

« For many of the queries, the data can be found from the
CS of the sink or just from the next level of the hierarchy.
So, searching time in data retrieval reduces. It results in
low computation overhead.

o The proposed scheme implements the notion of NDN in
WSN. But, unlike NDN, it does not need to store all data
structure CS, PIT, FIB in all the resource-constrained
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nodes. As a result, the storage overhead is low in the
network.

o We use the LOCHA hash function to create a digest
of the data while sending back the data thus main-
taining message integrity. LOCHA is a low-overhead
hash function as it crates only 12-bit digest and requires
only 2952 clock cycles which are lower compared to
other hash functions. Moreover, it takes 1.21 years
to break the basic cryptographic property like colli-
sion resistance of LOCHA [15]. Thus, our scheme
IPLQueeN becomes low overhead without compromis-
ing with the basic security features.

V. PERFORMANCE ANALYSIS
This section evaluates the performance of IPLQueeN both
theoretically and through simulation.

A. THEORETICAL ANALYSIS

The IPLQueeN is evaluated theoretically in terms of storage,
computation, and communication overhead. In this analy-
sis, we consider a network of N nodes and the total num-
ber of the sink, RH, CH, and sensor nodes are referred
as ngink, "RH, ncH and ngensor, among which number of
the participating sink, RHs, CHs, and sensor nodes are
W Sink,» WRe » 7 o and 1’ sepns0r TESpECtively. We consider one
sink, and this implies ngix = n sk = 1. This analysis
is done considering sensor nodes with the specification of
Tmote sky [33]. Also, as mentioned in Section IIL.E, interest
packet size is a maximum of 78 Bytes and the maximum size
of the data packet is 94 Bytes.

1) STORAGE OVERHEAD

Assuming each of CS, PIT, FIB stores n number of entries, the
storage overhead is estimated as follows, for the worst-case
scenario i.e., considering the maximum size of the fields.

A sink stores 2-tuple (INTEREST, DATA) in CS.
So, one entry of the CS stores 78(INTEREST) +
4(DATA) = 82 Bytes. Similarly, one entry of the
PIT at the sink stores 3-tuple (INTEREST, CON-
SUMER, TIME_STAMP) implying 78(INTEREST) +
4(CONSUMER) + 4(TIME_STAMP) = 86 Bytes. Then,
the FIB at the sink stores 4-tuple (REGION/L_MARK,
RH_LOC/L_LOC, RH_ID, R_RADIUS) which are assumed
to require a maximum of 25 + 8 4+ 4 + 4 = 41 Bytes for
one entry. Further, the sink stores two substitution tables to
generate a LOCHA [15] based hash digest for verifying the
integrity of the received response and the authenticity of the
sender. It requires storing (97 + 68) = 165 integers which
need (165 x 4) = 660 Bytes for two such tables. Hence,
the sink needs to store {n x (82 4+ 86 + 41)} + 660 Bytes =
(2091 + 660) Bytes.

Similar to the sink, an RH stores 82 Bytes for one entry
in CS. The PIT stores 2-tuple INTEREST, TIME_STAMP)
which is 78(INTEREST) + 4(TIME_STAMP) = 82 Bytes for
one entry. The FIB of one entry needs a 3-tuple (CH_LOC,
C_RADIUS, CH_ID) requiring (8 4+ 4 + 4) = 16 Bytes.
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Thus, one RH stores [{n x (82 + 82 + 16)} + 660] Bytes =
(180n + 660) Bytes including a hash digest of 660 Bytes.

Finally, similar to the RH, a CH stores 82 Bytes for one
entry in PIT. So, one CH stores {(n x 82) + 660} Bytes =
(82n 4 660) Bytes including a hash digest of 660 Bytes. Each
sensor node (in the lowest level of the hierarchy) stores
only the substitution tables required in the hash computation
consisting of a total of 660 Bytes.

a: REAL-TIME QUERY

For real-time query, in the Interest forwarding phase, the
interest travels from the sink towards sensor nodes. The
sink transmits the interest to RH(s). Each of the concerned
RHs receives such interest and transmits the same towards
CHs. In the response or Data forwarding phase, the data
travels back following the exact reverse path of the interest.
Therefore, the storage overhead (Ogorage) in the network can
be expressed as follows:

Ostorage = (Wi X (2091 + 660) + nyy x (1801 + 660)
+ngy % (82n + 660) + (1§,,,,, X 660)} Bytes.

b: NON-REAL TIME QUERY

For non-real-time queries, in the worst case, the data for an
interest may not be found in the sink. Instead, it may be found
in the RH according to the specification in the query. So, the
worst-case storage overhead (Omm ge) for the network can be
expressed as follows:

Ostorage = {ngink x (2091 + 660) + n;QH
x (180n + 660)} Bytes.

2) COMMUNICATION OVERHEAD

This section provides communication overheads for both
real-time and non-real-time queries. This overhead is consid-
ered for handling one query.

a: REAL-TIME QUERY

In the Interest forwarding phase, the sink transmits interest of
78 Bytes. Each of the concerned RHs receives such interest
and transmits the same towards CHs. So, the communication
overhead for RHs is (W'gy x 78 + n’cy x 78) Bytes. Next,
similar to the RHs, the CHs receive the interest and broadcast
towards the sensor nodes under them. Thus, the communi-
cation overhead for CHs is (W'cy x 78 + n'cy x 78) =
(n'cy x 156) Bytes. In this Interest forwarding phase, the
sensor nodes receive only such interest of 78 Bytes. Hence,
in this phase, the total communication overhead is (n'gy x
78) + (n'ry x 18 +n'cy % 78) + (W' cy x 156) + (1 sensor
x 18) =78 x 2 x W'ry+ 3 X "' cy + 1 sensor) Bytes.

In the response phase, the concerned sensor nodes
(7 Sensor) transmit data (4 Bytes), hash digest (12 Bytes) along
with the interest (78 Bytes) which is equal to 94 Bytes. Thus,
communication overhead for sensor nodes is (7 sensor X 94)
Bytes. The CHs receive 94 Bytes from each of the nodes
under it and aggregate data part keeping the received packet
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size 94 Bytes. After that, each CH sends the 94 Bytes
response to the respected RH. So, the communication over-
head for CHs is (n'sensor X 94 + n'cy x 94) Bytes.
Similarly, the RHs receive 94 Bytes from each of the con-
cerned CHs (n'¢cg) under it and send the response to the
sink after aggregating the data part keeping the packet
size 94 Bytes. So, communication overhead for RHs is
("W ey x 94 + n'gy x 94). Finally, the sink receives 94 Bytes
from each of the concerned RHs (n'grg). Hence communi-
cation overhead for the sink is (W'gy x 94) Bytes. Thus,
the total communication overhead in the response phase is
(' Sensor % 94) + (W Sensor x 94 + n'cy x 94) + (W'cy %
94 4+ n'py x 94) + (Mg x 94) =94 x (2 X 1 Sensor + 2 X
n’CH +2x n/RH) Bytes.

According to the specification of the CC2420 transceiver
of Tmote Sky, energy consumption for transmitting and
receiving 1-byte of data is 0.00189 mJ and 0.00167 mlJ
respectively [34]. Thus, the communication overhead in terms
of energy (Ecomm) can be expressed as follows:

Ecomm = [{78 X (n}eH +2x n/CH)
+ 94 5 (Wsyngor + Nicry + Migpr) } % 0.00189)]
+78 x (ngy + ney + Nsensor) + 94
X (Wsgnsor + Mgy + Mgy } % 0.001671mJ

b: NON-REAL-TIME QUERY
In the worst case, in the Interest forwarding phase, a sink
transmits interest (78 Bytes) to the concerned RHs and the
RHs receive the same (78 Bytes). So, the communication
overhead in this phase is (78 x n'gy) + (78 x n'gy) =
156 x n'gy Bytes. In the response phase, the n’ggy number of
RHs transmit data (4), hash digest (12) along with the interest
(78) which is equal to (n'gy x 94) Bytes. The sink receives
(W' g x 94) Bytes. Thus, the total communication overhead
in terms of the number of Bytes transmitted and received are
{78 X gy + 94 x nlpyy } and {78 x njyy + 94 x nfgy, | Bytes
respectively.

Thus, the communication overhead in terms of energy
(Ecomm) 1s as follows:

Ecomm = [{78 x nlgyy + 94 x ngy} x 0.00189]
+ [{78 x ngy + 94 x ngy} x 0.00167] mJ

3) COMPUTATION OVERHEAD

This section provides computation overheads for both the
real-time and non-real-time queries. This overhead is also
considered for handling one query. We provide here the
worst-case analysis of computation overhead.

a: REAL-TIME QUERY
Interest Forwarding Phase: In this phase computation over-
head is incurred by the sink and the RHs for the following
tasks:
Sink: PIT search 4 Decision making by consulting FIB
RH: PIT search + Decision making by consulting FIB
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TABLE 3. Required number of cycles for query processing [33], [35], [36] (a) Real-time (b) Non-real-time.

(a) Real-time

Algorithm Algorithmic construct No. of cycles
Interest forwarding Sink 5XIF-E 5X10+4+3X69+6+9X4
LSE, MOV, 3XSEARCH, CMP, =303
9XADD
RH 6XIF-ELSE, MOV, 2XSEARCH, 6X10+4+2X69 + 6+ 9X4 =244
CMP, 9XADD
Data forwarding Sensor LOCHA 2952
CH SEARCH, (IF-ELSE + LOCHA), 69 + N'sensor X (10+2952) + 2952
LOCHA =3021 +2962% g ps0r
N gensor: Number of concerned Sensor nodes
RH SEARCH, (IF-ELSE + LOCHA), 69 +1'cy X (1042952) + 2952
LOCHA =3021+2962 x n'cy
n'cy: Number of concerned Cluster Head nodes
Sink SEARCH, (IF-ELSE + LOCHA) 69 + 1y X (1042952)
=69 +2962x1 pyy
n'py: Number of concerned Region Head nodes
(b) Non-real-time
Algorithm Algorithmic construct No. of cycles
Interest forwarding Sink 5XIF-ELSE, MOV, 6X10+4+3X 69+6+9 X 4=313
3XSEARCH, CMP, 9X ADD
RH 4XIF-ELSE, SEARCH 4X10 + 69= 109
Data forwarding RH SEARCH, LOCHA 69 +2952 =3021
Sink SEARCH, (IF-ELSE + LOCHA) 69 + 1’y X (10+2952)
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=69 +2962xn' gy
n'py: Number of concerned Region Head nodes

Data Forwarding Phase: In this phase computation over-
head is incurred by the sink RHs, CHs, and the sensor nodes
for the following tasks:

Sensor nodes: Making digest using LOCHA

CH: Aggregation + Digest (check + Apply)

RH: Aggregation + Digest (check + Apply)

Sink: Aggregation + Digest (check)

According to the Tmote sky specification, the clock of the
MSP430 microcontroller works at 8 MHz [35], [36]. Thus,
time per clock cycle = lel ® = 0.125 microsecond. So,
the energy needed to run one cycle = 3 x 1.8 x 0.125 =
0.675nJ [36]. Thus, the computation overhead in terms of
energy (Ecomp) can be expressed as follows:

Ecomp = [ {303 + (0'gr x 244)} + { (2952 x 1/ sensor)
+n'cr x (3021 42962 X 1'sensor) + 1’ ke
x (3021 +2962 x n'cy)+(69 + 2962 x n'ryr) }]
x 0.675n]

TABLE 3(a) provides the required computation cycles of
the algorithmic constructs for a real-time query as per the
instruction set of Tmote sky [36], [37].

b: NON-REAL-TIME QUERY

Interest Forwarding Phase: In the worst case, the computa-
tion overhead is incurred by the sink and the RHs for the
following tasks:
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Sink: PIT search + Decision making consulting FIB

RH: PIT search

Data Forwarding Phase: In this phase computation over-
head is incurred by the sink and RHs for the following tasks:

RH: CS search + Digest (Apply)

Sink: Digest (check)

The computation overhead in terms of energy (Ecomp) can
be expressed as follows:

Ecomp = [{313 4 (nky x 109) } + {(nfy x 3021)
+ (69 + 2962 x niy) }] x 0.675n7

TABLE 3(b) provides the details of computation cycles of
the algorithmic constructs for a non-real-time query.

B. QUANTITATIVE ANALYSIS

This section provides the performance evaluation of the pro-
posed IPLQueeN through simulation.

1) SIMULATION ENVIRONMENT

Simulation is carried out in Cooja, the Contiki [37] network
Simulator. The Cooja simulator supports the simulation of
networks consisting of wireless sensor nodes. We use sky
mote for our simulation. We simulate the network with the
number of nodes varying from 100 to 500 deployed across
a 200m x 200m square grid. We take average results of
20 independent runs while plotting the simulation graphs.
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TABLE 4. Simulation parameters [26].

Environment/Parameter Specification/Value

Radio Medium Unit disk graph with
distance loss
Sink positioning Centre
Mote start-up delay 1000ms
Transmission range 50m
Radio 19.5mA
transmitting
Current Radio 21.8mA
consumption receiving
MCU on, 1800pA
Radio off
MCU idle, 54.5 pA
Radio off
Initial energy of a node 1000 J
Query arrival rate 1/minute

The other important simulation parameter values are provided
in TABLE 4.

2) SIMULATION METRICS

Performance evaluation of the proposed scheme is divided
into two stages: measuring the extent of achieving major
design goals and evaluation of network performance.
By design metrics, we mean energy consumption, query pro-
cessing delay, and the number of the packet flow to process
a query. On the other hand, network performance metrics are
packet loss rate and network lifetime.

a: DESIGN METRICS

Energy Consumption: We define energy by measuring the
total energy consumption of the network to process a query
starting from the interest to the response phase. During the
simulation, we measure the energy using the Power trace
application of the Cooja simulator [37]. The total energy
consumption can be expressed as,

NP
Energy consumption = Z
i=1
Energest value x current X voltage
RTIMER_SECOND

Energest_Value is the difference between the numbers of
ticks in two-time intervals (from sending interest to receive
a response) which is found from the Power trace after sim-
ulation. At each i node, we find the different Energest
value for CPU, LPM, TX, and RX where i = 1 to Np, Np
is the number of participating nodes in interest forwarding
and data forwarding phases. The value of current is found
from Sky mote datasheet which is also different for CPU,
LPM, TX, and RX. The voltage for Sky mote is 3V and
RTIMER_SECOND is 32768.

Delay: We consider the delay in query processing by mea-
suring the total time duration from generating a query to
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receive the response by the generating end (sink). Let #; be
the time a query (interest) packet transmitted from sink and
1, be the time the corresponding data packet is received at the
sink [32]. So, the delay can be expressed as,

Delay = (t, — t;)

Message Flow: We define message flow as the total num-
ber of message exchanges to process a query starting from the
generation of interest to reception of the data.

b: NETWORK PERFORMANCE METRICS

Packet Loss Rate (PLR): 1t is the fraction of packets that
are transmitted within a time window, but not received [38].
Packet loss minimizes the Packet Delivery Ratio. The packet
loss (%) can be expressed as,

PLR = (100 x No. of packets lost

No. of packets sent

Network Lifetime: The lifetime of a network is often
defined as the maximum time a certain task can be carried
out without any node running out of energy. It can be derived
from the initial energy and average consumed energy at
each node, and it specifies the time a node can serve before
draining out. The long lifetime of a node indicates a long
network lifetime. It is calculated and expressed as follows
assuming one query at each node/minute is served in the
network [32], [39].

Initial Energy at each node

Network Lifetime = ( - -
Energy consumption per node /minute

End-to-End Delay (EED): This metric indicates the aver-
age time duration over all the packets that are transmitted
from the source to the destination. This value includes all pos-
sible delays caused by buffering, queuing, retransmissions,
propagation, and transfer through a channel. [32].

1 & ,
Average EED = — Z Delay(j)
L
where p is the total number of packets and Delay(j) denotes
the total transmission delays of a packet.

Throughput: This metric is defined as the total number of
bits successfully received at the server within a definite time
duration. The throughput at the receiver can be calculated as
follows:

Total Bits Received
Throughput =

t—1
where fr is the time of the first packet received and the ¢
represents either the time of the last packet received if the
session is complete or the simulation time if the session is
incomplete [32].

3) RESULTS AND DISCUSSION

We conduct experiments to evaluate the comparative per-
formance of IPLQueeN considering both real-time and non-
real-time queries. We compare the performance of real-time
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TABLE 5. Performance results with non-real-time queries.

Packet Size  No.of  Energy Delay Message Flow Packet Loss Network End to End Throughput
(Bytes) nodes consumption (mJ)  (Sec) Rate (%) Lifetime (Days)  Delay (mSec) (Bytes/Sec)
90 100 9.23 0.23 2 0.00 138 116 30.22
200 9.70 0.23 2 1.28 137 116 31.54
300 10.00 0.24 4 1.55 204 117 32.60
400 10.10 0.24 4 2.00 181 118 35.11
500 10.20 0.24 4 2.50 227 117 35.73
100 100 10.10 0.24 4 0.90 121 117 32.76
200 10.12 0.24 4 1.51 116 117 34.33
300 10.20 0.25 4 2.32 171 118 34.81
400 11.50 0.26 6 2.53 159 120 36.30
500 12.20 0.26 4 2.75 201 121 38.50
110 100 11.50 0.25 2 1.12 116 118 35.46
200 12.00 0.26 4 1.50 115 121 36.50
300 12.20 0.27 4 2.80 171 125 38.22
400 13.10 0.27 6 2.50 158 129 40.30
500 13.80 0.28 4 2.85 198 132 42.65
120 100 12.00 0.27 4 1.34 114 118 38.75
200 12.10 0.28 4 2.10 115 121 40.23
300 12.20 0.28 4 2.62 171 124 41.50
400 13.20 0.30 4 2.78 151 131 43.78
500 14.00 0.31 6 3.06 190 131 44.32

queries with three state-of-the-art competitor schemes such as
Q-LEACH (Query based low-energy adaptive clustering hier-
archy) [3], pCASTING [23], and BSS (broadcast suppression
scheme) [27]. The Q-LEACH is a query processing scheme
over LEACH [40] based WSN whereas the pCASTING is a
caching-based query processing scheme over NDN-IoT. The
BSS is an interest broadcast suppression scheme that avoids
broadcasting unnecessary copies of interest by forwarding the
interest through potential forwarders only. The Q-LEACH,
pCASTING, and BSS are developed as follows.

In Q-LEACH whenever a query comes to the sink, it broad-
casts the query towards the cluster heads. Now, each of the
cluster heads, in turn, broadcasts the query towards their
member (sensor) nodes. Next, in the Data forwarding phase,
the sensor nodes apply the lightweight LOCHA on sensory
data and send responses to their respective cluster heads. The
cluster heads then verify the digest. Upon successful verifi-
cation, the cluster heads aggregate the data received from the
members against the query and send the aggregated data to the
sink. So, during the experiment, we make two modifications
in the Q-LEACH. One such modification is, instead of the
competitor’s integrity scheme, LOCHA is used to make the
securing mechanism more energy efficient. Another modifi-
cation is instead of using TDMA, here CSMA/CA is used to
support scalability and reduced delay in the query response.

In pCASTING, 15% of total nodes in the network act as
Consumers, one node acts as Access Point (AP), and the
remaining nodes act as Forwarder Nodes (FNs). Here, a Con-
sumer periodically broadcasts the generated query towards
all the FNs. While receiving the query, an FN searches the
data in CS, and if not found it checks in PIT. If a matching
entry is found, the query is discarded; otherwise, a new PIT
entry is created. Then the query is broadcast towards all the
FNs. If any of the FN has the data is CS, it is forwarded
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back to the intended Consumer. If the query is not found
in any of the FNs, it is retrieved from the AP. With each
query (interest), a freshness value is also attached. If any
data is found in FN which exceeds the specified fresh-
ness, it is not retrieved. Instead, the fresh data is retrieved
from the AP. However, during the experiment, we make
two modifications in the pCASTING. Firstly, to maintain
message integrity during data transmission, the lightweight
hash function LOCHA is used while data is forwarded back
from any FN or AP. Secondly, the nodes are considered
static to make the pCASTING comparable with the proposed
scheme.

In BSS, an interest broadcast suppression scheme is pro-
posed. Here, a consumer node (sink) first broadcasts the
interest towards the neighbor nodes. But only the potential
forwarder nodes forward the interest. The nodes are selected
as potential forwarders based on the holding time for each
unique interest containing specific content. This holding time
for a potential node is less than the other nodes in the trans-
mission range of the consumer or the previous forwarder
nodes. The rest of the activities in the interest phase are
taken from the notion of NDN. Forwarding data message
also follows the similar set of rules as interest but uses dif-
ferent holding time. In the data message, however, to make
the scheme comparable with us, we have used hash-based
(LOCHA) verification instead of a signature.

a: RESULTS WITH REAL-TIME QUERIES
We evaluate simulation results in terms of both the design
metrics and network performance metrics for real-time
queries.

Achieving Design Goal: Three sets of experiments are con-
ducted for evaluating the performance of the present scheme
by measuring the extent of attaining the design objective in
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FIGURE 5. Energy consumption.

terms of energy consumption, query processing delay, and the
number of the packet flow.

Energy Consumption: In the first set of experiments
(Figure 5) we measure energy consumption for processing
a query for all the competing schemes including IPLQueeN
both with-LOCHA and without-LOCHA. Figure 5(a) plots
the energy consumption results with a varying number of
nodes. We primarily observe from the plot that, unlike all
the competing schemes, in our scheme, IPLQueeN energy
consumption remains the same for varying numbers of nodes.
We also observe that the energy consumption for IPLQueeN
is the lowest among all the competing schemes Q-LEACH,
pCASTING, and BSS for both the with-LOCHA and without-
LOCHA versions. Precisely, it is on average 91% and 93%
and 78% lower as compared to Q-LEACH, pCASTING, and
BSS, respectively.

Figure 5(b) plots the energy consumption results with
varying packet sizes. Here also we observe that, unlike all
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Varying packet size

the competing schemes, in our scheme, IPLQueeN energy
consumption remains the same for varying packet size.

We also observe that the energy consumption for
IPLQueeN is the lowest among all the competing schemes
for both the with-LOCHA and without-LOCHA versions.
To be more specific, on average, the energy consumption
of IPLQueeN is 90%, 94%, and 74% less than Q-LEACH,
pCASTING, and BSS, respectively.

The reason for both sets of the above results is explained
as follows. The IPLQueeN is based on multilevel hierarchical
architecture resulting in a wide coverage of the application
area and has a mechanism to identify the sub-area for query
answering. So, instead of involving all the nodes in answer-
ing the query, a part of the hierarchy having a subset of
the nodes participate in query answering. On the contrary,
in Q-LEACH, pCASTING, and BSS, all the nodes participate
in answering the query. So, the energy consumption increases
at a much higher rate for all the schemes with varying
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FIGURE 6. Delay in processing a query

FIGURE 6. Delay in processing a query.

numbers of nodes (Figure 5(a)) and varying packet sizes
(Figure 5(b)).

We further observe that in all the schemes including ours
for both sets of experiments, the plots for with-LOCHA and
without-LOCHA overlap. It implies that LOCHA being a
lightweight digest incurs very little overhead in terms of
energy.

Delay: In the second set of experiments (Figure 6) we mea-
sure query processing delay for all the competing schemes
including ours for both with-LOCHA and without-LOCHA.
Figure 6(a) plots the results with the varying number of nodes.
We generally observe that delay increases with a varying
number of nodes. However, it is the lowest in IPLQueeN
among all the schemes. Precisely, it is 73% and 58% less
than Q-LEACH for without-LOCHA and with-LOCHA,
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respectively. These values are 67%, 50% and 57%, 34% for
pCASTING and BSS, respectively.

Figure 6(b) plots the results with varying packet sizes.
We generally observe that delay for all the schemes does
not vary much with varying packet sizes. However, it is the
lowest for IPLQueeN both for with-LOCHA and without-
LOCHA. Precisely, it is 54%, 64% less than Q-LEACH for
with-LOCHA and without-LOCHA, respectively. These val-
ues are 47%, 57% and 26%, 42% less than pCASTING and
BSS. Similar to the energy plot, the reason for both sets of
the above results on delay is as follows. Unlike Q-LEACH,
pCASTING, and BSS, instead of involving all the nodes in
answering the query, a part of the hierarchy having a subset
of the nodes participate in IPLQueeN. It results in a lowering
of delay.
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FIGURE 7. Message flow.

We further observe that in all the schemes including
ours for both sets of experiments, there is a gap between
the plots for with-LOCHA and without-LOCHA. It implies
that although LOCHA is a lightweight digest, it incurs
marginally higher delay in the with-LOCHA version than the
without-LOCHA version.

Message Flow: In the third set of experiments (Figure 7)
we measure message flow for all the competing schemes
including ours for both with-LOCHA and without-LOCHA.
Figure 7(a) plots the results with the varying number of
nodes. We primarily observe that number of message flows
increases with the number of nodes for all the compet-
ing schemes except our scheme IPLQueeN. In our scheme,
it remains almost flat over a varying number of nodes. The
reason is while receiving an interest, despite broadcasting
it in the network, the intended receivers of the interest
are found from the FIB. We also observe that the num-
ber of such flows is the lowest in our scheme for any
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number of nodes. Precisely, on average, the number of
message flow in IPLQueeN is 83%, 88%, and 74% lower
than Q-LEACH, pCASTING, and BSS, respectively. This
is possible as our scheme is low-overhead compared to the
others.

Figure 7(b) plots the results with varying packet sizes.
We generally observe that the message flow for all the
schemes does not vary much with varying packet sizes. As the
number of message flow for processing a query does depend
on the number of message exchange among the participat-
ing nodes, it intrinsically does not depend on packet size.
However, it is the lowest for IPLQueeN both for
with-LOCHA and without-LOCHA. Finally, we observe that
the plots for with-LOCHA and without-LOCHA overlap
for both the plots (Figure 7(a), 7(b)) which imply that the
overhead of LOCHA does not have an impact on message
flow either with the varying number of nodes or with varying
packet size.
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FIGURE 8. Packet loss rate.

Evaluation of Network Performance: Four sets of exper-
iments in terms of packet loss rate, network lifetime, end-
to-end delay, and throughput are conducted to observe the
network performance of the present scheme while achieving
the design goal.

Packet Loss Rate: In the first set of experiments (Figure 8)
we measure packet loss rate for all the competing schemes
including ours for both with-LOCHA and without-LOCHA.
Figure 8(a) plots the results with the varying number of
nodes. We generally observe from Figure 8(a) that such a
rate increases with the number of nodes for all the competing
schemes including ours. However, the rate in IPLQueeN is
significantly less compared to Q-LEACH, pCASTING, and
BSS. We also observe that irrespective of the number of nodes
the packet loss is the least in IPLQueeN. To be more specific,
on average, it is 80% and 71% less in IPLQueeN compared to
Q-LEACH without-LOCHA and with-LOCHA, respectively.
These values are 80%, 74% and 78%, 70% compared to
pCASTING and BSS, respectively.

VOLUME 9, 2021

Varying packet size

Figure 8(b) plots the results with varying packet sizes.
We observe from the plot that the packet loss rate does
not vary much with varying packet size for all the com-
peting schemes including IPLQueeN. However, such a rate
is the least in IPLQueeN compared to all the competing
schemes for all the packet size. Precisely, on average, it is
86% and 67% less in IPLQueeN compared to Q-LEACH
without-LOCHA and with-LOCHA, respectively. These val-
ues are 83%, 71% and 68%, 52% compared to pCASTING
and BSS, respectively.

We finally observe that in all the schemes for both
sets of experiments, there is a gap between the plots for
with-LOCHA and without-LOCHA. This gap is marginal
in the plot with varying numbers of nodes; however, this is
little more in the plot with varying packet size. It implies
that although LOCHA is a lightweight digest, it incurs
a marginally higher packet loss rate with varying packet
size in the with-LOCHA version than the without-LOCHA
version.
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FIGURE 9. Network lifetime.

Network Lifetime: In the second set of experiments
(Figure 9) under network performance evaluation, we mea-
sure the lifetime for all the competing schemes including ours
for both with-LOCHA and without-LOCHA. Figure 9(a)
plots the results with the varying number of nodes. We gen-
erally observe from Figure 9(a) that, as expected, the net-
work lifetime increases, with the number of nodes for all
the competing schemes including ours. Though the rate of
increase is not very high, the lifetime remains the high-
est in [PLQueeN compared to others. To be more specific,
on average, the lifetime in IPLQueeN is 45%, 62%, and
72% higher than the Q-LEACH, pCASTING, and BSS,
respectively. As the number of nodes increases, participating
nodes in processing a query in other competing schemes
increases at a much higher rate compared to the IPLQueeN.
Thus, the energy consumption of the network increases at
a much higher rate in the competing schemes compared
to IPLQueeN.
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Figure 9(b) plots the results with varying packet sizes.
We generally observe that network lifetime reduces with an
increase in packet size. As packet size increases, the com-
munication overhead of a node increases. This increases the
probability of the node getting drained and as a result, the life-
time reduces. Although the rate of lifetime fall is marginally
higher in IPLQueeN compared to the others, it remains the
longest for all the packet sizes. In IPLQueeN, it is, on average,
37%, 68%, and 70% higher than the Q-LEACH, pCASTING,
and BSS, respectively.

End to End Delay: In the third set of experiments
(Figure 10), we measure end-to-end delay for all the com-
peting schemes including ours both for with-LOCHA and
without-LOCHA. Figure 10(a) plots the results with the vary-
ing number of nodes. We generally observe that end-to-end
delay increases with the number of nodes for all the schemes.
The reason is as the number of nodes increases it involves a
greater number of nodes in responding a query, which incurs
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FIGURE 10. End to end delay.

longer such delay. However, end-to-end delay is the lowest
in IPLQueeN both for with-LOCHA and without-LOCHA
version. Precisely, it is 67% and 62% lower compared to
Q-LEACH without-LOCHA and with-LOCHA, respectively.
These values are 50%, 41% and 52%, 36% compared to
pCASTING and BSS, respectively.

Figure 10(b) plots the results with varying packet sizes.
We observe from the plot that similar to the results with
the varying number of nodes, end-to-end delay for all the
schemes increases with an increase in packet size. However,
such delay is the lowest in IPLQueeN. To be more specific,
it is 57% and 65% less as compared to Q-LEACH for both
with-LOCHA and without-LOCHA versions. These values
are 45%, 48%, and 42%, 47% as compared to pCASTING
and BSS, respectively.

Throughput: In the fourth set of experiments (Figure 11),
we measure throughputs for all the competing schemes
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including ours for both with-LOCHA and without-LOCHA.
Figure 11(a) plots the results with the varying number of
nodes. We generally observe from the plot that the throughput
marginally increases with an increase in the number of nodes
for all the schemes including ours. We also observe that
the throughput in our scheme IPLQueeN is either at par or
marginally higher compared to all the competing schemes
except Q-LEACH. increases with packet size for all the
schemes. Moreover, the results of all the schemes including
ours almost overlap except Q-LEACH. In Q-LEACH it is
marginally higher than all the schemes.

Figure 11(b) plots the results with varying packet sizes.
We observe from the plot that as expected, throughput
sharply.

Thus, from the above discussion on the performance results
we claim that the IPLQueeN achieves all the design goals
such as the least energy requirement, query processing delay
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while maintaining the best network performance in terms of
network lifetime, end-to-end delay at the cost of either at par
or little less performance in throughput.

b: RESULTS WITH NON-REAL-TIME QUERIES

We evaluate simulation results in terms of both the design
goals and network performance for non-real-time queries.
TABLE 5 provides the comprehensive performance results
of the with-LOCHA version of our scheme. We observe from
the results that all the values of design metrics such as energy,
delay, and packet flow are significantly less compared to the
results of real-time queries. For example, here energy varies
between 9.23-14 mJ whereas it is 196-530 mJ (Figure 5) for
real-time queries. Similarly, query processing delay varies
between 0.23-0.31 Sec and 2-11 Sec respectively in non-real-
time and real-time queries (Figure 6).
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We also observe that the end-to-end delay for non-real-
time queries varies between 116-132 msec and the same for
real-time queries varies between 173-304 mSec (Figure 10).
These values for network lifetime are 137-190 days for
non-real-time queries and 70-90 days for real-time queries.
We further observe that the values of other network perfor-
mance metrics such as packet loss rate and throughput do
not vary much with the varying number of nodes and packet
size. Precisely, in non-real-time queries, the packet loss rate,
and throughput vary between 0-3% and 30-44 Bytes/Sec,
respectively. For real-time queries, these values are 2-7% and
30-40 Bytes/Sec, respectively. The reason for such results
is that, unlike real-time queries, the non-real-time queries
are mostly responded from cache (CS) of the sink, RHs and
the queries do not penetrate up to the bottom level of the
hierarchy of the network.
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FIGURE 12. Snapshots of simulation at different instances for different types of query.

The snapshots of the simulation for both the real-time and
non-real-time queries in Cooja are shown in Figure 12.

4) COMPREHENSIVE COMPARISON
Finally, we provide a comprehensive overhead com-
parison, including theoretical and simulation results of
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IPLQueeN in TABLE 6. We compare both computation
and communication overheads and resulting energy over-
heads. We also assess the approximate storage requirement
theoretically by considering the required data structure for
implementing the scheme. We take the results by varying N
from 100 to 500 considering the number of entries n = 20
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TABLE 6. Comprehensive overhead comparison.

No. of Computation overhead Communication (Tx+Rx) Total Energy (mlJ) Storage overheads
nodes overhead (mJ) (Theoretical)
Theoretical Practical Theoretical Practical Theoretical Practical KiloBytes

100 0.38 46.72 16.94 302.04 17.32 348.76 34.48

200 0.46 55.63 19.73 358.91 20.19 414.54 38.44

300 0.46 60.68 19.73 386.24 20.19 446.92 38.44

400 0.78 78.7 25.89 466.2 26.67 544.9 48

500 0.96 86.63 28.98 540.18 29.94 626.81 52.78

for sink and n = 10 for other nodes. The other parameter
values are considered as n'sij = 1, n'ry = 2, W'cy =
6 — 9, 1 sensor = 24 — 25.

All the theoretical values presented here are computed as
per the derivations provided in Section V.A. We observe,
as expected, theoretical and experimental results differ in all
the cases. Possible reasons for less energy consumption in the
theoretical analysis compared to practical are as follows:

« We have not considered quantization and channel coding
phases in the theoretical analysis whereas during the
simulation the real-time issues in Cooja are considered
which are inbuilt.

o During the simulation, each node may not require the
same energy to transmit or receive the interest/data
packets as it depends on the distance a packet must
travel. But, in the theoretical analysis of communication
overhead, each node whether it is a sink, or any other
normal sensor nodes have been considered to require
equal energy while transmit/receive a packet.

VI. CONCLUSION

In this article a low overhead, integrity preserving query
handling scheme for WSN is proposed which follows the
notion of data-centric network NDN. It is developed for
query-driven applications in WSN, and the communication
takes place in the network through the exchange of interest
and data packets. The scheme is made low overhead by
judicious use of the NDN data structure CS, PIT, FIB in some
of the nodes which are strategically placed in the multilevel
hierarchical architecture of the network. The scheme ensures
data integrity by applying a low-overhead hash LOCHA on
each data transmitted in the response phase corresponding
to an interest. Finally, the entire query processing scheme is
analyzed theoretically and establishes its feasibility to apply
on an energy-starved network like WSN. It is also evaluated
through simulation and the results prove that our scheme
achieves the design goals such as the least energy require-
ment, least query processing delay over all the competitors
while maintaining the best network performance in terms of
network lifetime, end-to-end delay at the cost of either at par
or little less performance in throughput. Also, the energy-
saving performance of the scheme establishes its potential
to readily implement the same in real-life motes. As a future
scope, the scheme may be appropriately modified to work for
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both the hierarchical and flat architecture in WSN applicable
for any query-driven real-life applications.
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