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ABSTRACT Deep learning has an enormous impact on medical image analysis. Many computer-aided
diagnostic systems equipped with deep networks are rapidly reducing human intervention in healthcare.
Among several applications, medical image semantic segmentation is one of the core areas of active research
to delineate the anatomical structures and other regions of interest. It has a significant contribution to
healthcare and provides guided interventions, radiotherapy, and improved radiological diagnostics. The
underlying article provides a brief overview of deep convolutional neural architecture, the platforms and
applications of deep neural networks, metrics used for empirical evaluation, state-of-the-art semantic
segmentation architectures based on a foundational convolution concept, and a review of publicly available
medical image datasets highlighting four distinct regions of interest. The article also analyzes the existing
work and provides open-ended potential research directions in deep medical image semantic segmentation.

INDEX TERMS Deep learning, convolution neural network, medical image analysis, semantic segmenta-
tion, skip-connections, encoder-decoder, computer-aided diagnostics, healthcare.

I. INTRODUCTION
The convolutional neural techniques have an enormous
impact on various areas of medical science. The underlying
study is performed to overview the impact of deep learning
techniques on medical image segmentation. It is an important
step towards image-guided interventions, radiotherapy, and
improved radiological diagnostics. A wide range of deep net-
work architectures for medical image segmentation has been
proposed for various modalities. Architectural compression
and network optimization are the primary focus areas of AI
researchers to build small yet precise models. The applica-
tions of deep learning to medical image analysis grew rapidly
since 2015 [1]–[8]. The topic becomes dominant at major
conferences andwell-reputed journals. Initially, Fully Convo-
lutional Network (FCN) [9], and U-Net [4] architectures have
revolutionized medical image segmentation and provided a
pathway for later introduced inspired models. The structure
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of the neural network contributes to the success of deep learn-
ing over conventional machine learning models. It follows
an incremental feature learning approach that eliminates the
need for hard-coded features and domain expertise [10]–[15].
Besides, publically available datasets andmodel optimization
techniques privileged researchers to validate new variants of
segmentation models and reach optimal performance. Addi-
tionally, the appearance of graphical processing units (GPUs)
on-premises and over the cloud made the training process 30
times faster than conventional processing units (CPUs) with
open-source GPU-compatible software libraries and pack-
ages [16]–[18]. Deep learning’s success motivated scientists
and researchers to apply these algorithms in medical image
segmentation for diagnosis and treatment. It is observed that
these deep network based-methods have achieved superior
performance in segmenting region-of-interest than conven-
tional methods when applied for brain, lung, pancreas, and
retinal pathologies [19], [20].

The prominent deep learning applications for med-
ical image analysis includes image construction [21],
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enhancement [22], [23], segmentation [24], registration [25],
computer-aided detection [26], view detection [27], landmark
detection [28], and automated report generation [29]. A novel
recurrent generative adversarial model is produced in [30] to
reduce the pixel imbalance problem from medical images.
The network includes bi-directional Long short-term mem-
ory (LSTM) to obtain inter-slice and intra-slice representa-
tion of the features. The authors presented a collection of
techniques used in multi-modal image fusion for medical
image segmentation. Themethod in [31] developed to support
coarse localization with Retina U-Net. The technique com-
bines RetinaNet’s one-stage detector with U-Net architecture
for image segmentation. It restores lossy signals with object
detection without additional complexity found in a two-stage
variant. An asymmetric U-Net-based convolutional block is
used in [32] to define multi-scale architecture with skip-
connections. It fuses low and high-end feature maps with
different scales and strengthens the representational capacity
of convolutional blocks. In [33], a self-supervised frame-
work is designed to lessen the requirement for annotated
samples. The network includes an adaptive prototyping mod-
ule to resolve the class-imbalance problem. The study con-
ducted in [34] designed a network for joint object detection.
It encompasses the multi-vision task and a novel loss function
using a transfer learning approach.

In article [35], a review of deep semantic segmentation is
provided. The work is divided into three segments, where
each core uncovers certain aspects of semantic segmenta-
tion. It highlights fully convolutional network (FCN)-based,
region-based, and weakly supervised segmentation methods
mainly. The authors of [36] presented a survey on deep
learning models, commonly used datasets, and prominent
evaluation metrics for natural image deep semantic segmen-
tation. Similarly, the authors of [37] provided a ceiling review
of medical image analysis and its application using deep
learning. Hesamian et al. [38] also presented an overview of
the latest deep networkmethod andmodel training techniques
for medical image segmentation. Karimi et al. [39] reviewed
the techniques used for handling label noise and benchmarked
existing segmentation and classification for medical image
analysis. The authors in [40] discussed deep architectures
with weakly supervised, fully supervised, and transfer learn-
ing techniques. It also uncovers the related data-scarcity and
class-imbalance problems. The authors reviewed the tech-
niques to target small data sample problems common in med-
ical imaging. It also covered the literature related to transfer
learning and active transfer learning methods. Most of the
surveys conducted were categorized into multiple sub-groups
based on their emphases like [41]–[44]. This mainly featured
deep convolutional networks or extensions like recurrent
neural networks, generative adversarial networks for image
restoration, classification, segmentation, compression, and
registration. Similarly, [11], [12], [14], [18], [45] focused
on specialized areas such as domain adaptation, brain tis-
sue, COVID-19, cardiac, and digital pathology. In contrast,
other reviews discussed deep segmentation architectures for

specific medical application. The surveys [42], [46], [47]
highlighted major deep networks and training strategies for
medical image analysis.

The authors in [47] have provided a comprehensive review
of deep learning-based image segmentation architectures
used for general computer vision tasks. This survey includes
medical image segmentation architectures; however, it pri-
marily focused on object detection and segmentation of gen-
eral image datasets. The authors in [48] have focused on
medical image segmentation with limited supervision. This
review is limited to efficient models capable of dealing with
partially annotated datasets. The authors in [42], and [49]
have reviewedmost of the medical image segmentation archi-
tectures. They have provided the state-of-the-art performance
of various medical modalities; nonetheless, they have not
compared various architectures’ performance and limitations
for a given dataset. One dedicated review in line with our
focused objectives is presented in [41] however, this article
was published in 2017 and therefore does not include the lat-
est literature. Our survey presents an in-depth, comprehensive
review of different aspects, including the benchmark dataset,
semantic architectures designed explicitly for medical image
segmentation, an updated survey of the latest designed tech-
niques, improvement mechanisms developed over time, eval-
uation metrics, challenges, and potential recommendations to
fix highlighted challenges.

A. STUDY METHOD
A systematic review is conducted through an academic search
engine, google scholar. The time frame considered for article
selection mainly ranges between 2015 to 2021, except for
papers reflecting core domain concepts with high citations.
The keywords used for article selection include; deep neu-
ral architectures, semantic segmentation, medical imaging,
image analysis, deep learning applications, computer-aided
diagnosis, health AI, multi-modal medical system, and
benchmark medical datasets. A total of 115 relevant articles
were thoroughly studied and selected for this review. The
literature is reviewed in a confined mode to keep the focus
on deep learning applications in medicine. The database used
to query relevant contributions includes PubMed, MedRxiv,
and ArXiv. We also searched through top-tier conference
portals such as MICCAI, ISBI, SPIE, ICHI, and EMBC. The
articles that do not address medical image analysis and/or
discuss conventional neural applications with handcrafted
and hard-coded features are eliminated from the review pro-
cess. All architectures are thoughtfully selected and placed
concerning their contribution of building new methods,
enhancing existing ones, improving accuracy, and reducing
computational complexity. All the data collected for this
article were taken from the original papers that contain
state-of-the-art work performed in medical image semantic
segmentation. The review process observed distinct aspects
of proposed methods, including the choice of the network
model, modality and data examined, the strategy adopted for
training and inference, and vital contributions. It will help

VOLUME 9, 2021 83003



M. Z. Khan et al.: Deep Neural Architectures for Medical Image Semantic Segmentation: Review

FIGURE 1. Hierarchically-structured taxonomy of underlying survey.

the researchers to refine their baseline concepts for medical
image analysis. The taxonomy of this literature is shown in
the Fig. 1, and the reviewed architectures are organized into
the following:

1) Fully Convolutional Neural Architectures
2) Encoder-Decoder Based Network
3) Multi-Scale Neural Architectures
4) Pyramid-based Network Architectures
5) Hybrid Architectures
6) Other Architectures
7) Enhancement Mechanisms
The main contributions of this article are provided below:
• The article highlights the deep convolutional neural net-
work, its layered structure with applications, and stan-
dard performance evaluation metrics.

• The detail of benchmark datasets commonly used for
model evaluation and a comprehensive review of deep
semantic segmentation architectures for medical imag-
ing is provided.

• The review emphasizes how different segmentation
techniques have achieved state-of-the-art performance
by analyzing model structural schema and assessing the
behavior of the different medical datasets.

• The set of challenges and potential research directions
with possible hypothetical solutions are provided for
medical image analysis using deep learning methods.

II. OVERVIEW
This section highlights an overview and operational details of
convolution neural networks. It encompasses the evaluation
metrics used to assess the performance of a neural model.

A. DEEP NEURAL NETWORK ARCHITECTURES
1) CONVOLUTION NEURAL NETWORKS (CNNs)
A convolutional neural network (CNN) is an advanced
neural network architecture developed for analyzing
two-dimensional images [50]. Nevertheless, it can be
applied to one-dimensional and three-dimensional data.

The convolutional layer is the fundamental block of CNN.
Convolution is a linear operation performed by multiply-
ing weights with the input, similar to a traditional neural
network. Since this technique was primarily intended for
two-dimensional input (images), this linear operation is per-
formed between the input data and a two-dimensional array
of weights, called a mask or a filter. This filter size is smaller
than the input data. An element-wise multiplication (dot
product) is performed between the filter and filter-sized patch
of the input resulting in a single value as shown in Fig. 2. This
operation is repeated systematically across the entire input
image resulting in a two-dimensional output array called a
feature map. Systematic application of the identical filter
across an entire image allows the algorithm to discover a
feature hidden anywhere in the image. This important ability
is known as translation invariance. The major advantage of
CNN is that the filters need not be handcrafted; instead,
filters can be determined automatically by training with back-
propagation, where the backward pass uses convolution oper-
ation but with spatially flipped filters [41], [45], [51]–[53].
Stacking the convolutional layers in CNN is a very effective
approach.

The layers near the input learn low-level features like lines
and edges, and layers deeper in the model learn higher-order
features like shapes. CNN is a regularized variant of mul-
tilayer perceptrons. In multilayer perceptrons (FCN), each
neuron of one layer is linked to all neurons in the following
layers. The fully connectedness of these networks makes
them susceptible to overfitting, which can be avoided through
regularization. Conventional modes of regularization include
adding some weights to the loss function. However, CNN
uses a different regularization strategy; they utilize the hier-
archical pattern in data and assemble more complex patterns
using smaller and simpler patterns, reducing the connected-
ness and complexity [49], [54]–[56]. CNN learns the filters
which were hand-engineered in traditional algorithms. This
self-sufficiency from prior knowledge in feature engineering
is its significant advantage.
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FIGURE 2. Convolution operation with m× n mask.

FIGURE 3. LSTM memory cell with gating units [60].

2) RECURRENT NEURAL NETWORKS (RNNs)
Recurrent neural networks permit previous outputs to be used
as inputs while having hidden states. RNNs are widely used
in natural language processing, speech recognition, machine
translation, music generation, and sentiment classification.
Major advantages of RNN include their ability to process
inputs of any length and compact model size despite larger
inputs; computation accounts historical information, weights
are shared across time. However, it suffers from higher com-
putational costs, difficulty accessing information from the
very past, and gradient vanishing or exploding problems.
Modern variants of RNN such as Gated Recurrent Unit
(GRU) [57], and LSTM [58] were designed to address the
vanishing gradient problem faced by conventional RNNs.
Bidirectional RNN (BRNN) [59], and Deep RNN (DRNN)
are other advanced varients of RNN. An LSTMmemory cell,
as shown in Fig. 3 contains an input gate, output gate, and
forget gate to regulate information flow.

3) ENCODER-DECODER NETWORK MODELS
Encoder-decoders [61], [62] are a class of models with
a two-stage network as shown in Fig. 4. These models
are widely used in image segmentation, image enhance-
ment alongside machine translation, and Natural Lan-
guage Processing (NLP) due to their capability of handling
variable-length input and output sequences. These architec-
tures have two major components encoders and decoders.

FIGURE 4. Encoder-Decoder Model [68].

FIGURE 5. Generative Adversarial Network Model [47].

Typically, the encoder takes an input sequence and trans-
forms it into a fixed-shaped state (hidden representation), and
the decoder maps the encoded state to an output sequence.
Auto-encoders are a specific case of encoder-decoder models
in which both input and output are identical [44], [63]–[67].

4) GENERATIVE ADVERSARIAL NETWORKS (GANs)
The generative adversarial network (GAN) are recent tech-
niques employed in unsupervised, and semisupervised learn-
ing [24], [39], [47], [69], [70]. GANs were inspired by
noise-contrastive estimation, and they utilize implicit mod-
eling of high-dimensional distributions in the data. GANs
consist of two networks as shown in Fig. 5; a generative net-
work generates plausible new data by learning the database’s
patterns, and a discriminative network classifies samples as
either original data from domain or generated data. These
two neural networks contest against each other where one
contestant’s loss is the other contestant’s gain. GAN’s fun-
damental idea is that the generator is inspired to generate
a distribution of data to match that of real data, and an
indirect training of generative networks is performed through
a dynamically updated discriminative network. Early gener-
ative adversarial networks (GANs) take noise as input; how-
ever, recent GANs take images instead of noise. Various GAN
architecture has been developed, such as Fully connected
GANs, Convolutional GANs [71], Conditional GANs [72],
Wasserstein-GAN [73], GANs with inference models, and
Adversarial autoencoders.

B. DEEP NETWORK LAYERS
1) ACTIVATION LAYER
An activation layer decides what weights are to be fired to
the layer such that the network learns the complex pattern in
the data. In CNN, a convolution layer is typically followed
by an activation layer containing activation functions. The
feature maps from the convolution layer are operated using
these functions to determine whether a neurons’ input should
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FIGURE 6. Plot of activation functions.

be activated. It is based on whether each neuron input is
important for the models’ prediction. These functions have to
be computationally efficient since they are computed across
millions of neurons [53], [74]–[76]. Especially in CNN,
backpropagation is employed, requiring evaluation of these
functions’ derivatives; This mandates these functions to be
non-linear, further increasing the computational strain. Com-
monly used activation functions are plotted in Fig. 6.
The sigmoid activation function ranges from 0 to 1. There-

fore, it is suitable for models that predict the probability
as an output [77]. The softmax function is a more general-
ized sigmoid function, widely used for multi-class classifica-
tion [78]–[81]. However, these functions are computationally
expensive and suffer from vanishing gradient problem for
very high or low input values, making the network very
less sensitive to inputs in this range. Rectified Linear Units
(ReLU) overcomes this problem [82]–[86]. It is also a widely
accepted activation function ranging from 0 to∞. This acti-
vation function is very easy to compute and is free from
the vanishing gradient problem. However, it suffers from
the dying-ReLU problem. It gives 0 as output for all nega-
tive inputs, thereby preventing backpropagation for negative
inputs. Leaky ReLU is an extension of ReLU that solves
the dying ReLU problem for negative inputs, but it suffers
from inconsistency in negative input predictions. It should be
noted that leaky ReLU and ReLU perform identically for pos-
itive inputs; therefore, the exploding problem still exists for
higher input values as both functions are not bounded. Swish,
a self-gated activation function, is another extension of ReLU
recently discovered by Google researchers. It is identical in
computational efficiency to ReLU and can outperform it by
up to 0.9% on the ImageNet database [87]. Leaky ReLU does
solve the dying ReLU problem for negative inputs, but for
positive inputs, it performs the same as ReLU, which means
the exploding problem cannot be solved.

2) POOLING AND BATCH NORMALIZATION
Pooling is a simple mathematical operation where a small
grid region of the feature map is reduced to a single value,

FIGURE 7. Maxpooling operation with mask and stride = 2.

thereby producing a downscaled feature map. Numerous
pooling techniques have been developed such as max pool-
ing, average pooling, stochastic pooling [88], spatial pyra-
mid pooling [89], multiscale orderless pooling [90], and
spectral pooling [91]. Max-pooling is the most commonly
employed technique that returns the maximum of the grid
value, as shown in Fig. 7. Pooling operations on a feature
map results create a shift in the activation map alongside
downsampling of feature maps. Therefore pooling layers add
some translational invariance to the network. It is worth
noticing that downsampling can also be performed without
pooling layers. One such technique is increasing the stride
length resulting in a simpler network architecture without
necessarily sacrificing the performance [92]–[95].

Similarly, the batch-normalization is another mathematical
operation performed on a feature map resulting from pooling
layers. It is performed by subtracting the mean and dividing
it by the standard deviation for each training batch. This
process forces the network to change its activations to zero
mean and unit standard deviation periodically. Therefore, this
process acts as a regularizer for the network and significantly
enhances the stability, pace of the training process and elim-
inates a need for careful initialization of parameters [96].

3) OPTIMIZERS
The optimizers are the algorithms or methods used to change
the attributes of a neural network, such as weights and learn-
ing rate to reduce the losses [97]–[99]. A generic form of an
optimizer is depicted in (1).

θt+1 = θt +1θt (1)

The gradient descent is the most fundamental optimization
algorithm as shown in (2) where, θ is the weight parameter,
η is the learning rate and ∇J (θ; x, y) is the gradient of weight
parameter θ . It is a first-order optimization algorithm that
is dependent on the first-order derivative of a loss function.
There exist variants of gradient descent such as stochastic
gradient descent and mini-batch gradient descent. The major
drawback of gradient descent-based algorithms includes their
inability to detect global minima, difficulty in determining
optimal learning rate, and inability to have different and
variable learning rates for different parameters [100].

θ = θ − η∇J (θ; x, y) (2)
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The adaptive gradient algorithm (Adagrad) is shown in (3),
where gt is the gradient, and Gt is the sum of the squares
of the past gradients with respect to all parameters θ , and
ε is a smoothing term of order (10−8) which prevents divi-
sion by zero. This algorithm enables having different learn-
ing rates for different parameters alongside automatic tun-
ing of learning rate. However, it is expensive computation-
ally and has a decreasing learning rate resulting in slower
training [101].

1θ = −
η

√
Gt + ε

· gt (3)

Similarly, the other most commonly optimizer is Adadelta.
It is an extension to Adagrad, shown in (4), where γ is the
decay term that ranges from 0 to 1. Although it is compu-
tationally expensive, it resolves the monotonically reducing
learning rate problem [102].

1θ = −
η√

(1− γ )g2t − 1+ γ gt + ε
· gt (4)

The Adaptive Moment Estimation refered as Adam opti-
mizer is shown in equation (5). It is by far the most used
optimization algorithm after gradient decent. m̂t and v̂t are
the bias corrected estimates of first and second moment
and η is the learning rate respectively, given by m̂t =
mt/(1− β t1) and v̂t = vt/(1− β t2) where β1 = 0.9 and
β2 = 0.999. This optimizer does careful search of global
minima without skipping over it. This optimizer rectifies
most of the above stated problems such as vanishing learning
rate, high variance, and local minima but is computationally
expensive [103].

1θ = −
ηm̂t√
v̂t + ε

(5)

4) FULLY CONNECTED LAYER
The final process before an output can predict results in
flattened nodes is known as a fully connected layer. Since
this layer is a single vector, no more operations are typically
performed after this layer. However, several fully connected
layers can be stacked like a traditional network before the
final prediction is made [104].

5) DROPOUT FUNCTION
Deep neural networks can experience over-fitting problems.
Over-fitting is a phenomenon when a model learns the sta-
tistical noise in the training data, leading to inadequate
response when the model is tested on unseen data. There-
fore, a deep learning model is expected to generalize its
performance and prevent over-fitting. The dropout is a func-
tion developed to prevent over-fitting and improve model
performance [105]. In this technique, neurons are randomly
removed during training, leading to different connectivity
with the previous layer. Consequently, the dropout breaks up
the connections where network layers co-adapt to rectify mis-
takes from prior layers, making the model more generalized.
One popular generalization descended from dropout is called

drop-connect [106], where weights are randomly dropped
instead of activations. No-drop, dropout, and drop-connect
variants are illustrated in Fig. 8.

C. PLATFORMS AND APPLICATIONS
This section encompasses common deep learning platforms
available publically for research and development. It also
highlights the generic categorization of deep convolutional
networks in terms of their application. The most prominent
and highly used platforms include the Google released Ten-
sorFlow library for the deep learning community. It used
C++, Java, Python, and Go APIs and supports a multi-grid
environment with CPUs and GPUs with CUDA and SYCL
compatibility. It also comes with a lite version to aid mobile
computing [107]. AI researchers and industry groups also
acknowledge Keras. Keras is a high-level deep learning API,
built on the top of the TensorFlow framework. It is highly
modular, user-friendly, and supports rapid prototyping with
an extendable interface. It can easily be integrated with other
data, visualization, and machine learning packages build in
python, such as NumPy, Matplotlib, seaborn, pandas, and
scikit-learn, and is compatible with both CPU and GPU
platforms [108]. Besides, PyTorch is one of the fascinat-
ing platforms built by a Facebook team to facilitate deep
learning researchers. It is built on top of Torch using python
as the primary scripting language. This platform supports
highly scalable engines as well as mobile and embedded
devices. It is more dynamic, memory efficient, and allows
working with multiple GPUs in parallel without extensive
effort [109]–[112]. The prevalence of convolution function
for medical image analysis results in highly acknowledged
application models in the AI community; these are classifi-
cation and segmentation models. Image classification was the
first area that was explored. In medical image classification,
the networks are trained with multiple images as input with
a single diagnostic variable as the output. The classification
can be binary (diseased or healthy) or multi-class (different
diseases/ stages of a disease) depending upon the nature of the
dataset. [113]. Similarly, medical image segmentation is the
process of separating different parts of an image into a set of
groups such that all parts in a group have identical properties.
Medical images often contain additional components other
than tissues or organs of interest; segmentation (separation)
of these anatomical structures facilitates better visualization
of regions of interest. Therefore, segmentation plays a vital
role in medical diagnosis [114].

D. PERFORMANCE EVALUATION METRICS
Verifying a deep semantic segmentation model is an
essential task that tells how architecture performs on
provided data. There is a wide range of evaluation
metrics used to analyze model behavior in semantic
segmentation [115]–[119]. This article discusses those met-
rics that are reviewed. The detail and mathematical depiction
of each are enlisted below;
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FIGURE 8. Visual depiction of dropout function to avoid overfitting and eliminate vanishing gradient problem.

1) PRECISION
The precision, also called a true predictive assessment, is a
ratio between the number of true positives to the sum of the
count of true positives and false positives. The true positive
indicates the positive class’s correct occurrence, whereas the
false positive depicts its incorrect occurrence. It is a use-
ful metric to measure prediction success. More specifically,
it indicates what fraction of positive findings is true. Higher
values of this metric dictate that the model returns precise and
accurate outcomes. Hence, the higher the value of precision,
the better the architecture is trained on provided data. The
mathematical form of precision can be depicted as shown
in (6). In the equation, TP is for true positive, and FP refers
to false positive [120]–[124].

Precision (PR) =
TP

TP+ FP
(6)

2) RECALL
The recall, also known as sensitivity, is the ratio between the
number of true positives to the sum of the count of true posi-
tives and false negatives. Here, the true positive indicates the
correct occurrence of the positive class, whereas the false neg-
ative depicts the negative class’s incorrect prediction. More
explicitly, it indicates what fraction of actual positives are
found correctly. Like precision, recall is also a useful metric
to measure prediction success, especially when the classes
are not balanced. Higher values of this metric dictate that the
model returns mainly all positive outcomes that are labeled
correctly. Hence, the higher the value of recall, the better the
architecture is trained [125]–[129]. The mathematical form
of recall is provided in (7); here, TP is true positive, and FN
refers to a false negative.

Recall (RE) =
TP

TP+ FN
(7)

3) F-MEASURE
It is one of themetrics required to verify themodel’s accuracy.
It unites precision and recall together in the form of harmonic
mean. The purpose of using a harmonic mean rather than
a simple average is to penalize extreme values. This metric
is useful to bring a balance between precision and recall.
The score obtained reaches its best value at 1 and worst
at 0. Therefore, models that result in an f-measure close to

1 are considered optimal, which means that there are low
false positives and false negatives. This metric applies to
binary as well as multi-class classification and segmentation
problems [127]. Mathematically it is represented in (8);

F-Measure = 2×
PR× RE
PR+ RE

(8)

4) AREA UNDER THE CURVE
An area-under-the-curve (AUC) is the aggregated perfor-
mance measuring metric used for classification and seg-
mentation problems. It is computed using receiver operating
characteristic (ROC) plots. It measures the 2D space beneath
the ROC curve from coordinate [0, 0] to [1, 1], the degree
to which the curve is in the northwest direction. It ranges
from 0 to 1. The higher the AUC value interprets, the bet-
ter result. Moreover, the AUC is scale and classification-
threshold-invariant. This metric is evaluated using the ROC
curve, which depends on the false positive rate (FPR) and
true positive rate (TPR). The FPR is the horizontal axis,
while TPR is the vertical axis of the ROC graph [128]. The
mathematical form of TPR and FPR is shown in (9) and (10).

TPR =
TP

TP+ FN
(9)

FPR =
FP

FP+ TN
(10)

5) INTERSECTION OVER UNION
The intersection-over-union (IoU) is a statistical validation
tool, otherwise called the Jaccard index. It is one of the most
regularly utilized measurements in segmentation. The IoU is
a straightforward measurement that is very successful and
commonly used for evaluating segmentation architectures.
The intersection-over-union is defined as the overlapped
area (AoO) ratio between the ground truth and prediction
by the union of the area (AoU) between ground truth and
prediction [129]. This evaluation metric range is between 0
and 1, where 0 means no overlapping and 1 refers to perfect
overlap. Mathematically, it can be viewed in (11).

IoU =
AoO
AoU

=
TP

TP+ FP+ FN
(11)
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TABLE 1. Metadata of datasets used in our survey article.

6) DICE COEFFICIENT
The dice coefficient (DC) is a commonly used measure for
segmentation applications and fundamentally the same as the
IoU. It is defined as twice the overlapped area over the total
pixels count in both images. Similar to IoU, it also ranges
from 0 to 1. Value 1 depicts the highest similarity between
the predicted value and the ground truth [130]. Hence, it
finds the similarity between the two data samples. Mathemat-
ically the Dice coefficient can be expressed as shown in (12).

DC =
2× TP

(TP+ FP)+ (TP+ FN)
(12)

7) WARPING ERROR
The warping error is another measure used for boundary label
comparison. It has tolerance to the variance for boundary
location and can directly be used for learning boundaries.
This metric focuses on objects and calculates the topologi-
cal error amongst them rather than focusing on pixel vari-
ance. It is essentially the least mean square error between
the pixels of the objective segmentation and the pixels of
a topology-preserving distorted source, segmentation [130].
Mathematically, it is expressed in (13) using euclidean dis-
tance, or equivalently, hamming distance. In the provided
equation, D represents distance, T is the candidate label, L*
represents reference labeling, and L shows the pixel error.

D
(
T‖L∗

)
= min

LCL∗
‖T− L‖2 (13)

III. DATASETS FOR MEDICAL IMAGE SEGMENTATION
In this section, various publicly available datasets for medical
image segmentation are thoroughly discussed. These datasets
are created and annotated under the supervision of domain
experts and target multiple organs, depicted in Fig. 9. The
details of each of these datasets is provided in the below
subsections and a metadata is given in Table 1.

A. DRIVE
Digital Retinal Images for Vessel Extraction (DRIVE)
dataset is built up to empower comparative investigations
on blood vessel segmentation in retinal fundus images. The
width and length of blood vessels, the tortuosity, branch
structure, and angular directions are used to screen, diag-
nose, treat, and assess different ophthalmologic and car-
diac problems, such as hypertension neovascularization,
diabetes, and arteriosclerosis. Automatic localization and

FIGURE 9. Medical Images acquired from various semantic segmentation
challenges. The data is captured with specialized sensors at a particular
angle and distinct image format.

investigation of the vessel structure can aid the execution
of screening programs of aforementioned challenges. Addi-
tionally, the vascular structure is unique for each individual
and can be utilized as a biometric ID. Data is collected
from 400 diabetic patients with age ranges from 25 to 90
years. Out of 40 randomly selected color fundus images with
768 × 584, 33 images are normal, while 7 show signs of
diabetic retinopathy. Images are in JPEG format and captured
using a 45◦ field-of-view CR5 non-mydriatic 3CCD sensor.
The dataset is partitioned into 20 training and 20 testing
images. Single, manually-segmented vasculature is available
for training, while testing contains two manuals. Moreover,
for interpreting ROI, the mask of each fundus image is
provided [131].

B. CHASE_DB1
This repository is a subset of the Child Heart and Health
Study in England (CHASE) dataset, which contains retinal
fundus images of multi-ethnic patients. It is the main subset
in CHASE that has ground truth images of retinal vessels.
Retinal fundus images of both eyes of patients were captured
at a 35◦ field of viewwith anNM-200-D fundus image sensor.
Data attained is in the TIF file format having 1280 × 960
image resolution. The dataset contains 28 images captured
from both (left and right) eyes of the patients. The ground
truths are manually segmented by two observers [132].

C. STARE
The Structured Analysis of the Retina (STARE) contains
400 retinal color fundus images. The images are captured
with a 35◦ field of view using a TRV-50 fundus image sensor
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having a resolution of 605× 700 pixels. The dataset contains
20 fundus images suitable for segmentation challenge as it
comes with ground truth images. Out of these 20 fundus
images, 9 belongs to a normal class, while 11 shows signs
of ophthalmological disease. These images are segmented
manually by two domain experts [133].

D. TCIA
The National Institutes of Health Center produced 82 abdom-
inal contrast-enhanced 3D CT scans from 53 male and
27 female subjects. Seventeen subjects are healthy kidney
donors, scanned before nephrectomy. A radiologist selected
the remaining 65 patients from patients without any signif-
icant abdominal pathologies or pancreatic lesions. The sub-
jects’ age ranges from 18 years to 76 years, with a mean age
of 46.8 ± 16.7. Scans have 512 × 512 pixel resolution with
varying pixel sizes and slice thickness between 1.5 - 2.5 mm,
acquired on Philips and Siemens MDCT scanners (120 kVp
tube voltage). A medical student manually performed slice-
by-slice segmentation of the pancreas as ground-truth, and
these were verified by an experienced radiologist [134].

E. LIDC-IDRI
The Lung Image Database Consortium image collection
contains lung cancer screening thoracic computed tomog-
raphy (CT) scans with marked-up annotated lesions. It is a
web-accessible international resource for developing, train-
ing, and evaluating computer-assisted diagnostic methods for
lung cancer diagnosis. It is initiated by the National Cancer
Institute, further modified by the Foundation for the National
Institutes of Health, and accompanied by the Food and Drug
Administration; this public-private partnership depicts a con-
sortium’s success. Fifteen companies collaborated to cre-
ate this data set containing 1018 case studies. Each subject
includes images from a clinical thoracic CT scan and an XML
file that records the results of a two-phase image annotation
performed by four radiologists. In the initial blinded-read
phase, every radiologist independently reviewed each CT
scan and marked lesions belonging to any of three cate-
gories (‘‘nodule > or = 3 mm,’’ ‘‘nodule < 3 mm,’’ and
‘‘non-nodule > or = 3 mm’’). In the unblinded-read phase,
each radiologist independently reviewed their marks along
with the anonymized marks of the three other radiologists to
render a final opinion. This dataset aims to identify all lung
nodules in each CT scan as completely as possible without
requiring forced consensus [135].

F. ATLAS
Anatomical Tracings of Lesions After Stroke, abbrevi-
ated as ATLAS, is an open-source dataset. This repos-
itory’s main objective is to facilitate researchers with
a benchmark dataset to evaluate their algorithms on
T1-weighted MRIs for lesion segmentation challenge.
There are 304 T1-weighted MRIs gathered from the
ENIGMA Stroke Recovery Working Group consortium.
An open-source tool, MRIcron, points brain lesions and

draws manual masks for every individual brain image.
At least one mask is recognized for every individual MRI.
Likewise, an expert investigated all lesions to give extra sub-
jective depictions of the type of stroke, the intensity of white
matter disease, and the avascular area. In short, the repos-
itory includes; CSV file with metadata, 229 T1-weighted
MRI scans, and MNI152 standard-space T1-weighted aver-
age image. Hence, it is an asset to evaluate and improve the
precision of current lesion segmentation strategies [136].

G. BUS 2017 DATASET B
Cancer caused by Breast tumors is one of the dominant causes
of deaths in women. From the statistical analysis, it is found
that one in eight women in the United States of America have
breast cancer in their life. Precise breast tumor segmentation
is crucial and challenging for further diagnosis and treatment.
Various approaches are used for Breast Ultrasound Segmenta-
tion, but most of these methods are evaluated using compar-
atively tiny private datasets, which causes inconsistency for
performance comparison. Therefore, to fill that gap of having
a large-scale public dataset, a benchmark Breast Ultrasound
Segmentation Mode B is published. It contains 562 images
gathered from multiple resources using various ultrasound
sensors, including Philips IU22, Siemens ACUSON S2000,
Hitachi EUB-6500, GE VIVID 7, and LOGIQ E9. Moreover,
four domain experts are involved in generating ground truths
for this dataset [137].

H. ISIC 2018
The input sub-data contains dermoscopic lesion images in
JPEG format. All lesion images are provided in the format
of ISIC_<image_id>.jpg, where image id is a 7-digit iden-
tifier. The lesion images were acquired with various der-
matoscopy types, from all anatomic sites (excluding mucosa
and nails), from a historical sample of patients presented
for skin cancer screening from several different institutions.
Every lesion image contains exactly one primary lesion;
other fiducial markers, smaller secondary lesions, or other
pigmented regions may be neglected. The disease states’
distribution represents a modified real-world setting whereby
there are more benign lesions than malignant lesions but
an over-representation of malignancies. The response data
contains binary mask images in PNG format, indicating the
primary skin lesion’s location within each input lesion image.
Mask images are encoded as grayscale 8-bit PNGs images.
Each pixel represents areas outside the primary lesion as a
background region or the foreground of the image or areas
inside the primary lesion. Mask image ground truth (provided
for training and used internally for scoring validation and test
phases) data were generated using several techniques, but all
data were reviewed and curated by practicing dermatologists
with expertise in dermoscopy [138].

IV. MEDICAL IMAGE SEGMENTATION ARCHITECTURES
Medical image semantic segmentation is performed to delin-
eate the anatomical structures and other regions of interest
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FIGURE 10. The figure depicts original medical images with semantically
segmented outcomes. The regions of interest are highlighted in color
boxes.

FIGURE 11. FCN for pixel-wise semantic segmentation [9].

where each pixel in an image is classified into a predefined
set of classes as shown in Fig. 10.

A. FCN ARCHITECTURES
A fully convolutional network (FCN) is an advanced, deep
learning-based semantic segmentation architecture devel-
oped in 2015 [9]. FCN has been widely used in medical
image segmentation for various applications [139]–[142].
An FCN utilizes a CNN to convert image pixels to pixel
categories such that the predictions and input image pixels
have a one-to-one correspondence as shown in Fig. 11. This
architecture transforms the intermediate layer feature map’s
dimensions back to the input image’s size using transposed
convolution layer. Themajor benefit of FCN is that it provides
an end-to-end solution for semantic segmentation, even on
variable-sized images. The shortcomings of FCN include
its high computational cost and difficulty in adapting to
three-dimensional images.

B. ENCODER-DECODER BASED ARCHITECTURES
SegNet introduced semantic pixel-wise image labeling [62].
It used forward evaluation of a fully learned function to get a

FIGURE 12. The SegNet architecture [62].

smooth prediction of the label. With depth increase, a broader
context is considered for pixel labeling, which improves
accuracy. It makes it easy to visualize the impact of feature
activation in the pixel label space at any depth. It comprised a
stack of encoders followed by a corresponding decoder stack,
which feeds into a soft-max classification layer as shown
in Fig. 12. The decoders help map low-resolution feature
maps at the encoder stack’s output to full-size feature maps
identical to the input size. It addressed an essential drawback
of recent deep learning approaches, which have adopted net-
works designed for object categorization for pixel-wise label-
ing. It also resorts to ad hocmethods to upsample features and
results in noisy predictions, restricts the number of pooling
layers to avoid too much upsampling, and reduces spatial
context. SegNet resolved these problems by learning to map
encoder outputs to image pixel labels.

The U-Net architecture is the most prominent medical
image segmentation model applied to various medical prob-
lems, published in 2015. It is a common belief that successful
architecture training needs a massive amount of data [4].
U-Net presents a strategy that strongly depends on the data
augmentation technique to use limited available data more
effectively. It is built on fully convolutional layers arranged
to produce better segmentation results explicitly for med-
ical images. The architecture consists of encoder/decoder
paths, depicted in Fig. 13. The encoding path is a stack of
unpadded convolutions followed by a max-pooling opera-
tion for down-sampling. It helps to find insight by explor-
ing advanced features but, at the same time, causes a
reduction in the size of the feature map. The symmetric
decoding path uses transpose convolutions to perform pre-
cise localization. Hence, the concatenation of feature maps
associated with encoding-decoding units at the same level
is performed. It supports localization from an encoder to a
decoder path. Since annotating a large number of training
samples inmedicine is expensive and time-consuming, U-Net
architecture helps and supports the segmentation process by
lowering the cost and time it takes to annotate. For archi-
tecture evaluation, PhC-U373 and DIC-HeLa Datasets have
been used to segment Electron Microscopic (EM) images.
The main contribution of this architecture includes data aug-
mentation, separation of joint objects, and overlapping-tile
approach.

V-Net, a volumetric convolutional neural network, which
is FCN for Volumetric Medical Image Segmentation, was
proposed in [143]. It is a modified version of U-Net with a
foundational encoder-decoder structure as depicted in Fig. 14.
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FIGURE 13. The U-Net architecture [4].

Medical data comes in different dimensions, so it is always
crucial to handle such details flawlessly.Many existing SOTA
approaches only entertain 2D information, whereas vari-
ous clinical information comes in 3-Dimensional volumes.
The article demonstrated volumetric FCN for 3-Dimensional
image data manipulation (segmentation). The proposed net-
work is simulated over 3D MRI volumes for prostate seg-
mentation; a critical diagnostic task for assessing the prostate
condition. Moreover, a unique Dice coefficient-based objec-
tive function is introduced, which deals with an imbalance
between foreground and background voxels. Themodel made
use of histogram matching and random non-linear trans-
formations for data augmentation. Experimental evaluation
showed that the underlying approach is time efficient and
needs fractional processing time to execute.

In 2016, 3D U-Net, a Dense Volumetric Segmentation
network, was proposed by the University of Freiburg, Univer-
sity Hospital Freiburg, University Medical Center Freiburg,
BIOSS Centre for Biological Signalling Studies, and Google
DeepMind [144]. Proposed architecture replicated the U-Net
as a baseline with analysis and synthesis paths. The analy-
sis path contains 3-Dimensional convolutions, followed by
ReLU activation and max-pooling layers. Similarly, the syn-
thesis path contains 3-Dimensional up-convolution leading to
convolutions and ReLU activation. Finally, the output chan-
nels are reduced to meet the number of labels with 1× 1× 1
convolution. It should be noted that Batch-Normalization is
performed before each activation. The framework operates
in Bi-mode to semi-automatically and fully automatically
segment 3-Dimensional volume from limited annotations.
Elastic deformation is used for data augmentation during
network training. It is observed that the proposed architecture
responded well when tested on the Xenopus kidney.

C. MULTISCALE ARCHITECTURES
Multiscale segmentation architectures were developed to
address the existence of scale variance in the regions of
interest. Multiscale segmentation architectures can reveal the
information at different scales by splitting a given image into

FIGURE 14. The VNet architecture [143].

several homogeneous regions at various scales. These archi-
tectures used a combination of different scales of features
(local and global) to predict the classification of each pixel,
thereby improving high-level segmentation operation.

In 2018, U-Net++ was proposed by Arizona State Uni-
versity, USA to overcome U-Net’s limitation of utilizing
same-scale feature maps alone. The architecture used the
concept of Dense-Block to improve original U-Net perfor-
mance as shown in Fig. 15. Unlike the foundation model
(U-Net), it included convolutions and dense skip connections
on skip-pathway to fill the gap between feature maps across
modules and to improve gradient flow [145]. It also incorpo-
rated the concept of deep supervision, which performs archi-
tecture pruning. The proposed architecture is evaluated in a
multi-modal environment by considering four different med-
ical image repositories, including; cell nuclei, colon polyp,
liver, and lung nodule. The proposed model is compared
with two foundational models (U-Net and Wide U-Net). The
results have shown that U-Net++, even without the concept
of deep supervision, achieved phenomenal results in terms
of Intersection-over-Union (IoU) metric for both baseline
U-Net andWide U-Net models. DMCNN is a deepmultiscale
convolutional neural network developed in 2019 to tackle
image quality issues such as low gray contrast and blurred
tissue boundaries in medical images [146].

D. PYRAMID BASED ARCHITECTURES
The PSPNet [147] has proposed a pyramid pooling module
to aggregate the context and used auxiliary loss as shown
in Fig. 16. Global scene categories matter because it gives
a clue on the distribution of the segmentation classes. The
pyramid pooling module captures this information by apply-
ing large kernel pooling layers. Dilated convolutions are
used to modify Resnet, and a pyramid pooling module is
added to it. This module concatenates ResNet’s feature maps
with an upsampled output of parallel pooling layers with
kernels covering the whole, half, and small portions of an
image. An auxiliary loss, additional to the main branch loss,
is applied after the fourth stage of ResNet.
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FIGURE 15. The U-Net++ architecture [145].

FIGURE 16. Overview of PSPNet Architecture from [147].

E. HYBRID ARCHITECTURES
Hybrid densely connected U-Net, abbreviated as
H-DenseUNet, was proposed in 2018 by the Chinese Univer-
sity of Hong Kong [13]. In the Proposed Model, for precise
extraction of intra-slice features, 2D DenseUNet is used
whereas, for a hierarchical collection of volumetric frames of
reference, the 3D counterpart is utilized.Moreover, intra-slice
and inter-slice representations are collectively optimized via
a hybrid feature fusion layer. The hybrid feature is the sum of
intra-slice and inter-slice representations from 2-Dimensional
and 3-Dimensional networks. The model is evaluated using
3DIRCADb Dataset for liver and tumor segmentation. It is
found that H-DenseUNet outstripped DeepX for lesion and
liver segmentation. It has also shown an enormous response
compared to U-Net, with a 14.5 percent improvement in
segmenting tumors’ Dice score.

In an article published in 2018, Cascaded 3D U-Net is
proposed by Nagoya University, Nagoya University Graduate
School of Medicine, and Aichi Cancer Center [148]. The pro-
posed architecture is a two-stage 3-dimensional U-Netmodel.
The first stage is a fully convolutional neural network, trained
to approximately trace organs of interest. The second stage
executes another fully convolutional Network architecture to
get a more detailed view of organ segmentation. It ensures
a coarse-to-grain smooth transition. Candidate Regions C1
and C2 are specified for stage 1 and stage 2, respectively,
to reduce the search space. Consequently, for reducing the
output channel to make it equivalent to the number of output
classes, the final layer contains 1× 1× 1 convolution. More-
over, the size of each specified channel is 44× 44× 28. The

loss function used for the proposed architecture is weighted
voxel-wise cross-entropy loss. The proposed approach is
operated on 331 contrast-enhanced abdominal clinical CT
images with random rotations and Smooth B-spline defor-
mations techniques to augment available data. The designed
paradigm outperformed previous multi-organ segmentation
approaches with an improved dice score of 0.792 from 0.717.

Cascaded Deep Convolutional Neural Network is pro-
posed in [149]. The proposed architecture is considered as an
ancient and conceptually simple alternative to know existing
structured methods well. It follows a two-pathway approach
that learns local information of the brain as well as the global
context. The model also incorporates a bi-phase training pro-
cess, which is significant in dealing with imbalanced tumor
labels. The model is evaluated using the 2013 BRATS test
dataset. Results proclaim that architecture is 30 times faster
than existing state-of-the-art methods as it takes 25 seconds
to 3 minutes for segmenting brain images.

Models Genesis, an approach to segment 3-Dimensional
medical image data using transfer learning strategy was pre-
sented by Zhou et al. [85] in 2019. Applying transfer learning
to medical data is crucial; often, the clinical data available
is in a 3-D format such as MRI and CT. By taking the ben-
efit of pre-trained models without training medical images
from scratch, there exists a need to manipulate 3D data and
transform it into 2D images. This manipulation consequently
causes the loss of valuable spatial information, which ulti-
mately impacts overall application performance. To resolve
this problem, the authors of this paper presented a set of
models named Models Genesis that are generic, self-taught,
and capable enough to operate with no manual labeling. The
authors of the article aimed to produce application-specific
target architecture using a transfer learning approach. They
evaluated the paradigm on five 3-Dimensional applications
targeting both classification and segmentation challenges.
It is significantly observed in experimentation that models
trained from scratch on 3-Dimensional medical data may not
essentially perform well compared to transfer learning from
the 2D-ImageNet dataset. However, the proposed frame-
work uniformly showed SOTA performance to any 2D strat-
egy, which confirms its significance. Moreover, the authors
have shown their intention to extend the approach from
application-specific to domain/modality-specific.

In 2018 Google DeepLab had come up with DeepLabv3+
after series of DeepLab versions. Along with the foundational
Contraction-Expansion pattern that can randomlymanage the
resolution of extracted encoder representations using Atrous
convolution to compensate runtime and precision, the archi-
tecture also incorporates the Xception model with Separa-
ble Convolution (Depth-wise Convolution combined with
point-wise convolution) for making architecture more robust
and computationally efficient. The Architecture obtained
SOTA performance on publicly available datasets [150].
Moreover, multiple variants of the proposed model are ana-
lyzed in the reviewed article. It is observed that the resultant
model performs better than its previous version, DeepLabV3.
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F. OTHER SEGMENTATION ARCHITECTURES
The Regional CNN (R-CNN) architectures were devel-
oped for object detection [151]. R-CNN extensions such
as Mask R-CNN solves the instance segmentation prob-
lem, which requires simultaneous object detection and seg-
mentation [152]. CenterMask is a recent Mask R-CNN
extension that provides real-time anchor-free instance seg-
mentation [153]. The authors of [154] proposed M-GAN,
a conditional generative adversarial network for retinal vessel
segmentation. M-GAN uses stacked deep FCN to balance the
losses. It consists of M-generator with deep residual blocks
and M-discriminator with a deep network to train the adver-
sarial model. Besides, it includes amulti-kernel pooling block
in between the stacks to achieve scale-invariance. DU-Net
was published in 2019 by Tianjin University and Linkoping
University. It utilized a U-Shape model like U-Net archi-
tecture for exploiting local features of retinal blood vessels
with transpose convolutions for fetching context informa-
tion [136]. It concatenated high- and low-level feature maps
for accurate localization. Moreover, the model autonomously
adapts, adjusting local, dense, and receptive fields concerning
vessel shape and scale by incorporating Deformable Con-
volutional blocks. Each block contains offset, Convolution,
batch-norm, and activation layers. Articulated architecture
is evaluated using three benchmark retinal fundus image
datasets: DRIVE, STARE, and Chase_DB1. Experimental
results have shown that DU-Net performed better than other
competing baseline models (DCN and U-Net) with fewer
parameters.

V. ENHANCEMENT MECHANISMS
The classical models based on a U-Shaped structure had
certain pitfalls. To resolve these gaps, researchers produced
various enhancement mechanisms. In this section, we briefly
reviewed the literature build on these mechanisms.

A. RESIDUAL MECHANISM
In [155], the authors proposed ResNet architecture. It per-
formed enormously for image classification and segmenta-
tion. The ResNet used residual block to enhance feature
representation and boost network performance. It supports
deep net-works with increased depth without falling into the
problem of vanishing gradient. It was initially developed
for image classification; however, scientists utilized its sig-
nificant impact by joining residual blocks with U-Shaped
models. In [156] the authors proposed U-Net with Residual
block variant. The work demonstrated the impact of long
and short skip connections with FCN for segmenting medical
images. Unlike FCN, which only uses long skip connections
to skip representations from an encoder to decoder path,
underlying architecture enhances FCN with short skip con-
nections used in a residual network for deeper architecture.
Full two-resolution ElectronMicroscopy (EM) Image dataset
without any post-processing is used to evaluate the proposed
model with three variants. It is noticed that high accuracy
with small loss is obtained with an architectural variant

containing both long and short skip connections. The authors
in [157] proposed RDN, a Residual de-ConvNet inspired by
U-Net architecture. It captures image features and contex-
tual details. The residual block not only imparts depth sup-
port but also aid for multiscale features. Similarly, in [158],
the authors integrated residual function with a U-Shaped
structure. The model contained multi-scale kernels to aggre-
gate the mappings from different size kernels for capturing
more context information. In R2U-Net, the author proposed
two deep semantic segmentation networks called Recurrent
U-Net (RUNet) and Recurrent Residual U-Net (R2U-Net)
for medical image segmentation [159]. The proposed model
utilizes the foundational structure of U-Net along with resid-
ual units, which helps in training deep architectures along
with recurrent convolutions, which assure improved feature
representation for segmentation. The comparison of pro-
posed models with other methods are made by keeping the
number of parameters constant. The VoxResNet is proposed
in [160]. The residual block is used to mitigate the perfor-
mance degradation with increased model depth. In [161],
the authors used residual structure to improve the conver-
gence rate of back-propagation for lesion segmentation. The
authors of [162]–[164] embedded residual units to enhance
model feedback.

B. DENSE MECHANISM
The authors of [165] proposed DenseNet, which takes away
the conventional concept of ResNet and improved network
response by advancing a more comprehensive approach. It is
convolution neural network with dense connections. The
dense mechanism used in a network maximizes the infor-
mation and gradient flow. It restrains the vanishing gradient
problem and depreciates the number of training parameters.
In dense blocks, the two layers are well-connected so that
the input of each layer is the sum of the output of all
previously processed layers, and features are learned incre-
mentally by the network. Hybrid densely connected U-Net
abbreviated as H-DenseUNet was proposed in [13]. In the
proposed model, for precise extraction of intra-slice features,
2D DenseUNet is used, whereas, for a hierarchical collection
of volumetric frames of reference, the 3D counterpart is uti-
lized. Moreover, intra-slice and inter-slice representations are
collectively optimized via a hybrid feature fusion layer. The
hybrid feature is the sum of intra-slice and inter-slice repre-
sentations from 2-Dimensional and 3-Dimensional networks.
The model is evaluated using 3DIRCADb Dataset for liver
and tumor segmentation. It is found that H-DenseUNet out-
stripped DeepX for lesion and liver segmentation. The dense
unit is integrated with two symmetrical U-shaped models
in [166]. The authors used multiple kernels to obtain useful
features from sparse pixels. The performance of the devel-
oped method is analyzed with two publicly available medical
image datasets. In [167], the authors developed a network
model for gland segmentation. The network employed three
multiscale dense units connected with a U-shaped structure.
The authors of [168] have proposed DRINet architecture,
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an inspiration of the U-Net for semantic image segmentation.
It encompasses analysis and synthesis paths. The analysis
path contains dense units; however, the synthesis path com-
prises residual units.

C. DILATED MECHANISM
In [169], the authors introduced dilated convolution concept
in image segmentation. The conventional convolution net-
works used downsampling to reduce provided image and
upsampling to bring the compressed image back to its orig-
inal shape. The process causes essential information loss.
However, the dilated convolution operates without a pooling
function and mitigates the loss of essential pixel information.
It enlarges the size of the receptive field to promote an exten-
sive range of feature details. The dilated convolutions include
dilation rate to reflect expansion size and share convolution
core size. The networks that operate with dilated convolution
also have an edge with minimalistic training parameters. The
dilated convolution has the simplest structure to improve
segmentation accuracy. In [170], the authors applied dilated
convolution in STRAINet architecture to localize organs from
MRI data. It helped the model to get the expended receptive
field cost-effectively. The authors in [171] used multi-scaled
dilated units in dense model to segment stroke lesion. The
multi-scaled units efficiently handled the lesion of variable
size. Similarly, [172] used dilated convolution in the 3D seg-
mentation model that has shown promising impact compared
with a model proposed in [173]. Also, [174] and [175] have
also employed dilated convolution for segmenting atrial and
brain lesions.

D. ATTENTION MECHANISM
The inspiration of the attention mechanism is taken from the
human brain. The human brain does not understand all the
information transmitted to the visual and auditory cortex;
however, it keeps track of essential details extracted from the
bulk of input data. The process improves the processing time
and efficiency [176]. The attention mechanismwas originally
used in the recurrent neural network; later, it was widely
adopted by other AI areas such as image localization, speech
recognition, and machine translation [177]–[180]. Google
DeepMind team proposed a recurrent visual attention model,
which has received great appreciation from the research com-
munity [176]. Similarly, the authors in [177] used attention
mechanisms for solving natural language processing prob-
lems. The RNN’s extensions employed attention blocks for
solving NLP problems in [181]. Researchers found that the
attention mechanism has its application in medical image
segmentation and became the core research topic. In [136],
the authors used an attention mechanism in medical image
semantic segmentation. The RA-UNet used this mechanism
to extract context information by joining low and high-end
feature maps. It helped the model to restore missing details.
Besides, [155] has embedded attention gates with a deep
network to segment abdominal organs from 2D CT scans.
The attention mechanism aids the model to learn organs

of variable size and shape. The authors in [182] proposed
CSAU-Net for vessel extraction. Before producing output,
the model embedded connection loss and attention weight to
the features. In [183], the authors proposed an attention-based
U-Net model for segmenting CT-150 and CT-82 datasets with
various settings. It is observed that without much increase in
the number of parameters, without applying post-processing
by just using Attention Gates, Attention U-Net outperformed
the U-Net model with a higher Dice value.

E. ENSEMBLE MECHANISM
The ensemble mechanism is efficient in training for reducing
the overfitting problem [184]. The ensemble unit contains
a group of networks that execute in parallel, and their out-
put finally joins together to complete the segmentation pro-
cess [184]. It comprises a model with image pre-processing
and post-processing units. Each phase contributes to the final
prediction so that pre-processing unit enhances the input
image provided to the network model to segment the region
of interest, followed by a post-processing step to refine the
outcome. Often it is found by the deep community that
ensemble mechanism yields better response than conven-
tional singular sub-network. Each sub-network in the ensem-
ble module contributes to learning different features during
the training process [185]. In [186], the authors proposed
an ensemble network of networks for tumor localization
and won the BraTs 2016 challenge. The authors in [185]
defined multiple U-Shaped models to target multi-modalities
using MRI data [187]. Similarly, [188] proposed two dif-
ferent U-Net-inspired models for medical image seman-
tic segmentation. One of them captures residual signals
from a low-resolution path; however, the other encompasses
orthogonal-wavelet frames. The technique has better results
than the conventional U-Net model. The authors in [136]
came up with DUNet for vessel extraction. The model fairly
captures the local features at various scales and shapes
by adaptively managing receptive fields. Similarly, [3] pre-
sented a novel system for optic cup segmentation to detect
chronic ocular glaucoma. They have used the polar conver-
sion method to design their system with multiscale U-shaped
network architectures.

VI. DISCUSSION
This section demonstrates the comparative impact of deep
semantic network architectures in medical imaging. It is
observed that searching an efficient deep network strategy
is still a critical task. It is hard to obtain a huge amount
of medical data records for training segmentation model.
The limited availability of data can easily lead to an over-
fitting problem. Increasing the number of data instances and
reducing the complexity of the network can be an optimal
solution to overcome this problem. Moreover, imbalanced
data training can result in network instability, especially
in segmenting small structures. Resampling the data space,
using a two-phase training process along with careful path
sampling and selection of appropriate loss function can
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TABLE 2. Comparison of deep neural techniques evaluated over retinal
image datasets for detecting chronic eye disease.

eliminate this problem. It is becoming a global practice in
the deep learning community to out-source code and data to
the public. It helps expedite the research and open the door to
design robust segmentation models. The segmentation archi-
tectures developed for medical image analysis have a pro-
found impact. This claim is supported by empirical evidence
provided in Table 2, 3, 4 and 5. It is found that U-Net architec-
ture has clear dominancy over other architectures in terms of
medical applicability for the multi-modal environment. This
architecture is observed to be the universal semantic segmen-
tation approach with a promising response for multi-organ
segmentation challenge, depicted in Table 2-5. The R2U-Net
is dominating on STARE and LUNA datasets when compared
with other methods interpreted in Table 2 and Table 5. Resid-
ual U-Net supports the concept of having a better solution
with more deep networks by showing a better response to the
conventional U-Net model mentioned in Table 2, 3 and 5.
The deformable U-Net has a low tolerance for entertaining
data variation. It is observed through a systematic review that
it has a fluctuating response for retinal vessel segmentation
shown in Table 2. For DRIVE, it supersedes U-Net, Residual
U-Net, and R2U-Net; however, it exhibits low response for
the STARE dataset. The IterNet model is applied and more
suitable to retina pathologies, as can be seen in Table 2. The
AttentionU-Net is used for lesion and pancreas segmentation.
It has achieved a comparable response to other techniques
when applied to BUS 2017, ISIC 2018, TCIA, and CT-150

datasets as shown in Table 3 and 4. It is found that ensemble
networks with multiple techniques together are producing
better performance than unified architectures, demonstrated
through the results given in Tables 3, 4 and 5 respectively.

A. MOTIVATION
The motivation behind our effort is to provide a compre-
hensive application and methodology-driven overview that
reflects key medical imaging modalities. The study reviews
the state-of-the-art deep learning techniques designed to per-
form medical image analysis; it also assesses critical chal-
lenges associated with medical diagnosis and provides future
directions with recommendations. The concept emerged from
the fact that medical applications have a direct, immediate
impact on human life and safety. Any intelligent solution
proposed is acceptable if it operates with a high certainty of
diagnostic decisions. The more deep networks operate with
a massive number of layers. The increase in network depth
positively impacts model performance; however, it negatively
impacts architectural complexity with increased parameters
and training cost. The models with fewer layers and param-
eters have to compromise on their efficiency. This gap needs
to be filled with optimal techniques, specifically designed
for healthcare, which reduces overall system cost without
degraded system response applicable to themulti-modal envi-
ronment.

B. CHALLENGES
The critical challenges that exist in medical image analysis
observed while conducting this review are listed below:

• The skip-connections equip the network with rich
feature representations at additional memory and
computational cost. Often, it results in transfer-
ring non-discriminative features. There is a need to
optimize the amount of data being transferred via
skip-connections.

• The intensity-based region of interest segmentation
using prior knowledge, is one of the active research
paths.

• Medical images are larger than natural images, which
inhibits the ability to load them entirely onto the mem-
ory for processing. They need to be preprocessed with
patch-based or sub-volume-based techniques. It makes
it difficult for segmentation models to capture spatial
relationships. It leads to a potential need for building
architectures capable of incorporating spatial relation-
ships with high-resolution medical data.

• Auniversal solution that yields adequate response across
multiple medical imaging modalities is needed.

• Data scarcity is a major obstacle to the healthcare
automation process, where medical image datasets typ-
ically are smaller in size. The large 2D and 3D datasets
creation allow researchers to accurately benchmark seg-
mentationmethods andmake incremental enhancements
to the problem’s solution.
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TABLE 3. Comparison of deep neural techniques experimented for lesion segmentation.

TABLE 4. Comparison of deep neural architectures and techniques proposed for pancreas segmentation.

TABLE 5. Comparison of deep semantic techniques applied for lung nodule segmentation.
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• Methods are needed to find the root cause of
false-positive and negative predictions in segmentation
models and datasets.

• Need for reinforcement learning techniques for seman-
tic (medical) image segmentation to mimic the way
humans delineate objects of interest. Deep CNNs suc-
cessfully extract features of different classes of objects,
but they lose the local spatial information of where an
object’s borders should be. Some researchers resort to
traditional computer vision methods such as conditional
randomfields (CRFs) to overcome this problem, making
the model computationally extensive.

• Deep segmentation architectures designed for medical
image analysis rely mostly on data obtained from a
clinic. There often exists valuable information contain-
ing subject data in other imaging modalities not used
by segmentation models. Hence, the deep community is
searching for intelligent models capable of leveraging
multi-modal patient data to improve prediction results.

• Deep neural networks mainly perform backpropagation
using gradient descent method to alter network weights.
Exploring methods that do not rely on backpropagation
would be another significant research direction.

• Another potential need is to develop a network for
searching optimal segmentation networks and design
new layers that could capture novel data aspects other
than convolutions and transform convolutions.

• The 3D networks defined for medical image segmenta-
tion need a massive amount of training parameters. The
volume depth ranges from 20 to 400 slice/scan, where
each scan contains vital medical detail of a subject.
These scans are downsampled with different interpola-
tion techniques. This reduction in volume-size causes
information loss. Also, there exist constraints on resizing
medical image volumes before being supplied to the
network model.

C. RECOMMENDATIONS
The heterogeneous manifestation of the organs being exam-
ined and the extraction of such organs is crucial as the
body parts appear in different sizes and shapes. Increas-
ing the architecture depth is observed as an effective solu-
tion. The overfitting problem can be avoided with random
weight initialization, dropout function, Ensemble, and Trans-
fer Learning. Different additional datasets containing vari-
ation in image resolution and number of objects targeting
diverse modalities need to be created. It would help mod-
els to handle dense object environments better. Addition-
ally, higher-dimensional datasets would support boosting the
efficiency of medical diagnosis. The plateau response of
deep learning algorithms for medical image analysis can be
enhanced by integrating with classical model-based image
segmentation techniques like graph cuts, active contours, and
other correlated strategies. A comprehensive study to analyze
the dynamics of deep neural architectures by emphasizing
both theoretical and technical aspects would enable progress

in semantic image segmentation. It is found that pixel anno-
tation is critical and human-intensive in medical image anal-
ysis. The unsupervised and self-supervised learning received
great appreciation in capturing minor details even with lim-
ited data samples. Besides, reinforcement learning is also an
active research direction in health-AI. In medical applica-
tions, the accuracy of each segmented pixel is vital. Most of
the work reviewed in this article emphasized increasing the
accuracy of a model. In some applications, it is crucial to have
higher precision and real-time execution with a frame-rate
close to at least a typical camera sensors (25 frames/sec).
The design of networks with modules like spatial-channel
attention and spatial pyramid provides task-specific feature
extraction more objectively. Similarly, the atrous convolu-
tion uses fewer parameters to capture wide receptive fields
(WRF). Methods with dilated convolutions are found with
better response. Knowledge distillation and model compres-
sion techniques are required to develop memory-efficient
models for medical devices with improved performance.
Another way to better design model architecture is to auto-
mate the loss function search using neural architecture search
methods and apply domain-specific knowledge to develop
task-specific loss functions. The existing methods are limited
to operate with inadequate labeled data for reliable hyperpa-
rameter tuning, causing higher variation in performance. The
meta-learning attempts to advance an algorithm itself with
prior knowledge for magnifying computational response.
Efficient pre-processing and post-processing techniques can
help enhance data visibility to support networks to learn better
representations and improve segmented output maps.

VII. CONCLUSION
This article provides a brief overview of deep convolution
neural networks, its application, and metrics commonly used
for model evaluation. Besides, this work also discussed state-
of-the-art work performed in medical image semantic seg-
mentation. The publically available benchmark datasets are
also highlighted. After reviewing the massive amount of
domain-centric work, it is found that the image segmenta-
tion has a significant contribution to healthcare in recent
years. Researchers have produced efficient frameworks with
groundbreaking improvements in the performance of the seg-
mentation models. Additionally, the accuracy of segmenta-
tion results mainly depends on the structure of a network
and the attributes of data. Several challenges directly related
to data and model were also pointed out in this article with
guided reference points to resolve them.
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