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ABSTRACT Crop and weeds identification is of important steps towards the development of efficient
automotive weed control systems. The higher the accuracy of plant detection and classification, the higher the
performance of the weeding machine. In this study, the capability of two popular boosting methods including
Adaboost.M1 and LogitBoost algorithms was evaluated to enhance the plant classification performance of
four classifiers, namely Multi-Layer Perceptron (MLP), k-Nearest Neighbors (kNN), Random Forest (RF),
and Support Vector Machine (SVM). Four feature filtering techniques including Correlation-based Feature
Selection (CFS), Information Gain (IG), Gain Ratio (GR), and OneR were applied to the image-extracted
features and 10 of the most significant features were selected and fed into single and boosted classifiers.
The RF model trained by IG selected features (IG-RF) was the most appropriate classifier among the
evaluated models whether in single or boosted modes. It was also found that boosting of IG-RF by using
Adaboost.M1 and LogitBoost algorithms improved the classification accuracy. Regarding the performance
values, the LogitBoost-IG-RF structure, which provided a classification accuracy of 99.58%, a kappa (k)
of 0.9948, and a Root Mean Squared Error (RMSE) of 0.0688 on training dataset, was selected as the
most appropriate classifier for plant discrimination in peanut fields. The accuracy, k , and RMSE criteria
of this combination on test dataset were 95.00%, 0.9375, and 0.1591, respectively. It was concluded that
combination of boosting algorithms and feature selection methods can promote plant type discrimination
accuracy, which is a crucial factor in the development of precision weed control systems.

INDEX TERMS Ensemble learning, feature selection, image processing, plant identification, precision
agriculture.

I. INTRODUCTION
Presence of weeds in fields and their competition with the
main plant for water, light, nutrients, and space can cause
irreparable damage to crop performance if the weeds are not
appropriately treated.

Yield losses from 37% to 61% were reported by
Dille et al. [1] in grain sorghum with weed interference in
different regions of the United States. The results from field
studies showed that growers in different regions of the United
States and Canada would potentially lose an average of 31%
to 94% of their dry bean yield [2] and 61% to 83% of the
sugar beet yield [3] due to weeds.

Timely and effective weed management is very important
in peanut, as it increases the yield performance and economic
return of peanut compared to the non-treated strategy [4].
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Precision weed control such as selective spraying or accu-
rate mechanical removal of weeds, is a challenging task that
aims to reduce the amount of herbicides without compro-
mising the quality of crops [5]. Accurate weed detection in
croplands, as a prerequisite for applying any precision weed
management technology [6], is still a challenging step toward
the development of site-specific weed control machines,
especially when there are intra-row weeds that are highly
overlapped with the main plant. Efficient weed removal
weather using variable-rate sprayers, or precise mechanical,
electrical, or thermal hoeing systems, preliminary requires to
detect and segregate weeds from main crop [7]. Computer
vision is a well-known approach that has shown to be suc-
cessful in object recognition and detection in a variety of
applications including agriculture automation and monitor-
ing. The computer vision system uses image processing tech-
niques to process and analyze colour images and achieve the
required classification [8]. The critical procedure for precise
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weed detection is digital image processing, through which
weed can be segmented and extracted from the acquired
images [9]. Several image processing algorithms can be
used to extract distinguishing features from images or videos
obtained from a scene. Numerous types of image-based
features including colour [10]–[12], shape [13]–[15], tex-
ture [16]–[18], wavelet transform [19]–[21], and fusion of
different features [22]–[24] have been applied to plant type
identification with acceptable accuracies encouraging the fur-
ther application of these image-based features for crop-weed
discrimination.

There are large number of features that can be extracted
from images and introduced into the classification mod-
els to discriminate invasive weeds from the main plant.
The problem here is that having too many input features
doesn’t always guarantee obtaining higher classification per-
formance. In addition to useful relevant features, there are
often some features that have collinearity and, maybe, there
are some of the features that have very little correlation with
the plant type. These redundant and irrelevant features can
significantly decrease the accuracy of the developed model
and can increase the training time. The existent classifi-
cation techniques are inadequate to handle a high number
of attributes in terms of training time and/or effectiveness
in selecting the relevant set of features [25]. Therefore,
dimensionality reduction and removal of non-informative or
redundant data from a high dimensional training dataset is
an important preprocessing step in machine learning that
enhances the performance and simplifies the complexity of
the classifier model. The feature selection can be performed
in a supervised mode that takes into account the class infor-
mation, or an unsupervised mode where the class label infor-
mation is unavailable or ignored [26], [27]. One popular type
of supervised feature selection method is feature filtering
which is accomplished by selecting a feature subset from the
original feature set that is the most relevant and pertinent to
the target classes [28], [29].

One of the most usual applications of feature selection
is in classifiers that use the selected features to discrimi-
nate objects into different classes. Different supervised and
unsupervised classifier algorithms includingArtificial Neural
Networks (ANN), Support Vector Machine (SVM), Decision
Tree (DT), Principal Component Analysis (PCA), Bayesian
Classifier (BC), Linear Discriminant Analysis (LDA),
K-Means, k-Nearest Neighbors (kNN), etc. have been applied
for distinguishing the crops from weeds [7], [13], [30]–[38].

A technique to increase the classification accuracy is com-
bining the decisions of multiple independent base classifiers
to achieve a booster classifier, which is called ensemble
classifier. Ensemble learning is a machine learning paradigm
in which multiple learners are trained to solve the same prob-
lem [39]. A form of ensemble learning is known as boosting,
in which a set of simple classifiers that are also called weaker
learners, are combined to construct a relatively stronger
classifier [40], [41]. Two of the most common boosting
algorithms are Adaboost.M1 and LogitBoost. AdaBoost.M1,

which was proposed by Freund and Schapire [42], is a simple
generalization of Adaboost to be applicable to problems with
more than two classes [43]. According to Cortes et al. [44]:
‘‘Adaboost.M1 is based on building consecutive classifiers on
modified versions of the training set generated according to
the error rate of the previous classifier, while focusing on the
hardest examples of the training set’’.

LogitBoost, which was formulated by Friedman et al. [45],
is another expansion of Adaboost that uses a combina-
tion of the boosting method and the logistic regression for
classification [46], [47].

Although several researches have been conducted for weed
detection using different classification techniques, however,
to the best of our knowledge, there is almost no research
that focuses on applying boosting learning methods for
image-based plant discrimination. This study is conducted to
fulfill this research gap. Several image features are extracted
from the images of different plants in the peanut field. Feature
selection algorithms are applied to extract themost significant
features which are fed into boosted classifiers to distinguish
different types of plants. A comparative study is performed to
find the most effective strategy.

II. MATERIAL AND METHODS
A. IMAGE ACQUISITION
The data acquisition was executed in May 2020. In order to
obtain the required dataset for this study, the colour images
were acquired from a peanut field in Astaneh-ye Ashrafieh
county of Guilan province, Iran. Image capturing was per-
formed at after three weeks from seed sowing (7 days after
first emergence of the peanut seedlings), when the weeds also
emerged. A metal frame was constructed having a platform
at the elevation of 40 cm above the crop row for placing
the image capturing device. In this study, the images were
captured using an affordable smartphone with a resolution
of 1344 × 2240 pixels. A fabric shade was applied to avoid
the effect of direct sunlight on the capturing scene. A total
number of 150 images were captured from fields containing
multiple plants.

B. IMAGE PREPARATION
Image processing and feature extraction operations were
implemented inMATLABprogramming software (MATLAB
2018b, The MathWorks Inc., MA, USA). In addition to
the peanut plant (Arachis hypogaea), four other plants that
were the most common weeds in peanut farms, namely;
thorn apple (Datura stramonium), morning glory (Ipomoea
purpurea), purslane (Portulaca oleracea), and velvetleaf
(Abutilon theophrasti) were investigated in this study
(Figure 1). In order to extract image features from plants,
the regions of the studied plants were manually selected in
the images. The corner coordinates of the rectangles around
the mentioned plants were determined using simple marking
in the ‘‘imtool’’ function of MATLAB software and then the
desired regions were cropped using the ‘‘imcrop’’ function.
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FIGURE 1. Images of studied plants: a) peanut, b) thorn apple, c) morning
glory, d) purslane, and e) velvetleaf.

FIGURE 2. Schematic diagram of image processing for feature extraction.

Eighty samples were selected by this method for each plant
type.

The flowchart of the image processing algorithm for
colour, shape, and texture feature extraction is shown
in Figure 2. Since the RGB images of plants contained field
soil and little residues in the background, it was necessary
to separate the plants from the image background before
performing the feature extraction processes. The Red (R),
Green (G), and Blue (B) colour components were firstly
extracted from the RGB image and the luminance component
(Y) was calculated using equation 1 [48], [49], which was
used to calculate the green colour difference image (Cg) by
equation 2 [50], [51].

Y = 0.3R+ 0.6G+ 0.1B (1)

Cg = G− Y (2)

Image segmentation was performed by applying optimal
threshold on the Cg image which resulted in the binary
image showing plant. Possible noises in the binary image
were omitted by applying successive dilation and erosion

FIGURE 3. Gallery of image preparation steps: a) RGB image of thorn
apple weed, b) enhanced green colour difference, c) segmented image,
d) colour image of thorn apple weed with zero intensity for background
pixels.

using the ‘‘imopen’’ function in MATLAB software. The
resulted binary images of plants were used for shape feature
extraction. However, in order to extract colour and texture
features, one more operation was performed. Logical AND
was applied between RGB images of plants and the binary
image to obtain colour images of plants with zero pixel
value for background regions. This allowed the colour and
texture features to be extracted from only the plant regions
in the images. The images obtained at different steps of such
described algorithm are shown in figure 3.

C. SHAPE FEATURES
In this study, in order to obtain features invariant to posi-
tion, orientation and size, to be more generalized in differ-
ent images, two types of features were extracted, including
shape factors and moment invariant shape descriptors. After
image segmentation, geometric shape features including area,
perimeter, major axis length, minor axis length, and equiva-
lent diameter (diameter of a circle with the same area as the
region) values were extracted from binary images of plants
(figure 3c) using the ‘‘regionprops’’ function in MATLAB
software. These values were used to calculate four shape
factors using the equations (3) to (6) which are also described
in the literature [13], [50], [52], [53].

shape factor 1 = 4π
area

perimeter2
(3)

shape factor 2 =
major axis length

area
(4)

shape factor 3 =
area

major axis length3
(5)

shape factor 4 =
4 area

π.major axis length.minor axis length
(6)

In addition to shape factors, 7 moment invariant shape
descriptors (M1 to M7) which are called Hu moments [54]
were also extracted from binary images of plants. The Hu
moment invariants are independent of geometric transla-
tion, scaling, and rotation, providing a high discrimination
power to discriminate different morphological classes of
objects [13]. These features and their calculation formulas
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are described by Rhouma et al. [55], Fatma and Dash [15]
and Sabzi et al. [56].

D. COLOUR FEATURES
The colour values of plant images in RGB, HSI and L∗a∗b
colour spaces were considered as colour features. Compared
to RGB colour space, the HSI and L∗a∗b colour spaces are
closer to human visual perception to colour. Moreover, the I
component in HSI space and the L component in L∗a∗b space
are representations of image luminance information. This
helps to extract the image brightness as a separate component
in these two colour spaces, leading to better consideration
of the effects of possible lightness variations in the images.
In order to extract the colour values in this study, the images
of plant regions that obtained from the image preparation
section (figure 3d) were converted from RGB colour space
to HSI, and L∗a∗b colour spaces and the average and stan-
dard deviation measures of different colour components in
these three spaces, namely; Red (R), Green (G), Blue (B),
Hue (H), Saturation (S), Intensity (I), Lightness (L), a∗ and
b∗ colour components, were determined. The correspond-
ing colour space transformation equations are presented by
researchers [7], [57], [58]. A total number of 18 colour fea-
tures including nine colour averages and nine colour standard
deviations were extracted in this case.

E. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM)
TEXTURE FEATURES
In this section, the colour images of plant regions obtained
from image preparation section (figure 3d) were converted
fromRGB colour space to gray-level images. The Gray-Level
Co-occurrence Matrices (GLCM) were constructed for
obtained gray-level images in four directions from 0◦ to
135◦ with 45◦ interval with one-pixel distance between the
compared pixels to obtain four GLCMs for each image, which
were then averaged to be used for extracting the texture fea-
tures. From so many GLCM-based texture features that have
been described and used in several studies [17], [59]–[61],
17 texture features were calculated and used in this study
for plant type detection. These GLCM features, which are
also called Haralick feature, were autocorrelation, contrast,
correlation, cluster prominence, cluster shade, dissimilarity,
energy, entropy, homogeneity, maximum probability, sum of
squares, sum average, sum variance, sum entropy, difference
variance, difference entropy, and inverse difference moment.

F. GRAY LEVEL RUN LENGTH MATRIX (GLRLM)
TEXTURE FEATURES
In order to acquire more insight into the plant leaf texture
information, the GLRLM based texture features were also
extracted and analyzed in this study. The GLRLM which
was introduced by Galloway [62] is a method of extracting
higher-order statistical texture features. Each element P(i, j)
in run length matrix (P) is equal to the number of runs with
pixels of gray level intensity equal to i and length of run
equal to j along a specific direction [63]. The GLRLMs were

constructed for gray-level images of plants in four different
directions of 0, 45, 90, and 135◦ and averaged to be used for
feature extraction. In this study, 11 GLRLM based texture
features including Short Run Emphasis (SRE), Long Run
Emphasis (LRE), Gray-Level Non-Uniformity (GLN), Run
Length Non-Uniformity (RLN), Run Percentage (RP), Low
Gray-Level Run Emphasis (LGRE), High Gray-Level Run
Emphasis (HGRE), Short Run Low Gray-Level Emphasis
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE),
Long Run Low Gray-Level Emphasis (LRLGE), and Long
Run High Gray-Level Emphasis (LRHGE) were extracted
from images. These features and their formulas have been
previously described in several research articles [64]–[66]
and the related MATLAB codes are revealed by Wei [67].

G. FEATURE SELECTION
In this study four feature filtering techniques including
Correlation-based Feature Selection (CFS), Information Gain
(IG), Gain Ratio (GR), and OneR were used to determine the
most significant feature vectors for discriminating different
plant types.

CFS is a simple feature filtering method that selects a
subset of features that is highly correlated to the class label
and minimum relevance to each other [68], [69]. IG is a fea-
ture evaluation method based on the reduction in entropy of
dataset features [70]. It ranks the features based on the amount
of information that they provide for the target feature [71] and
it ignores the feature correlation [72]. Gain ratio (GR) is a
modification of the information gain method that reduces its
bias by taking intrinsic information from each attribute and
eliminating the bias value of each attribute [73], [74]. OneR
feature selection which was firstly introduced by Holte [75],
is based on the One Rule theory and creates association rules
by identifying the correlation between a particular feature and
its impact on the output class [76], to be used for feature
ranking.

The total number of image extracted features in this study
was 59 (18 colour features, 13 shape features, and 28 texture
features). After applying the mentioned feature filters on the
original features, the first ten features were selected and fed
into the classifiers to discriminate different plants.

H. SINGLE AND BOOSTED CLASSIFIERS
In order to classify the plants using the image features that
selected by feature filtering methods, two strategies were
applied. First, the selected features were fed into five clas-
sifiers including Multilayer Perceptron (MLP), k-Nearest
Neighbor (kNN), Random Forest (RF), and Support Vector
Machine (SVM) to evaluate and compare the capability of
these single classifiers for plant type classification.

Second, two of the most popular meta-learning algorithms
including Adaptive Boosting M1 (AdaBoost.M1) and Logis-
tic Boosting Regression (LogitBoost) were utilized as boost-
ing algorithms for plant type classification, in which MLP,
kNN, RF, and SVM were used as base (or weaker) classifiers
to construct boosted models.
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I. MODEL EVALUATION
In this study, 10 fold cross-validation strategy was applied
to train multiclass (5 classes) classifiers. In order to eval-
uate the performance of the classifiers, three statistical
criteria including accuracy (ACC), Cohen kappa statistics
(k), Root Mean Squared Error (RMSE), were determined
for the developed models. These criteria are detailedly
described [7], [16], [64], [77]. Higher values for ACC and k ,
and lower value of RMSE correspond to better classification
performance.

III. RESULTS
A. CORRELATIONS BETWEEN IMAGE FEATURES AND
PLANT TYPE
The absolute values of the correlation coefficients among
the averages of colour features, and plant type are illus-
trated as colourmaps in figure 4. Figure 4 shows that the
averages of Hue, Red, and b∗ colour components (ave_H,
ave_b∗ and ave_R) have higher correlation coefficients with
the plant type. The absolute values of correlation coefficients
between plant type and ave_H, ave_b∗ and ave_Rwere 0.682,
0.558 and 0.426, respectively. The lowest correlation coeffi-
cient was observed between average Blue values and the plant
type (0.209).

FIGURE 4. Colourmap of correlation matrix between colour feature
averages and plant type.

The figure 4 also shows that there are high values of
intercorrelation between the averages of several colour com-
ponents (for example, between ave_R, ave_G, ave_I, and
ave_L). This is due to the fact that colour spaces could be
converted by mathematical transformation. Also it justifies
the use of feature selection methods to extract the most sig-
nificant features and to ignore the redundant features or those
with low correlation to plant type.

The absolute correlation coefficients between standard
deviations of colour components and plant type is presented
graphically in figure 5. It can be seen from this figure
that there are very low correlation coefficients between the

FIGURE 5. Colourmap of correlation matrix between colour feature
standard deviations and plant type.

standard deviations of colour features and plant type (bottom
row in figure 5). This indicates that the standard devia-
tions of the colour values of the leaf surfaces do not pro-
vide useful information for discrimination of studied plants.
The highest absolute value of correlation, in this case, was
0.201 which was between the standard deviation of Hue com-
ponent (std_H) and plant type. Also, high intercorrelations
among standard deviations of Red, Green, Blue, Intensity, and
Lightness colour components can be observed.

The correlation values between shape features and plat
type are indicated in figure 6. The shape factor 1 has a
high correlation with the plant type (0.742). The next highest
correlated shape feature to plant type is shape factor 4 (0.650).
Among the moment invariants, the highest correlation to
plant type belongs to M1 (0.526). The moment invariants
of M5 to M9 has very small correlations with plant type
(<0.03), indicating the inappropriacy of these features in the
classification of studied plants. The intercorrelation among
the shape features was not as strong as those in the colour
features.

FIGURE 6. Colourmap of correlation matrix between shape features and
plant type.
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FIGURE 7. Colourmap of correlation matrix between GLRLM texture
features and plant type.

Figure 7 illustrates the colourmap of the absolute cor-
relation coefficients among GLRLM texture features and
plant type. There were high intercorrelations among the
GLRLM features themselves and low correlations between
these features and plant type were obtained, which can be
seen from figure 7. Besides, by observing the colourmap of
correlation coefficient values between GLCM texture fea-
tures and the plant type in figure 8, the highest correlation
coefficient, in this case, was obtained 0.248 that observed
between autocorrelation and plant type. There are also high
intercorrelations among most GLCM texture features.

FIGURE 8. Colourmap of correlation matrix between GLCM texture
features and plant type.

B. RESULTS OF FEATURE SELECTION METHODS
The top ten most informative features are listed in table 1.
These features are ranked based on their correlation to plant
type which ranged from 0.298 for M4, to 0.742 for shape
factor 1. It can be seen from this table that half of the top

TABLE 1. Top ten most correlated image-extracted features to plant type.

ten features that have the highest correlations to plant type
are shape features and the other half of this set are colour
features, while none of the texture features are in this set
which shows the importance of colour and shape features for
plant classification at early growth stages of plants.

In order to include all of the extracted features in the plant
type classification process to avoid any information loss,
a fusion of different feature types of colour, shape, and texture
data was used. However, to get rid of redundant and non-
useful features, feature selection methods were applied to
extract the most significant features. The selected features by
different feature selection methods are presented in table 2.

TABLE 2. The selected features using CFS, IG, GR, and OneR feature
selection methods.

Comparing the results of different feature selection meth-
ods in table 2, it can be seen that different subsets of rel-
evant attributes are selected by applying different feature
selection algorithms. For example, The CFS method selected
10 attributes, including 7 colour attributes and 3 shape
attributes, as the most important input data for the plant
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classification, while looking at the first 10 ranked attributes
in the IGmethod, 7 shape features, and 3 colour features were
extracted as the most important features.

Moreover, the two other feature selection methods intro-
duced different ranked features in their selected subsets. This
is because different feature selection methods use different
statistical criteria to calculate the importance of each feature
and its relevance to the class label [78], [79]. Further, from
table 2, only colour and morphological characteristics are
selected as the top 10most informative attributes.Meanwhile,
none of GLRLM and GLCM texture features are selected as
important features for plant type classification.

C. RESULTS OF SINGLE AND ENSEMBLE CLASSIFIERS
The 10 significant CFS-selected features and the first 10
ranked features by IG, GR, OneR feature selection methods
were fed into the single and boosted classifiers to differentiate
different plants. Table 3 shows the results of the MLP, kNN,
RF, and SVM classifiers used in this study for plant type
classification. All of these applied single classifiers achieved
high classification performances. Regarding the performance
criteria on the training dataset, the most accurate single
classifier for plant type identification was the RF classifier
when used the attributes selected by the IG feature selection
method as the input data. This classifier obtained an accuracy
of 98.75%, k of 0.9844, and RMSE of 0.0734. The IG-RF
model was also evaluated on a separated test dataset which
was not included in the training procedure where the resulted
accuracy, k , and RMSE values of this model were 91.67%,
0.8958, and 0.1605, respectively.

TABLE 3. Classification performance of single classifiers with different
input selected features.

In addition to single models, two boosting algorithms were
also evaluated in this study for plant type classification,
and the results are revealed as follows. Performance criteria

of the Adaboost.M1 ensemble learning algorithm when fed
by features selected by CFS, IG, GR, and OneR feature
selectionmethods, and constructed from 4 different base clas-
sifiers, are presented in table 4. Regarding the performance
statistics of the models on the training dataset, the devel-
oped Adaboost.M1 classifiers resulted in satisfactory
performances.

TABLE 4. Classification performance of Adaboost.M1 classifiers with
different input selected features and base classifies.

The highest classification accuracy obtained by
Adaboost.M1 learning method was 99.58% which was
obtained by the Adaboost.M1 classifier with the base clas-
sifier of RF, when the IG selected feature subsets were
used as input data (Adaboost.M1-IG-RF). The k , and RMSE
values of the Adaboost.M1-IG-RF model were 0.9948 and
0.0688, respectively. The accuracy, k , and RMSE val-
ues of the Adaboost.M1-IG-RF model on test data were
93.33%, 0.9167, and 0.1627 respectively. Regarding table 4,
the Adaboost.M1–RF structure also resulted in the highest
accuracies among other boosted classifiers while fed by CFS,
GR and OneR feature filters.

Results of the LogitBoost classifier with different base
classifiers and different feature selection techniques are sum-
marized in table 5. Generally, the MLP and SVM classifiers
resulted in lower performances than kNN, and RF classi-
fiers when used as the weaker classifiers in the LogitBoost
ensemble algorithm. The most successful LogitBoost struc-
ture for plant type classification had the base classifier of
RF and trained using the IG feature selection method (called
LogitBoost-IG-RF).

The accuracy, k , and RMSE values of this model on
the training dataset were obtained as 99.58%, 0.9948, and
0.0408, respectively. The accuracy, k, and RMSE results of
the LogitBoost-IG-RF were respectively 95.00%, 0.9375,
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and 0.1591 on test data. The LogitBoost-RF structure had
also resulted in the same classification accuracy when trained
by other feature subsets generated by CFS, GR, and OneR
feature selection methods.

IV. DISCUSSION
The idea behind this study was to enhance the plant classi-
fication accuracy by employing feature selection algorithms
and boosting ensemble techniques. For better comparison,
the most accurate single and boosted models of this study,
as well as the results of some other related studies are pre-
sented in table 6. From this table, and also by tables 3 to 5,
the ensemble models are more accurate than single classifier,
showing the advantage of boosting algorithms over single
classifiers for plant classification.

TABLE 5. Classification performance of LogitBoost classifiers with
different input selected features and base classifies.

TABLE 6. Classification performances of the selected classifiers of this
study and some other related articles.

Moreover, between ensemble classifiers, although the
accuracy and k values of the most successful LogitBoost
model were the same as those of the most successful
Adaboost.M1 model, but the obtained RMSE value of the
LogitBoost-IG-RF model was less than the RMSE of the
Adaboost.M1-IG-RF model. Regarding these descriptions,
the LogitBoost-IG-RF model, having the least error rate and
the highest accuracy criteria, is the most effective classifier
over the other models for the classification of plants based on
image-extracted features.

It is also notable that the RF model, either alone or when
boosted by the Adaboost.M1 and LogitBoost algorithms,
yielded the best results compared to the other classifiers.
RF itself is an ensemble classifier composed of several deci-
sion trees and aggregates the predictions of separately trained
decision trees to make a final decision [80], [81] making it
more robust to overfitting and noises. Integration of random
forest with boosting methods combines the advantages of
both adaptive evaluation of boosting and diversity of random
forest [82] to enhance the classification accuracy. Also it
is seen that among the feature selection methods, the IG
algorithm extracted the most significant features toward plant
classification. The ten selected features by IG algorithm were
M1, shape factor 4, shape factor 1, M3, shape factor 3,
average Hue, shape factor 2, M4, average a∗, average b∗,
respectively (table 2). It can be observed that seven of the ten
selected significant features were the shape features, which
shows the significance of shape characteristics in discriminat-
ing between plants in the early stages of growth. The remain-
ing three features, of the ten significant features, were average
values of Hue, a∗ and b∗ colour components. This indicates
that the colour space transformation from the RGB to other
colour spaces such as HSI and L∗a∗b, can help distinguish
plants from each other. Furthermore, texture features are not
included in the IG selected features, which shows that the
gray level spatial distribution of the leaf surface does not give
useful information about the plant type at early growth stages,
while the colour and shape of plants are good factors for plant
type identification in this period.

Comparing the results of this study with some related
studies in table 6 shows that the boosted models of this study
have almost higher accuracies than the reported accuracies in
previous researches. These results emphasize the efficiency
of the employed boosting methods for promoting the plant
classification accuracy.

V. CONCLUSION
A comparison between different single and boosted classi-
fiers was performed in this study for the classification of
plants based on image extracted features filtered via feature
selection algorithms. It was observed that the performance
of the RF classifier, when fed by features selected through
the IG algorithm, was better than other evaluated combi-
nations of feature selection methods and classifier models.
Also, the classification performance of the IG-RF classifier
was enhanced when it was boosted by Adaboost.M1 and
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LogitBoost algorithms. Considering the performance criteria,
the LogitBoost-IG-RF is introduced as the best classifica-
tion model for plant type discrimination. It is concluded
that integration of such boosted classifier into a computer
vision system can enhance the performance of crop and weed
detection, toward the development of a robotic vision-based
system for weed control at early emergence stages in peanut
fields.
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