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ABSTRACT In recent years, deep learning technologies have been actively used in various applications.
In particular, networks trained using reinforcement learning (RL) are widely exploited for auxiliary tasks
in various multimedia frameworks, including image restoration, image compression, and computer vision.
Discrete wavelet transform (DWT) and set partitioning in hierarchical trees (SPIHT) are the representative
lightweight compression methods that are most widely used for the purposes of frame memory compression
and LCD overdrive. In precedent research, in order to improve the compression efficiency of DWT-SPIHT
algorithms, the relative complexity of DWT coefficients is quantified, and when compressing DWT coeffi-
cients with the SPIHT algorithm, the compression ratio (CR) is adaptively allocated to the compression block
according to the numerically expressed complexity. However, the SPIHT algorithm has the characteristic
of resource limitation, resulting in the occurrence of remaining blocks, which cannot take advantage of
allocating the adaptive CR. Moreover, since the equation expressing the block complexity that determines
the CR of each block is obtained through machine learning-based linear regression, it lacks the capability
to deal with a wide range of real-world images. To compensate for these drawbacks, this paper optimizes
the compression efficiency of the 1-D DWT-SPIHT algorithm using the RL-based episodic auxiliary task.
In detail, the proposed method optimally adjusts the proportion of CRs, which are adaptively selected for
each block according to the DWT coefficient, through the episodic model trained with the RL algorithm.
Consequently, the proposed method achieves an average improvement in peak signal to noise ratio (PSNR)
of 2.18dB compared to the baseline 1-DDWT-SPIHTwith the fixed compression ratio and 0.68dB compared
to the precedent research.

INDEX TERMS Reinforcement learning, Deep Q-learning, image compression, discrete wavelet transform,
set partitioning in hierarchical trees, compression efficiency, episodic auxiliary task.

I. INTRODUCTION
The use of various mobile multimedia devices supporting
displays has increased along with the commercialization of
media transmission services, such as web streaming [1]–[3].
As the display resolution has increased to enhance the quality
of media services, the complexity and memory bandwidth
for image processing have also increased, and accordingly,
the power consumption has increased proportionately [4], [5].
In particular, the power consumption issue is more criti-
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cal for battery-powered mobile devices [6]. To solve these
problems in mobile devices, the use of frame memory com-
pression (FMC) based on the embedded compression (EC)
schemes has gained attention [7]–[11]. EC-based FMC,
which has low latency and low internal power consumption,
is a very effective technique for solving external memory
bandwidth issues and reducing power consumption by being
installed between the processing unit and external memory.

The EC schemes aremainly classified into transform-based
and non-transform-based methods [12]–[14]. The non-
transform-based schemes such as differential pulse code
modulation-variable length coding and block truncation
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coding are implemented with a very simple structure, but
have relatively low compression efficiency and variable
bit-stream length. On the other hand, the transform-based
method can achieve a relatively high compression rate by
lossy-compressing the coefficients of image transform such
as discrete cosine transform (DCT) or discrete wavelet trans-
form (DWT) through various quantization techniques [15],
[16]. Among various transform-based EC schemes, the
combination of DWT and set partitioning in hierarchical
trees (SPIHT) has outstanding performance in terms of
the trade-off of computational complexity and compres-
sion ratio (CR). In addition, it has the advantage of being
able to generate bit streams using various fixed target
CRs [17]–[20]. In particular, the combination of 1-D DWT
and SPIHT [19] supports raster-scan processing, which is
suitable for hardware-based FMC, and FMC based on the
1-D DWT-SPIHT can minimize both the operation delay and
power consumption issues on mobile devices with only a few
hardware resources. Although the 1-D DWT SPIHT struc-
ture shows a superior performance in terms of the trade-off
between the compression efficiency and the computational
complexity, the utilization of spatial correlation in the 1-D
algorithm is difficult compared to that in the 2-D algorithm,
resulting in significant compression loss. This drawback hin-
ders the 1-D algorithm from utilizing an aggressive CR [14].

To address these problems, the preceding study of this
paper [21] proposed a technique for adaptively determin-
ing the CR of the SPIHT algorithm according to the DWT
coefficients, rather than applying the same CR to all coding
blocks in the 1-D DWT-SPIHT. The DWT coefficients are
well integrated into the low-pass band for relatively sim-
ple DWT blocks (i.e., blocks with low complexity). On the
other hand, several coefficients still exist in the high-pass
band for relatively complex DWT blocks. Motivated by this
fact, the complexity of the DWT blocks is relatively quan-
tified, and the CR appropriate for the complexity of each
block is adaptively allocated. Consequently, this method can
enhance the compression efficiency of 1-D DWT-SPIHT
through relatively simple calculations. However, the preced-
ing study [21] has a problem that the optimal performance
cannot be derived because the approach in [21] formulates
the correlation between the DWT coefficients and the loss
due to compression by linear regression based on machine
learning (ML) rather than deep learning (DL). Furthermore,
SPIHT has a characteristic of resource limitation to satisfy
the total target bit length (TBL), resulting in the occurrence of
remaining blocks, which cannot take advantage of the adap-
tive CR allocation method. This indicates that the preceding
study [21] has room for further improvement in terms of
compression efficiency.

This study proposes a technique that significantly improves
the compression efficiency of the 1-DDWT-SPIHT by adding
an episodic auxiliary task that has been trained using rein-
forcement learning (RL) based on the distribution of the CRs
adaptively selected in the previous study [21]. In the pro-
posed method, the complexity distribution of all the blocks

is obtained through the DWT process in the first stage.
In the second stage, an auxiliary task that biases the CR
distribution is performed as a single episode to determine
the optimal CR for each block, and SPIHT is adaptively pro-
cessed with the optimized CRs. Consequently, in this study,
the distribution of CRs determined in the first stage is adjusted
as close to an optimum as possible through the episodicmodel
trained usingRLwhile retaining the advantages of the preced-
ing study [21] that adaptive selection is possible according to
the complexity of the coding blocks. The experimental results
show that the proposed method can improve the peak signal-
to-noise ratio (PSNR) by 2.18 dB and 0.68 dB on average
in comparison with the fixed CR method [20], which applies
the same CR to all the blocks, and the previous study [21],
respectively.

The remainder of this paper is organized as follows.
Section 2 explains the DWT-SPIHT-based adaptive selective
CR (ASCR) algorithm [21], which is the motivation of this
study, and the background of RL. Section 3 describes the
process of applying RL to the proposed RL-SPIHT, and
Section 4 presents the experimental environment and results.
Finally, Section 5 presents the conclusion.

II. BACKGROUND
This section explains the 1-D DWT-SPIHT compression
method, which is the baseline of the RL-SPIHT, and the ML-
based ASCR [21]. This section also explains the concept of
RL and deep Q-networks (DQN) utilized in this study to
optimize the CR distribution.

A. 1-D DWT-SPIHT
For the DWT-SPIHT combination [20], which is the typical
transform-based EC technique, the SPIHT algorithm takes
DWT coefficients as input and performs compression. DWT
which is widely used in various ECs including the repre-
sentative lossy image compression, JPEG2000, demonstrates
a better performance than DCT, which is used in the con-
ventional JPEG [15], [16]. As in the previous study [21],
the method of synthesizing DWT in three levels by using
a 1-D image pixel block (1 × 64) as the integer Le Gall
5/3 filter [18] is used in this study. If three-level DWT is
applied to 1-D image blocks, the result can be shown in
a binary tree form, as shown in Fig. 1. The coefficients
are classified as L3, H3, H2, and H1 that constitute the
binary tree structure. Each coefficient is represented as a bit
plane containing a total of 64 bits. The SPIHT algorithm
compresses bit planes transformed in this manner using a
specified target CR. Although there are diverse methods for
compressing DWT coefficients using SPIHT, the 1-D block-
based pass-parallel SPIHT (BPS), which has a hardware-
friendly structure and can achieve a high throughput, is used
in this study [20]. In general, SPIHT uses three data structures
to perform operations on the bit planes for the DWT coeffi-
cients. The three data structures are the list of insignificant
sets, the list of insignificant pixels, and the list of significant
pixels. As the BPS reconstructs these data structures as the
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FIGURE 1. Number of bits containing correlation between the DWT
coefficients. This figure is modified from Fig. 1 of [21], and the
decomposition of DWT is three.

insignificant set pass (ISP), the insignificant pixel pass (IPP),
and the refinement pass (RP), both the encoder and decoder
can achieve a high processing speed [20]. This type of 1-D
DWT-SPIHT shows an excellent performance in terms of
the trade-off between the compression efficiency and the
computational complexity. However, it has the drawback of
an inferior compression performance compared with that of
2-D DWT-SPIHT because it cannot utilize redundancy in the
vertical direction.

B. ADAPTIVE SELECTION OF COMPRESSION RATIOS
ASCR was proposed to remedy a relatively lower com-
pression efficiency of 1-D DWT-SPIHT compared with
2-D DWT-SPIHT [21]. The existing 1-D DWT-SPIHT [20]
encodes the DWT coefficients in all image blocks with the
same fixed CR. Therefore, if the image block has a complex
configuration, a considerable amount of information remains
in the high-pass band of DWT coefficients, and important
data may be lost during the SPIHT process. On the other
hand, if the image block is simple, most of the information
exists in the low-pass band of DWT coefficient; hence the
amount of data loss is relatively small even if the same CR is
applied. To take advantage of the difference in complexity
of each block, a previous study [21] proposed a technique
that adaptively determines the CR of SPIHT according to
the DWT coefficients of each block. In other words, com-
plex blocks are compressed slightly, and simple blocks are
compressed aggressively while maintaining the total TBL.
Using the image of size 256 × 256 as a reference, the DWT
coefficient blocks are divided into 1,024 1× 64 pixel blocks.
The relative cost of the complexity for all the blocks must
be expressed numerically to determine an appropriate CR for
each block. Therefore, the complexity of all the blocks is
expressed as a cost for the pixels included in the high-pass
band (i.e., from H3 to H1) using the following equation:

CostDWT =
∑H3

p=H1
TRUNC(log2 p), (1)

where TRUNC() function is an operation that discards the
decimal point. Based on the fact that the mean squared error
(MSE), which is the difference between the pixels of the
restored image and the pixels of the original image, is depen-
dent on the complexity of the 1-D DWT block, ASCR proved

the correlation between the MSE and log(1 + CostDWT)
with linear regression, and the correlation between these two
variables is formulated as follows:

log2 (1+MSE(CRi)) ∼= a log2(1+ Cost i)− bCRi + c (2)

where a, b, and c are constants obtained from the linear
regression. Additionally, by applying the optimization tech-
nique, the selection of an adaptive CR suitable for the cor-
responding block can be obtained through the following
equation:

CR = CRFixed +
a
b
(log2 (1+ CostDWT )− S), (3)

where S, the average of log2(1+CostDWT ), is calculated as
follows:

S =
1
N

∑N−1

i=0
log2 (1+ CostDWT ) . (4)

The adaptive CR determined by (3) is sequentially applied
to each block before SPIHT is performed.

As the current frame is almost similar to the previous
frame in video sequences [21], ASCR uses the average of
log2(1+Cost i) of the previous frame to predict the com-
plexity of the corresponding blocks relative to the entire
frame. However, since slight differences exist between the
consecutive frames, in order to match the TBL exactly, there
is a limitation that some blocks within the frame need to be
compressed at a certain CRwithout considering the complex-
ity. In other words, if the remaining blocks are compressed
using the most aggressive CR due to the lack of bit length
resources, a significant PSNR loss may occur. Furthermore,
since ASCR expresses the correlation between the MSE and
cost using a simple ML-based linear regression presented
in (2) instead of a DL-based approach, optimization was not
achieved. Therefore, the proposed study aims to solve this
problem by creating an episode model based on the linear
regression relationship proven in ASCR and applying the RL
model.

C. REINFORCEMENT LEARNING
RL is an area of DL in which the optimal control theory has
been systematized for the Markov decision process (MDP),
which simultaneously considers the theory of dynamic sys-
tem including observations, actions, and purposes. RL is a
dual-structured model composed of the environment and the
agent that controls the environment [22]–[30]. The purpose
of RL is to enable the policy of the agent to select an optimal
action for a given state in the environment. Since RL is funda-
mentally based on the dynamic environment, the concept of
time exists in RL. In addition, RL can be divided into episodic
tasks, which have a finite state space, and continuous tasks,
which have an infinite state space, according to the charac-
teristics of the episodes in the environment. Considering the
characteristics of the application to which RL is applied, this
paper only deals with episodic tasks.

Similar to a single episode, an episodic task can be
expressed as a discrete timeline. In general, episodic tasks
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include a start state (t = 0) and a terminal state (t = T). All
the states included in the state space, except for the terminal
state, choose an action. Here, selecting the optimal action
indicates that this actionwill result in the greatest reward from
the environment in the action space. It should be noted that
the concept of reward in RL considers not only the current
state but also the cumulative rewards that will be received in
the future. The reward Gt to be received at time t is expressed
using the following equation:

Gt = Rt+1 + Rt+2+Rt+3· · ·+RT . (5)

The current reward cannot be exactly determined using this
equation until the episode is completed. Therefore, a value
function that directly estimates the agent value for the state
at time t is introduced, which can be expressed using the
following equation:

v(s) = Eπ

[∑T

t=0
γ tRt+1 | St = s

]
, (6)

where v(s) denotes the value of the action for the state at
time t in the state space. γ , which is added to (6) on the left
side of the condition, generally represents the discount rate
for the reward in the next state in RL. γ has a value greater
than 0 and less than 1. This factor represents the magnitude
of the correlation between the states at times t and t + 1.
The greater the influence of the action selected for the state
at time t on the state at time t + 1, the closer the value
of γ becomes to 1. vπ (s) denotes the value function, which
takes policy π into consideration, which is responsible for
estimating the action for the agent. vπ (s) is represented by
the Bellman expectation equation indicating the relationship
between the value functions of the state at each time t in RL,
and can be expressed as follows:

vπ (s) = Eπ [Rt+1 + γ vπ (St+1) | St = s]. (7)

This equation denotes the expectation for the total rewards
that will be received if the policy at time t is maintained, and
consequently, it can be the criterion for the agent to determine
which policy is better.

This algorithm updates the neural network based on the Q-
function, which is based on the state-value function described
in the previous paragraphs. The Q-function is also called
the action-value function, and it represents the maximum
aggregate reward that allows each of the possible actions
that can be taken in a certain state to have a value function.
Consequently, it is possible to determine which action should
be selected without having to examine the value function of
the next state. The Q-function can be expressed as follows:

qπ (s, a) = Eπ [Rt+1 + γ qπ (St+1,At+1) | St = s,At = a].

(8)

Although the policy and the methodology for updating this
policy are important, RL heavily depends on the concept of
states. Therefore, it is very important to determine the states
when designing an environment model. In general, a state

FIGURE 2. Workflow diagram of DQN. (S, A, R, S’) of the sample indicate
state, action, reward, and next state, respectively. Learner represents
essential factors required for training.

semantically conveys information to the learner about the
state of the environment at a specific time, and the state
becomes the output of preprocessing, which is a basic compo-
nent of the environment. When designing an MDP, it should
be considered that St+1, the state at time t + 1, is dependent
on St, the state at time t. In other words, St+1 must be obtained
using the values altered by the action that the agent selected
in St. Training is impossible if this dependency is not estab-
lished. Therefore, the key point of this study is to determine
two main factors, the preprocess system for determining the
optimal CR of SPIHT according to the complexity of the
DWT blocks and the states, which are the components of
MDP. The RL algorithm used to solve the proposed episodic
environment is described further in Section II-D.

D. DQN: DEEP Q-NETWORKS
DQN [22] is an algorithm that was used in AlphaGo [23],
a notable example of RL. Studies on DQN have been actively
conducted [24]–[30]. DQN can be trained in a model-free
method, which does not require a detailed explanation of
components, such as the state transition probability in MDP.
Moreover, the training process can be simply illustrated using
a workflow diagram, as shown in Fig. 2. The replay buffer and
target network in the diagram are used for training, and the
environment and policy network are used during the actual
inference process. The policy network is a Q-function (Q-
network) having a Q-value as an output. The environment,
which is commonly used by the two processes, has the role
of preprocessing the state and reward. For example, in [22],
four consecutive frames are first stacked and gray-scaled,
and the images are cropped to the size (84 × 84) suitable
for the GPU to observe and identify the movements in the
frames of the Atari game. Then, the states are preprocessed
through this operation. The replay buffer stores the samples
received from the environment during training in the form
of tuples, and it recycles them using the uniform random
sampling when updating. By doing so, the replay buffer
solves the sparse reward and high sample dependency issues,
which are the problems of the episode-based RL. This data

82488 VOLUME 9, 2021



J. Shin, H. Kim: RL-SPIHT: Reinforcement Learning-Based Adaptive Selection of Compression Ratios

usage sequentially inserts images of different characteristics
in the episodes to generalize the network, thereby facilitating
effective training. The target network has the same shape as
the policy network and has a rule for copying the weight
parameters of the policy network at uniform intervals. This
prevents the tendency of errors to diverge or vibrate contin-
uously due to the continuous change in the purpose as the
policy network is trained at each step. The q-value of the
Q-network and the expectation of the q-value are required to
update the Q-network by calculating the loss. The q-value can
be expressed using (8), and the expectation of the q-value can
be expressed using the following Bellman equation:

Qπ (s, a) = RWD (s, a)+ γ max
a
Qπ (s′, a). (9)

Both s and a of RWD (s, a) follow the conditional expres-
sion of St = s and At = a, and they represent the reward
function for action a performed in the state s. The last term
in (9) represents the q-value of the next state s′, and the target
Q-network is used to calculate this value.

Algorithm 1 Episodic Environment
Input: Direction
Constant: θ , N, Maxstep, signalneg, signalpos
Variable: CRn, β, step, countpos, countneg, doneepi, donestep
Output: β
1: Get CRn from ASCR
2: Initialize β = 0, step = 0
3: countpos, = 0, countneg = 0, doneepi = False
4: while doneepi == False do
5: step++
6: donestep == False
7: while donestep == False do
8: if (direction == signalneg) countneg ++
9: if (direction == signalpos) countpos ++
10: β = ((countneg ∗ − 1) + countpos) ∗ θ
11: for i = 1 to N
12: CR’i = CRi + β

13: if ([CR’i] == [CRi]) donestep = True
14: end for
15: if (step >Maxstep) doneepi = True
16: else if (Inference Condition) doneepi = True
17: end while
18: end while
19: return β

III. PROPOSED METHODS
This section describes the principle of the proposed RL-
SPIHT including episodes with the built-in preprocessing
procedure in which ASCR [21] is applied in order to optimize
the CRs of SPIHT.

A. OVERVIEW OF THE PROPOSED RL-SPIHT
This subsection explains the overall operation of RL-SPIHT.
Fig. 3 shows the overall workflow of the proposed RL-SPIHT.

Algorithm 2 Deep Q-Learning With Experience Replay
1: Initialize replay memory D to Capacity C
2: Initialize action-value function Q with random weights
3: Initialize Envn with N single frames
4: for episode = 1, M do
5: Initialize sequence s0= {D0,R0, β0} from the first stage
6: for t = 1, T do
7: With probability ε, select a random action
8: Otherwise, select at = maxaQ∗(∅(st ), a; θ )
9: Execute action at in two-stage framework
10: Observe reward rt and st+1
11: Store transition (st , at , rt , st+1) in D
12: end for
13: Sample random mini-batch or transitions
14: (st , at , rt , st+1) from D

15: Set yi =

{
rj
rj + ϒmaxa′Q(∅j+1, a

′
; θ)

16: Perform a gradient descent step on (y− Q(∅j, aj; θ ))2

17: Change environment sequentially
18: Save the Q-network according to the result of inference
19: end for

RL-SPIHT is primarily divided into two stages. In the first
stage, to complete the preprocessing procedure for the sec-
ond stage, DWT is performed to collect the costs for the
complexity of each block, and CRs are allocated to each
block according to the ASCR method [21]. In the second
stage, through the auxiliary task that has been trained using
the proposed RL, the CR value is biased according to the
complexity of eachDWTblock, and SPIHT is performedwith
the optimal CRs.

In Stage-1, the 1-D block-level DWT procedure is per-
formed on the input frames received in the raster scan order,
and the transformed blocks are stored in Buffer 1. Using
the DWT blocks stored in Buffer 1, the costs of the pixels
included in the high-pass band of each block are calculated
using (1). These values are then transformed into the log(1
+ cost) format for the next procedure, and the average cost
of all the blocks in single frame is calculated using (4).
Subsequently, an appropriate CR (i.e., 3/16, 4/16, 5/16, 6/16,
7/17, 8/16, 9/16 in this study) for each block is determined
using (3) and stored in Buffer 2.

Stage-2 determines the optimal CR through an auxiliary
task that has been trained using RL. In Stage-2, the proce-
dure including ‘‘Done Check,’’ ‘‘Feature Extractor,’’ ‘‘Pol-
icy,’’ and ‘‘Calculate Bias’’ is repeatedly performed. The
‘‘Done Check’’ plays the role of determining whether the
task has ended. If the task needs to be continued, the CRs in
Buffer 2 are sent to the ‘‘Feature Extractor’’. The ‘‘Feature
Extractor’’ expresses the complexity of the current image
and extracts three types of features that can be analyzed.
The features extracted by the ‘‘Feature Extractor’’ are sent
to the ‘‘Policy’’. The purpose of the ‘‘Policy’’ is to change all
the CRs to the optimal value, and the ‘‘Policy’’ denotes the
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FIGURE 3. Workflow of the RL-SPIHT. Stage-1 with the red lines illustrates the flow of ASCR, and Stage-2 with the black lines illustrates the auxiliary task.
The auxiliary task performs the function of biasing the overall CR values resulting from the ASCR, and the bias values for the CRs are determined by the
policy, which we intend to train using RL. The blue line shows the process from after the bias values have been determined and until the SPIHT is
performed.

neural network trained by RL. In the ‘‘Policy’’ block, the state
determines the direction of the bias. The ‘‘Calculate Bias’’
step calculates the degree of the bias in the direction of the
bias. After this procedure is completed (i.e., once all the CRs
have been biased), the updated CRs are stored in Buffer 2. The
CR biasing is repeatedly performing using this loop. When
the correction of the CRs has been completed (i.e., all the CRs
have optimal values), the ‘‘Done Check’’ step determines that
this loop no longer needs to be repeated. In the final step of
the procedure, the DWT coefficients stored in Buffer 1 are
mapped to the optimized CRs of each block stored in Buffer 2,
and the adaptive SPIHT is performed.

B. EPISODIC ENVIRONMENT AND AGENT FOR BIASING
This subsection focuses on the ‘‘Feature Extractor’’ and
‘‘Policy’’ blocks shown in Stage-2 of Fig. 3. The interaction
between the environment and agent, which are necessary for
RL covered in Section II-C, is the motivation for designing
Stage-2. From the perspective of the environment, the CRs
stored in Buffer 2 are raw data. The ‘‘Feature Extractor’’
changes the raw data to low-dimension features to decrease
the network size and increase the learning speed. The pol-
icy is a component of the agent that determines the actions
using the features received from the environment. The actions
determined by the policy are defined as the directional value
that biases all the CRs. This directional value has two values:
positive and negative. The process of biasing the CRs is
expressed using the following equation:

CR′ = [CR+ β
(
D,R, β ′

)
]. (10)

where [·] indicates rounding off, and β(·) denotes the discrete
bias values selected by the parameter. The parameters, D, R,
and β ′, denote the cumulative relative frequency distribution,
information on the remaining blocks, and the β that was
applied to the previous distribution, respectively, for the seven
classes (i.e., 3/16, 4/16, 5/16, 6/16, 7/17, 8/16, 9/16) in the CR
distribution prior to the adjustments (i.e., before correcting
the CRs obtained through RL).

Algorithm 1 explains the loop in Stage-2 of Fig. 3 as
the episodic environment, which is a component of the RL
model. This environment has a unique environment known
as compression; hence, it is designed as a finite environ-

ment. We assume that an additional increase in PSNR can
be achieved by biasing the existing distribution of the CRs
obtained from Stage-1 (i.e., CRs obtained using ASCR [21]).
However, real-world images have diverse patterns; hence,
it is very challenging to train the network to determine
the optimal bias on the first attempt. Therefore, we must
bias the CR distribution with a low precision and contin-
uously observe the changed states based on the episodic
environment.

Accurately understanding this algorithm requires an expla-
nation of the policy of the agent, which is another component
of the RL model. The episode of the episodic environment
uses the step as the basic unit (0 ≤ step ≤ Maxstep) and
moves continuously from the starting point to the endpoint.
The purpose of the episode is to determine the optimal bias,
β, that biasesN raw data,CRn, which are stored in Buffer 2 of
Fig. 3. The step receives the direction (signalneg or signalpos),
which is the output of the policy, as an input. The step
continually accumulates precision (θ ) in β in the direction
of the signal (signalneg or signalpos). During this repetitive
process, if the frequency distribution of CRn changes even
slightly, the step ends. The reason the step ends only when
a change occurs is described in Section III-C, along with
the explanation of the sparse reward issue. θ is the unit of
precision for the amount of change in β, which biases the
frequency distribution of CR. θ is always the same in all the
episodes and steps. If θ is set too small, the time duration
per step increases, but the change in PSNR can be observed
accurately and the current frequency distribution and the state
of other features can be determined sensitively. This, in turn,
allows the policy to be trained better. On the other hand, if θ
is set too large, the time duration per step decreases, and
consequently, we cannot determine in which step the episode
should end. Therefore, we assume that θ is appropriate when
the number of θ applied to β in one step is two on average
because the variance of the raw data CRn can vary according
to images. Furthermore, we set 0.001 as the unit. The two
variables, countneg and countpos, represent the count accumu-
lated in the step according to the direction variable, which
simplify the calculation. Doneepi and Donestep are Boolean
variables indicating that the episode and step have ended,
respectively.
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The line-by-line operation of Algorithm 1 is analyzed as
follows. The episodic environment first initializes all the
variables (Lines 1–3). In the proposed method, one frame
becomes one environment episode, and the episode performs
the while loop continuously until the termination condition
for the episode is satisfied (Lines 4–18). Local variables are
always initialized at the beginning of the loop (Lines 5–6).
The step processing procedure of the episode is performed
continually through the while loop until the termination
condition for the step is satisfied (Lines 7–17). The step
checks the direction it received as an input and increments
the cumulative coefficient variable corresponding to the type
of the direction until the end of the episode (Lines 8–9).
Subsequently, the bias β is updated through the cumulative
coefficients and precision constants accumulated until this
step (Line 10). The termination condition of the step is sat-
isfied when the CRs that have been updated and the rounded-
off values of the CRs from the previous step are different in at
least one of the blocks (Lines 11–14). After the step has been
completed, two conditions are checked to determine whether
to end the episode. The first condition checks the maximum
number of steps (Line 15), and the second condition checks
the difference between training and the inference process
(Line 16). During training, it is possible to proceed through
the last step to store as much diverse data as possible in
the replay memory. However, we attempt to end the episode
as quickly as possible when performing inference. Hence,
the episode does not proceed to the last step. Instead, when
an input value different from the input value of the first step
is received, that step is performed and then terminated. The
logic has been designed in this manner because each step is
unique in an episode where the same parameters and images
have been applied. Therefore, receiving a different input
indicates that the step segment has gone into an infinite loop.
Once the episode ends (line 18), the bias value is returned as
the final output (line 19).

The episodic environment, which helps solve the chal-
lenge of determining the bias value, is important. However,
simultaneously, the agent, which receives features from the
environment and responds with an action, should be designed
well. We have redefined (6) for the agent as follows:

β
(
D,R, β ′

)
= Episode(π(D,R, β ′)), (11)

where π is the policy in Fig. 3, and D,R, β ′ are inputs
to the policy. In terms of the RL algorithm, they can
be substituted as the policy of the agent and the three
states of the environment, respectively. Therefore, π can
be expressed as qπ (s, a) of (8). Moreover, the action
of the Q-function can be expressed using the following
equation:

Direction = argmax
a

Q(s, a). (12)

The output of the Q-function has two arguments, and the
direction selects the index of the max value between these
arguments as the action. This action is a decision value that

decides in which direction the precision should be accumu-
lated in the step procedure of Algorithm 1. Consequently,
the optimal policy is trained using the state features and
actions, which represent the Q-function, through the DQN
algorithm described in Section II-D.

C. REINFORCEMENT LEARNING FOR ASCR
It is important to design both the states and rewards well to
train the policy of the agent using RL. It should be noted
that rewards have a significant impact on training speed and
performance. When the reward is applied to the updated
equation, which uses the Bellman equation described in
Section II-D, sparse reward and delayed reward should be
considered carefully. The sparse reward issue hinders the
training process because only a few steps receive a reward
(R 6= 0) among all the steps in the episode. From the per-
spective of the episodic environment, when a certain value as
bias is added to the CRs received from ASCR [21], the raw
data change, but the frequency distribution of CR may not
change in the end. If this phenomenon occurs, PSNR does
not increase, and consequently, the reward is 0 for the corre-
sponding step. Owing to this phenomenon, in the proposed
scheme, the step is not terminated until the frequency dis-
tribution of CR changes at least slightly with the precision
as described in Section III-B. This scheme prevents samples
with the reward of 0 from accumulating in the experienced
replaymemory, which in turn ensures that the training process
is not hindered.

On the other hand, the delayed reward issue occurs when
the model for the environment is not accurately known, and it
is difficult to predict the changes in the observed state. In such
cases, we do not know when the reward should be given.
The RL model has a basic tendency for not giving action
in the direction of receiving a negative reward. Hence, even
if it receives a negative reward due to a slight loss, such as
noise, in comparison with the reference value, it determines
that it could miss the reward that may occur in the future.
Consequently, the effect of training is reduced. Moreover,
some other episodes are terminated upon receiving a negative
reward. Hence, these episodes tend to miss the opportunity to
obtain more positive rewards. If this phenomenon occurs con-
sistently while training, it is difficult to store valuable expe-
rience samples in the memory, even for a long exploration,
and consequently the network cannot be trained properly.
From the perspective of the episodic environment, we can
consider a case where PSNR decreases in Sn and Sn+1, but
the final PSNR increases in Sn+2 (i.e., a swing scenario)
as an example. To solve these issues, the proposed episodic
environment should not be terminated even if it receives a
negative reward while training. Moreover, to minimize these
swings in the reward signal, we delay the time at which the
reward signal is received until the PSNR arrives at a randomly
accumulated value. By delaying the reward in this manner,
it is possible to train more clearly the tendency of the features
extracted from the ‘‘Feature Extractor’’, which receives CRs
from ASCR [21] as an input. The proposed reward function
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TABLE 1. Range and meaning of state and action space for MDP.

for solving this delayed reward issue is as follows:

RWD (σ ) =

{
1, σ < δ

−1, σ ≥ −δ,
(13)

where σ is the difference between the PSNR of the reference
point and the PSNR after performing the current step. The
initial value at the reference point is the PSNR when the
CRs determined by ASCR [21] have been applied. When
|σ | arrives at |δ|, the reference point is changed, and σ is
initialized with 0. δ postpones the time at which the reward
is received; hence, unnecessary steps, such as noise, can be
skipped. If δ is too large, the environment becomes a sparse
reward environment, and consequently, it is difficult to train
the network using RL. On the other hand, if δ is too small,
the environment becomes a delayed reward environment
because noise may be accepted as it is, and consequently,
it is difficult to train the network properly. As a result, when
determining δ, PSNR should be obtained by performing the
step in one direction for a sufficiently large number of images
in the episodic environment. In other words, the variation
in PSNR for swinging steps should be checked, and a value
greater than the average of the variations should be allocated.

In the previous paragraphs, the core components of MDP
for updating the Q-network (i.e., state, action, and reward)
are explained. Table 1 lists the range and meaning of the state
and action values for the designed MDP. To express all the
features regardless of the resolution, the features have been
normalized using the total number of DWT blocks so that
their values are always relative to all the blocks. The distribu-
tion expresses the CRs (raw data) received from ASCR [21]
in the RL-SPIHT workflow as relative frequency distribution
values based on the frequency distribution with seven classes.
The proposed method uses the cumulative relative frequency
distribution to reduce the network size further and express the
frequency distribution universally. The use of the cumulative
relative frequency distribution also provides the advantage
that the same weight values of the RL network can be used
for all the target CRs. The reason why it is possible to con-
struct an ‘‘integrated’’ network that shares the same weight
is explained in detail as part of the experimental results in
Section IV-B. The cumulative frequency distribution has a
value between 0 and 1, and can be expressed as the cumulative
relative frequency / total block count. In Table 1, the three
features that represent the remaining blocks are indicated as

abbreviations: R.count, R.sum, and R.CR. R.count denotes
the number of remaining blocks, and R.sum refers to the sum
of the CRs allocated to all the blocks. R.CR represents the
CR allocated to the remaining block to satisfy TBL, and only
the minimum and maximum values of the available CRs can
be used for R.CR. Finally, although the unique complexity of
the images can be expressed using the values described above,
the proposed method has added a bias to express the features
more uniquely. Here, the added ‘Bias’ refers to the previous
bias.

The operation of the proposed DQN is described in
Algorithm 2 using the components of MDP, which was
explained in the baseline DQN [22] algorithm. First, the net-
work weights and replay memory are initialized (Lines 1–2).
The baseline DQN initializes the episode using the ran-
dom parameters of one of the Atari games [22]. However,
we instantiate and serialize several episodic environments
using several single frames that are independent of each other
(Line 3). The episode described in Algorithm 1 is repeatedM
times using these episodic environments (Lines 4–19). In this
procedure, the state is initialized each time the episode is
changed (Line 5). As the episode proceeds in the same way
as the baseline DQN, the MDP samples necessary for train-
ing are continually accumulated in the replay memory until
the capacity of the replay memory is reached (Lines 6–13).
After one iteration of the episode has been completed, data
in the replay memory are randomly sampled up to the size
of the mini-batch. Then, the expected value is calculated
using the Bellman optimality equation, and the network is
updated using the gradient descent method (Lines 13–16).
The inference is performed each time the last object of the
serialized environment ends the episode, and the result is
obtained by calculating the average PSNR for the single
frame used in the inference. Finally, if the result is larger than
the result of the previous inference, theweights of the network
are stored (Line 18).

IV. EXPERIMENTAL RESULTS
In this section, we prove that the features used in the auxiliary
task trained with the proposed RL (Q-network) have been
properly configured. Moreover, we verify the performance
of the proposed 1-D DWT-SPIHT, which utilizes the CRs
optimized with the proposed RL model.

A. EXPERIMENTAL ENVIRONMENT
Three 256 × 256 images in the Linneaus-5 JPEG Image
Dataset [32] are used to train the Q-network, as shown
in Fig. 4(a). In addition, as shown in Fig. 4(b), nine images
in the same dataset are used for inference to verify the 1-D
DWT-SPIHT algorithm optimized with the DQN. For a fair
comparison with previous studies, [20] and [21], that target
the video environment, images used for training and inference
are converted into the YUV420 format. Moreover, among the
components of YUV, the main component Y, which repre-
sents the luminance, is used to measure the costs used in
the ASCR algorithm [21]. The bias precision and delayed
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FIGURE 4. Dataset. (a) Training image dataset. (b) Test image dataset.

FIGURE 5. Graphs (a), (b), and (c) representing the relative frequency
distribution, cumulative relative frequency distribution, and average
cumulative relative frequency distribution by target CR, respectively, for
the compression ratios of the nine images used in the inference process
when the fixed target CR is 7/16.

reward unit are the hyperparameters of the environment, and
they are set to 0.001 and 0.05, respectively. The learning rate,
discount factor, replay memory size, and mini-batch size are
the hyperparameters required for RL training, and they are
set to 0.002, 0.98, 50000, and 100, respectively. The leaky

TABLE 2. Results of PSNR (dB) per target CR for the 1-D, ASCR, separated
network, and integrated network.

ReLU [33] is used as the activation function for all the fully
connected layers. Moreover, the study by Kim et al. [20],
which proposed the 1-D DWT-SPIHT with fixed CR, and
ASCR [21] are used for a comparison with the PSNR of the
DWT-SPIHT.

B. REASONABLENESS OF THE FEATURES FOR EPISODES
The RL model can better train the policy of the agent when
it has state features that can describe the environment model.
If the cumulative frequency distribution is used as a feature,
the trained network can respond universally to the image
resolution and the diversity of raw data, and simultaneously,
the weights can be reduced as much as possible. In this sub-
section, we prove the appropriateness of the feature selection
through the data sampled in the experiment.

Inputting CRs that change sensitively to resolution size into
the policy network as image features uses a lot of hardware
resources. Therefore, the frequency distribution of the CRs
needs to be used as the feature, instead of the CRs, to reduce
the feature size and use the feature regularly. However, it may
be challenging to perform accurate inference for data having
a different resolution than the training dataset because the
maximum frequency values are different. Although there is
a way to train the network with a lot of datasets having
various resolutions to solve this problem, the network may be
enlarged accordingly and the efficiency in terms of time may
decrease. Therefore, CRs have to be normalized regardless of
the resolution by expressing them as a relative frequency dis-
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FIGURE 6. Heatmap of CR distribution within the frame according to each compression method when the target CR is 4/16. Top: Original images, Middle:
Heatmap by ASCR [21], and Bottom: Heatmap by the proposed method. A block painted with a light tone represents a low CR. The blue box indicates the
part where the ASCR method has allocated an unsuitable CR to the block to satisfy the total target bit length. The yellow box indicates the part where
there is an apparent difference between the ASCR method and the proposed method on the heatmap. In the proposed method, the blue part can also
allocate the optimal CR by securing the resource in the yellow part compared with ASCR.

tribution. However, as shown in Fig. 5(a), even if the normal-
ized data are used, it is difficult to identify the tendency of the
network because the difference in frequency between images
in a single class is large. Hence, the policy network becomes
a ‘‘separated’’ network, which uses different weights each
time the fixed target CR changes. However, although the CR
distribution changes at each step, the values do not change
significantly from the initial value. Therefore, if the tendency
of the images can be identified when the fixed target CR is
the same, it is possible not to change the weights according
to the fixed target CR, and this can be solved by converting
a relative frequency distribution into a cumulative relative
frequency distribution. In Fig. 5(b), although the same images
as in Fig. 5(a) are used, the cumulative relative frequency dis-
tribution can objectively express the tendency of the images.
Therefore, as shown in Fig. 5(c), the average cumulative rela-
tive frequencies for the initial state can be expressed by using
each fixed target CR for training. Eventually, we can cope
with all fixed target CRs as an ‘‘integrated’’ network without
changing the weights according to the fixed target CRs.

C. PERFORMANCE EVALUATION OF THE PROPOSED
SYSTEM
In this subsection, the performance of the proposed model is
verified and compared with previous studies [20] and [21].
Table 2 presents the comparison of the PSNR results for each

CR with those from the previous studies. For the proposed
method, the results of ‘‘separated’’ for which RL is applied
separately to each target CR, and the results of ‘‘integrated’’
for which RL is applied together for all the target CRs, are
presented. For each CR, the average PSNRs of the 3 images
used for training, 9 images used for inference, and 12 images
combined (3 for training + 9 for inference) are presented
in order. Experimental results show that the proposed ‘‘sep-
arated’’ method has higher average PSNRs for all the CRs
compared with the previous studies. In addition, the average
PSNR of the ‘‘integrated’’ method is 0.02 dB higher than
that of the ‘‘separated’’ method, even though the ‘‘integrated’’
method has high compatibility that it can be applied to all
target CRs with a single weight. As a result, the ‘‘integrated’’
method can achieve an average performance improvement
of 2.67 / 2.02 / 2.18 dB and 0.95 / 0.6 / 0.68 dB (training
set / test set / total set) compared with the existing fixed [20]
and ASCR [21] methods, respectively. This means that the
proposed method can reduce the PSNR gap between the 1-D
DWT-SPIHT and the 2-D DWT-SPIHT by optimizing the
ASCR through sufficient training based on the RL model.

Fig. 6 shows the heatmaps of CR distribution within the
frame according to each compression method when the target
CR is 4/16. The first row presents six original images and
the second and third rows show the CR distribution per block
when these six images are compressed using the existing
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TABLE 3. Comparison of the number of adaptive blocks selected per
target CR. These results are calculated using nine images for the inference
process.

FIGURE 7. Enlarged still images of the reconstructed frames when the
target CR is 4/16. (a) Fixed compression ratio [20], (b) Proposed method.

ASCR [21] method and the RL-SPIHT method, respectively.
When using RL-SPIHT, the CRs are evenly distributed for
most of the images by increasing the bias of the distribution
in the backward direction. Hence, the areas assigned with
unnecessarily high CRs (yellow box) in the ASCR method
are allocated with lower optimal CRs, and it is possible that
saved bit lengths are utilized in the lowermost part (blue box)
of the heatmaps, which has been forcibly determined as a
specific CR to satisfy the TBL in the ASCR method. Such
an optimal CR arrangement eventually results in increases
in PSNR, as presented in Table 2. Table 3 presents the ratio
of the number of adaptive CRs in the ASCR and proposed
methods for each target CR. It should be noted that in the
‘‘fixed’’ method, all blocks are compressed equally with the

target CR. Experimental results show that the ASCR method
selects the CR of 3/16 more often than the ‘‘integrated’’
method in order to match the TBL, which leads to the severe
performance degradation. The proposed method can achieve
the improvement of the PSNR shown in Table 2 by mini-
mizing such unnecessary selection of the CR of 3/16 through
RL-based optimal biasing.

Fig. 7 shows still images compressed and decompressed by
the ASCR [21] method (left) and the proposed method (right)
using the target CR of 4/16. In Fig. 7, a specific part in
each i mage is enlarged to show the difference clearly. It can
be seen that vividly visible boundaries between the blocks
in the ASCR method have been considerably smoothed in
the proposed method. These effects are more visible in the
foreground region with a high complexity. Furthermore, the
blurred area in the ASCR method has been processed more
clearly by the proposed method. These results verify that
the proposed method can produce effective deblurring and
deblocking effects.

V. CONCLUSION
In this study, we optimize the compression efficiency of the
1-D DWT-SPIHT algorithm, a representative EC scheme,
by using an RL-based episodic auxiliary task. Although the
previous studies uncovered the correlation between the DWT
coefficients and the CR of the SPIHT, it could not be opti-
mized sufficiently. Thus, we use an episodic model trained
using RL to optimally adjust the adaptively selected CRs for
each block according to the DWT coefficients, and apply the
optimized CRs to SPIHT. Consequently, compared with the
fixed technique that applies the same CR to all the blocks and
the preceding research, PSNRs are improved by 2.18 dB and
0.68 dB on average, respectively. In addition, the deblocking
and deblurring effects that must be addressed in the block-
based compression methods have been achieved. In conclu-
sion, the proposed algorithm can contribute significantly to
the performance improvement of the EC-based FMC and can
be extended to various studies related to video compression.
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