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ABSTRACT The exploration and mapping of unknown environments, where the reliable exchange of
data between the robots and the base station (BS) also plays a pivotal role, are some of the fundamental
problems of mobile robotics. The maximum energy of a robot is utilized for navigation and communication.
The communication between the robots and the BS is limited by the transmission range and the battery
capacity. This situation inflicts constraints while designing an effective communication strategy for a
multi-robot system (MRS). The biggest challenge lies in designing a unified framework for navigation and
communication of the robots. The underlying notion is to utilize the minimum energy for communication
(without limiting the range/efficiency of communication) to ensure that the maximum energy can be used
for navigation (for larger area coverage). In this work, we present a communication strategy by using
adaptive flower pollination optimization algorithm for MRS in conjunction with simultaneous localization
and mapping (SLAM) technique for navigation and map making. The proposed strategy has been compared
with multiple routing algorithms in terms of network life time and energy efficiency. The proposed
strategy performs 4% better compared with harmony search algorithm (HSA) and approximately 10% better
compared with distance aware residual energy-efficient stable election protocol (DARE-SEP) in terms of the
total network lifetime when 50% of robots are alive. The performance drastically improves by 20% till the
last robot is alive comparedwith HSA and approximately 26% comparedwith DARE-SEP. Hence, the energy
saved during communication with the utilization of proposed strategy helps the robots explore more areas,
which ultimately elevates the efficacy of the whole system.

INDEX TERMS Area exploration, multi-robot systems, optimization, robot communication,
navigation, SLAM.

I. INTRODUCTION
‘‘Unity is Strength’’ is an insightful proverb that holds true
for humans and robots in present times. Similar to humans,
robots working together in proper coordination and coopera-
tion perform better in various challenging situations.Multiple
interacting dynamic objects or a group of robots functioning
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in an environment possessing some collective behavior is
known as a multi-robot system (MRS) [1]. A team of several
simple robots is always beneficial over a complex single
robot because they offer a higher degree of reliability through
resource repetitiveness and effectiveness by parallel task
execution. The MRS also delivers better fault tolerance and
flexibility because of dynamic reformation and coordination.

Recent progress in robotic research has allowed roboti-
cists to use MRS for solving various real-world problems
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FIGURE 1. MRS taxonomy.

in various areas, such as agriculture, natural resource moni-
toring, emergency response and rescue, and maintenance
of heavy machinery. Researchers worldwide have devel-
oped many projects of MRS catering to various applica-
tions [2]–[6]. Based on the research projects, the type of
MRS applications can be further classified into unmanned
ground vehicles, unmanned aerial vehicles (UAV), unmanned
surface vehicles, and unmanned underwater vehicles (UUV).
Various articles have been published in the area of MRS
regarding survey analysis, review of research, frameworks,
application domains, and taxonomies. Based on the literature
available [7]–[14], MRS is classified into five groups (i.e.,
structure, re-configurability, size, communication linkage,
and communication configuration), as depicted in Figure 1.

Structure or composition is defined as the type of hard-
ware and software used for the robot team, and it can
be homogeneous (a team of exactly the same robots)
or heterogeneous (robots with different specifications).
Re-configurability refers to the way of coordination among
robots. This concept extensively depends on the application
domain and the environment in which the robot team is oper-
ating. Re-configurability can be static (where no movement
takes place), coordinated (where complete team is led by
a single robot), or dynamic in which the decision process
is autonomous for every individual robot. The size of the
MRS is defined as the number of robots involved in a partic-
ular task. This mechanism is totally application-dependent.
The team can be a pair of robots, a small team having
10–12 robots, or a large group (swarm) of robots.

Communication is a process in which data are transmitted
and received between robots to accomplish the tasks. Further
communication linkage or network refers to range/distance
and bandwidth by which robots can connect to each other,

and configuration/pattern defines the process of communi-
cation (i.e., explicit [indirect communication where informa-
tion flow is through cloud] and implicit [direct connection
between peer robots and BS] methods). The key factor for
accomplishment of any task in an application is coordination
among robots. Coordination can only be achieved by estab-
lishing communication between robots. Since the inception
of MRS, constant developments have been observed in the
communication strategies to enhance battery life and band-
width utilization [15], [16]. The same can be used/modified
for forest fire detection, habitat monitoring, and other surveil-
lance applications [17].

The objectives of this work are as follows:
• Designing an enhanced MRS communication technique
for the applications of field surveillance and search and
rescue in military and urban domains

• Utilization of adaptive flower pollination optimiza-
tion algorithm to minimize energy for communica-
tion purposes to maximize the energy being used for
navigation

• Simulation-based experimental results of Adaptive
Flower Pollination Algorithm (FPA) Energy Efficient
Routing Protocol (AFPA-EERP) have been analyzed in
terms of performance metrics, such as energy efficiency
and network lifetime, performance at different energy
levels, and effect of robot density, and are comparedwith
different competitive algorithms.

A. ORGANIZATION OF PAPER
The paper is organized as follows: Section II highlights the
real-world communication constraints for MRS. Section III
elaborates the literature review. Section IV discusses related
terminologies. Section V elaborates on the AFPA-EERP
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Protocol for communication. Section VI elaborates the simu-
lation results. Section VII concludes the paper with future
scope.

II. REAL WORLD COMMUNICATION CONSTRAINTS
FOR MRS
Effective communication among robots is one of the biggest
and vital challenge in MRS. The quality of communica-
tion degrades in the exploration domain because of distance
between peer robots or base station (BS), obstacles, andmany
other geographical factors.Wireless network with large band-
width provides satisfactory communication [18]. However,
this notion is not true because real world conditions and
network must be intelligently planned to overcome over-
loading and conservation of energy because of large number
of robots.

Communication support is a costly in terms of energy
consumption because more payload will rapidly drain the
battery. Some potential parameters that must be considered
while transmitting data from a robot are individual state,
task data, and environmental state. Individual state repre-
sents battery level and robot identification, task data refer
to task specific information provided by sensors, and envi-
ronmental state characterizes hazardous variations in the
environment, which can constrain reliable communication
between robots [19]. The communication standards, such as
Wireless Fidelity, Radio frequency, and Infra-Red (IR) to be
deployed for MRS, must be considered depending on certain
factors, such as geography, distance, and line of sight, for a
particular application.

The type of communication configuration, which can be
implicit or explicit, is also important for efficient infor-
mation sharing in MRS for geographically reliant applica-
tions. Moreover, the type of communication strategy used
plays a crucial role in dissemination/reception of information
to/from robots in a timely manner to reduce conflicts and
delay. Hence, the cost of communication is a function of
certain parameters, transmission time, collision with other
robots, and energy consumed to fix communication range and
strategy [20], [21]. In summary, real world communication
constraints must be considered before deciding communica-
tion technology, bandwidth allocation, and communication
strategy.

In this section, the communication constraints in the
example scenarios of field surveillance, search and rescue,
and monitoring systems have been discussed. The MRS
is deployed in these setups to achieve higher efficiency,
economical deployment, and redundancy, which is beyond
the scope of single robot systems [22].

A. EXAMPLE SCENARIO 1: MRS IN THE STABLE LAYOUT
DOMAIN
This type of scenario arises in certain applications, such as
forest fire detection, habitat monitoring, aerial robotics, and
other monitoring systems. Robots maintain a specific type of
formation in these applications (Figure 2) and are controlled

FIGURE 2. MRS in the stable layout domain (aerial robotics).

FIGURE 3. MRS in the collaborative layout domain (map building).

by BS. Robots establish recurrent connectivity, which refers
to connectivity activated due to the occurrence of an event
or timeout; thus, the bandwidth required is low. Peer to peer
connection is established between robots in the dynamic
environment, where only location coordinates are shared to
maintain formation. The BS has to plan the communication
path (robot–robot and robot–BS) in an optimized manner
to reduce transmission time and battery consumption for
maximum network lifetime.

B. EXAMPLE SCENARIO 2: MRS IN THE COLLABORATIVE
LAYOUT DOMAIN
This scenario is common to certain applications, such as
search and rescue operations, underwater exploration, map
building for houses, factories, and other unknown envi-
ronments. Given that geographical topology is not/partially
known to MRS, robot location and path cannot be planned
in advance (Figure 3). In this case, robots continually share
information with peer robots and BS. The delay in infor-
mation reception in these applications result in failure of
the system. During search and rescue operations, robots
must send real time images/data to BS to ensure that effec-
tive decisions can be timely carried out. Hence, a higher
bandwidth is required for efficient data transfer between
robots and BS. Robots have to communicate through various
obstacles/scatterers because the terrain is unknown; hence,
an omnidirectional antenna with higher communication
ranges are necessary for robots. The key factors that limit
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the system performance are continuous connectivity, higher
bandwidth, and network congestion.

III. LITERATURE REVIEW
The research in the routing protocols based on clusters
mainly concentrates on three objectives: dropping delay,
energy saving, and improving accuracy. This notion means
that a routing protocol offers a good performance for MRS
data aggregation, if it can collect the maximum number
of packets with minimum energy consumption and delay.
However, these objectives are declared and enhanced in
accordance with the consumer/application requirements.
Akyildiz et al. [23] proposed that a protocol with the least
delay and best accuracy is suited for real time applications,
even if it does not enhance energy efficacy. The poten-
tial correlations between energy, delay, and the number of
collected data samples should also be taken care by routing
protocols [24]–[26]. For example, collecting a greater number
of packets increases energy consumption and delay, espe-
cially when the data sources are randomly scattered in the
network. Dutta et al. [27] proposed a scalable peer-to-peer
radio communication framework for MRS. The essence of
their framework is to ensure that the message reaches the
destination in minimum number of hops. Hu et al. discussed
that [28] utilizing direct communication instead of multi-hop
to reduce the delay increases consumption of energy, whereas
data collection delay is increased by using multi-hop routing.
Accordingly, the issues of energy conservation, reducing
delay and/or increasing the unit of collected data items, need
to be addressed to design data aggregation routing protocols
and enhance their performance in MRS.

Many studies have discussed [29]–[34] about distributed
data aggregation protocol supporting multi-hop data trans-
mission for multi-robot communication. They also discussed
about the energy consumption needs to be reduced because
a robot has limited power. Energy squandering hinges on
the number of transmissions, dissemination stretch, and data
aggregation computation overhead. For this reason, data
aggregation protocols should minimize the network traffic
and path leap count. Data aggregation routing delay should
be minimized for data freshness. Specifically, routing delay
may change the meaning and impact of collected data on
further processing at BS. Data aggregation delay depends on
network congestion (network traffic), transmission distance,
and communication delays. Increasing the count of captured
data samples enhances data collection robustness. The data
consumer can make precise decisions on the collected data if
a greater number of data samples are collected. Data accuracy
depends on the routing algorithm’s effectiveness to report
data samples to the BS.

The above discussion shows that one single common
default protocol will not suit each application, and an appro-
priate parameter setting is necessary for stabilizing the
energy dissipation with other competing metrics, such as
delay and data accuracy. Therefore, a method that can effi-
ciently and inevitably choose a suitable protocol parameter

is always sought by roboticists. The network layer in
MRS routing protocol stack accomplishes data routing and
self-configuration of the network. This mechanism finds the
finest route to ensure that the energy consumption of the
mobile robots is minimized. The method is also accountable
for updating the network topology if any link failure occurs.

Network layer energy-aware routing algorithms can be
classified into various categories, consolidated in Table 1
[35], [36], [45]–[54], [37]–[44]. Various optimization tech-
niques, such as Genetic Algorithm [55], Particle SwarmOpti-
mization (PSO) [56], Ant Colony Optimization (ACO) [33],
[57], and Harmony Search Algorithm (HSA) [58], have also
been used in this regard. These techniques utilize distinctive
parameters in wellness capacity to achieve their goals.

A robot with low energy can become a cluster head robot
(CHR), considering that the point selection of CHR is prob-
abilistic, as revealed by literature. Hence, CHR selection in a
deterministic way must be considered along with the residual
energy of robots. Other factors can also be considered to
balance the load of robots, such as distance from the BS
and the other robots from CHR. Therefore, the elementary
requirement for energy efficient routing protocol for commu-
nication is proper selection of CHR in appropriately formed
cluster. CHRs are usually assumed to have long communi-
cation range and can directly connect to the BS. However,
this assumption is unrealistic because BS is often times not
reachable due to the losses in signal propagation.

One of the solutions to handle this problem is to deploy
multi-hop communication between the robots and the BS.
The literature reveals that many evolutionary algorithms have
done better than deterministic methods in many problems
related with CHR selection in MRS. Appropriate selection
of evolutionary algorithms alongside proper fitness function
can proficiently balance the depletion of energy depletion
in robots and hence uplift the lifetime of network. FPA is a
newly developed heuristic approach that imitates the polli-
nation procedure of flowers [59], [60] and has been effec-
tively useful for problems of forest fire detection [61] and
antenna design [62]. In this work, the potential of FPA has
been exploited for resolving the problem of load balancing in
clusters to proficiently balance the consumption of energy in
robots and maximize the period of stability for the communi-
cation network.

IV. FLOWER POLLINATION ALGORITHM
FPA takes its inspiration from the natural pollination mech-
anism of flowering plants [60]. Each flower in FPA stands
for a viable solution, and the objective function value is
considered to be its fitness value. Two separate pollination
phases are used to mimic the pollination process: Global and
local pollination phases are used for each flower to mimic the
pollination process with a switch probability ps, as shown in
Algorithm 1. The detailed process of FPA is as follows.

Global pollination phase: Initially, a random number rand
is created for each individual. If rand < ps, then the global
pollination phase should be carried out. Every flower updates
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TABLE 1. Network layer energy aware routing classifications in MRS [34]–[51].

its position in the global pollination process according to the
following equation [60]:

X t+1i = X ti + γL (λ)
(
X tbest − X

t
i
)
, (1)

where X ti and X
t+1
i are the previous and updated positions of

the ith flower, respectively; X tbest is the best flower that has
the best fitness value at current iteration t , and γ is used as
a scaling factor to control the step size of global pollination.
Lévy flight L is used as the strength of pollination in the basic
FPA, and the step size (λ) obeys the Lévy distribution:

L ∼
λ0(λ)sin(πλ/2)

π

1
s1+λ

, (s� s0 > 0), (2)

where 0(λ) is the gamma function.
Local pollination phase: The local pollination process is

selected for the case rand > ps. Flower X ti attains its updated

positionX t+1i ,, employing the difference between its previous
position and the position of two adjacent flowers, namely, X tp
and X tq. This step is considered to be a local randomwalk [60]
and is expressed as follows:

X t+1i = X ti + r(X
t
p − X

t
q), (3)

where r is a uniformly distributed random number [0, 1].
The new individuals change their positions after comple-

tion of the pollination phases by comparing their fitness
values. If the fitness ofX t+1i is better than that ofX ti ,X

t+1
i will

replace the new position of its flower. Otherwise, the flower
stays at theX ti position. The FPA has gained attention because
of its linear nature and its effectiveness in the recent past and
large number of developments in its basic form as has been
done since its inception. In this work, an enhanced version of
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FPA called adaptive FPA (A-FPA) is used to resolve the load
balancing problem in the MRS.

Algorithm 1 1: Pseudocode of FPA
Start:

Initialize a population of random flowers
Define switch probability, p
Define objective function
Identify current best solution X t

best
while t < max(t)

for i = 1:
if < p
perform Global Pollination:
X t+1

= X t
+ γL(λ)(X t

best − X
t )

else
perform Local Pollination:
X t+1

= X t
+ r(X t

p − X
t
q)

end if
evaluate X t+1

if X t+1 is better than X t , update position
end if

end for
Find the Current best

end while
Update Final best

End

V. PROPOSED AFPA-EERP PROTOCOL FOR
COMMUNICATION
A. PROBLEM FORMULATION
The problem addressed in this correspondence is effective
communication for the application of unknown open envi-
ronment exploration for the generation of maps and/or search
and rescue missions. An initially unfamiliar, circumscribed,
continuous 2D area ⊂ R2 is considered, whereR2 signifies
that the locations on represented by x and y refer to the
latitude and longitude coordinates of the GPS, respectively.
A team ofM mobile robots X = (X1,X2, . . . .,XM ) will send
data to the principal control center called the BS located at a
fixed location outside the bounds of . Each robot integrates
various types of sensors, such as ultrasonic [63], LIDAR [64],
thermal [65], image [66], and GPS [67], to perceive the envi-
ronment and transceivers (Texas CC1120 [68], Microchip
RN2483 [69], Semtech SX1272 [70], etc.) for long range
data transmission and reception. Every robot is capable
of exchanging data with the BS and other robots over an
ad-hoc wireless network governed by the proposed algorithm
(discussed in the subsequent section). The BS plans the path
and pose for each robot through simultaneous localization
and mapping algorithm (SLAM) [71], [72] to safeguard the
autonomy of robot. The progression of time is considered in
discrete steps (i.e., ∈ {1, 2, . . . .,T}, where last time step of
the mission is denoted by T). The speed, position, direction
and transmission range of the robots are represented by a pose

FIGURE 4. Process of exploration and communication

function of the robot, given as follows:

ψm = f ( m (x, y) , m, θm,Lm), (4)

where m (x, y) is the position, m is the speed, θm is
direction, and Lm is the transmission range of robot Xm
at time .

B. SYSTEM MODEL
In this work, an improved FPA called AFPA-EERP has
been proposed in this work. This method seeks to achieve
improved performance by enhancing the basic FPA. The
various tasks performed by robots are sensing, computing,
transmitting, and receiving. Few robots are zone cluster
head (ZCH) or leaders; they collect and process the data and
then forward it to BS. The task of robots (i.e., zone member
robots [ZMR]) other than ZCH is to sense the surroundings
and send the data to the ZCH of their respective zone.

The complete process of exploration and communication
is performed in three phases. The first phase is the navigation
phase, in which robots sense the environment till particular
time interval = o decided by base station and stop moving
till the next instruction by BS. The second phase is set-up
phase, wherein ZCH selection is performed. The third phrase
is the steady-state phase, which is responsible for routing.
Once the steady-state phase is over, the BS again initiates the
navigation phase. The complete process of exploration and
communication is shown in Figure 4.

C. EXPLORATION
According to the system paradigm described above,
the exploration of the unknown territory is processed as
follows: the area to be explored is divided into g× h matrix,
where g and h are whole numbers. Every element of the
matrix is called zone, which is given as follows:

= ∪g,h z(g, h). (5)

Considering g = h = 3, is divided into 3 × 3 matrix
(i.e., nine zones). A number of robots (ten in our case)
are placed at the boundaries of the peripheral zones of .
At a particular time , the deployment of robots is given as
follows:

D = (ψ1 , ψ2 , ψ3 , . . . .ψM ). (6)

The SLAM algorithm is used to cater to the challenge of
map building because of its high convergence and ability
to handle uncertainty efficiently [73], [74]. A graph-based
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SLAM approach is followed to represent the map in terms
of finite vector by mth robot to record the corre-
sponding observations em from the LIDAR sensors. Odom-
etry measurements qm are executed at time steps t to register
a new pose function ψ +1

m of the robot, which is given as
follows:

qm =

(
ψm

ψ +1
m

)
, (7)

where ψm and ψ +1
m refers to before and after the movement

poses of themth robot. At time , the appraised joint posterior
over the map in probabilistic form is given as follows [72]:

℘(ψm1:
|e0:m , q0 −1m , ψ0

m). (8)

The integration of sensor data to find the maximum like-
lihood is re-appraised for the whole map in each iteration to
store the overall data, as expressed below:

℘(ψm , |e
0:
m , qm, ψ

0
m)

=

∫ ∫
. . .

∫
℘(ψm1: , |e0:m , q0: −1m , ψ0

m)

× dψ1
mdψ

2
m . . . dψ

−1
m . (9)

Map construction in graph-based SLAM is a two-step
procedure. The first step named as front-end is to describe
and integrate constraints and is highly sensor-dependent;
the second step named as back-end is abstract depiction
of data and is sensor agnostic [72], [75]. Thus, the objec-
tive function to find the configuration of robots is given as
follows: (

ψ1
m, . . . ., ψm

)
=

∑
u,v
eTu,v u,veu,v, (10)

where eu,v is the difference of the appraised and observed
poses, and u,v represents the information matrix.
At a particular time interval = o decided by base

station, the robots stop moving and transmit their data to their
respective ZCH, which further transmits the data to BS. The
SLAM algorithm is computed at the BS to update the uncer-
tainty grid [76], which in turn calculates the updated pose
function ψm , for all robots. This information is transmitted
back to ZCH, which forwards the same to its ZMR for further
navigation. All robots will be made to converge toward the
central zone (i.e., g = h = 2), as shown in Figure 5.
At the central zone, ten robots with maximum energy will
be selected by the BS from all of the robots, and the same
process is repeated again for the central zone.

D. RADIO ENERGY DISSIPATION MODEL FOR
COMMUNICATION
Given that robots have limited energy, the power consumption
is a crucial aspect for scheming communication protocol
because energy is consumed by robots for sensing, naviga-
tion, data processing, and wireless communication. During
communication, the network consumes energy from both
sides (sender and receiver) as per the wireless energy

consumptionmodel depicted in Figure 6. This model involves
two parts that reflect transmission and reception, as depicted
in Equations 12 and 14, respectively [40]. Robots consume
energy ETX to power-up the transmitter circuit and Eamp to
actuate the transmitter amplifier. Meanwhile, the wireless
receiver consumes ERX amount of energy to activate/actuate
the receiver circuit. In the underlying wireless communica-
tion, the energy consumption also depends on the message
length l. Thus, the transmission cost for sending the message,
which is l-bit long and has the transmitter–receiver distance
d , is calculated as follows:

ETX =

{
lEelec + lEfriis_ampd2, if d < d0
lEelec + lEtwo_ray_ampd4, if d ≥ d0

, (11)

where d0 is the crossover distance and is given by:

d0 =
√
Efriis_amp

/
Etwo_ray_amp, (12)

where Eelec signifies the energy consumed per bit for trans-
mission, Efriis_amp represents the energy consumed, and
Etwo_ray_amp denotes the energy consumed in the two-ray
ground propagation by the radio. The reception cost for the
l-bit data message received is given as follows:

ERX = lEelec. (13)

E. WORKING
The protocol process is bifurcated into rounds consisting of
set-up and steady-state phases, as illustrated in Figure 7. The
optimum ZCH selection is performed in the set-up phase, and
the optimum route is established in the steady state phase
by using AFPA-EERP. The ZCHs are selected by the BS
from the alive robots that have residual energy more than
a threshold level by using AFPA-EERP, which is basically
the average energy of all robots that are active, in the set-up
phase. First, the BS makes announcement of a short commu-
nication to obtain the identifications, energy levels, and loca-
tions of every robot present in the particular zone. Based on
the received data by the robots, the BS uses AFPA-EERP to
elect the ZCH per zone on the basis of minimization of fitness
function given by equation 14.

The whole process is to minimize the fitness function and
ZCH selection, which is formulated as Pseudocode 1. When
ZCHs are elected, and their associate members (i.e., ZMRs)
are determined, a communication broadcast is launched by
the BS to inform robots in various zones about their respective
ZCH and ZMRs in association. A time division multiple
access (TDMA) schedule is generated by the elected ZCH
to assign time slot to ZMRs and further notify with schedule
through broadcasting in their zone. The schedule of TDMA
is used to avoid intra-group interference and provides a
facilitation to every ZMR for shutting down their radios
when not in operation for energy conservation. To reduce the
inter-zone interference, a distinctive code division multiple
access (CDMA) code is chosen by each ZCH, and notification
is sent to all associated ZMRs present within the zone to use
this code to send their information.
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FIGURE 5. Robot navigation in 3× 3 field.

FIGURE 6. Radio energy dissipation model.

1) FITNESS EVALUATION
Let us consider a network of M robots deployed in area .
Let X = (X1,X2, . . . .,XM ) denote the population vector
of a robots with M robots, where the position of the mth

robot in the jth zone is Xm (j) = {0, 1}. ZMRs and ZCHs
are represented by values zero and one, respectively. The Np
solutions (size of population) is randomly initialized in terms
of ones and zeros. One ZCH is selected per zone. The robots
are deployed into Z zones, where Z = z(g, h), and g and h
are whole numbers. The fitness function for ZCH selection is
defined as follows:

fobj_ZCH = (f 1 + f2)/2, (14)

subject to
∑2

i=1 wi = 1, wherewi is.5 to provide equal contri-
bution to both fitness functions.

Reduction of standard deviation of the remaining/residual
energy of each robot is crucial to accomplish the better
stability period. The standard deviation (σRE ) aids in
measuring the quality of even dissemination of the load
between robots per Z , which is given as follows:

f1 = σRE =

√
1
M

∑M

m=1
{µRE − E(Xm)}

2, (15)

where µRE =
1
M

∑M
m=1 E(Xm), and E(Xm) is the

remaining/residual energy of the mth robot.

The second objective concerns with aggregation of the
residual energy level E(Xm) and average distance value AD
for the selection of ZCH.

f2 = ZHEV (m) = 0.5E(Xm)+ 0.5(1/AD (m)), (16)

where AD is average distance of a robot from all the other
robots in the same zone, as provided in Equation (17). The
chance of a robot to become ZCH is elevated with its lesser
average distance AD.

AD (m) =
1

M − 1

∑N

m=1
d (m, n), m 6= n, (17)

where N is the total number of robots in a zone, and d (m, n)
is the distance of the mth robot from the nth robot in its zone,
as follows:

d (m, n) =
√
(mx − nx)2 + (my − ny)2. (18)

F. ALGORITHM
In this work, an improved FPA called adaptive FPA is
used to attain advance performance by enhancing the basic
FPA’s diversification (or exploration) and intensification (or
exploitation) capabilities [77]–[79]. Diversification has been
enhanced by using the Elite Opposition-based Learning
(OBL) (EOBL) strategy [80]. Global pollination phase has
been improved by Cauchy-based step size that helps in effec-
tively exploring the search space [81]. Intensification has
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FIGURE 7. Working of proposed AFPA-EERP protocol.

been improved by the Local Neighborhood Search (LNS)
determined by the best solution obtained in a small neigh-
borhood of the present solution [82]. The dynamic switch
probability (pt ) [83] is used to achieve a balance between
diversification and intensification. The catfish-effect mecha-
nism [84] is presented to circumvent premature convergence.
The major modifications are as follows::

1) STRATEGY FOR EOBL
In conventional FPA, the optimal global solution is difficult
to achieve once the algorithm falls to the local optimal.
Therefore, the current solution space approximation must be
directed to the global optimal solution space. The EOBL
approach has been employed to enhance the global search
capabilities of the FPA [80].

Before introducing the EOBL, we will first explain OBL.
The core principle of OBL is that it creates the opposition
solution of the existing solution, simultaneously compares
the current solution and the opposition solution, and selects

the better output to move to the next iteration. We assume
that x = (x1, x2, x3, . . . , xD) is a solution in the popula-
tion (D is the dimension of search space; xj ∈

[
aj, bj

]
,

j = 1, 2, . . . ,D), and its opposition solution is expressed as
x̃ = (x̃1, x2, x̃3, . . ., x̃D), where

x̃j = aj + bj − xj. (19)

The OBL opposition solution created could not be
promising to find the optimal global solution other than
the current search space; hence, we will use the EOBL
strategy [80]. EOBL is an intelligence computing technique.
This work assumes that Xe = (xe,1, xe,2, xe,3, . . . , xe,D) is
the elite (optimal) solution in the population. With regard to
individual Xi, the elite opposition solution X̃i is given by

x̃i,j = η ∗ (daj + dbj)− xe,j, (20)

where i = 1, 2, . . . ,NP; j = 1, 2, . . . ,D; NP is the popu-
lation size, η ∈ U (0, 1) is a generalized coefficient, and
[daj, dbj] is the dynamic boundary of the jth dimensional
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search space and is represented by:

daj = min
(
xi,j
)
, dbj = max (xi,j). (21)

To maintain the search experience, the dynamic boundary
is used instead of a fixed boundary to render the opposite
solution located in the narrowing search space. If x̃i,j jumps
from [daj, dbj] because of the dynamic boundary operator,
then the following tactic is employed to reset x̃i,j:

x̃i,j = rand(daj, dbj). (22)

In EOBL, the opposition solutions are created according
to the elite solution. This approach uses the elite solution
characteristics to provide more valuable search information
that will help in improving the diversity of the population and
the FPA’s global diversification trend.

2) CAUCHY DISTRIBUTION-BASED GLOBAL
POLLINATION PHASE
Each flower in the global pollination phase of the basic FPA
updates its position according to:

X t+1i = X ti + γL(λ)(X
t
best − X

t
i ), (23)

where X ti and X t+1i are the previous and current positions
of the ith flower, respectively; X tbest is the flower with best
fitness at iteration t; and γ is the scaling parameter to
control the global pollination phase step size. The function
of Lévy flight parameter L is to strengthen the pollination
in the conventional FPA. The step size (λ) follows the Lévy
distribution:

L ∼
λ0(λ)sin(πλ/2)

π

1
s1+λ

, (s� s0 > 0), (24)

where 0(λ) is the gamma function.
In the proposed A-FPA, the heavy tailed and highly

directed Cauchy-based step size is utilized instead of Lévy
flights used in conventional FPA [81]. This Cauchy-based
step size is better at exploring the search space due to its heavy
tailed distribution and is given by

dis =
1
2
+

1
π
arctan

(
δ

g

)
. (25)

The Cauchy density function is represented as follows:

fCauchy(0,g) (dis) =
1
π

g
g2 + x2

, (26)

where g is a scaling parameter with a value equal to one, δ
is the Cauchy random operator, and dis is a uniform random
number. The position updating equation for the global polli-
nation phase by using the Cauchy distribution function is
given by:

X t+1i = X ti + C(δ)(X
t
best − X

t
i ). (27)

FIGURE 8. Neighborhood ring topology of radius 2.

3) LNS
FPA uses the best current and random solutions to expand
local search in the local pollination phase. The LNS
model [82] is used to strengthen the local search capability
of the basic FPA.

The key idea is to use the current best solution in
a small neighborhood of the current solution to improve
the current solution. The knowledge of an individual’s
neighborhood is utilized for updating the position of the
individual.

We suppose that the population is a vector in the current
population (i.e.,X = (X1,X2,X3, . . . ,XNP) ,Xi (i ∈ [1,NP]).
Here, each vector’s indices are random to preserve each
neighborhood’s diversity. Now, we define the radius r neigh-
borhood ( r is a nonzero integer, and 2r + 1 < NP)
for each Xi. The neighborhood of Xi consists of Xi−k , . . . ,Xi,
. . . ,Xi+k . Figure 8 shows the notion of the local neigh-
borhood model in that the vectors can be organized into a
ring topology according to their indices. The LNS model is
defined as

Li = Xi + m ∗
(
Xn_opt − Xi

)
+ n ∗ (Xp − Xq), (28)

where p, q ∈ [i − r , i + r] (p 6= q 6= i), and m and n
are the scaling factors, where m, n ∈ rand (), and Xn_opt
is the best solution in the Xi neighborhood. The enhanced
version of FPA updates the best solution according to (13),
and the modified solution performs the local pollination step
as follows:

X t+1i = L ti + r ∗ (X
t
k − X

t
m), (29)

where Li is the best solution obtained using LNS, and
X tk and X tm are the random solutions of the k th and mth

flower, where k 6= m, and r is a randomly generated scaling
factor.

4) DYNAMIC SWITCH PROBABILITY
In adaptive FPA, instead of using a fixed switch, an adaptive
switch (pt ) has been designed to balance the diversification
and intensification tendency during the search process [83].
The search agents can use this approach to update their posi-
tion in accordance with the present fitness value variation,
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as follows:

X t+1i

=


X ti + C(δ)(X

t
best − X

t
i ), rand > pt

X ti + m ∗
(
X tn_opt − X

t
i

)
+n ∗

(
X tp − X

t
q

)
+ r ∗

(
X tk − X

t
m
)
, rand ≤ pt

,

(30)

where pt is evaluated in the previous iteration. The exploita-
tion must be preferred with a higher probability compared
with the exploration mode to accelerate the optimizer conver-
gence. Thus, the switch pt+1 is defined in the range [0.5, 1]
with the initial switch value as 0.5. The adaptive transition is
given as follows [83]:

pt+1

=



1

1+ exp
(
−

f ∗t
f ∗t−1

) , ⌊
log10

∣∣f ∗t ∣∣⌋
6=
⌊
log10

∣∣f ∗t−1∣∣⌋
1

1+ exp

− f ∗t −θ.
⌊
f ∗t
θ

⌋
f ∗t−1−θ.

⌊
f ∗t−1
θ

⌋
 , otherwise

,

(31)

where f ∗t is the finest fitness value obtained at the tth iteration,
b.c is the floor function, and θ is the threshold value of the
adaptive scale parameter that helps in auto-recognizing the
search state and is given by

θ = 10
⌊
log10

∣∣f ∗t −f ∗t−1∣∣⌋+1. (32)

In f ∗t >>> f ∗t−1, a large difference is observed in the
fitness values between two iterations. Accordingly, the adap-
tive switch pt+1 attains the value of one. Therefore, the
algorithm switches to the exploitationmode for next iteration.
In f ∗t <<< f ∗t−1, the adaptive switch pt+1 will be 0.5, and the
exploration mode is selected for the next iteration. A local
minimum has been found for the situation

⌊
log10

∣∣f ∗t ∣∣⌋ =⌊
log10

∣∣f ∗t−1∣∣⌋. The adaptive switch ratio is modified by the

term
f ∗t −θ.

⌊
f ∗t
θ

⌋
f ∗t−1−θ.

⌊
f ∗t−1
θ

⌋ to make this adaptive switch sensitive. This

improvement allows the search agents to jump out of potential
traps with higher probability [83].

5) CATFISH EFFECT MECHANISM
Fishermen place catfish into a sardine pond in real life to
maintain the freshness of sardines. The catfish disturbs the
sardines’ living environment to stimulate their ability to
survive. This phenomenon derives the catfish effect and was
successfully incorporated into the PSO [84]. Such a mecha-
nism is employed to avoid premature convergence by forcing
the worst solutions to explore search space and possibly

obtain better solutions. According to this mechanism, if the
fitness value of the current best individual has not been
improved in n consecutive iterations, then the 10% worst
‘‘sardine’’ individualsWX will be replaced by new ‘‘catfish’’
individuals CX . The ‘‘catfish’’ individuals are considered as
opposition ‘‘sardine’’ individuals and can be calculated as
follows:

CX id = ad + bd −WX id , (33)

where i is the ‘‘sardine’’ individuals index, and WX is 10%
worst ‘‘sardine’’ individuals.

a: MAIN PROCEDURE OF THE AFPA
The modified AFPA is developed by integrating the EOBL
technique, Cauchy distribution-based global pollination
phase, LNS model, dynamic switch probability, and catfish
effect mechanism in the conventional FPA. The detailed pseu-
docode of the AFPA is shown in Algorithm 2.

Algorithm 2 : Pseudocode of AFPA-EERP
Input: Define objective function
f (x), x = (x1, x2, . . . , xD)
Output: Identify current best solution X tbest ;
Initialization: Initialize related parameters,

Initialize the dynamic boundary of the
search space,

Randomly initialize a population P of NP
random flowers

while the stop criterion is not satisfied do
Update the current population with EOBL

according to Equations (19)–(22);
while iterations < maximum number of
iterations

for i = 1: NP
if rand < pt
perform global pollination:
X t+1i = X ti + C(δ)(X tbest − X

t
i )

else
perform local pollination by using
Equations (28) and (29)
end if
evaluate X t+1i
if X t+1i is better than X ti , update
end if
Update pt using equation (31) and (32)

end for
Find the solution with the best fitness
value.
Update X tbest if the current best solution
better than the previous best solution.
Apply catfish effect mechanism using
equation (33).
Return to the next generation until stop
criterion is achieved.

end while
update final best X tbest

end
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b: STEADY-STATE PHASE
Steady-state phase is categorized into two parts, namely,
intra-zone and inter-zone data transmission phases. The
interval for the transmission of the message/data in the
steady-state phase is far lengthier than that in the set-up phase.
Hence, the reduction of energy dissipation in the steady-state
phase can be considered an appealing opportunity. Consid-
ering the intra-zone data transmission phase (being a part of
the reactive protocol), the member nodes transmit informa-
tion to the ZCH after a certain time interval and perform
exploration for the rest of the time. During the inter-zone data
transmission phase, the ZCH receives data from other ZCHs
and sends the accumulated data to the next hop. The next hop
also depends on the distance between the BS and the ZCH,
denoted as dZCH−BS at the time-slot, which is assigned by the
upper level ZCH.

c: INTRA-ZONE DATA TRANSMISSION PHASE
The energy of active robots during this data transmission
phase will be dissipated during sensing, navigation, packet
transmission, receiving, and aggregation. The energy of
ZCHswill also be consumedwith packet reception and aggre-
gation. Thus, the energy of the ZMRs and ZCHs in this phase
can be formally modified in accordance with the following
expression:

E (Xm) = E (Xm)− Esensing(Xm)− ETX (Xm,ZCH k )

(34)

E (ZCH k) = E (ZCH k)− (ERX + ED), (35)

where E (Xm) and E (ZCH k) denote the current energy of
the mth ZMR and k th ZCH, respectively; ETX (Xm,ZCH k )
is the energy expenditure for transmitting data from the ZMR
to the ZCH; ERX is the energy dissipated for reception of
data at the ZCH; and ED is the energy dissipated in data
aggregation for ZCH.

d: INTER-ZONE DATA TRANSMISSION PHASE
During this phase, the energy of ZCHs in the network will
be modified according to the dissipated energy required for
packet transmission to the BS. Energy is also dissipated for
relay ZCHs (i.e., ZCHR to receive the message packets from
the distant ZCHs and transmission to next ZCH). In this
phase, the energy of the ZCH can be formally modified
according to the following expression:

E (ZCH k) =



E (ZCHR)− ETX (ZCH k ,ZCHR)
if d(ZCH k ,BS) ≥ VD

E (ZCH k)

−(ERX + ED + ETX (ZCH k ,BS))
if d(ZCH k ,BS) < VD

,

(36)

where d(ZCH k ,BS) is the distance between the ZCH and
the BS, ZCHR is the relay ZCH that lies within the trans-
mission/reception range VD, and E(ZCH k ) is the residual

energy of ZCHs. Improving the communication efficiency
and reducing the long communication cost by using A-FPA
with multi-hop communication have been proposed in this
routing algorithm. If the distance d(ZCH k ,BS) is greater than
VD, then an adjacent ZCH must be considered as a relay
to send its data to the BS. Relative distance factor (Df ) is
considered to achieve load balancing, and it is defined as
follows:

f3=Df =
d(ZCH k ,ZCHR)2 + d(ZCHR,BS)2

max
k,R

(d(ZCH k ,ZCHR)2 + d(ZCHR,BS)2)
.

(37)

Distance factor Df is associated with the total sum of
distance in-between the source ZCH and relay ZCH and relay
ZCH and BS. If ZCH k is away from the BS, then it chooses a
ZCHR as a relay node. ZCHR with the least cost of link will
be selected to relay the data sensed by ZCH k .

VI. SIMULATION RESULTS
The design of the network scenario, which executes
AFPA-EERP for ZCH selection and optimal route estab-
lishment, is demonstrated via computer-aided simulation to
optimize energy consumption of robots in MRS.

The simulation results of AFPA-EERP have been analyzed
in terms of performance metrics, such as energy effi-
ciency and network lifetime, performance at different energy
levels, and effect of robot density, and compared with
LEACH [39], hierarchical cluster-based routing (HCR) [85],
evolutionary-based clustered routing protocol (ERP) [86],
distance-based residual energy efficient stable election
protocol (DRESEP) [87], harmony search algorithm-based
energy-efficient routing protocol (HSAERP) [88], Ant
colony optimization energy efficient routing protocol (ACO-
EERP) [57], and Distance Aware Residual Energy-efficient
Stable Election Protocol (DARE-SEP) [89].

The mobile robots are considered to be powered by a
Lithium-Polymer (Li-Po) battery (2200 mAh = 88 kJ) [90],
which drives motors, control systems, and sensors. A portion
of energy (330 mAh = 13 kJ) is assumed to be used for
powering the LoRa module (Microchip RN2483) [69] for
transmitting and receiving data. The parameters used for the
protocol simulations in the network are described in Table 2.

A. ENERGY EFFICIENCY
We considered the metrics of lifetime and total consumed
energy to comparatively evaluate the schemes and methods
proposed by this research. The simulation results are
produced by deploying 10 robots per outer zone, making a
total of 80 robots. The network consists of robots having
initial energy E0, and the BS is located at (50, 120) (i.e.,
outside the area to be explored). The A-FPA protocol perfor-
mance is evaluated in terms of stability period (the time
interval or the rounds before the first robot becomes inactive
due to energy depletion) and network lifetime and further
compared with the other algorithms.
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TABLE 2. Simulation parameters.

FIGURE 9. Comparison of no. of alive robots per round wrt different
protocols for E0 = 13kJ.

The interval between successive reformations to the cluster
is referred to as a single round. The predetermined number
of clusters required for comparison by the current algo-
rithms is set at 5%. The results are averaged over 20 random
setups. The simulation results for energy efficiency are shown
in Figure 9. In comparison with state-of-the-art algorithms,
the AFFA-EERP utilizes ZCHs and the BS to establish the
feasible routing set for each ZCH to obtain their optimal
routes. This mechanism reduces the effect of randomness,
which contributes to the balanced energy consumption of the
ZCHs, improves energy efficiency, and reduces the computa-
tional complexity of the algorithm.

B. NETWORK LIFETIME
The network’s lifetime is calculated by the number of live
robots that will be evaluated at each round. The lifetime
of the network and the total amount of data transferred are
measured by assessing the number of rounds until the death
of the last robot. A robot whose battery energy level is lower
than the energy required for accurate sensing or processing
is termed as a dead robot. The simulation results for the
total network lifetime are shown in terms of the normal-
ized energy for competitive protocols with initial energy

FIGURE 10. Comparison of normalized energy per round wrt different
protocols for E0 = 13kJ.

E0 = 13 kJ (Figure 10). AFPA-EERP has a maximum
network lifetime because of the reason optimal selection of
ZCHs and routing path by using A-FPA on the basis of energy
and distance. The performance advantage of A-FPA in terms
of the total network lifetime is∼4% compared with HSAERP
and ∼10% compared with DARE-SEP when 50% of the
robots are alive. The performance drastically improves till the
last robot is alive (i.e., ∼20% compared with HSAERP and
∼26% compared with DARE-SEP).

AFFA-EERP improves the network lifespan because it
considers the remaining energy of the robots for the ZCH
selection. The improvements achieved by the AFFA-EERP
scheme point to the ability to balance the energy through the
robots. In AFFA-EERP, the robot with the higher remaining
energy, nearer to the BS, higher density, and concentration has
the best chance to become the ZCH. This improved network
lifetime is a result of a better selection of the ZCHs and
interchanging the load over the nodes in a more balanced
approach.

C. PERFORMANCE AT DIFFERENT ENERGY LEVELS
Herein, three cases are simulated at different initial energy
levels for communication (i.e., E0 = 13 kJ [100%],
E0 = 6.66 kJ [≈50%], and E0 = 2.26 kJ [≈25%]). The
simulations are performed with different initial energy levels
of the robots to verify the performance of the proposed algo-
rithm. Tables 3, 4, and 5 show the dead robots round history
for E0 = 2.26, 6.66, and 13 kJ, respectively. With regard to
the total network lifetime (i.e., time until last the robot dead
[LRD]) and the stability period (i.e., time until the first robot
dead [FRD]), the proposed protocol outperforms against all
other protocols.

D. EFFECT OF ROBOT DENSITY
To assess the effect of robot density or scalability in each
approach, the robots are assumed to have an initial energy
of 13 KJ. The same parameters are used to construct the
simulation model as in a 100-robot scenario, and the results
are shown for homogeneous setups in Table 6. The effect of
robot density is evaluated in each approach by varying the
number of robots from 100 to 500. A comparative evalua-
tion of AFPA-EERP is conducted to illustrate and validate
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TABLE 3. Dead robots round history for E0 = 2.26 kJ.

TABLE 4. Dead robot round history for E0 = 6.66 kJ.

TABLE 5. Round history of dead robots for E0 = 13 kJ.

its behavior under various densities (i.e., sparse, moderate,
or dense). The performance of AFPA-EERP confirms that
the consistency, firmness, and scalability of the proposed
algorithm are great and is appropriate to large-scale MRS
communication in exploration tasks.

The performance improvement of the proposed
AFPA-EERP over competitive algorithms is with the increase
in the network size. The proposed method seeks a solution
that is more energy-efficient than others by finding the
efficient energy consumption model for CHRs.
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TABLE 6. Effect of robot density on the performance of AFPA-EERP.

VII. CONCLUSION AND FUTURE SCOPE
In this correspondence, various approaches for multi-robot
communication were reviewed, considering the communica-
tion constraints involved in the field of multi-robot commu-
nication. This work addresses the problem of routing of data
by robots, which are spatially dispersed in zones, to the
BS at specific time instants while ensuring an efficient
communication and increased network life time. A frame-
work for multi-robot communication by using AFPA-EERP
is proposed for transmission and routing of data between
ZMR and ZCH, ZCH and ZCH, and ZCH and BS. This
information is further utilized by the SLAM protocol at
the BS for efficient exploration and map making. Periodic
communication helps the BS in generating updated poses
for ZMRs to empower the exploration, which in turn saves
robot’s energy. The simulation results show that the proposed
protocol (i.e., AFPA-EERP) can be effectively applied in the
MRS for unknown outdoor environment exploration because
it outperforms other methods (available in literature) in terms
of energy efficiency and network life time.

In the future, the investigation and applicability of the
proposed protocol on hardware for communication in outdoor
map making applications will be explored. The formation
of the robots will be different in the case of indoor envi-
ronments; hence, further modifications of the algorithm will
be required to suit it for indoor applications. Finally, this
development will also incorporate open-source codes and
hardware schematics to empower researchers around the
globe to develop applications for MRS. Analyzing the trust
level of a robot is also an important aspect of the MRS, using
which two robots can communicate with trust because an
untrustworthy robot has an adverse effect on the quality and
reliability of the data.
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