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ABSTRACT An automatic classification of fine art images is limited by the scarcity of high-quality
labels made by art experts. This study aims to provide meaningful automatic labeling of fine art paintings
(machine labeling) without the need for human annotation. A new unsupervised Adversarial Clustering Sys-
tem (ACS) is proposed. The ACS is an adversarial learning approach comprising an unsupervised clustering
module generating machine labels and a supervised classification module classifying the data based on
the machine labels. Both modules are linked through an optimization algorithm iteratively improving the
unsupervised clusters. The objective function driving the improvement consists of the within-cluster sum of
squares (WCSS) error and the supervised classification accuracy. The proposed method was tested on three
different fine-art datasets, including two sets of paintings previously categorized by art experts and one never
categorized collection of Australian Aboriginal paintings. The unsupervised clusters were analyzed using
standard unsupervised clusteringmetrics and a reliabilitymeasure betweenmachine and human labeling. The
ACS showed higher reliability compared to the classical k-means clustering method. The content analysis
of unsupervised clusters indicated grouping based on scene composition, type, and shape of the object, edge
sharpness and direction, and color palette.

INDEX TERMS Adversarial learning, art classification, data labeling, deep learning, digital humanity,
optimization, transfer learning, unsupervised clustering.

I. INTRODUCTION
In the last years, the digital collections of visual artworks
such as pictures of paintings, drawings, posters, prints, pho-
tographs, or daguerreotypes have dramatically increased.
Online exhibitions, virtual tours, auctions, and sales are
becoming more common and popular. It creates a growing
need for new instruments to automatically perform a rapid
large-scale analysis, categorization, recognition, search, and
digitized art retrieval.

One of the biggest challenges found in the automatic
analysis of art is the semantic gap between objective digital
representation of artworks and complex subjective art con-
cepts. The meaning of an image or a style labeling is based
on human attributes of personal perception, sensitivity, and
ideas. To make it even more challenging, these attributes
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must be supported by extensive training and expertise. This
means that only a very few individuals around the world
have ‘‘the license’’ to define what are the generally agreed
styles or trends in art, and thus, only a very few experts can
provide ‘‘ground truth’’ art labels. Such labels have been
used to create research datasets to support the development
of supervised deep learning techniques for an automatic art
classification. These techniques can be highly reliable, but
only if the classification system is trained on expert label-
ing [1]. Limited availability and the high cost of databases
labeled by experts reduce potential applications of supervised
classification.

The advantage of supervised learning is that computer
software learns how to mimic human experts’ aesthetic per-
ception. Therefore, the supervised learning quality is assessed
by measuring how close are the machine predictions to the
human labels. Nevertheless, one can ask what would happen
if, instead of relying exclusively on art experts, we would
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like to rely either fully or partially on machines? What if
we would like to ask the machines to provide their own
labels or categories of art based on objective learning criteria?
How to define these criteria? How useful would be such
labeling? Would it be close to the human-made labeling?
Would such closeness be important? These are some of the
frontier research questions that need to be answered to merge
machine learning with fine-art and humanities.

In this study, we propose a new unsupervised deep learning
paradigm for the automatic labeling of fine-art paintings.
We validate the proposed approach on three different datasets
of fine-art paintings and demonstrate that it leads to labels
that are close to human labeling based on scene composition,
type, and shape of the object, edge sharpness and direction,
and color palette. This means that the proposed approach can
provide a useful tool for unsupervised labeling of fine-art
paintings.

The remainder of this paper is organized into five sec-
tions: Section II presents a summary of related works.
Section III describes the proposed methodology. The datasets
used to validate the proposed method are described in
Section IV. Experimental results and discussion are presented
in Section V, and Section VI concludes the paper.

II. RELATED WORK
While the annotation of natural images is usually based on
the content or the objects they represent (e.g., cat, apple, car),
the annotation of digitized artwork is based on the mean-
ing or other high-level artistic concepts. Digitized paintings
are generally annotated according to their historical period,
author, and artistic movement, commonly named ‘‘style’’ [2].
However, even for art scholars, art categorization can be a
challenging task. It is due to overlapping characteristics of
consecutive historical periods, stylistic inconsistencies of the
same artists, the presence of unrelated artistic elements that
do not belong to a specific period or style, and the ambiguity
associated with the assessment of abstract and subjective
visual features of art [3], [4].

Computer-based art analysis is an emerging field of
research; however, the majority of current studies focus on
the supervised classification of art images. The key factor
contributing to the popularity of supervised learning is that
the learning process is based on human-made expert labels;
therefore, the automatic categorization gives outcomes very
close to manual classification by humans. Due to centuries
of tradition, there is high trust and general social acceptance
of these labels. Unfortunately, the manual labeling process is
prone to errors, expensive, and time-consuming. In addition,
in cases of newly emerging artistic movements or rare cultural
collections, the expertise required for the annotation process
could not be available at all.

The latest deep learning technologies offer an alternative
solution to the art labeling process in the form of unsuper-
vised clustering (or categorization) that can be conducted in
a fully automatic way, without the need for manual annotation
by experts. We will refer to this process as ‘‘machine-made’’

labeling. An unsupervised classification system can organize
a set of images into clusters by discovering new patterns
or relationships that are not necessarily apparent to human
beings. Despite these advantages, the unsupervised labeling
of art has not yet been thoroughly explored. At this stage,
it is not clear how close this type of categorization is to
supervised labeling and whether the unsupervised machine
labels can be useful and socially or professionally acceptable
in art categorization.

Several earlier studies proposed to address the fine-art
categorization from the perspective of supervised learning
using techniques ranging from classical feature extraction
and machine learning approaches to the implementation of
complex deep learning methods. Classical machine learn-
ing approaches were, for example, explored in some of
the first studies of automatic art analysis [5]–[10]. Arbi-
trary hand-crafted features were extracted from images of
painting and classified using standard classifiers such as
Support Vector Machine (SVM), Gaussian Mixture Model
(GMM), or k-Nearest Neighbors (k-NN) algorithm. Due
to the nature of these techniques, only relatively small
datasets of images were needed to train the classifiers.
A wide range of image transforms was investigated in a
search for optimal image descriptors. It included param-
eters of the Fourier transform, the scale-invariant feature
transform (SIFT), the color scale-invariant feature transform
(CSIFT), the opponent-SIFT (OSIFT), local binary patterns
(LBP), color LBP, GIST, pyramids of histograms of ori-
entation gradients (PHOG), and the histogram of oriented
gradients (HOG).

With the introduction of Deep Learning (DL)
techniques and Convolutional Neural Network (CNN) clas-
sifiers, it became apparent that the automatic categoriza-
tion of paintings based on DL outperforms the classical
approaches [11], [12]. The initial art classification methods
applied CNN models as feature extractors and linear classi-
fiers such as SVMs to classify the features [11]–[17].

One of the most important concepts related to DL is
transfer learning [1], [18]–[30]. Popular programming and
software development platforms such as Matlab or Python
offer a wide range of pre-trained CNN models of different
structures and complexity. Thesemodels have been trained on
vast datasets (in the order of millions) of images to perform
the general task of image object classification. Given such
a pre-trained network as a starting point, fine-tuning can be
applied on a relatively small training dataset (in the order of
thousands) to perform a more specific image classification
task [31]. The application of pre-trained CNN models has
been instrumental in reducing the time and data requirements
of fine-art classification tasks. One of the first studies using
transfer learning was reported by Tan et al. [22], in which a
pre-trained CNN was fine-tuned to perform stylistic classifi-
cation of digitized paintings. It was shown that the transfer
learning approach outperforms methods using CNNs as fea-
ture extractors only. Fine-tuned CNNs have also been used to
resolve other than classification tasks. In [32], for example,
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the use of DL techniques for evaluating the beauty, sentiment,
and remembrance of art was explored. In [33], CNN models
were applied to detect cracks in paintings.

While a supervised classification of fine art has received
plenty of attention from researchers, an unsupervised
classification has been relatively less explored. Initial unsu-
pervised studies aimed to determine the best hand-crafted
features to perform clustering based on the visual appearance
of paintings. In [34], for example, local and global features
were investigated for clustering. Low-level features, diverse
color statistics, and several features from face detectors were
combined to perform an unsupervised classification using
the principal component analysis (PCA) for the dimension-
ality reduction and the k-means algorithm clustering method.
Eight clusters were generated, and their correlation with his-
torical art periods was investigated. The results indicated that
the clusters were not uniquely aligned with artistic move-
ments. Instead, the grouping followed common colors and
contents such as portraits, landscapes, and objects across
different art movements. In [35], a nonlinear technique called
Unsupervised Feature Learning k-means (UFLK) [36] was
applied to extract features from images representing eight
artistic movements in an unsupervised fashion. The Spectral
Clustering (SC) algorithm grouped the features in an unsu-
pervised way, and the SVM classifier performed a supervised
categorization to determine the unsupervised clustering effi-
ciency. The results indicated that the supervised classification
accuracy was higher for the clusters of UFLK features than
for row image patches clusters. However, the correlation of
the unsupervised clusters with the eight artistic movements
was not analyzed. A selective clustering approach was pro-
posed in [37] to categorize a collection of fine-art paintings
according to the artist. A CNN was implemented as the
feature extraction technique, and a robust continuous cluster-
ing algorithm [38] complemented by the Bayesian rejection
mechanism was used to classify works of six different artists.
A deep clustering model was implemented in [39] to catego-
rize a collection of 8,446 paintings from nine artistic periods.
This approach adopted the Deep Convolutional Embedding
Clustering (DCEC) framework introduced in [40]. The net-
work structure consisted of a convolutional autoencoder with
an embedded clustering layer. The outcomes were consistent
with [34] in showing that the unsupervised categorization
followed the characteristics of a visual similarity rather than
an artistic movement.

In this study, we take further the concept of combin-
ing an unsupervised clustering with a supervised classifica-
tion introduced in [39] and propose a new method which
(i) employs an unsupervised clustering module trained to
cluster the paintings and (ii) a supervised classification net-
work module trained to recognize the categories proposed
by the unsupervised module. However, unlike in [39] in our
approach, both modules are connected by an optimization
algorithm that iteratively improves the unsupervised cluster-
ing by increasing the supervised classification accuracy and
minimizing the unsupervised clustering error.

III. METHODOLOGY
A. RESEARCH HYPOTHESIS
This research addresses the paradigm of unsupervised
labeling of fine-art paintings. The goal was to achieve
machine-made labels that could automatically categorize fine
art paintings without the need for human annotation. In other
words, we wanted to achieve machine-made labels that group
art into distinct categories. To establish an objective quality
criterion for the machine-made clusters, it was hypothesized
that the higher quality of unsupervised clusters should result
not only in the lower value of the within-cluster sum of
squares (WCSS) error but also in the higher accuracy of the
supervised classification based on these clusters.

B. PROPOSED SYSTEM
The proposed ACS combines an unsupervised clustering (or
machine labeling) module and a supervised classification
module based on machine-made labels. Both modules work
as an adversarial Generator-Assessor team. The team is linked
via a numerical optimization procedure which iteratively
improves the quality of the unsupervised clusters.

The unsupervised clustering module (Generator) generates
proposed clusters, and the supervised classifier (Assessor)
makes an assessment of their quality. The objective function
driving the iterative improvement of the unsupervised clusters
consists of two components, the standard clustering error
(i.e., the WCSS error) and the accuracy of the supervised
classification based on the unsupervised clusters. The clusters
are gradually modified in a way that simultaneously mini-
mizes the clustering error and maximizes the classification
accuracy.

As shown in Fig. 1, the proposed ACS consists of the
following general processing steps:

1) STEP 1: FEATURE EXTRACTION
The unlabeled dataset of images representing fine-art paint-
ings is transformed into features. A pre-trained CNN
is employed as a feature extractor generating network
embeddings.

2) STEP 2: UNSUPERVISED CLUSTERING (GENERATOR)
The network embeddings are grouped in an unsupervisedway
using a standard clustering algorithm. At this stage, tempo-
rary feature clusters are generated, and the current clustering
error is estimated.

3) STEP 3: MACHINE LABELING
Arbitrary machine labels are assigned to each cluster.

4) STEP 4: DATA SPLITTING
Each cluster of embeddings represented by an associated
machine label is divided into mutually exclusive training
and testing subsets. Combined training subsets from all clus-
ters constitute a machine-labeled training dataset, and the
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FIGURE 1. Block diagram of the proposed Adversarial Clustering System (ACS) for the unsupervised fine-art categorization.

combined testing subsets constitute a machine-labeled testing
dataset.

5) STEP 5: SUPERVISED CLASSIFICATION (ASSESSOR)
Supervised classification of the embeddings into categories
defined by machine labels is performed using a standard
classifier. The classifier is trained using the training set of
features and tested using the testing set. At each iteration,
the current average accuracy (across all categories) of the
testing procedure is estimated.

6) STEP 6: EVALUATION OF THE OBJECTIVE FUNCTION
The average accuracy of the supervised classification (deter-
mined in Step 5) and the clustering error (determined in
Step 2) are used to estimate the current value of the objective
function.

7) STEP 7: OPTIMIZATION PROCEDURE
A numerical optimization procedure is employed to improve
the unsupervised clusters generated in Step 2. The clustering
parameters are modified to minimize the objective function
value. The modified clustering parameters are passed to
Step 2, and Steps 2-7 are repeated until a satisfactory solution
defined by an arbitrarily small value of the objective function
is reached.

The following sections provide details of the above
processing steps.

C. FEATURE EXTRACTION
We used deep network embeddings as inputs to the unsu-
pervised clustering module. Network embeddings extracted
from pre-trained CNN models have been shown to provide
excellent performance in the unsupervised classification of

natural images [41] and speech synthesis [42], outperforming
classical image features.

The neural network embedding process represents a cate-
gorical (an object label) or discrete variable as a real-valued
vector in a continuous multi-dimensional space. The purpose
of this kind of mapping is to either cluster the objects in an
unsupervised or supervised way or to determine relative dis-
tances or relations between objects in the embedding space.
To generate an embedding vector, the input object (for exam-
ple, an image) is put through a neural network pre-trained in
a supervised way to perform a specific recognition task. The
network parameters resulting from the recognition task form
the embedding vector corresponding to the input object. One
of the most challenging parts of the embedding process is to
decide how to pre-train the network, so the resulting embed-
dings are meaningful for the intended application. In the
case of image clustering, the most often used embeddings
are generated by neural networks pre-trained to perform the
image object classification task [41]. In our case, the goal
was to achieve an unsupervised clustering of art images and
to identify the relationship between the unsupervised clusters
and the human annotation of artistic styles.

Our previous fine-painting classification study, based on
transfer learning from object recognition to style art classifi-
cation task, has shown that the pre-trained ResNet-50 model
[43] achieved good classification results over different pre-
trained CNNs and diverse art datasets [1]. Other visual art
studies also have reported good classification performance
using the ResNet-50 network [18], [27]. Although fine-tuning
deeper architectures can exhibit higher classification accura-
cies, this requires longer training times and higher compu-
tational requirements [25], [29]. Therefore, the pre-trained
ResNet-50 model offers an outstanding balance between high
performance and computational cost.
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Consequently, two different types of network embeddings
were tested for comparison. The first set of embeddings
was given by the ResNet-50 [43] model pre-trained to clas-
sify 1000 image object categories [44], and the second set
was obtained from the same ResNet-50 model trained on
object recognition and additionally fine-tuned on theWikiArt
dataset of fine art paintings [45] to recognize 23 artistic
styles [1]. Since the first set was extracted from a network
that had no pre-requisite knowledge of style, it was expected
that these embeddings would lead to object-based rather than
style-based unsupervised clusters. On the contrary, the second
set of embeddings was extracted from a network that had a
pre-requisite knowledge of artistic style. Therefore, it was
more likely to provide style-based clusters. In both cases,
the features were given as a vector of length 2048 taken from
the avg_pool layer of the ResNet-50 model [43]. The first
set of features extracted from the CNN network pre-trained
on image object classification only is referred to as
‘‘ResNet-50-IO’’, and the feature set extracted from the CNN
network pre-trained on object classification and fine-tuned on
artistic style classification is referred to as ‘‘ResNet-50-AS.’’

D. UNSUPERVISED CLUSTERING (GENERATOR)
After testing several potential candidate approaches,
a relatively simple k-means algorithm was chosen [46] as
an unsupervised clustering method for the proposed system.
While more complex techniques may outperform k-means
in specific applications, in our case, the simplicity and easy
adaptation of clustering parameters offered by k-means was
the key factor for making it the best choice. Given a set of
N vectors (x1,x2, . . . , xN ), the k-means clustering algorithm
groups them into k (≤N) sets (clusters) S = {S1,S2, . . . ,Sk}.
The objective is to find an optimal set of clusters S∗ that min-
imizes the within-cluster sum of squares (WCSS) given as,

WCSS (S) =
∑k

i=1

∑
x∈Si
‖x − mi‖2 (1)

where mi is the centroid vector of cluster Si. Due to the
nature of the unsupervised clustering of data, the ground truth
information was not available. Therefore, internal clustering
metrics had to be used to evaluate the quality of the generated
clusters. For this purpose, the Calinski-Harabasz index was
adapted. As given in (2), the Calinski-Harabasz index CHI
was defined as the ratio of the between-cluster variance SSB
and the within-cluster variance SSW multiplied by a constant
factor that depends on the number of clusters k and the total
number of data vectors N [47].

CHI (k) =
(N − k)
(k − 1)

×
SSB
SSW

(2)

The between-cluster variance SSB was defined as the sum
of Euclidean distances between cluster centroids and the
mean vector of the whole dataset, which can be denoted as,

SSB =
∑k

i=1
ni ‖mi − m‖2 (3)

where ni is the number of data vectors within cluster i, mi is
the centroid vector of the i-th cluster, m is the mean vector of

the whole dataset, and ‖mi − m‖2 is the Euclidean distance
between these two vectors.
Similarly, the within-cluster variance SSW was defined as

the sum of Euclidean distances between cluster centroids and
all vectors within a given cluster, which can be denoted as,

SSW =
∑k

i=1

∑
x∈ci
‖x − mi‖2 (4)

where x is a data vector, Si is the i-th cluster,mi is the centroid
of cluster i, and ‖x − mi‖2 is the norm, or Euclidean distance
between these two vectors.
When clustering the data, it was essential to maxi-

mize the Calinski-Harabasz index; This was equivalent to
increasing the between-cluster variance SSB and decreas-
ing the within-cluster variance SSW . However, apart from
well-separated clusters in an objective sense, we also aimed to
achieve clusters that group the art images into categories that
are ideally close to human-made labels given by art experts.
To assess this quality, we used two measures, the unsuper-
vised classification accuracy AUSup and the Krippendorff’s
Alpha-Reliability measure α [48]. To estimate these parame-
ters, we had to create an arbitrary link between the machine
labels and human-made labels of artistic styles. As explained
in Section V, it was done either by mapping each of the
unsupervised clusters to the style represented by the largest
number of paintings belonging to this cluster or using the
Hungarian mapping algorithm [49]. By doing this, a form
of ‘‘ground truth’’ was established for each machine-made
cluster. The unsupervised classification accuracy AUSup was
defined as:

AUSup
TP+ TN

TP+ TN + FP+ FN
(5)

where TP is the number of true positive assignments, TN is
the number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.

The Krippendorff’s Alpha-Reliability α is a statistical
measure of the agreement achieved between different asses-
sors assigning labels to a set of vectors [48]. In our
case, it was applied to determine the agreement between
machine labeling and human labeling. The Krippendorff’s
Alpha-Reliability α was defined as:

α = 1−
D0

De
(6)

where D0 was the observed disagreement probability in
assigning labels to vectors, and De is the expected dis-
agreement probability happening by chance. Theoretical
and computational details of calculating the Krippendorff’s
Alpha-Reliability can be found in [48]. The values of α are
between 0 and 1. When α = 1, there is a perfect agreement
between assessors. When α = 0, there is no correlation
between labels assigned by different assessors, and when
0 < α < 1, there is a systematic disagreement between asses-
sors exceeding what would be expected by chance. In other
words, the closer is the value to 1, the higher is the agreement
between assessors.

VOLUME 9, 2021 81973



C. Sandoval et al.: Adversarial Learning Approach to Unsupervised Labeling of Fine Art Paintings

E. ASSIGNING MACHINE LABELS
Each of the clusters generated by the unsupervised clustering
process was assigned an arbitrary label. We call these labels
‘‘machine labels’’ as opposed to subjective labels given by
human experts during the traditional manual labeling process.

F. TRAINING AND TESTING DATASETS
To achieve a balanced representation of machine-made cate-
gories during the supervised training/testing procedure, each
of the unsupervised data clusters was split into training subset
(80%) and testing subset (20%). The resulting training sub-
sets were grouped together to create a pool of training data,
and all testing subsets were grouped to create a pool of testing
data. Each data vector camewith an associatedmachine label.

G. SUPERVISED CLASSIFICATION (ASSESSOR)
A classical multiclass Support Vector Machine with linear
kernel and Error-Correcting Output Coding (ECOC) algo-
rithm [50] was trained to classify the dataset of network
embeddings into machine-made categories. It was trained
in a supervised way, with machine labels serving as the
‘‘ground truth’’ information. The SVM algorithm was trained
to minimize the classification error and thus maximize the
supervised classification accuracy ASup given as,

ASup =
TP+ TN

TP+ TN + FP+ FN
(7)

where TP is the number of true positive, TN is the number of
true negative, FP is the number of false positive, and FN is
the number of false negative classification outcomes.

H. OPTIMIZATION OF UNSUPERVISED CLUSTERING
A genetic algorithm [51] was implemented as a numeri-
cal optimization technique aiming to iteratively improve the
unsupervised clustering. Given a fixed number of clusters k ,
the algorithm conducted a search through the vector space
of cluster centroids to find an optimal set of clusters S∗ that
minimizes the following objective function:

fobj (S) = WCSS (S)+ ASup (S)−1 (8)

Theminimization of (8) was equivalent to the simultaneous
maximization of the supervised classification accuracy ASup
and minimization of the unsupervised within-cluster sum of
squares WCSS. The initial centroids were determined using
the k-means++ algorithm [52], and the number of clusters k
was set depending on the experimental setup and the tested
dataset (see Section V).

IV. DATASETS
A. DATASETS OF FINE ART IMAGES
Three datasets of images depicting fine art paintings were
used to evaluate the proposed ACS method.

1) DATASET 1
The first dataset was a collection of 4,105 digitized images
representing five stylistic categories: Australian Aboriginal

art, Abstract art, Byzantine Iconography, Cubism, and North-
ern Renaissance. The Australian Aboriginal art collection of
images was created by the authors, whereas the remaining
four styles were sourced from the publicly available Pandora
18K dataset professionally labeled by art experts [53], [54].
Fig. 2 shows the composition details of this dataset. The style
representation was perfectly balanced, with each stylistic
category contributing 20% to the total number of paintings.

FIGURE 2. Dataset 1 balanced - number of images per style (in
percentage).

The Australian Aboriginal art is predominantly character-
ized by abstract compositions. There are no realistic depic-
tions of objects, people, faces, or sceneries. People and
animals are sometimes depicted in a form that resembles
x-ray images.Many paintings have structure-like patterns that
can be overlaid with symbols. There is no perspective nor
dimensionality. Some paintings are almost monochromatic,
whereas others use a wide range of colors. A large proportion
of Aboriginal paintings show an aerial view depicting abstract
elements related to the Australian landscape and the indige-
nous cosmology, mythology, laws, and belief systems [55].

The remaining four styles in Dataset 1 included artistic
movements from ancient and modern historical periods that
are only loosely related to each other. The ancient styles
are the Byzantine Iconography, which dates between the
years 500 and 1400, and the Northern Renaissance movement
that began in the year 497 and lasted through to 1550. The
two modern styles are the Cubism movement, which started
in 1907 and ended in 1920, presenting an overlapping with
the second style, Abstract art, which period goes from 1910 to
the present [3]. As previously shown in [1], a supervised CNN
model was able to categorize the five movements included in
Dataset 1 with high accuracy.

2) DATASET 2
The second dataset was the Painting Database for art
Movement Recognition Pandora 18K [53], [54]. It included a
total of 18,038 images of paintings representing 18 different
artistic styles. Fig. 3 illustrates the distribution of images
across styles. It shows that the numbers of images were
quite evenly distributed, with only a small amount of imbal-
ance. Due to the very rigorous labeling process done by art
experts, the Pandora 18K dataset is regarded to be one of
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FIGURE 3. Pandora 18K number of images per style (in percentage).

the highest quality research datasets available for the fine art
classification.

3) DATASET 3
While in Dataset 1, the Australian Aboriginal style was
represented alongside other styles, the Dataset 3 consisted
exclusively of the Australian Aboriginal art paintings. It con-
tained a collection of 5,313 images obtained for research
purposes from different online galleries [56]–[59] that are
members of the Australia Aboriginal Art Association [60].
There were no artistic style labels attributed to these artworks.
The authors’ informal visual inspection indicated that the
collection potentially included several stylistic sub-categories
characterized by a specific scene composition and coloring.
However, no expert labels identifying these categories were
available. The existence of such a vast uncategorized collec-
tion of culturally significant artworks was one of the factors
validating the purpose of our research. We wanted to find
out whether an automatic categorization could provide useful
results for the purpose of storage and retrieval of Aboriginal
art.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the experimental results and dis-
cuss the efficacy of the proposed ACS. We compare the
ACS method with the standard k-means clustering across
metrics given in Section III using two different image fea-
tures: ResNet-50-IO and ResNet-50-AS. We have a closer
look at the stylistic contents of clusters generated by the
unsupervised ACS classifier to understand what kind of cri-
teria were used to group the fine art paintings and how close
these criteria are to human-made categorization. Since three
different datasets of paintings were used in testing, and each
dataset had a different size and composition, each dataset’s
results are analyzed separately.

A. RESULTS FOR DATASET 1
In the case of Dataset 1, we wanted to see how well a
mixture of paintings, including the Australian Aboriginal
art and four other visually similar styles, can be grouped
into separate clusters in an unsupervised way. To evalu-
ate how many distinct machine-made categories we can
accurately identify using the unsupervised k-means clus-
tering, we applied the elbow method [61] to cluster the
ResNet-50-IO and ResNet-50-AS features extracted from
Dataset 1. The variance of the clustering error WCSS given
in (1) was calculated for a different number of clusters. The
optimal number of clusters was determined by the inflec-
tion point (elbow) of the plot of the error variance versus
the number of clusters; at the inflection point, the slope of
the curve sharply drops. Fig. 4 shows the implementation
of the elbow method for Dataset 1 with the two sets of
embedding features. It was found that for the ResNet-50-IO
features, the optimal number of clusters was four (k = 4),
and for the ResNet-50-AS, it was five (k = 5). The optimal
number of clusters given by the ResNet-50-AS was per-
fectly aligned with the number of human-made categories.
It indicated that the ResNet-50-AS features extracted from
a network pre-trained on the artistic style recognition task
were more likely to follow the style-based distribution than
the ResNet50-IO features extracted from a network having
no prior knowledge of style. It must be noted that the elbow
approach led to an optimal value of k with respect to the
k-means using the WCSS error given in (1) as an objective,
but not necessarily with respect to the fobj given in (8) and
used by the ACS. However, to evaluate the unsupervised
clustering accuracy AUSup as given in (5) and the Krippen-
dorff’s Alpha-Reliability given in (6), we had to establish a
hypothetical ground truth for the machine labels. The elbow
test results indicated that we could reasonably set the number
of clusters k to the number of human-made artistic categories
represented by a given dataset. To estimate the performance

FIGURE 4. Identification of the optimal number of clusters using Elbow
method for Dataset 1.
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metric presented in Table 1, we had to create a correspon-
dence link (mapping) between the human labels and the
machine labels. Themapping process provided the same links
when using the Hungarian method and the largest number of
images method. Fig. 5 and Fig. 6 show the outcomes of the
maximum number of images approach.

TABLE 1. Performance of the Adversarial Clustering System (ACS) and
k-means for k = 5 clusters from Dataset 1.

FIGURE 5. Mapping between the human labels and the unsupervised
machine labels for ResNet-50-IO features for Dataset 1 using the
maximum number of paintings method.

FIGURE 6. Mapping between the human labels and the unsupervised
machine labels for ResNet-50-AS features for Dataset 1 using the
maximum number of paintings method.

The values shown in Table 1 indicate that in the
case of Dataset 1, ResNet-50-AS features outperformed
the ResNet-50-IO features on all measures. Specifically,
the Krippendorff’s Alpha-Reliability α was higher for
ResNet-50- AS features, indicating a smaller disagreement
between machine-made and human-made labels.

Comparing the metrics obtained with the ACS system
against the results from the k-means method for both sets
of features; it can be observed that although the WCSS error
was slightly smaller for the traditional k-means method, indi-
cating a stronger within-cluster concentration for k-means.
However, the CHI parameter and the unsupervised classifica-
tion accuracy AUSup had higher values with the ACS system,
pointing to a stronger separation between clusters. The metric
of supervised classification (Asup) and Krippendorff’s Alpha-
Reliability, α, yield higher values with the ACS system.
Consequently, the ACS system is in higher agreement with
the human annotations than the k-means method.

Table 2 shows the results for different numbers of clusters
using both sets of features, ResNet-50-IO and ResNet-50-AS.
There are no significant differences between the values of
the supervised classification accuracy (ASup) obtained with
ResNet-50-IO and ResNet-50-AS. In both groups of fea-
tures, the supervised classification accuracy ASup decreases
monotonically as the number of clusters increases achieving
about 98% for two clusters and about 90% for 8 clusters. The
WCSS error and the Calinski-Harabausz index exhibit similar
behavior.

TABLE 2. ACS Clustering results for different number of clusters using
Dataset 1 with ResNet-50-IO and ResNet-50-AS features.

The results of mapping between machine-made clusters
C1-C5 and the human-made artistic style labels (Aboriginal,
Abstract, Byzantine, Cubism, and Northern Renaissance)
are presented in Fig. 5 and Fig. 6 for ResNet-50-IO and
ResNet-50-AS features, respectively. For both sets of fea-
tures, cluster C1, cluster C3, and cluster C5 contain a rela-
tively large number of paintings that belong to a single style,
namely Aboriginal, Byzantine Iconography, and Northern
Renaissance, respectively. However, the ResNet-50-AS clus-
ters attracted significantly more images representing these
particular styles compared to the ResNet-50-IO clusters. This
can be attributed to the fact that the ResNet-50-AS features
were generated by a network pre-trained to differentiate
between artistic styles, whereas the ResNet-50-IO came from
a network that had no pre-requisite knowledge of artistic
styles. Clusters C2 and C4 combined artworks from modern
styles (Abstract art and Cubism) for both sets of features.
Generally, the Dataset 1 clustering led to more refined dif-
ferentiation between ancient styles while the modern styles
were mixed together.

Examples of the ACS clustering results based on the
ResNet-50-AS features are illustrated in Fig. 7. For each
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FIGURE 7. Top 10 paintings based on the ascending distance from the cluster centroid – Dataset 1, ResNet50-AS features, ACS clustering
with k = 5.

cluster C1 to C5, the images are listed in ascending order
based on their distance from the cluster centroid. The artistic
movement of these five clusters can be clearly identified.
Namely, cluster C1 corresponds to Aboriginal art. Cluster C2
includes paintings with free-form and geometric composi-
tions, which are related to the Abstract style. Cluster C3
shows images with religious and holy figures, corresponding
to Byzantine iconography. Cluster C4 shows artworks painted
by Pablo Picasso, Franz Marc, and Bela Kadar that belong
to Cubism [2]. Finally, intricate portraits of the Northern
Renaissance period are grouped in cluster C5.

B. RESULTS FOR DATASET 2
For Dataset 2, the clustering aimed to test unsupervised
grouping of a relatively large number of 18 artistic styles with
various degrees of similarity into different machine-made
categories. In the same way, as for Dataset 1, the elbow
method was used to determine the optimal number of clus-
ters for the unsupervised classification. The elbow graph
indicated that the number of clusters for the ResNet-50-IO
features should be equal to eight (k = 8), and for the set of
ResNet-50-AS features, it should be equal to ten (k = 10).
Thus, the number of optimal clusters for both sets of features
differed significantly from the number of 18 historical periods
(human-made labels) included in Dataset 2. As for Dataset 1,
the optimal number of clusters identified for Dataset 2 and the
ResNet-50-IO features was smaller than the optimal number
of clusters determined for the ResNet-50-AS features.

Since the number of artistic groups (human labels) in
Dataset 2 was considerably larger than in Dataset 1, the map-
ping between machine labels and the human labels by deter-
mining which human label (style) was represented by the
largest number of images within a given cluster was not
straightforward applicable. For this reason, to find the best
match between the ACS clusters and the 18 human-made

labels, the Hungarian algorithm frequently used in assign-
ment problemswas applied [49]. This algorithm implemented
a combinatorial optimization procedure to find an optimal
distribution matrix mapping the human-made labels (artistic
styles) into the machine labels (clusters). It was achieved by
minimizing a cost function measuring the amount of style
mismatch given by the mapping array.

The Hungarian mapping results for 18 clusters are
shown in Fig. 8 and Fig. 9 for the ResNet-50-IO and the
ResNet-50-AS features, respectively. In both cases, the dis-
tribution of the artistic movements between the clusters and
the percentage composition of artisticmovements within each
cluster indicate that all clusters included a mixture of artistic
styles; however, some clusters contained a minimal number
of closely related styles.

For both sets of features, cluster C3 contains a substantial
percentage of images that are members of the Byzantine
Iconography whereas, cluster C4 contains the Cubism move-
ment predominantly. The majority of images in cluster C1
represent the Abstract style (66.74% for the ResNet-50-IO
C1 cluster and 53.42% for the ResNet-50-AS C1 cluster).
However, this was only 27.75% (for ResNet-50-IO C1)
and 36.03% (for the ResNet-50-AS) of the total number of
Abstract images included inDataset 2. The remaining clusters
includemore diverse compositions of images that belonged to
different artistic periods.

In general, the number of images within clusters
that belonged to a single style was larger when using
ResNet-50-AS features than when using the ResNet-50-IO
features. This was again consistent with the fact that the
ResNet-50-AS features contained artistic style knowledge as
they were derived from a CNN trained to classify art images.

When using ResNet-50-AS features (Fig. 9), cluster C3
showed the most uniform style definition with 74% of images
representing the Byzantine Iconography; it was 89.5% of the
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FIGURE 8. Mapping between the human labels (artistic styles k = 18) and the unsupervised machine labels (ACS clusters) for ResNet-50-IO
features for Dataset 2. a) Distribution of the artistic styles (human labels) among the ACS clusters (machine labels). b) Percentage composition of
each ACS cluster (machine labels) according to artistic styles (human labels).

total number of all Byzantine Iconography images included
in Dataset 2. Cluster C4 and C5 exhibited a significant con-
centration of paintings belonging to the same artistic period,
although with a lower percentage than the one showed in
cluster C3. Namely, 70.85% of images in cluster C4 belonged
to Cubism, which corresponds to 47.35 % of all Cubism

paintings in Dataset 2, and 31.67% of images in cluster C5
represented Northern Renaissance which was 48.20% of all
Northern Renaissance paintings in Dataset 2.

Table 3 compares the ACS performance with the k-means
method for 18 clusters of Dataset 2 using ResNet-50-IO and
ResNet-50-AS features. In comparison with Table 1, Table 3
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FIGURE 9. Mapping between the human labels (artistic styles k = 18) and the unsupervised machine labels (ACS clusters) for ResNet-50-AS features
for Dataset 2. a) Distribution of the artistic styles (human labels) among the ACS clusters (machine labels). b) Percentage composition of each ACS
cluster (machine labels) according to artistic styles (human labels).

indicates that for the 18 clusters of Dataset 2, the unsuper-
vised classification accuracy AUSup and the Krippendorff’s
Alpha-Reliability α index presented lower values, indicating
that the machine-made labels (clusters) were not as strongly
related to the human-made labels as in the case of 5 clusters

of Dataset 1. Among the Table 3 values, the ResNet-50-AS
features presented the best performance in terms of AUSup
and α, once again confirming that unsupervised clustering
of features extracted from a network pre-trained to recognize
artistic styles leads to results that are closer to human labeling
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TABLE 3. Performance of the Adversarial Clustering System (ACS) and
k-means for k = 18 clusters from Dataset 2.

TABLE 4. ACS Clustering results for different number of clusters using
Dataset 2 with ResNet-50-IO and ResNet-50-AS features.

TABLE 5. Performance of the Adversarial Clustering System (ACS) and
k-means for k = 10 and k = 12 clusters from Dataset 3.

of art than features extracted from a network train to classify
objects in general. Otherwise, Table 3 shows very similar
trends to Table 1. Like for Dataset 1, clustering of Dataset 2
shows that the WCSS error values obtained with the k-means
method for both sets of features are slightly lower than the
values obtained with the ACS. Also, theCHI, AUSup,ASup, and
α values show that the ACS outperforms the k-meansmethod.

The ACS clustering results for both sets of features and
the number of clusters ranging from 8 to 18 in steps of 2 are
presented in Table 4. The observed trends are consistent
with Table 2 for Dataset 1. The supervised accuracy ASup
values do not show significant differences between the two
different sets of features. For the ResNet-50-AS clusters, the
ASup is only around 1% better than for the ResNet-50-IO.
For both sets of features, the WCSS error, CHI, and the
ASup values decrease when the number of clusters increases.
For all numbers of clusters, the WCSS error and the CHI
index are slightly higher for the ResNet-50-AS than for the
ResNet-50-IO features.

Fig. 10 shows an example of the unsupervised clustering
outcome for the ACS using ResNet-50-AS features and the

cluster number set to ten (k = 10). Each row corresponds to
a different cluster, and for each cluster (C1-C10), there are
the top 10 paintings arranged in the ascending order of their
Euclidian distance to the cluster centroid.

It can be observed that in most cases, the grouping into
unsupervised clusters was based on the scene composition
and types of depicted objects rather than the style classifi-
cation. A closer inspection of images grouped within each
cluster shows that: Cluster C1 combines paintings that depict
highly realistic, almost photographic-like landscapes with
trees and sharp objects-defining edges as common character-
istics; the artworks belong to several styles, including Impres-
sionism, Realism, and Baroque. Cluster C2 concentrates
images from Abstract and Cubism, for which semi-geometric
squared and linear shapes are common features. Cluster
C3 groups artworks depicting semi-realistic landscapes with
buildings or people painted with diffused brushstrokes creat-
ing very soft edges; these images belong to Fauvism, Post
Impressionism, and Expressionism. These three styles in
cluster C3 have been previously reported to show high con-
fusion rates when classified with CNN models in a super-
vised way due to smooth transitions between these artistic
movements [1], [4]. Scenes depicting people in dark back-
grounds are predominant attributes of cluster C4; this type
of scenery is typical of High Renaissance, Rococo, Real-
ism, and Romanticism. Cluster C5 is formed by paintings
showing large plain-color areas and a lack of perspective
created by the domination of vertical and horizontal lines or
object borders. These paintings belong mostly to Byzantine
Iconography and the Early Renaissance. Cluster C6 shows a
very uniform artistic style representation; it contains Byzan-
tine Iconography works. Cluster C7 groups paintings from
Cubism, Surrealism, and Fauvism having an apparent visual
similarity in scene composition and colors. The presence of
angel figures is a common characteristic of cluster C8, which
contains mostly artworks painted by Gustave Moreau, one of
the most representative artists of Symbolism [4]. Cluster C9
is comprised of paintings depicting people and having color
palettes characteristics to High Renaissance, Baroque, and
Rococo; the latter two artistic styles are known to be strongly
related [2]–[4]. Cluster C10 comprises portraits from High
Renaissance, Baroque, Rococo, and Romanticism.

Although theACS achieved a better machine-made cluster-
ing agreement with the art experts compared to the k-means
method, in general, the unsupervised grouping does not fully
agreewith the labels created by art experts. However, wewere
able to identify several critical visual criteria used to gener-
ate the machine-made clusters. These criteria include scene
composition, types of objects, presence or lack of perspective,
dominating directions of edges, the sharpness of edges, and
the color palette.

C. RESULTS FOR DATASET 3
The unsupervised clustering of Dataset 3 aimed to analyze
howwell the Australian Aboriginal art can be subdivided into
separate categories.
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FIGURE 10. Top 10 paintings based on the ascending distance from the cluster centroid – Dataset 2, ResNet50-AS
features, ACS clustering with k = 10.

FIGURE 11. Top 10 paintings based on the ascending distance from the cluster centroid – Dataset 3, ResNet50-IO
features, ACS clustering with k = 10.

As explained in Section IV, Dataset 3 had no human-made
labels annotating artistic styles. Therefore, it was particularly
interesting to see what kind of taxonomy will be proposed

by the unsupervised clustering procedure and whether this
taxonomy can be useful in the absence of ‘‘educated’’ labels
made by art experts?
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FIGURE 12. Top 10 paintings based on the ascending distance from the cluster centroid – Dataset 3, ResNet50-AS
features, ACS clustering with k = 12.

TABLE 6. ACS Clustering results for different number of clusters using
Dataset 3 with ResNet-50-IO and ResNet-50-AS features.

Like in previous cases, the optimal number of clusters for
the unsupervised classification of Dataset 3 was determined
using the elbowmethod. It was found that the optimal number
of clusters for the ResNet-50-IO features was ten (k = 10),
and for the ResNet-50-AS features, it was twelve (k = 12).
The ACS clustering results for different numbers of clus-

ters using both sets of features are presented in Table 6. In all
cases, the ASup shows only a small variation between the

two sets of features. Similar to previous experiments with
Datasets 1 and 2, ASup accuracy tends to decrease as the num-
ber of clusters increases. However, significant differences
between the WCSS values for the ResNet-50-IO and the
ResNet-50-AS features suggest that these two types of fea-
tures contain different information about the paintings. Inde-
pendent of the number of clusters, the ResNet-50-AS features
lead to smallerWCSS values, indicating that the pre-requisite
style knowledge inherited by ResNet-50-AS features assists
with the formation of objectively better-defined clusters.

Fig. 11 and Fig. 12 show examples of the top ten paintings
within each cluster ranked from the lowest to highest based
on the distances of its feature vectors to the cluster centroid.
Fig. 11 shows the top ten paintings (per cluster) resulting
from grouping the ResNet-50-IO features into 10 clusters.
Whereas Fig. 12 illustrates the top ten paintings resulting
from grouping the ResNet-50-AS features into 12 clusters

When looking at the ResNet-50-IO clusters in Fig. 11,
it can be observed that Cluster C2 contains Australian land-
scapes depicted from the aerial perspective. Various graphical
symbols densely embedded into the landscapes tell ancestral
Aboriginal stories. This cluster includes several artworks
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painted by the famous artists Damien and Yilpi Marks. Clus-
ter C1 also includes landscapes; however, these paintings
clearly differ from those in C2 as they do not have the same
high density of symbols. In addition, some of the C1 paintings
are made using the ‘‘dot technique’’, which does not appear
in C2. Cluster C4 contains multi-colored backgrounds with
subtle patterns and larger, very sparse symbols painted on
the top. Cluster C5 contains paintings characterized by large
semi-rectangular blocks of solid colors with visible horizon-
tally orientated borders. Cluster C6 contains paintings with
curvy objects painted in an ochre color pallet (black, brown,
orange, yellow) that evokes the ancestral use of natural pig-
ments such as hard clay and charcoal. Paintings with very
well-defined long brushstrokes are grouped in Cluster C7.
Most of these artworks were painted by Gloria Petyarre,
a renowned Aboriginal artist depicting bush medicine leaves
in her paintings. Cluster C3 also contains leaves, but much
smaller than in C7, and with stokes evoking the movement
of leaves in the wind. Paintings with a distinct presence of
concentric circles and U-form symbols representing women’s
ceremonies [62] are grouped in Cluster C8. C9 groups paint-
ings with monochromatic color palettes and delicate pat-
terns resembling natural stone surfaces. Cluster C10 contains
paintings with squares and rectangles forming repetitive
print-like patterns that characterize the artworks of Tjapalt-
jarri brothers and other artists from the Aboriginal linguistic
group Pintupi [56].

Fig 12 illustrates what happened when the features were
changed to ResNet-50-AS, and the number of clusters was
increased from 10 to 12. Although it can be observed that
some of the Fig. 12 clusters have similar contents to the
Fig. 11 clusters, the indexes of the corresponding clusters
are different. It is also apparent that the larger number of
clusters led to the discovery of new distinct sub-categories not
present in Fig. 11. For example, cluster C4 in Fig. 12 shows
a new group of paintings depicting a dark monochromatic
background with superimposed glowing irregular mesh in a
light color. These artworks are known to refer to climatic
events and include many paintings by Tarisse King. Cluster
C6 is another example of a new group with human-like
figures representing ancestral creation stories. This group
captures many artworks of Fiona Omeenyo. Other clusters
in Fig. 12 appear to be close equivalents of clusters identified
in Fig. 11.

The above analysis allows us to conclude that the proposed
unsupervised image clustering system (ACS) can identify
Australian Aboriginal art sub-categories based on scene com-
position, types and shapes of objects, edge orientation, color
palette, and brush strokes. Even though the ACS clustering
process was not supported by art expertise, it led to the cate-
gorization that could be expected from a non-expert person
aiming to sort the images according to the above criteria.
From this point of view, unsupervisedmachine learning offers
an efficient automatic labeling tool that can be used for the
storage and retrieval of art images that have not been yet cate-
gorized by experts. These findings are particularly significant

because the Australian Aboriginal art does not depict easily
identifiable objects, and it has a very abstract and symbolic
nature that is not easily understandable to cultural outsiders.

VI. CONCLUSION
The study investigated an unsupervised classification of fine-
art paintings. A new unsupervised Adversarial Clustering
System (ACS) was proposed and validated using three dif-
ferent databases of fine-art paintings. In contrast to previous
studies, the proposed method links the unsupervised cluster-
ing with the supervised classification through an optimization
algorithm that iteratively improves the clustering process
according to given objective criteria. Experimental results
revealed that the proposedmethod leads to efficient automatic
labeling of artworks based on scene composition, types, and
shapes of objects, presence or lack of perspective, dominating
directions of edges, the sharpness of edges, and color palette.

A comparison with the standard k-means clustering
method showed that the ACS method leads to a stronger
separation between clusters and gives higher reliability val-
ues between the machine-made and human-made labels.
A comparison between different types of image features
indicated that network embeddings, obtained from networks
pre-trained to recognize fine art, provide more efficient clus-
tering than features obtained from networks pre-trained on
a general object recognition task. Clustering of Australian
Aboriginal art paintings, which were never-before labeled by
art experts, led to the discovery of categorization criteria and
art categories that could be useful for storage and retrieval of
Australian Aboriginal art collections yet to be analyzed by
experts.

In future studies, the proposed ACS method will be evalu-
ated using more complex and diverse cluster techniques, deep
network embeddings, and supervised classification methods.
In addition, future research will investigate the unsupervised
classification of paintings subregions or patches that can pro-
vide a better resolution and details of the stylistic composition
of the artworks.
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