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ABSTRACT Human action recognition techniques have gained significant attention among next-generation
technologies due to their specific features and high capability to inspect video sequences to understand
human actions. As a result, many fields have benefited from human action recognition techniques. Deep
learning techniques played a primary role in many approaches to human action recognition. The new era
of learning is spreading by transfer learning. Accordingly, this study’s main objective is to propose a
framework with three main phases for human action recognition. The phases are pre-training, preprocessing,
and recognition. This framework presents a set of novel techniques that are three-fold as follows, (i) in
the pre-training phase, a standard convolutional neural network is trained on a generic dataset to adjust
weights; (ii) to perform the recognition process, this pre-trained model is then applied to the target dataset;
and (iii) the recognition phase exploits convolutional neural network and long short-term memory to apply
five different architectures. Three architectures are stand-alone and single-stream, while the other two are
combinations between the first three in two-stream style. Experimental results show that the first three
architectures recorded accuracies of 83.24%, 90.72%, and 90.85%, respectively. The last two architectures
achieved accuracies of 93.48% and 94.87%, respectively. Moreover, The recorded results outperform other
state-of-the-art models in the same field.

INDEX TERMS Convolutional neural network (CNN), human action recognition (HAR), long short-term
memory (LSTM), spatiotemporal info, transfer learning (TL).

I. INTRODUCTION
Understanding human actions by inspecting video sequences
has become an essential research topic. Human Action
Recognition (HAR) technology enables the computer to
achieve this level of understanding. HAR has a high sig-
nificance in a wide range of applications. Fields like video
surveillance [1], [2], virtual reality [3], [4], intelligent
human-computer interface [5], and identity recognition [6]
have benefited from HAR.

There are many approaches to categorize HAR techniques.
From the input perspective, HAR is categorized into two
types: (1) video-based HAR and (2) sensor-based HAR [7].
Video-based HAR takes videos or images as input to recog-
nize human activity or motion. Sensor-based HAR gets the
input from smart sensors such as accelerometers, gyroscopes,
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and sound. There are hand-crafted directions [8], [9], and
deep learning methods [10] from the methodology perspec-
tive. The main difference between them is in feature learning.
Hand-crafted methods learn features manually, while deep
learning methods learn features automatically from videos.
Recently, deep learning techniques gained wide interest after
proving high-efficiency computer vision applications. Con-
volutional Neural Networks (CNN) was the first technique
used in HAR applications [11]. CNN’s superiority was due
to its high capabilities in image analysis [12].

Using deep learning inHARhas beenwidely studied, and it
involved several issues and challenges. Accordingly, various
systems and architectures have been proposed. Despite the
progress achieved in HAR, researchers stand short of facing
several issues and challenges. A single-stream CNN structure
models only a single type of information. It cannot parse
both spatial and temporal information, as shown in Figure 1.
A good popular solution for this issue was using two-stream
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FIGURE 1. Illustration of the two-stream CNN architecture.

CNN architecture [13], [14]. The main idea was to use two
CNN networks for modeling spatial and temporal informa-
tion. The first network (stream) receives anRGB (Red-Green-
Blue) image to model spatial information. The second stream
receives stacked Optical Flow (OF) images [15] to model the
temporal information. A score fusion method combines the
features extracted from both streams.

Another limitation of CNN recognition methods is that it
needs a large amount of training data. Although training data
is crucial for network weights optimization, it is not easy
to obtain a large amount of training data. The concept of
Transfer Learning (TL) provides an effective solution to this
problem.

Transfer learning is a machine learning approach that
focuses on extracting data from a similar domain to improve
learning ability or reduce the number of labeled samples
required in a target domain [16]–[18]. In transfer learning,
training and testing data do not need to be from the same
domain, and the target domain model does not need to be
trained from scratch, which can significantly reduce the train-
ing data and training time in the target domain. The concept
behind transfer learning is illustrated graphically in Figure 2.

There are three main scenarios of CNN transfer learn-
ing: fixed feature extraction, fine-tuning and layers freezing,
and pre-trained models [19]. In the fixed feature extrac-
tion scenario, a pre-trained final fully-connected layer is
removed from the CNN model, while both the input and
feature extraction layers retain their weights and structure
and can be considered a fixed feature extractor. In the
fine-tuning and layers freezing scenario, the pre-trained
model is retained by fine-tuning the pre-trained network’s
weights. The fine-tuning process can be performed for all
CNN network layers or only for the network’s higher layers.
There are many architectures are pertained for large datasets
such as the ImageNet dataset [12] including Xception [20],
DenseNet [21], and VGG16 [22], [23] and . . . etc. These
pre-trained architectures are adopted to fine-tune each CNN
network with a different dataset in the last scenario. Trans-
fer learning has several benefits to improve CNN networks’
performance, including speeding up the training process,

improving the learning process, improving network general-
ization, and improving accessibility.

This paper proposes a Transfer Learning-based Human
Action Recognition (TL-HAR) framework. The TL-HAR
framework is based on a two-stream CNN architecture. The
TL-HAR architecture applies TL techniques to overcome the
previous limitations. This technique reduces the dependency
on a large number of target domain data. The notable contri-
butions of the current study can be summarized as follows:
• Provide a layered framework based on CNN architecture
for efficient HAR.

• Analyze the concept of transfer learning and its impact
on classification accuracy.

• Provide a stack of recognition architectures and analyze
their different performance metrics.

The rest of this paper is organized as follows: In Section II,
the related work is reviewed. The proposed framework is
described in Section III. Section IV presents the experimental
results. Finally, in Section V, the paper is concluded.

II. RELATED WORK
Recently, there has been extensive research on creating HAR
systems based on deep learning approaches. The related work
can be categorized into four main categories as follows:
(i) 3D-Convolution Networks, (ii) Fusion-based Networks,
(iii) Pooling-based Networks, and (iv) Multi-Stream-based
Networks. The next subsections demonstrate a detailed
description of the previous efforts for each category. The key
challenges and issues for each categorywill also be described.

A. 3D-CONVOLUTION NETWORKS
Ji et al. [24] have introduced a CNN-based 3D architecture for
multifunctional information channels generated from adja-
cent video frames. They used 3D kernels to extract spatial and
temporal characteristics. Experimental findings have shown
its high-performance architecture rather than its counterparts
based on 2D frames.

The work done by Ji et al. [24] improved by Tran et al.
They included five 3D pooling layers, with a compact
descriptor called C3D, which averaged the outputs of the
initial fully connected network layer. However, they produced
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FIGURE 2. Transfer learning vs. non-transfer learning graphical illustration.

short video clips and aggregated spatial and temporal infor-
mation via a late score fusion. This did not work if a long
sequence of actions, such as walking or swimming, took a
few seconds and took place in numerous video frames. The
actions have not been modeled in their entirely temporal
form.

Varol et al. [25] introduced the long-term temporal convo-
lution (LTC) architecture to handle that problem. In a large
number of video frames, they used space-time convolutions.
The spatial resolution was reduced to track the complexity
of the networks. Unfortunately, extending spatial kernels to
3D Spatio-temporal derivative led to a dramatic increase
in the network parameters. They also examined the impact
of various low-level representations and demonstrated the
importance of accurate learning actionmodels of high-quality
optical flow estimates. Their reported results were 92.70%
and 67.20% for UCF-101 and HMDB-51, respectively.

To this end, Sun et al. [26] proposed a deep, factional
spatial-temporal networks (FstCN). The main objective was
to factorize a 3D filter into a combination of 2D spatial
kernels on the lower network layers and 1D temporal kernels
on the upper network. The number of network parameters
to be studied has been significantly reduced, which leads to
mitigating high kernel complexity and a failure to train video
information. The UCF-101 and HMDB-51 tested FstCN. The
existing CNN methods were superior. Besides, it achieved
notable performance without using auxiliary training videos
to boost the overall performance.

B. FUSION-BASED NETWORKS
Karpathy et al. [11] proposed a slow fusion concept, where
higher layers get access to progressively more global infor-
mation in both spatial and temporal dimensions. Besides,
they evaluated four temporal fusion methods (single frame,
early, late, and slow fusion). They showed that slow fusion
had better performance rather than the other fusion methods.
Their best Spatio-temporal networks displayed significant
performance improvements from 55.30% to 63.90%.

Feichtenhofer et al. [27] proposed the ConvNet archi-
tecture for the Spatio-temporal fusion of video snippets.

They evaluated different ways of fusing both spatial and
temporal networks to get the best performance results.
They proved that the fusion at a convolution layer is better
than fusion at the softmax layer. They evaluated different
fusion methods such as Max, Concatenation, Bilinear, Sum,
and Convolution. Convolution fusion achieved better per-
formance. Also, they answered an important question about
when to fuse the networks. They showed that fusing such
networks spatially at the last convolutional layer is better
than earlier and that, additionally, fusing at the class predic-
tion layer can boost accuracy. Their approach got substan-
tial parameter savings while holding the same performance.
Finally, they answered another question, ‘‘How to fuse the
two streams temporally?’’. They showed that using 3D pool-
ing instead of 2D pooling after the fusion layer enhances the
overall performance.

C. POOLING BASED NETWORK
Bilen et al. [28] proposed to adopt rank pooling [29], they
introduced the concept of a dynamic image where the video
is encoded into one dynamic set of images. They used
CNN models directly on video data with fine-tuning. The
end-to-end learning methods with rank pooling have also
been proposed in [30]. Unfortunately, as the number of used
features to describe the input frames increased and the video
sequence’s complexity grew, a single dynamic image-level
was insufficient to have acceptable performance. Moreover,
the linear ranking employed capacity was limited, and the
rank pooling representation was not discriminative for the
task.

For this reason, Hierarchical rank pooling [31] was pro-
posed to support higher-order and non-linear representations
rather than the work done by Fernando [29], [30]. It con-
sisted of a network of rank pooling functions that captured
the dynamics of rich convolutional neural network features
within a video sequence. A high-capacity dynamic encoding
mechanism was obtained to achieve action recognition by
stacking non-linear feature functions and rank pooling over
one another. Cherian et al. introduced Generalized ranking
pooling [32] to improve the original method using a quadratic
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ranking function that together brought a low input ranking
approach to the data and maintained their temporal order in
a subspace.

D. MULTI-STREAM BASED NETWORKS
Simonyan and Zisserman [13] proposed two types of net-
works, a spatial stream and a temporal one. The spatial net-
work was submitted to raw video frames, while the temporal
stream input was provided as the optical flow fields. Then,
the two streams were fused using the SoftMax score. They
trained and evaluated their architecture on the UCF-101 and
HMDB-51 benchmarks.

By integrating improved trajectory, Wang et al. [33]
extended two-stream networks. They have used trajectory-
constrained sampling and pooling to deeply encode fea-
tures that have been learned from deep CNN architecture.
Wang et al. [34] have extended their work by introducing
a devised network for temporal segments (TSN) using a
sampling scheme to extract short clips over a long video
sequence to include a long-range temporal structure using
the two-stream networks. The aggregate information has been
obtained through redundancies removing a segmental struc-
ture from consecutive frames.

Zhang et al. [35] replaced the optical flow with the com-
pressed videos’ obtainedmotion vector to avoid extra calcula-
tions. This led to the acceleration of the two-stream structure.
Their reported experimental results showed a comparable
recognition performance.

Singh and Vishwakarma [36] proposed a hybrid model
for automating human activity recognition. The Inception-v3
architecture was chosen. They also processed the RGB
frames with the Bi-LSTM model. To deal with view vari-
ations and occlusions in images, they used the principle of
compact single dynamic motion image (DMI) instead of
optical flow. To reduce the complexity of their model, they
only used RGB frames to learn the features.

Singh et al. [37] proposed a two-stream model for activ-
ity recognition that combined residual- CNN with Trans-
fer Learning. They used sum fusion, max fusion, weighted
average, and weighted product fusion, among other fusion
techniques. To build the two-stream model, they merged
2D and 3D residual networks. They used the standard
UCF101 HMDB-51 benchmark dataset to test the perfor-
mance of their architectures.

Chakraborty et al. [38] presented a two-stream network for
human activity recognition. They employed transfer learn-
ing as they used many architectures such as DenseNet201,
InceptionResNetV2, MobileNetV2, Xception, and Incep-
tionV3 CNNs pre-trained on the ImageNet dataset for feature
extraction. They used LSTM to model the temporal dynam-
ics. They achieved 92% accuracy on the UCF-101 dataset.

III. THE TRANSFER LEARNING-BASED HUMAN ACTION
RECOGNITION (TL-HAR) FRAMEWORK
This section provides a detailed description of the pro-
posed Transfer learning-based Human Action Recognition
(TL-HAR) framework. The TL-HAR framework consists

of three main phases: pre-training, Data pre-processing and
augmentation, and Recognition, as shown in Figure 3. The
pre-trained features are extracted in the pre-training phase,
then transfer to the recognition phase to adjust the network
weights. Input data is acquired and pre-processed before
entering the recognition phase. The TL-HAR framework and
the different phases are discussed in detail in the following
subsections.

A. PRE-TRAINING AND TRANSFER LEARNING
The concept of transfer learning depends on pre-training a
network on a generic dataset for feature extraction. After-
ward, network weights are adjusted for the classification task.
Formally, a model M is trained on a dataset D1. Parameters
are adjusted to be prepared for training M as a refinement
stage on the target dataset D2. The last step is fine-tuning,
on which M is trained on D2. In this case, knowledge is
transferred from D1 to D2.
In the proposed TL-HAR framework, three deep CNN

architectures are adopted as feature extractors and classifiers.
These architectures are: Xception [20], DenseNet [21], and
VGG16 [22], [23]. The models are pre-trained on the Ima-
geNet dataset [12]. It is a very large-scale dataset of over 15
million labeled high-resolution images with roughly 22,000
categories.

B. DATA PRE-PROCESSING AND AUGMENTATION
Most of the existing deep architectures in action recogni-
tion operate on a single frame [13], [14] or stack of con-
secutive frames at a fixed sampling rate [25], [27], [39].
Accordingly, these structures cannot incorporate long-range
temporal information of videos into action models’ learn-
ing process [40]. They also suffer in both the computa-
tional and modeling aspects. From the computational point
of view, the cost of ConvNet training increased as it
requires a large number of frames to capture the long-range
actions. Varol et al. [25] used 100 frames for samples, and
Yue-Hei et al. [39] used 120 frames. On the modeling side,
the temporal coverage is limited by a fixed sampling interval.
This limited coverage led to failure in visual content capturing
over the whole video. The need to observe the entire video is
crucial yet limited by computational costs.

The segmentation step in the proposed TL-HAR frame-
work provides a sparse temporal sampling technique to cover
the whole video. A small number of sampled frames are used
to model the temporal structures in the video. This number
is fixed regardless of the duration of the videos. The seg-
mentation technique ensures fixed computational cost with
long-range temporal coverage.

Algorithm 1 outlines the steps for generating both the RGB
and OF frames.

Formally, given a video V with total m frames F , V is
divided into n equal duration portions P as shown in Figure 4,
where V and n are given as inputs to the Algorithm. One
frame is sampled from each portion, resulting in n sampled
frames T . To ensure the equal distance between sampled
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FIGURE 3. The transfer learning-based human action recognition (TL-HAR) framework.

Algorithm 1: Video Pre-Processing for Generating
Both the RGB and of Frames
Input: V , t, n // Video file, Initial step,

Number of Portions
Output: T ,O // Sampled frames, OF-frames

1 m← get_number_of_frames(V)
2 P← divide_into_portions(V)
3 s←

⌈m
n

⌉
4 foreach i ∈ n do
5 Ti← get_frame(V , s× (i− 1)+ t)
6 T ← push_to_list(T ,Ti)
7 O← push_to_list(O,TVL1(Ti))
8 end
9 return T ,O

frames, a step parameter s is calculated as s =
⌈m
n

⌉
. Target

frames are sampled from each portion starting with a specific
number t and with step s such that:

Locationi = s× (i− 1)+ t (1)

where i = 1, 2, .., n and 0 ≤ t < s.
The set of sampled frames T represents the new raw

RGB frames fed to the CNN’s spatial stream. It is also
used to generate OF frames fed to the temporal stream of
the CNN. Ma et al. [41] showed that extracting OF images
using TV-L1 [42] is better than using Brox [43]. TV-L1 is
used to generate OF frames for each frame Ti in the set T .
Ten two-channel OF frames are stacked into a new frame
with 20-channels. This method is similar to the method used

FIGURE 4. Graphical illustration of the video pre-processing algorithm.

in [34], [40], [44]–[46]. Frames are normalized using the
min-max normalization to guarantee same-size frames (255).
This step is important for the fusion process; ignoring it may
cause overfitting.

The performance of CNN decreases with small datasets
due to overfitting. Overfitting means that, while training,
the network performs very well, then the performance drops
on test data. The common solution is applying the data aug-
mentation technique [12], [47]. It helps in increasing the
dataset by applying geometric and color transformations to
the sampled frames. In this regard, the dataset is increased by
shearing, flipping, width and height shifting, rotation, zoom-
ing, and brightness changing. Figure 5 presents a graphical
illustration of the data augmentation alternatives.

C. RECOGNITION
Deep learning techniques play a principal role in this phase.
Techniques such as CNN and Long Short-Term Memory
(LSTM) [48] are the cornerstone of this phase. Using deeper
ConvNets improves the performance of the two-stream
method [34], [39], [41]. Using pre-trained models effectively
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FIGURE 5. Graphical illustration of the data augmentation alternatives.

helps ConvNet learn and extract basic image features, which
works well on datasets that do not have enough training
samples. This phase presents five different alternative archi-
tectures to obtain the most benefit from these techniques. The
five architectures’ design is obtained after a set of trials in
changing the hierarchy, layers types, layers sizes, and overall
complexity.

The first two architectures are spatial and temporal
single-streamed models, respectively. The third architecture
incorporates the first two in a two-stream network model.
The fourth architecture presents the TL concept in a spatial
single-stream model. The final architecture utilizes the same
model as the third, thus taking TL into account as in the
fourth.

1) FIRST ARCHITECTURE: SPATIAL-CNN-LSTM
The first architecture depends mainly on spatial frames in
a stacked manner. The input layer accepts a ten-stacked-
spatial-frames input and passes it to the following layers.
The time domain is added through the time distribution layer.
The input layer is connected to five consequent Time Dis-
tributed Blocks (TDB). Figure 6 shows the structure of a
TDB. Each TDB block consists of two convolutional layers,
two batch normalization layers [49], two activation layers,
and a max-pooling layer. The convolutional layers use the L2
regularization method [50] with a value of 0.001 and Glorot
Uniformweight initializer. Themax-pooling layers use (3×3)
strides. The stride controls how the kernel convolves around
the given input.

FIGURE 6. Time distributed block (TDB) internal structure.

The convolutional layers of the five TDBs have kernels of
sizes 32, 64, 128, 256, and 512. After that, a flatten and LSTM
layers are added. The LSTM layer has a size of 256 and a
dropout with a ratio of 0.5. Dropout [51] with a ratio of 0.5 is
applied after each dense layer. Dropout is sitting the output of
hidden neurons with a certain probability to zero [52], [53].
The dropped-out neurons do not contribute to the forward
pass nor the backpropagation. The dropout probability used
is 0.5, which leads to maximum regulation.

FIGURE 7. First architecture: Spatial-CNN-LSTM.

The number of UCF-101 dataset categories is 101 (as
described in the experiments section), and hence a last dense
layer of 101 neurons is added as the output layer. The batch
size is 32, and the number of epochs is 12. The architecture
uses AdaMax for the optimization process. In the training,
testing, and validation processes, all available ten-stacked-
spatial-frames are extracted from each video. The frame
shape is (100 × 100) in the colored (RGB) mode. Figure 7
shows the structure design of the first architecture.

2) SECOND ARCHITECTURE: TEMPORAL-CNN-LSTM
The second architecture depends mainly on the temporal
frames in a stacked manner. The input layer accepts a
twenty-stacked-temporal-frames input and passes it to the
following layers. The twenty constructing frames are com-
bined from ten Us and Vs temporal frames. The Us and Vs
temporal frames are extracted from the TVL1 function. The
time domain is added using the time distribution layer. The
input layer is connected to five TDBs with the same structure
as in Figure 6.

The convolutional layers of the five TDBs have kernels
of sizes 32, 64, 128, 256, and 512. After the flatten layer,
an LSTM layer with size 256 and a dropout with a ratio
of 0.5 is used. A dense layer with 101 neurons is added as
the output layer. The batch size is set to 4, and the number
of epochs is 152. The architecture uses AdaMax for the
optimization process [54]. In training, testing, and valida-
tion processes, twenty stacked-temporal frames are extracted
from each video. The frame shape is (100 × 100) in the
colored (RGB) mode. Figure 8 shows the structural design
of the second architecture.

FIGURE 8. Second architecture: Temporal-CNN-LSTM.

3) THIRD ARCHITECTURE:
TWO-STREAM-SPATIAL-TEMPORAL
This architecture applies the two-stream model (spatial
and temporal streams). The spatial-stream applies the
Spatial-CNN-LSTM architecture. This stream’s input is a
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FIGURE 9. Third architecture: Two-stream-temporal-spatial.

stack of chronologically ordered RGB-frames that have to
pass through a time distribution layer. This layer has a great
role in detecting movements, actions, and directions. This
detection has a great impact on the action recognition pro-
cess. The temporal-stream applies the Temporal-CNN-LSTM
architecture. The input of this stream is a stack of temporal
frames. These frames also pass through a time distribution
layer. A global average-pooling layer is added after each
architecture. Global average pooling avoids overfitting and
sums up the spatial information [55]. The average is taken
after the two average layers. The frame shape is (100×100) in
the colored (RGB)mode. Figure 9 shows the structural design
of the third architecture.

4) FOURTH ARCHITECTURE: TL-CNN-LSTM
In this architecture, the influence of the TL concept is inves-
tigated. The input layer receives the RGB frames and for-
wards them to the pre-trained network. Using TL, a model
is trained on a large fully-labeled dataset to adjust the net-
work weights. Subsequently, the architecture employs the
pre-trained model. In this context, three state-of-the-art mod-
els (Xception, DenseNet, and VGG16) are pre-trained on the
ImageNet dataset. Afterward, the model is set to be non-
retrainable. Figure 10 shows the structural design of the
fourth architecture.

FIGURE 10. Fourth architecture: TL-CNN-LSTM.

The architecture starts with the time distribution layer to
add the time domain. Two LSTM layers follow the time
distribution layer. After these layers, three dense layers with

FIGURE 11. Fifth architecture: Two-stream-TL-temporal.

a dropout of 0.5 come with several neurons 1024, 512, and
64, respectively. A dense layer of 101 neurons is added as
the output layer. The batch size is 8, and the number of
epochs is 128. The dense layers use the Glorot Uniform
weight initializer [56]. It allows network weights to be ini-
tialized so that neuron activation does not start in saturated
or dead regions. This leads to faster convergence and higher
accuracy. The architecture uses NAdam for the optimization
process [57]. In the training, testing, and validation pro-
cesses, ten three-stacked-spatial frames are extracted from
each video. The frame shape is resized to be (100 × 100) in
the colored (RGB) mode.

5) FIFTH ARCHITECTURE: TWO-STREAM-TL-TEMPORAL
This architecture also applies the two-stream model. The
spatial-stream applies the TL-CNN-LSTM architecture. This
architecture pre-trains the model on the ImageNet dataset
before receiving the RGB-frames. These frames pass through
a time distribution layer. The Temporal-CNN-LSTM archi-
tecture is used in the temporal-stream, just as it is in the third
architecture. A global average-pooling layer is added after
each architecture. The average is taken after the two average
layers. The frame shape is (100× 100) in the colored (RGB)
mode. With the adoption of TL, this architecture is a more
enhanced version of the third. This update is expected to
improve overall performance results. Figure 11 shows the
structural design of the fifth architecture.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Several experiments are conducted to ensure the efficiency
and effectiveness of the proposed framework. The perfor-
mance of these experiments is described by significant mea-
sures used in existing research.

The experiments are performed on a Toshiba Qosmio
X70-A device with Windows 10 operating system, Intel
Core i7 processor, 32 GB RAM, and Nividia GTX with
4 GB GPU graphics card. Python 3 was the used program-
ming language. The used packages were TensorFlow 2.1,
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NumPy v.2.1.0 [58], Matplotlib v.3.2.1 [59], and OpenCV
v.4.2.0 [60].

A. DATASETS
All the conducted experiments are performed on theUCF-101
dataset [61]. It consists of 13,320 videos of 101 human
action categories. These 101 categories can be divided into
five types: (1) Human-Human interaction, (2) Human-Object
interaction, (3) Body-motion only, (4) Playingmusical instru-
ments, and (5) Sports. All videos are realistic and collected
from YouTube. In the pre-trained part of the framework (i.e.,
the first architecture), ImageNet is used. Videos are not equal
in size nor duration (i.e., each video has a different time
duration and hence a different number of frames).

The videos are divided into three portions: training, val-
idation, and testing with a ratio of 70%, 15%, and 15%,
respectively. Since the number of videos in each category
of the UCF-101 dataset is not equal, each category is split
into this ratio. This approach ensures that every category is
represented in each of the three portions. The actual num-
bers of videos for training, validation, and testing portions
are ‘‘10,109’’, ‘‘2,525’’, and ‘‘686’’, respectively. Figure 12
shows samples from the UFC-101 dataset.

FIGURE 12. Samples from the UCF-101 dataset.

B. PERFORMANCE METRICS
The experiments evaluate several performance metrics,
including Accuracy, Recall, Precision, F1-score, and
Loss [62]. Among these metrics, accuracy has the most
attention. It is the fraction of predictions the model classified
correct to all the predictions of the model as in equation 2,

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)

where TP refers to true positive, TN is true negative, FP
is false positive, and FN is false negatives. Recall is the
fraction of actual positive predictions classified correctly,
often referred to as sensitivity or true positive rate as in
equation 3,

Recall =
TP

TP+ FN
(3)

Precision is the fraction of positive predictions to the total
predicted positive samples, as in equation 4,

Precision =
TP

TP+ FP
(4)

F1-score combines both the precision and recall into a
single parameter. It is twice the ratio between the multipli-
cation to the summation of precision and recall metrics as in
equation 5,

F1score =
2 ∗ TP

2 ∗ TP+ FP+ FN
(5)

Loss is the number indicating how bad the model clas-
sification was. It is the distance between the true values of
the problem and the values predicted by the model as in
equation 6,

l(y, p) =
M∑
c=1

yo,c. log po,c (6)

C. PRE-TRAINING THE MODELS
In the fourth architecture, three models are pre-trained on
the ImageNet dataset and examined. The first experiment is
determining the best model with higher performance metrics.
Table 1 shows the measured parameters for each used model.

TABLE 1. The experiments’ performance metrics results.

Although the VGG16 model has the highest loss readings,
it has the highest records in all other parameters. VGG16 is
chosen as the target domain for TL in the first architecture.
Figure 13 shows a graphical representation of the reported
results.

FIGURE 13. Graphical representation of the reported performance
metrics results in Table 1.

D. EXPERIMENTS RESULTS
As mentioned earlier, for all architectures, the dataset is split
into 70% for training, 15% for validation, and 15% for testing.
ReLU and SoftMax are used, as the hidden activation function
and output activation function respectively. Table 2 shows

VOLUME 9, 2021 82065



Y. Abdulazeem et al.: Human Action Recognition Based on Transfer Learning Approach

FIGURE 14. Graphical representation of the reported performance comparison in Table 3.

TABLE 2. The experiments’ performance metrics results for VGG-16.

the values of the measured parameters. All values are calcu-
lated on the overall dataset after the training and validation
processes.

The first proposed architecture achieved an overall accu-
racy of 83.24%, a recall of 81.24%, a precision of 89.40%,
and an F1 score of 0.894. The second proposed architec-
ture achieved an overall accuracy of 90.72%, a recall of
88.62%, a precision of 94.14%, and an F1 score of 0.894.
The third architecture has slightly higher performance met-
rics’ values. It achieved 90.85% accuracy, 88.89% recall,
94.23% precision, and F1 score of 0.914. The impact of using
the two-stream model is clear as the performance metrics
increased in the third architecture.

The fourth proposed architecture achieved an overall accu-
racy of 93.48%, a recall of 93.25%, a precision of 94.33%,
and an F1 score of 0.938. Despite the fact that it is a
single-stream model, it outperforms the previous architec-
tures, including the two-stream model. This is obviously due
to the impact of TL on performance enhancement.

Finally, the fifth architecture achieved the best perfor-
mance among the other architectures. It achieved 94.87%
accuracy, 93.09% recall, 97.09% precision, and F1 score
value of 0.95. This architecture benefits from both the
two-stream model and the TL concept. It is clear that the

TABLE 3. Performance comparison with the state-of-the-art models.

use of TL improves the performance of the recognition and
classification processes.

Table 3 shows a comparison between the results of both
the proposed architectures and the other state-of-the-art
models. The models are ordered according to the year
of publication. The recorded results show that most of
the proposed architectures outperform the state-of-the-art
models. Furthermore, it is clear that the fifth architecture,
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Two-Stream-TL-Temporal outperforms all other models.
Figure 14 shows a graphical representation of the reported
results in ascending order.

V. CONCLUSION
This paper proposed a TL-HAR framework based on transfer
learning techniques. TL-HAR consists of three main phases,
namely, pre-training, preprocessing, and recognition. In the
pre-training, three models are trained on a generic dataset
to adjust network weights. This pre-trained network is used
to recognize human activities in a realistic dataset. In pre-
processing, a certain number of frames are extracted from
the whole video. The segmentation technique ensures fixed
computational cost with long-range temporal coverage. The
extracted frames are used to feed spatial-streams in the pro-
posed architectures. TV-L1 is used to generate OF frames.
Stacked OF frames are used to feed the temporal-streams in
the proposed architectures. Data augmentation techniques are
applied to the training and validation of the model.

The recognition phase proposes five different architec-
tures. The first two architectures are spatial and temporal
single-streamed models, respectively. The third architecture
incorporates the first two in a two-stream network model.
The fourth architecture presents the TL concept in a spatial
single-stream model. The final architecture utilizes the same
model as the third, thus taking TL into account as in the
fourth.

Different experiments are performed such that: (1) VGG16
outperforms Xception and DenseNet as it achieved 93.48%
accuracy, (2) VGG16 is selected to be tested on the five
architectures, and (3) The fifth proposed architecture has the
highest accuracy value (94.87%).

Experimental results show that the combined architectures
achieved higher accuracy than the self-paced architectures.
The first architecture, which benefits from transfer learning
techniques, achieved better results than other architectures.
The superiority of the proposed architectures is clear through
the comparison with state-of-the-art models.
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