
Received May 15, 2021, accepted May 28, 2021, date of publication June 4, 2021, date of current version June 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086359

Variational Autoencoders and Wasserstein
Generative Adversarial Networks for Improving
the Anti-Money Laundering Process
ZHIYUAN CHEN 1, (Member, IEEE), WALEED MAHMOUD SOLIMAN 1, AMRIL NAZIR 2,
AND MOHAMMAD SHORFUZZAMAN 3, (Member, IEEE)
1School of Computer Science, University of Nottingham Malaysia, Semenyih 43500, Malaysia
2Department of Information Systems, College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
3Department of Computer Science, College of Computers and Information Technology, Taif University, Ta’if 21944, Saudi Arabia

Corresponding author: Zhiyuan Chen (zhiyuan.chen@nottingham.edu.my)

This work was supported in part by Taif University, Ta’if, Saudi Arabia, under Project TURSP-2020/79.

ABSTRACT There has been much recent work on fraud and Anti Money Laundering (AML) detection
using machine learning techniques. However, most algorithms are based on supervised techniques. Studies
show that supervised techniques often have the limitation of not adapting well to new irregular fraud patterns
when the dataset is highly imbalanced. Instead, unsupervised learning can have a better capability to find
anomalous and irregular patterns in new transaction. Despite this, unsupervised techniques also have the
disadvantage of not being able to give state-of-the-art detection results. We propose a suite of unsupervised
and deep learning techniques to implement an anti-money laundering and fraud detection system to resolve
this limitation. The system leverages three deep learning models: autoencoder (AE), variational autoencoder
(VAE), and a generative adversarial network. We preprocess the given dataset to separate the Transaction
Date attribute into its base components to capture time-related fraud patterns. Also, Wasserstein Generative
Adversarial Network (WGAN) is used to generate fraud transactions, which are then mixed with the base
dataset to form a more balanced mixed dataset. These two datasets are used to train the AE and VAE
models. We built two versions of the AE model (single-loss and multi-loss) besides a novel method of
calculating the anomaly score threshold, called Recall-First Threshold (RFT), which helps enhance the
model’s performance. Experimental results demonstrated that the False Positive Rate (FPR) drops down
to as low as 7% in the proposed multi-loss AE model. In comparison, we achieved an accuracy of 93%, with
100% of the fraud transactions recalled successfully.

INDEX TERMS Anti-money laundering (AML), autoencoders, anomaly detection, deep learning, fraud
detection, GANs, unsupervised learning.

I. INTRODUCTION
Money laundering involves concealing or disguising the ori-
gin of illegal profits that have been generated from criminal
acts [1]. Banking products or services can be exploited to
transfer criminal proceeds for terrorist financing and money
laundering. These institutions become a direct or indirect
victim of money laundering activity, which undermines the
integrity of the financial system [2]. In light of this, the pres-
sure on financial institutions and banks to improve their
measures to fight money laundering is increasing. Similarly,

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

central banks and finance-related laws have become stricter
towards money laundering crimes such that banks need to
follow specific rules; otherwise, they could be penalized or
even closed [3]. One recent case includes the largest bank in
Italy, Unicredit, which was fined $1.3 billion for using the US
financial system to launder about $6.76 billion [4]. In another
case, the UK-based banking giant, Standard Chartered, paid
more than $1 billion in fines and settlements for helping
in money laundering [5]. Lastly, as a result of compliance
failures in the firm’s anti-money laundering program,Morgan
Stanley was fined $10 million [6].

Nevertheless, most banks still adopt systems that com-
prise a set of predefined if-then-else rules called ‘‘Rule-based

83762 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4915-1593
https://orcid.org/0000-0003-1855-1137
https://orcid.org/0000-0001-7116-7607
https://orcid.org/0000-0002-8050-8431
https://orcid.org/0000-0003-1072-0792

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

systems’’ to detect incoming and outgoing suspicious trans-
actions. This system requires a manual process of checking
for each transaction that has triggered the static rules. Human
experts define rule-based systems; hence, they embed their
own working experience into the automated decision process.
In future updates, more exceptions and rules are necessary,
which may impair system performance. Additionally, those
systems have a minimal ability to detect suspicious transac-
tions by groups of people across different economic activities.
This is because rule-based systems do not consider the eco-
nomic activities of different people. Furthermore, acquiring
economic knowledge about different groups of people can be
tedious work on its own [7], [8].

While banks and financial institutions seek cost-effective
means of complying with regulatory requirements, they face
responsibility for evaluating larger, more complex, and faster-
growing datasets, necessitating more powerful analytical
tools to efficiently monitor the financial sector. Machine
learning algorithms enable cheaper and more accessible tools
that are increasingly powerful as they make sophisticated
real-time insights on larger datasets possible. These algo-
rithms and tools can be used in the anti-money laundering
process by the anticipation and detection of fraud and suspi-
cious transactions [9]. However, adopting machine learning
to detect money laundering has long been in research, using
different methods and techniques that will be covered in detail
in the literature review section.

The current performance of machine learning techniques
in the anti-money laundering field is acceptable. However,
a lot of work is still required to enhance and optimize
those models in terms of performance, namely the so-called
‘‘false-positive rate,’’ which indicates the regular transac-
tions that have been identified as fraud. The system will
decline these transactions or delay them for further inves-
tigation. In some cases, false positives might be costing
vendors much more than the fraud transactions themselves.
It has been reported that even rule-based systems still strug-
gle with about 20% false-positive rates wherein only 1 in
5 transactions marked by the system as fraud is genuinely
fraud [10].

Our main contributions can be summarized as follows:
1. We design and implement deep learning models with

promising results in terms of the FPR, RFT, and AUC for
fraud detection.

2. We present recent state-of-the-art deep learning and
unsupervised learning techniques, namely, the autoencoder
(AE), variational autoencoder (VAE), and generative adver-
sarial network (GAN) to improve the anti-money laundering
(AML) process.

3. For the first time, we demonstrate the applicability and
effectiveness of combining AE/VAE with WGAN methods.
Particularly, the WGAN generates realistic synthetic fraud
transactions to solve the issue of imbalanced class labels, and
such additional transactions are then used by the AE/VAE to
train the model. The results indicate that this approach offers
significant improvements for fraud detection.

The rest of the article is organized as follows.
Section 2 presents the related literature. Various deep
learning architectures used in this study are described in
Section 3. Proposed methodology and experimental results
are presented in Sections 4 and 5, respectively. Finally,
Section 6 concludes the article with a discussion of future
work.

II. RELATED WORK
Decision Trees (DTs) are one of the common supervised
learning algorithms that are used to identify money launder-
ing cases. Rojas et al. [11] utilized DTs and Decision rules by
selecting Random Forest (RF), Random-Tree, and J48graft
from the DT algorithms group and decision table JRip from
the Decision rules algorithms. MABS (Multi-Agent-Based
Simulation) was used to generate synthetic data that simulates
mobile money transactions. JRip generated about 0.999 true
positives and only 0.012 false positives, which was one of the
best accuracies obtained. Despite this accuracy, the research
was based on synthetic data that may not reflect real suspi-
cious case situations. The accuracy results may differ when
used on real transaction data.

Sahin and Duman [12] proposed DT models such as C5.0,
CART, and CHAID combined with SVM (Support Vector
Machine), which utilizes various kernel functions, such as
radial basis, linear, polynomial, and sigmoid. The proposed
model was implemented in a credit card fraud detection
system. These classification models were compared using a
real dataset provided by a bank. However, due to the highly
imbalanced records (i.e., a ratio of 20,000 normal transactions
to 1 suspicious transaction), the author performed stratified
sampling to under-sample the normal transactions. The result
presented in the paper shows that both CART and C5.0 have
the highest accuracy of detecting suspicious transactions at
more than 90%. However, the research did not evaluate the
false positive rate; furthermore, SVM offers 89% accuracy,
but the author indicated that SVM tends to suffer from
over-fitting.

Bitmap Index-based DT (BIDT) algorithm was imple-
mented by Jayasree and Balan [13] to evaluate the adapt-
ability risk for money laundering. Results of false positive
and true positive rates, alongside the adaptability rate and
risk identification time, showed that the proposed approach
outperformed other methods. Also, the authors in [14] used
DT to assign a risk score to each customer profile that rep-
resents their tendency to perform money laundering, using
four types of attributes: industry, location, business size,
and product type to build the decision tree. Each attribute,
including the class label, can accept three risk values (high,
middle, low). However, changes in the predefined risk values
will cause the decision tree model to become inaccurate.
Moreover, each type of attribute value must be assigned
with a risk rank, and this will require domain experts to
label those attributes correctly. Otherwise, any changes to
the training set will require the decision tree to be trained
again.

VOLUME 9, 2021 83763

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

Recently, SVM [15] and ANN (artificial neural net-
works) [16] were used and compared against RF and other
algorithms. Experimental results show that ANN performed
better when compared to other algorithms. Radial-Basis func-
tion network (RBFN) is another approach that is used to
examine suspicious transactions. Lin-Tao et al. [17] proposed
an updated version of RBFN utilizing the APC-III algorithm
to optimize parameter learning in the hidden layer. Addition-
ally, RLS (Recursive Least Square) algorithm was introduced
to improve model convergence. A real bank dataset contain-
ing 70 suspicious instances was used to train the network. The
experiment resulted in a low false-positive rate, close to 0%,
and a detection rate higher than 80%. Although this imple-
mentation shows an excellent false positive rate, the model’s
accuracy can further be enhanced.

Benford’s Law and machine learning algorithms (ANN,
DT, RF) were used to investigate money laundering pat-
terns in real Spanish court cases [18]. The authors used
Benford’s law to map accounting records for each supplier
to 21-dimensional space. Results showed that even more
companies could be marked as a risk, but this approach
still required a domain expert in accounting to do the fea-
ture engineering. Chouiekh and Haj [19] proposed a deep
convolution neural network (DCNN) to detect fraud cases
and obtained results outperforming the traditional machine
learning techniques such as SVM and RF.

Due to the lack of genuinely suspicious transaction data
and the sensitivity of these data, many researchers have
resolved to use synthetic data or simulated data in the training
set to reduce the class imbalance issue. However, such an
approach may not truly reflect real-world money laundering
cases, potentially causing a generalization issue. Supervised
techniques require a domain expert to label the data and to
help in feature engineering. Therefore, more researchers have
recently turned to unsupervised learning methods to deal with
the money laundering implementation problem.

Zhang et al. [20] utilized a clustering algorithm to detect
money laundering. The authors extracted all the suspicious
individuals (n) related to suspicious cases identified by an
investigator. Then the author assembled the transactions that
those individuals made in n+2 dimensional Euclidean space,
where time represents the first dimension and transactions
represent the second dimension. Then, to reduce the clus-
tering problem, the timeline was discretized into various
time instances. By doing so, each transaction is viewed as
a node in one-dimension time-space. To make the problem
even more straightforward, the transaction frequency or the
money amount was accumulated in each timeline instance.
Finally, the histogram segmentation was conducted using a
k-means algorithm where each segmented histogram repre-
sents a single cluster k . The abnormal hills in the histogram
are used to identify suspicious cases. Using only the transac-
tions data, the proposed method managed to match the differ-
ent transactions with their peers without other features, such
as occupation or business size. However, the segmented his-
tograms are only limited to transactions that occurred on the

same time instance. The histograms are not able to uncover
activities of money laundering that may occur through mul-
tiple time instances. Capturing those time instances can be a
difficult task in such an approach.

Lune et al. [21] used the K-Nearest Neighbor (k-NN)
approach, which has shown a good performance. A public
domain dataset was used that was generated from a BTS
(Banking Transaction Simulator) to simulate shell compa-
nies’ behavior. These are companies that seem to be genuine,
while their primary objective is to launder money. The author
assigned an anomaly score for each data point called LOF
(Local Outlier Factor), which is the data point’s ratio and its
average density of the k-NNs. This approach assumes that an
outlier would be significantly lower than its nearest neighbors
while the genuine data point would have a similar density.
Finally, they set the LOF threshold to 0.9, which will mark
all data points above it as a shell company. The problem with
this approach is the sensitivity to the outliers, where it can
cause variation in density for the data points.

Claudio and Balsa [22] chose to use numerical and nominal
attributes in K-means cluster development despite K-means
performance on nominal attributes being inefficient in its
use of squared Euclidian-distance to calculate proximity.
However, the data were clustered by customer attributes to
build a customer profiles table, and then the PART algorithm
was used for rule generation. The initial 3 month period
produced unsatisfactory results. After expanding the client
profiles to cover one year and including more attributes,
the algorithm showed a better result. Nevertheless, the authors
did not mention how they deal with the imbalanced data
as k-NN does not perform well on an unbalanced dataset.
Another research [23] tried to produce clusters that are more
understandable. The authors attempted to add a meaningful
description before clustering by following the Apriori and
LINGO algorithm implementations to identify fraud in credit
card transactions. Following this, they compared the results
from both algorithms with other clustering algorithms such as
k-NN. Using simulated test transactions, their results showed
that the LINGO algorithm quickly generated more meaning-
ful patterns that can be used in near real-time transactions.

Using one-class SVM, Tang and Yin [24] proposed
another unsupervised approach to recognize normal and sus-
picious human transaction behaviors. An improved RBF
kernel-based function was implemented over 1.2 million
records obtained from Wuhan Agriculture Bank, China, with
30 simulated suspicious transactions. Results showed that
the proposed RBF kernel enhanced the algorithm speed and
accuracy. However, the proposed solution has only 69.13%
accuracy in detecting doubtful cases, which may indicate
impracticality when applied in the real world. Furthermore,
the suspicious cases are synthetic records that may not fully
reflect real suspicious cases.

Recent research [25] tried to avoid the sensitivity of
OC-SVM (one-class SVM) for the noise and outliers exis-
tence in the dataset by introducing a sparse and robust
methodology of fraud detection. The authors introduced

83764 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

the Ramp-loss function to the original OC-SVM. Hence,
they called it Ramp-OCSVM. The advantage of implement-
ing the ramp-loss function’s non-convexity nature and the
concave-convex procedure was the proposed algorithm’s
ability to solve non-convex, non-differentiable optimiza-
tion problems. When they compared the proposed approach
against other methods, such as OC-SVM and ROCSVM,
the results showed that their system presented the best per-
formance within an acceptable false-positive rate. Another
research [26] proposed a special case that tried to overcome
the OC-SVM shortcoming of ignoring the training data’s
inner-class structure. The proposed method attempted to min-
imize the scatteredness of the training points; hence, the
points can be easily separated from the origin. The mod-
ified version is called OC-WCSSVM (within-class scatter
OC-SVM), a typical OC-SVM except that it’s β = 0. The
result showed that the proposed method is more accurate for
anomaly detection than other approaches such as PCA and
Geometrical Driven Diagnosis (GDD).

Wilson and Martinez [27] proposed the usage of an
improved RBF (Radial Basis Function) kernel-based func-
tion that uses various distance metric functions. They intro-
duced three distance functions: HVDM (Heterogeneous
Value Difference Metric), IVDM (Interpolated Value Dif-
ference Metric), and WVDM (Windowed Value Difference
Metric). These functions can be used with k-NN for a wide
range of implementations. Results showed that WVDM and
IVDM produced higher accuracy than HVDMs.

Chitra and Subashini [28] estimated the proportion for
each bank customer using EM (Expectation Maximiza-
tion) algorithm. They used the probability density function
Gaussian-Mixture Model to model the previous transaction’s
behavior for each bank customer and compare them against
the current transaction’s behavior. The main issue with this
method is that it requires the assumption that statistical dis-
tribution (i.e., Gaussian distribution) of the dataset is used.
Furthermore, for the EM algorithm to work in the first
place, we need to define the number of clusters required and
estimate and maximize the different clusters’ data points.
For instance, in the two clusters experiment, the EM algo-
rithm assumed that every single cluster represents a different
Gaussian distribution with its own function parameters.

Cao and Do [29] attempted to attack money by moving
money in a circular pattern between accounts. They used
the CLOPE (clustering with sLOPE) algorithm to check
small amounts of money distributed to various recipients.
It also checks a single account for collecting money from
different senders. Moreover, the CLOPE algorithm’s main
characteristic is the acceptance of nominal variables. Hence,
continuous variables such as the transaction-amount need
to be discretized and assigned to a meaningful label. The
research used a dataset consisting of 12,350 normal records
from an unspecified bank to measure CLOPE’s performance
in detecting money laundering. Furthermore, 25 simulated
suspicious records were inserted into the dataset to test the
algorithm. The experimental result showed that the detection

rate was about 100%, with only 25% of the false-positive
rate. Despite this, each cluster produced by CLOPE must be
thoroughly examined to determine which cluster belongs to
which type of money laundering case, which would require
intervention from domain experts. Furthermore, data dis-
cretization requires a user to provide the number of bins, and
the author did not mention which method they used to get the
optimal bin number.

Zaslavsky and Strizhak [30] employed SOM (Self-
organizing map) to detect credit card fraud transactions.
Specifically, the authors used SOM to create a customer
behavior model on credit card transactions. The idea behind
the proposed model is to detect suspicious transactions when
a customer deviates from his usual transaction behavior.
In this approach, two profiles are created from the SOM algo-
rithm, namely the normal behavior model and the fraudster
behavior model, Each incoming transaction is then compared
with both models, and, subsequently, the transaction simi-
larity score is calculated for both models. The issue here
is that a predefined threshold must be set to compare it
against the similarity score. Also, to keep the models updated,
newly encountered behaviors (i.e., either suspicious or nor-
mal) are used to re-train both models. This, in turn, may cause
over-fitting for these models. Another research [31] proposed
an improved version of SOM to overcome the large presence
of outliers in the dataset. The author then compared his pro-
posed method result against the K-prototypes algorithm. The
research concluded that the improved SOM is better than the
K-prototypes algorithm as it gives better results, especially
in handling the outliers. However, interpreting results from
SOM is a complicated process as it is not transparent.

To identify suspicious transactions, the authors in [32]
proposed a sequence-matching algorithm. The idea of this
algorithm is to extract a sequence of daily transactions
within a certain peer group. Then, using a probabilis-
tic model, it identifies the high-risk sequence within the
extracted sequence. Later these sequences are compared
against the transaction’s history for each account. Each
high-risk sequence is given a similarity score by implement-
ing Euclidean similarity distance. Those assigned scores are
then separated based onmanual threshold scores to extract the
suspicious sequence. However, having a predefined threshold
is not an optimal solution as it may vary between different
accounts. Moreover, in the real world, the number of suspi-
cious sequences is unidentified. Hence, having a high thresh-
old value might lead to a low false positive rate and might
miss some suspicious transactions. Alternatively, having a
low threshold might increase compliance officers’ workload
to verify each case and increase the false positive rate.

Another study [33] leveraged the semi-supervised learn-
ing approach, which uses both supervised and unsupervised
algorithms. The proposed framework used artificial neural
network (ANN) and k-NN clustering to investigate money
laundering in an investment bank. The framework first con-
solidated the transactions on a monthly, weekly, and daily
basis. By performing k-NN clustering over these transactions

VOLUME 9, 2021 83765

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

to locate the suspicious transactions, each suspicious trans-
action was labeled ‘‘suspicious’’ while others are marked as
‘‘normal.’’ Following this, the ANN is trained using these
labeled transactions to generate the model. To obtain enough
suspicious transactions, the author used a genetic algorithm
to generate more synthetic suspicious transactions like those
that were detected from the k-NN clustering process. Once
the training phase is done using these suspicious transac-
tions, the trained model is then used to test any new trans-
action to determine whether it is suspicious or not. However,
this approach still requires a domain expert to identify and
label the suspicious transactions during the clustering phase.
A heuristic approach is used to define the number of clusters
during the clustering phase.

Shabat et al. [34] proposed two algorithms: geometry-
based extraction, called Diffusion Maps (DM), and matrix
decomposition. They deal with high-dimensional big data
(HDBD), which is critical in cybersecurity. The result showed
that the proposed approach could outperform the nearest
neighbor-based (k-NN) and the clustering-based (uCBLOF)
algorithms. However, a massive dataset is required for this
approach to be efficient.

To identify the relationship between different accounts
involved in the money laundering process, Shaikh and
Nazir [35] implemented clustering using social networks
analysis (SNA) that determines specific relations among
illegal transactions and suspicious customers. However, the
authors used fixed conditions and criteria to identify various
types of relationships, which may not be ideal for generaliza-
tion. Therefore, these conditions will need to be modified and
updated for each geo-social zone.

Colladon and Remondi [36] proposed a similar approach
to build a risk profile by using multiple networks during
the experiment. However, they focused only on factories and
the business sector, which may lead to less generalization
when applied to personal bank networks. Also, they neglect
certain features from their analysis, such as the size and
the age of the firms. Another related approach proposed by
Molloy et al. [37] used graph analytic and BIRCH (Balanced
Iterative Reducing and Clustering using Hierarchies). The
proposed method used the SCC (Strongly Connected Com-
ponent) to reduce the false-positives and efficiently identify
suspicious transactions. SCC theory assumes that transac-
tions within an SCC are less likely to be fraudulent than
the transactions that span two SCCs. Although the proposed
method showed good discrimination between normal trans-
actions and suspicious ones, the implementation still requires
high computational cost.

A powerful unsupervised deep learning approach was
recently proposed based on variational autoencoders (VAE)
for anomaly detection [38]. The VAE’s main advantage over
PCA and the standard autoencoder is that it delivers a prob-
ability measure as an anomaly score rather than a recon-
struction error. The result showed that the proposed method
performed better than PCA and standard autoencoder-based
methods. Furthermore, given its generative nature, analyzing

the anomaly’s underlying cause is also possible through
data reconstruction. However, reconstruction probability still
requires a fixed threshold, and it can be easily affected by
outliers. Furthermore, it still needs to be validated against
real money laundering cases. In another similar effort [39],
an autoencoder-based data augmentation technique was pre-
sented for unsupervised anomaly detection. Babaei et al. [40]
proposed a prune-based outlier factor (PLOF) approach for
the detection of point outliers which can significantly reduce
the execution time of local outlier factor (LOF) while main-
taining performance.

Another research [41] proposed unary classification with
deep autoencoder, which used the OCC (One Class Classi-
fication) to identify only one class among all data objects.
Results showed better accuracy and performance over the
other traditional machine learning algorithms. However, as it
is only one class, it is hard to identify the attribute that
contributes the most to the separation of positive and negative
classes.

Pumsirirat and Yan [42] used the Restricted Boltzmann
Machine (RBM) and autoencoders to detect credit card fraud.
By using RBM, the model can reconstruct the normal trans-
actions to locate fraud. Having both algorithms enabled them
to investigate the real-time transactions, the experiments were
conducted over three datasets from Australia, Germany, and
Europe. The results showed a low false-positive rate besides
a good performance.

Paula et al. [43] used autoencoders to investigate fraud and
money laundering in Brazilian exports. The authors used a
dataset containing 820 thousand records and conducted the
experiments using PCA and autoencoders. Results showed
that autoencoder could detect fraud even with high latent
dimensions while PCA could not achieve the same effect.

In conclusion, clustering approaches are simple but still
require a domain expert to determine the number of clusters
and analyze each cluster’s members to determine the suspi-
cious ones. However, clustering algorithms focus on grouping
similar transactions based on each transaction’s characteris-
tics, so the imbalance dataset issue does not heavily impact
it (e.g., a ratio of 20,000 normal transactions to 1 suspicious
transaction). Additionally, recent advances in deep learning
techniques such as autoencoders and their promising results
in anomaly detection make it an excellent candidate for
implementation in this research.

III. DEEP LEARNING MODELS
In this section, we describe autoencoders (AEs), Variational
Autoencoders (VAEs), Generative Adversarial Networks
(GANs), and Wasserstein GANs (WGANs). Autoencoders
are an unsupervised learning method that is mainly
used for feature extraction. They use a feedforward,
non-recurrent neural network to perform representation learn-
ing. An autoencoder will learn the representation or code
by trying to copy the input to output. However, using an
autoencoder is not as simple as copying the input to out-
put; otherwise, the neural network would not uncover the

83766 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 1. Representation of an autoencoder.

hidden structure in the input distribution. An autoencoder will
encode the input distribution into a low-dimensional tensor,
which usually takes the form of a vector. This will approxi-
mate the hidden structure that is commonly referred to as the
latent representation, code, or vector. This process constitutes
the encoding part. The decoder part will then decode the latent
vector to recover the original input. As a result of the latent
vector being a low-dimensional, compressed representation
of the input distribution, it should be expected that the output
recovered by the decoder can only approximate the input.
The dissimilarity between the input and the output can be
measured by a loss function.

A. AUTOENCODERS (AEs)
An autoencoder consists of input, hidden (or bottleneck), and
output layers. Although it is a single network, as Figure 1
shows, it is a virtual composition of two components [44]:
• Encoder: This transforms the input (x) into a
low-dimensional latent vector bottleneck, z = f (x).
Since the latent vector is of low dimension, the encoder
is forced to learn only the most important features of the
input data.

• Decoder: This tries to recover the input from the latent
vector g(z) = x ′. Although the latent vector has a low
dimension, it has a sufficient size (m < n) to allow
the decoder to recover the input data. Simultaneously,
it restricts the encoder function to approximate x so that
it is forced to learn only the most salient properties of x
without copying it exactly.

The autoencoder can be trained by minimizing the loss
function known as the reconstruction error, L = (x, x ′).
It measures the distance between the original input and its
reconstruction. It can be minimized in the usual way with
gradient descent and backpropagation. Popular loss functions
such as mean square error (MSE) or binary cross-entropy
(like cross-entropy, but with only two classes) can be used
as reconstruction errors, as in equation (1).

L
(
x, x ′

)
= MSE =

1
m

∑m

i=1

(
xi − x ′i

)
(1)

The reconstruction error in the equation above is used as an
anomaly score for the autoencoders’ fraud detection imple-
mentation, as will be explained later in the methodology.

B. VARIATIONAL AUTOENCODERS (VAEs)
By architecture, AEs tend to memorize the input, especially
if the dimension of the latent code is significantly bigger than
the number of features. To encourage the model to generalize
better, various techniques can be used, such as Denoising
AEs, Sparse AEs, or VAEs.

VAEs are the stochastic version of AEs as they can describe
the latent representation in probabilistic terms [45]. Instead
of discrete values, there will be a probability distribution for
each latent attribute, making the latent space continuous. This
makes random sampling and interpolation easier. In terms of
structure, VAEs bear a resemblance to an autoencoder; they
are also made up of an encoder (also known as recognition or
inference model) and a decoder (also known as a generative
model). Both VAEs and autoencoders attempt to reconstruct
the input data while learning the latent vector. However,
unlike autoencoders, the latent space of VAEs is continuous,
and the decoder itself is used as a generative model.

VAEs can be expressed as follow: the encoder q_φ (z|x)
where φ are the weights and biases of the network, x is the
input, and z is the latent space representation. Here, instead
of being a discrete value, the encoder output is a distribution
(for example, Gaussian) over the possible values of z, which
could have generated x.
The VAE stochastically (randomly) samples z from the

distribution, then it sends the sample through the decoder
p_θ (x|z) where θ is the decoder weights and biases. The
decoder output, in turn, is a distribution over the possible
corresponding values of x, as Figure 2 shows.

FIGURE 2. Variational autoencoder representation.

By doing this kind of sampling from a distribution, VAEs
have two different types of losses. The first of these is the
Kullback-Leibler divergence (KL) between the probability
distribution q_φ (z|x) and the expected probability distribu-
tion, p_θ (x|z). It measures how much information is lost
when q_φ (z|x) is used to represent p_θ (x|z) (in other words,
how close the two distributions are). It encourages the autoen-
coder to explore different reconstructions. The second is the
reconstruction loss, which measures the difference between
the original input and its reconstruction. The more they differ,
the more it increases. Therefore, it encourages the autoen-
coder to reconstruct the data better. These two losses can be
expressed as follows:

L(θ, φ; x) = −DKL(qφ(z|x)||pθ (z))+ Eqφ (x) [loglog (pθ (z))]

(2)

VOLUME 9, 2021 83767

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

To implement this, the bottleneck layer will not directly
output the latent state variables. Instead, it will output two
vectors, which describe the mean and variance of each latent
variable’s distribution, as shown in Figure 3.

FIGURE 3. VAE sampling process.

Once the mean and variance distributions are obtained,
a state z can be sampled from the latent variable distributions,
and it can be passed through the decoder for reconstruction.
However, this sampling process has one issue during train-
ing such that Backpropagation gradients do not work over
random processes (stochastic layer) like the one described
above [46].

The solution to this problem is to push out the sampling
process as the input, which can be done by using an innovative
technique, called the reparameterization trick. First, a random
vector ε is sampled, with the same dimensions as z from
a Gaussian distribution (the ε circle in the figure below).
Then, it is shifted by the latent distribution’s mean µ, and
is subsequently scaled by the latent distribution’s variance σ ,
as shown in Figure 4 [47].

FIGURE 4. VAE reparameterization trick.

By doing this, the random generator is omitted from the
backward pass, and the sampled data will have the properties
of the original distribution. The updated sampling process
now can be expressed as follows:

z = µ+ σ � ε (3)

In the fraud detection domain, VAEs represent a pow-
erful technique. The encoder would produce a distribution
of possible encodings describing the transaction’s essential
characteristics, yet it will keep the generalization intact.

FIGURE 5. The architecture of generative adversarial network.

C. GENERATIVE ADVERSARIAL NETWORKS (GANs)
GANs were introduced by Ian Goodfellow and his fellow
researchers at the University of Montreal in 2014 [48].
A GAN consists of two neural networks, as Figure 5
shows [49]:
• Generator:This is the generative model. It takes a prob-
ability distribution (random noise) as input from a latent
space and tries to generate a realistic output sample. Its
purpose is similar to the decoder part of the VAE.

• Discriminator: This is sometimes known as a ‘‘critic,’’
which takes two alternating inputs: the real samples of
the training dataset or the generated fake samples from
the generator. It tries to determine whether the input
sample comes from the real samples or the generated
ones.

These two cooperating (and competing) networks are
trained together as one system wherein the discriminator
tries to get better at distinguishing between the real and fake
samples. The generator tries to outputmore realistic examples
to deceive the discriminator into thinking that the generated
example is real. That’s why it is called ‘‘adversarial.’’ The
system’s ultimate goal is to make the generator so good that
the discriminator would not be able to distinguish between the
real and fake samples. Even though the discriminator does
classification, a GAN is still unsupervised since it does not
need labels for the samples.

The discriminator is a classification neural network, and it
can be trained the usual way by using gradient descent and
backpropagation. However, the training set is composed of
equal parts real and generated samples. Therefore, the loss
function can be minimized as follows:

L(D)
(
θ (G), θ (D)

)
= −Ex∼Pdata loglogD (x)

−Ezloglog (1− D (G (z))) (4)

The equation is just the standard binary cross-entropy cost
function. The loss is the negative sum of the expectation
of correctly identifying real data, D(x), and the expectation
of 1.0 minus correctly identifying synthetic data, 1−D(G(z)).
GAN considers the total of the discriminator and generator
losses as a zero-sum game to train the generator. The gener-
ator loss function is simply the negative of the discriminator
loss function [46]:

V (G)
(
θ (G), θ (D)

)
= −L(D)

(
θ (G), θ (D)

)
(5)

83768 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 6. A pictorial representation of the Earth-Mover distance
computation [46].

Thus, the GAN minimax loss objective function can be
written as [50]:

V (G,D) = Ex∼Pdata loglogD(x)+ Ezloglog (1− D (G(z)))

(6)

The solution to the minimax game is called the Nash equi-
librium. A Nash equilibrium happens when one of the actors
does not change its action, regardless of what the other actor
may do. A Nash equilibrium in a GAN framework happens
when the generator becomes so good that the discriminator is
no longer able to distinguish between the generated and real
samples. However, the gradient descent algorithm is designed
to find the minimum of the loss function rather than the
Nash equilibrium. As a result, sometimes the training may
fail to converge, but, due to the popularity of GANs, many
improvements have been proposed.

D. WASSERSTEIN GANs (WGANs)
GANs can be very difficult to train and are prone to mode
collapse. Mode collapse is when the generator produces out-
puts that look the same even though the loss functions are
already optimized. Wasserstein GAN [46], [51] proposed an
implementation that can avoid a mode collapse issue; that is,
by replacing the GAN loss function based on the Wasser-
stein 1 or Earth-Mover distance (EMD). In our case, this is
where the ‘‘critic’’ discriminator is calculating the Wasser-
stein distance between the real and fake samples. As the loss
function decreases in the training process, the Wasserstein
distance becomes smaller. Hence, the generator generates
samples closer to the real ones.

The intuition behind EMD is that it measures how much
mass γ (x, y) should be transported by d = ‖x − y‖ for the
probability distribution p_data to match the probability dis-
tribution p_g, as shown in Figure 6 [46].0(x, y) is also known
as a transport plan to reflect the strategy for transporting
masses to match the two probability distributions, which can
be expressed as the following equation:

W
(
pdata, pg

)
= inf γ∈∏(pdata,pg)E(x,y)∼γ [‖x − y‖] (7)

When using EMD or Wasserstein 1 as the loss function,
the generator will try to minimize, while the discriminator
tries to maximize, it can be expressed as follow:

L(D) = −Ex∼pdataDw (x)+ EzDw (G (z)) (8)

L(G) = −EzDw (G (z)) (9)

In the generator loss function L(G), the first term disappears
since it is not directly optimizing with respect to the real
data. Moreover, the discriminator is not trying to tell whether
the samples are real or fake anymore. Instead, it is using
K-Lipschitz function to calculate the Wasserstein distance
between the real and fake samples. As the loss function in the
training process decreases, the Wasserstein distance becomes
smaller. Hence, the generator generates samples closer to the
real ones [52], which can be described by:

W
(
pdata, pg

)
= max

w∈W
Ex∼pdata [Dw (x)]− Ez [Dw (G (z))]

(10)

IV. METHODOLOGY
This section explores the workflow that the research fol-
lows towards themodel implementation. It describes different
techniques and methods that have been used in each one of
these steps, such as the data preparation and preprocessing
techniques, model building, and performance evaluation.

A. WORKFLOW
As shown in Figure 7, once the raw data is obtained, some
time is invested in understanding the data in order to describe
it and discover any underlying relations. Following this, dif-
ferent data preprocessing techniques are used to prepare the
data for model training and evaluation. The output from the
data preprocessing is separated into two different datasets.
The first dataset, called ‘‘base,’’ is used to train and test the
autoencoder models (AE and VAE). AE has two different
versions: single-loss function and multi-loss function.

The second dataset, called ‘‘merged,’’ is used to train and
test the WGAN model, which generates more fake fraud
transactions. These transactions are then mixed with the
merged dataset to produce the ‘‘mixed’’ dataset. Finally,
the mixed dataset is used to train the autoencoder models one
more time. The idea behind this approach is that by having
more fraud transactions, the model performance is expected
to increase, as will be explained later. All the models are then
compared using the different evaluation techniques to obtain
the best performing AE model.

B. DATASET DESCRIPTION
1) RAW DATA
The data is obtained from the research project that was
undertaken in 2014 between the School of Computer Science,
University of Nottingham (Malaysia campus) and a local
Malaysian Bank. The original dataset that was obtained in
2014 contains about 30 million transactions (records) for
the period from 2012 until 2013 [7]. However, for privacy

VOLUME 9, 2021 83769

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 7. The workflow of the model implementation. The raw data is split into two segments: merged and base datasets.
The merged dataset is used as input for the WGAN model. The WGAN model produces and generates the mixed dataset
which is then used to train the AE and VAE models. The base dataset is used as input to train both VAE and AE models. The
AE model uses two loss functions, namely the multi-loss and single-loss function.

TABLE 1. Raw dataset description. The raw financial transations are
pre-processed on different time horizons, namely day, week, and month.

reasons, the full dataset is not accessible anymore. Instead,
this research obtained access to a subsection of the dataset as
summarized in Table 1.

Thewhole subsection dataset contains a total of 4889 trans-
actions that are consolidated based on the time intervals in
3 different files (Day, Week, and Month) and labeled under
the class attribute by a domain expert to be either (0= normal)
or (1 = fraud). The number of attributes (or ‘‘features’’)

varies between these groups based on the time interval, as the
Day group has 69 attributes including the class as it is the
base time interval. In contrast, the other two groups have
two extra attributes with a total of 71 attributes. These two
extra attributes are (tran_date_to and Week), in the case of
the Week group, and (tran_date_to and Month), in the case of
the Month group.

The Day group has the most transactions, with a total
of 2706 transactions, where 45 of them are fraud and the
rest are normal with only 3 Null values under the P2 attribute
and no duplicates. While the Week group has 1490 transac-
tions, 44 of them are fraudulent ones, with three Null values
under the P2 attribute and no duplicates. Finally, the Month
group has 693 transactions, with 44 of them being fraud, two
Null values under the P2 attribute, and no duplicates. In this
research, the Day group is used as the base dataset, as it has
the most normal transactions that will be required to train the
autoencoders model and it requires less preprocessing work.

83770 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

2) MERGED DATA
We notice from the dataset above that it does contain suffi-
cient fraudulent transactions. However, training the WGAN
model requires enough fraud transactions to produce more
realistic fraud transactions in turn.

Therefore, to obtain enough transactions to train the
WGAN, the three groups of the dataset in Table 1 are merged
into one dataset. However, two issues need to be solved
to perform this merging successfully. The first issue is that
different datasets have different numbers of attributes. The
Week and Month datasets have two extra attributes - one
attribute is the time interval, and the other attribute is the
ending date for that interval, as mentioned above. To solve
this issue, the time interval will be reconstructed into the base
unit for all three datasets, which will require feature engi-
neering for the transaction date tran_date attribute that will be
discussed in the next section. Therefore, the (tran_date_from
and Week) attributes will be dropped from the Week dataset.
Also, the (tran_date_from and Month) attributes equally
will be removed from the Month dataset while keeping the
tran_date_to attribute since it represents the end of the time
interval for both datasets. Thus, the processed datasets will
have equally 69 attributes and can be merged.

The second issue is the possibility of having duplicates.
However, this issue will be discussed and solved in the next
section. Table 2 summarizes the merged dataset. After the
datasets are merged, the new dataset is sorted and re-indexed.
The dataset now contains 133 fraud transactions, and as was
expected, seven duplicates were found, which will be handled
next.

TABLE 2. Merged dataset description. the new dataset is sorted and
re-indexed After the datasets are merged. the dataset contains 133 fraud
transactions, and, as it was expected, 7 duplicates were found.

C. DATA PREPROCESSING
Data preprocessing is one of the key steps towards any suc-
cessful machine learning implementation. It helps to remove
the noise data and irrelevant information from the dataset
that prevents the knowledge discovery and can hurt the gen-
eralization. In the next sections, we will cover some of the
data preprocessing techniques such as transformation, nor-
malization, data cleaning, and feature extraction that were
implemented in this research.

1) FEATURE DROPPING
This is the first technique that can help in dimension
reduction. Keeping irrelevant attributes could hurt the model
performance and cause overfitting, but by removing the
unnecessary or redundant features, the model is expected to
perform and generalize better. It will also help cut down the

computing power required to train and run the model. In this
research, two techniques were used to identify such features
in the dataset: zero-sum and automatic generated.

Attributes that have the same value for every record
instance do not add any extra knowledge to the model as it
cannot enhance the prediction; rather, it can hurt the model.
Significantly, if the total value for that attribute for the whole
dataset is zero, this attribute is dropped during the data pre-
processing step. This is the case for some features in the
dataset such as (rl0003, rl0012, rl0013, rl0014, etc.).

There are two attributes directly related to the customer in
the given dataset. These two features are customer identifier,
cif_id, and account number, account_no. The bank system
automatically generates both these attributes. Some fraud
detection implementations are mainly built on such attributes
as the graph analysis and the social network analysis, where
the customer account number is considered to be a ‘node’
and his transaction an ‘edge’. Then certain weights and tech-
niques are applied to evaluate whether this account is doing
money laundering or not.

However, these implementations require the account that
the transaction was sent from and the account that the transac-
tion will be sent to. Unfortunately, the given dataset does not
provide these attributes. Also, in terms of implementation for
this research, including these customer-related features will
have a negative impact on the model performance. The model
will be used as a real-time fraud detection system during
the inference phase, where even a single transaction can be
evaluated from a totally new customer. Therefore, during the
model training no customer-specific features will be included
and both attributes are removed from the dataset.

2) DUPLICATE DROPPING
Even though the groups that were mentioned in Table 1 do
not have duplicates, when these groups are combined together
in the merged dataset, some duplicates were found. Hence,
we check for duplicates in the merged dataset and drop them.

However, it is worth pointing out that the duplicates that
have been dropped from the dataset have occurred because
of the merging process. In other cases where duplicates rep-
resent an original part of the dataset, it is still acceptable to
keep them.

3) BINARY ENCODING
Categorical attributes need to be converted into numbers,
so the model will be able to work with them, and there are dif-
ferent types of encoding techniques. Among the most popular
ones are One Hot Encoding and Binary Encoding. We com-
pare these two encoding techniques in terms of their impact
on the model accuracy and the number of output attributes
that each technique produces. Binary Encoding will have the
same impact on the model accuracy as One Hot Encoding but
with less attributes, which is sufficient for this research. Three
attributes (account_type, product_type, business_type) in the
dataset need to be encoded. The binary encoder will encode

VOLUME 9, 2021 83771

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

the categories in each one of these attributes into binary code
then split it into columns.

4) NULL VALUES
Having null or missing values in the dataset can lead to wrong
predictions or even issues during model training. Therefore,
filling these values is an important step during the prepro-
cessing phase. In the given dataset, eight null values were
found under the P2 attribute. These null values were handled
by filling them with the mean attribute value.

5) LOG TRANSFORMATION
Data skew represents another challenge that needs to be
fixed. Three attributes in the given dataset (credit_amount,
debit_amount, debitpluscredit_amount) show an extensive
range of differences within their values because the vast
majority of the values are skewed towards a certain direction
while the remaining few are skewed in the other direction.
By applying the common scaling techniques directly to such
attributes, the scaled data will not preserve the original data
representation. Therefore, log transformation is required to
fix the data skew as it pulled in the extremely high values
relative to the median while stretching the low values back
further away from the median. Moreover, the log transforma-
tion respects the positivity of the attribute, which is essential
for the scaling techniques that will be applied to the data. By
applying log transformation on the attributes, their distribu-
tion takes a better shape.

6) STANDARDIZATION
As the dataset contains a wide range of values, the normal-
ization or standardization of data prior to the training phase
is favorable because it can reduce the estimation errors and
calculation time.

Normalization, which is also called Min-Max Scaling, can
be achieved by scaling the attribute to a fixed range (0 and
1) through this equation:

Xnorm =
X − Xmin

Xmax − Xmin
(11)

However, in fraud detection models, it is important to
preserve the original distance between data points. Therefore,
standardization will be muchmore appropriate for implemen-
tation. Standardization scales the data based on its mean (µ)
and the standard deviation (σ) from the mean. Having µ = 0
and σ = 1 will center the data around 0 as in the following
equation:

Z =
X − µ
σ

(12)

The standardization techniquewas applied over all the non-
binary attributes in the dataset (credit_amount, debit_amount,
p2, . . . , etc.).

7) FEATURE ENGINEERING ON DATES
One reason for having the raw dataset divided into three
groups is to enhance the model accuracy by grouping the

transactions within a specific period. Although this is still a
valid approach, it can be improved even further.

This research introduces another approach that can better
use the date attribute, engineering some new features based
on the tran_date feature. Specifically, the tran_date feature is
split into its base date components, then these new features
are added into the dataset. These new features are described
in Table 3.

TABLE 3. Date-based new features.

The idea behind introducing these features is to allow the
model to capture any pattern within the data that is related
to its date. As shown in Figure 8, transactions tend to have
different data peaks from one feature to another, which the
model may utilize to identify fraudulent behavior.

FIGURE 8. Data distribution for the new date related features based on
different time horizons (i.e., day, month, and quarterly). The y-axis
represents the density and the x-axis represents the range of values.

However, the given dataset does not provide any timestamp
features. It could be instrumental in deducing even more
information, such as whether the transaction occurred during
daytime, night, morning, or afternoon, which may be useful
for the model.

It is worth mentioning that there is a popular deep learning
implementation that can handle time-series data and sequence
data better than the non-recurrent neural networks, which
is called LSTM (Long Short-Term Memory). However, this
approach is not useful for this research because fraud behav-
ior does not follow a particular sequence; one transaction
cannot be used to predict the next one.Moreover, this research
aims to build a real-time fraud detection application that may
operate on one transaction rather than a batch of transactions.

D. PREPROCESSED DATASET
The preprocessing phase outputs two datasets; the base
dataset will be used to train the autoencoder models, and
the merged dataset used to train the WGAN. This section

83772 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 9. Attributes distribution by class (Normal and Fraud). The y-axis represents the fraction of transactions, and the x-axis represents the time
horizons (i.e., quarter, month, day, dayofweek etc.).

FIGURE 10. Attributes distribution by class (Normal and Fraud). Normal transactions are represented as ‘blue’ whereas fraud
transactions are represented as ‘orange’.

describes these two datasets as they are now ready to be used.
Table 4 shows the description of these datasets.

TABLE 4. Processed base and merged datasets.

The different number of attributes in the two datasets are
due to one extra attribute, rl0030, that was dropped from
the base dataset because it has a zero-sum value. However,
this attribute holds some value for instances in the other two
groups when the groups are merged together. Although the
number of Fraud transactions is low compared to the normal
transactions in the base dataset, the autoencoder implemen-
tation will overcome this issue. As the WGAN will need the
fraud transactions for the training, the merged dataset is used
as it has more fraud transactions than the base dataset.

In both datasets, fraud and normal transactions are
overlapped in almost every feature, except in certain
features such as credit_amount, debit_amount, and depitplus-
credit_amount, where fraud and normal transactions can be
slightly separable, as Figure 10 shows. Nevertheless, when
these barely separable features are investigated further, their
distribution shows a high level of mixing, as Figure 9 shows
in the case of credit_amount. Therefore, a machine learning
implementation is necessary for better normal-fraud class
classification.

E. MODEL IMPLEMENTATION
1) AE
The autoencoder is mainly used to learn the important fea-
tures; then, it utilizes that knowledge to reconstruct the data
to be as similar as possible to the original data. However,
in fraud detection implementation, the autoencoder’s output

VOLUME 9, 2021 83773

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 11. Autoencoder model structure.

is not the focus. Instead, the most important part is the
knowledge that the model gains in the latent vector. That
knowledge can be evaluated through the reconstruction error,
as mentioned earlier.

In this implementation, the autoencoder will be only
trained over the normal transactions. Thus, the model is
expected to learn the normal transactions’ important features
and then reconstruct these transactions. However, during the
testing phase, the model will be tested against both normal
and fraud transactions. That’s when the reconstruction error
is used. If the tested transaction is normal the model will be
able to reconstruct it with the minimum error. However, if the
transaction is fraud, the reconstruction error will be relatively
significant. Moreover, to determine whether the error is big
or small, a predetermined threshold value is used, on which
the anomaly score is given to each transaction. The threshold
determination method will be discussed in the next sections.

a: MODEL ARCHITECTURE
The first component in the autoencoder implementation is the
input layer, Model_Input, which has 42 neurons. Each neuron
represents one attribute in the base dataset except the class
attribute. No activation function is used for this layer as no
prior weights exist; hence, it merely passes the values to the
network’s next component.

The next component of the network is the encoder. It con-
sists of 3 dense layers (Encode_1, Encode_2, Encode_3),
and the number of neurons in each one is almost half of the
number of its previous layer. Thus the autoencoder is forced
to learn only the important features. The bottleneck layer is
the next component; it has the minimum number of neurons,
which is eight, that will hold the latent vector weights.

Then, the network passes the values to the decoder, which
in turn consists of three dense layers (Decode_1, Decode_2,
Decode_3). However, the number of neurons in each dense
layer in the decoder is almost double the number of its
previous layer to build towards restoring the same number
of features as the original data. The last component of the
network is the Model_Output layer, which has 42 neurons
representing the same number of neurons as the original
input. Figure 11 shows the architecture of the AE model.

The activation function in the first layer in both the encoder
and the decoder is tanh as it will ensure the output values

for neurons in these layers will always be between (-1, 1).
This fits nicely because of the data standardization in the
preprocessing phase. The other layers in both of these com-
ponents use the ReLU activation function, which will force
the output to be positive, or else zero. Finally, a sigmoid
activation function in the Model_Output layer will produce
output within the range of (0, 1).

The model uses Mean Squared Error (MSE) as a loss
function as most of the input values are a spectrum rather
than binary. The MSE computes the average of the square
difference between the actual input value and the predicted
value. Therefore, the objective of the optimizer is to minimize
that loss function. The output of MSE is a positive value.
However, as sigmoid was used as an activation function in the
last layer of the autoencoder, it is expected to have a Binary
Cross-Entropy (BCE) loss, which will be discussed in the
next section.

Lastly, the gradient-based optimization optimizer Adam
is used by the model to minimize the loss function as it is
invariant to the gradients’ diagonal rescaling and capable of
handling a wide range of nosiy data.

b: MULTI-LOSS FUNCTION
Given that the input features have both binary and non-binary
data, and sigmoid is used as the model output activation func-
tion, this paper implemented another variant of the AEmodel.
Instead of having one loss function, this variant has two loss
functions, MSE and BCE. BCE is capable of handling the
binary values and has a bounded output of [0, 1]. The idea
of combining these two losses is to have a smooth and stable
loss value that will handle both binary and non-binary values
during the optimization. The implementation adds these two
losses then returns their mean value.

c: TRAINING AND HYPERPARAMETERS TUNING
Several experiments have been undertaken to determine the
values of the hyperparameters (such as the learning rate,
number of epochs, etc.). After reaching a stable performance,
the learning rate value, which determines the gradient opti-
mizer’s step size, is set to be (1e-3), and the number of epochs
is set to be 300. To optimize the training process, an early
stopping technique is used to terminate the training if the loss
does not decrease beyond 1e-5.

As the dataset is not large enough, we used a cross-
validation technique where 20% of the data is used for testing,
and 80% is used in the training process. Each batch size
is set to be 80, selected based on a random seed. Finally,
to avoid the network’s tendency to memorize the training data
and fail to generalize, the model uses an activity regularizer
in the encoder’s first layer. This allows the application of
penalties over this layer during the optimization and adds
those penalties to the loss function.

2) VAE
The variational autoencoder follows the same idea for imple-
mentation as for the AE. That is, only the normal transactions

83774 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

are used during the training phase. Then an anomaly score
is assigned with each transaction during the test phase for
both normal and fraud transactions by comparing the recon-
struction loss against a predefined threshold. The difference
between VAE and AE is the latent space; as in VAE, it is
represented by a distribution rather than data values.

a: MODEL ARCHITECTURE FOR VAE
The model starts with the input layer Model_Input, which has
42 neurons with no activation function, and the encoder, con-
sisting of two dense layers (Encode_1, Encode_2) where they
have (22 and 12) neurons, respectively. The Encode_2 layer,
in turn, outputs two different vectors,Mean and LogVariance.
Each one of these two vectors is mapped to its own layer. Log
Variance here is used because of its more numerical stability
than the standard deviation, which will be calculated later in
the Sigma layer.

However, before recovering the standard deviation in the
Sigma-dense layer, bothMean and LogVariance are passed to
a custom layer, KLDivergenceLayer. This layer calculates the
distribution loss using a KL divergence function, then adds
this loss to the total model loss. Finally, it returns the inputs
(Mean and Log Variance) unchanged to the next layer.

Next, the Sigma-dense layer receives the values from
KLDivergenceLayer and recovers the Standard Deviation.
Subsequently, we implemented the reparameterization trick
by introducing a separate dense layer, Epsilon, which uses the
Monte Carlo sampling technique to draw a random sample
from a normal distribution with the same latent vector dimen-
sion. This sample represents Noise, which is then multiplied
by Sigma, and the product is forwarded to the next layer.

The latent space Z-dense layer receives the sampled vector
standard deviation multiplied by epsilon and also receives the
Mean from KLDivergenceLayer. Then it adds them together
and outputs the result to the model decoder. The decoder
consists of two dense layers: (Decode_1, Decode_2), and
the number of neurons in each of them is and 12 and 22,
respectively. Finally, the Model_Output layer receives the
decoded values and outputs 42 features. In general, the model
uses the ReLU activation function in both the encoder and the
decoder layers. Figure 12 shows the architecture of the VAE
model.

b: TRAINING AND HYPERPARAMETERS TUNING FOR VAE
The initial learning rate is set to be (1e-3), while the model
will be trained for 300 epochs. Cross-validation is used where
training and test datasets correspond to 80% and 20% of the
original dataset, and batch size is set to be 128.

The RMSprop optimizer is used to minimize the loss func-
tion because it limits the vertical direction fluctuations. This
allows increasing the learning rate, allowing the gradient to
take larger steps for faster convergence.

3) WGAN
The fraud detection models’ problem is that their datasets are
always unbalanced, given that the fraud behavior infrequently

FIGURE 12. VAE model architecture.

occurs. The same case applies to the merged dataset as it has
only 133 fraud transactions. Therefore, WGAN will generate
more fraud transactions, enhancing or solving the unbalanced
dataset problem, hence enhancing the model’s performance.

As the model will generate fraud transactions, the merged
dataset is used to train the model. After the training is done,
the model is used to generate new fraud transactions. These
newly generated fraud transactions are mixed with the dataset
to formulate the mixed dataset.

a: MODEL ARCHITECTURE FOR WGAN
As training GANs is not easy in terms of stability [50],
the model implementation considers that adding extra layers
such as theDropout layer and the LeakyReLU activation layer
could make the model more stable.

In general, the model starts with the Model_Input layer,
which receives 43 features mapped to its 43 neurons. Then
the model separated into two different networks: one is the
generator, and the other one is the discriminator. The gener-
ator network has three dense layers (Gen_1, Gen_2, Gen_3)
plus the Gen_Out layer. Because the generator generates fake
transactions, it does not need to follow a specific structure in
each layer’s neuron number. However, as almost all GANs
literature is based on image processing, it follows a binary
multiplication system. To follow that practice in this net-
work, the number of neurons in the generator layers are 128,
256, and 512, respectively. However, for the Gen_Out layer,
the number of neurons is 43, as it will be the same number of
features as the real transaction.

After each layer in the generator except for Gen_Out, there
is a LeakyReLu activation layer that replaces the standard

VOLUME 9, 2021 83775

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 13. WGAN model architecture.

layer activation and could handle values better than the stan-
dard ReLU.

The discriminator network, on the other hand, starts with
the Mixed_Input layer receiving input from both the gen-
erator, which will produce the fake transactions and also a
randomly selected batch from the real transactions. These two
sources are then mixed and passed to the next layers. The
dimensions of the generated fake transactions and the real
transactions are the same (i.e., 43 features). Hence, the num-
ber of neurons in this layer is 43 as well.

The discriminator consists of 3 dense layers (Disc_1,
Disc_2, Disc_3) beside the Model_Output layer. The dense
layers are based on the binary system where the number
of neurons is 512, 256, and 128, respectively. The output
layer will have only one neuron. The same technique of
using LeakyReLu is used here, so each dense layer except
the output is followed by the LeakyReLU activation layer.
Moreover, to solve the problem of overfitting and stability
issue, a Dropout layer is added after the first dense layer
activation, which could help to regularize the network.

Finally, the discriminator output layer, Model_Output, has
no activation function as it is implementing the Wasserstein
distance. It will use the single neuron in the layer to output
the distance of which the transaction is considered real or
fake, rather than outputting 0 or 1, using a classic activation
function such as Sigmoid. Figure 13 shows the architecture
of the WGAN model.

b: TRAINING AND HYPERPARAMETERS TUNING FOR WGAN
GANs require a relatively long time to converge. Hence the
number of epochs is set to be 50,000. The optimizer is set to
be Adam with a learning rate of about (1e-3). The batch size
for the real transactions’ random sample is set to be 64, which
the discriminator will use.

Moreover, a checkpoint is made to save the model and
weights in every 100 epochs in addition to the loss values.
Once training is done, an accuracy check iterates over all
checkpoints to select the best version in terms of accuracy
relative to its corresponding loss.

It is worth mentioning that the LeakyReLU layers have
a hyper-parameter, called alpha, that determines the curve’s
negative slope. Here alpha is set to be 0.2, and the Dropout
rate is set to be 0.1.

F. PERFORMANCE EVALUATION METHODS
Various measures are used to evaluate the performance of
proposed models. We start with a list of related terms that
will be used in these measures. False positive (FP) refers to
the number of normal transactions that are predicted as fraud.
True positive (TP) is the number of fraud transactions that are
predicted as fraud. False negative (FN) specifies the number
of fraud transactions that are predicted as normal. Finally, true
negative (TN) refers to the number of normal transactions that
are predicted as normal.

In this research, a confusion matrix is used to report the
model performance by combining the indicators mentioned
above. This will help visualize how the model confuses
the true class. Moreover, some other performance measures
will be calculated using the confusion matrix, such as FP
rate (FPR), accuracy (ACC), precision, recall, F1 score, and
Receiver Operating Characteristics (ROC) curve.

FPR is highly important in fraud detection models, espe-
cially in this research, as it aims to minimize the value of FPR
as much as possible. It is expressed as follows:

FPR =
FP

TN + FP
(13)

Accuracy indicates the overall correct predicted transac-
tions, whether it is TP or TN relative to the total instances.
Precision identifies the correct fraud transactions rate relative
to all transactions that are predicted as fraud. The recall is the
rate of the correctly predicted fraud transactions relative to
all of the actual fraud transactions. To summarize the model
with only one single score, the F1 score is used as it considers
both recall and precision in its formula as follow:

F1 = 2×
Precision× Recall
Precision+ Recall

(14)

It is worthwhile to mention that both the Precision and
F1 scores are relatively low in fraud detection models as
the number of FPs is always more prominent than the TPs.
Finally, ROC is used to visualize the True Positive Rate (TPR)
and the FPR, and both are plotted on the y-axis and x-axis,
respectively. Hence, it shows how the model reacts under all
different combinations of thresholds.

83776 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

An important indicator is calculated from ROC and called
Area Under the Curve (AUC). AUC summarizes the whole
model performance in one number, ranging from 0 to 1 with
the best performance equal 1.

The optimizer’s objective is to minimize the loss. However,
this could lead to overfitting. Two model losses, such as
Training Loss and Testing Loss, are reported to make sure
that the model is not overfitting. Suppose the Training Loss
is higher than the Testing Loss. In that case, the model is
underfitting, and there is room for enhancement until the
Training Loss is near or equal to the Testing Loss - which
is perfect fitting. Once the Testing Loss exceeds the Training
Loss, the model is overfitting, and it needs to be adjusted.

THRESHOLD OPTIMIZATION
As was mentioned before, fraud detection implementations
require a predefined Threshold value to be able to assign
an anomaly score to each transaction. However, given the
business scope of these implementations, they should filter
out all of the fraud transactions. Yet, they should maintain a
good degree of efficiency by targeting a low FP rate.

To automate the process of determining the Threshold, and
at the same time, aligned with the business scope target, this
research defines the Threshold to be Recall-First Threshold
(RFT). The Recall-First Threshold (RFT), is the value that
will allow the recall of all fraud transactions with the highest
precision possible, as Figure 14 shows. This can be used
perfectly as a Threshold for our fraud detection implemen-
tation as its required to filter out all of the fraud transactions;
nevertheless, it should maintain a good degree of efficiency
by targeting low FP rate.

FIGURE 14. Recall-First threshold.

To calculate the RFT, precision-recall pairs for differ-
ent probability thresholds are computed using the preci-
sion_recall_curve function in the sklearn library. Then the
minimum value in the returned thresholds array is selected.

V. RESULTS AND DISCUSSION
This section presents the results from different experiments.
Firstly, it describes the mixed dataset, which is the result

of the WGAN model. Secondly, it compares the AE model
(single-loss and multi-loss) and VAE model under both
datasets (Base and Mixed). Finally, the section concludes
with a discussion of each model’s performance using each
dataset.

A. WGAN
WGAN training process is relatively tricky, and it often
requires a significant number of epochs. Hence, the WGAN
model with the configuration detailed in the previous section
shows various accuracy levels during the training process,
as Figure 15 shows. The accuracy refers to howmuch the gen-
erated samples are identical to the real samples. Thus, higher
accuracy is an indication that the discriminator is no longer
able to distinguish between the generated and real samples.
During training, a checkpoint is saved for the model, and
once the training is completed, an iteration is used to select
the best version of the model based on its accuracy, which
reached 99%. The optimal number of iterations is chosen
when the accuracy has reached a plateau or degradation.

After training, the best model is utilized to generate fraud
transactions. Specifically, it is used to generate about the same
number of real fraud transactions in the merged dataset; that
is, about 132 fraud transactions. These fake fraud transactions
are then mixed into the merged dataset to result in the mixed
dataset, as Table 5 shows.

TABLE 5. Mixed dataset description.

Subsequently, the mixed dataset is re-indexed and sorted to
be used during the autoencoder models training, and the final
dataset is shown in Figure 16.

B. AE SINGLE-LOSS (AE-S)
The autoencoder model with a single loss function (MSE)
training generally shows an acceptable fitting level. The
Training Loss stayed above but near the Testing Loss using
the base dataset. On the contrary, the Training Loss goes
below but near the Testing Loss when the mixed dataset is
used, indicating a sort of overfitting, as Figure 17 shows.

When the base dataset is used, the Recall-First Threshold
(RFT) was 0.216, which increased to reach 0.589 after the
mixed dataset is used, as Figure 18 shows. The AUC was cal-
culated to be 0.920 in the base dataset. However, it increased
to reach about 0.963 once the mixed dataset is used, as shown
in Figure 19.

As the RFT is already calculated, the reconstruction error
can be assigned an anomaly score, as Figure 21 shows. All
of the reconstruction error values located above the RFT
are considered fraud; else, it is considered normal. However,
the different color represents the actual points class.

VOLUME 9, 2021 83777

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 15. WGAN classification accuracy at different epochs during training of the credit_amount attribute. The left
side shows the distribution of the real dataset while the three remaining right sides show the distribution of the
generated synthetic data for different epochs (i.e., 100, 200, and 300). It can be observed that the distribution of the
synthetic data is very similar to the real dataset.

FIGURE 16. Credit_amount feature distribution in the mixed dataset by class (Normal and Fraud).

Finally, the confusion matrix is depicted in Figure 20,
based on the fraud scores assigned in the above step. All
fraud transactions are identified correctly, which makes the

recall 100% for the base dataset. The same goes for the mixed
dataset, where all of the 43 fraud transactions are identified
correctly.

83778 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 17. AE-S model loss.

FIGURE 18. AE-S recall-first threshold. The precision/recall value is between 0 and 1.

FIGURE 19. AE-S receiver operating characteristic curve and AUC.

However, the number of normal transactions that are incor-
rectly predicted as fraud was about 94 transactions in the
base dataset, while decreased to 69 transactions after using
the mixed dataset. Moreover, these predictions impacted
other measures, such as the FPR, which reached 0.18 when
the based dataset was used against 0.07 when the mixed

dataset was used. In general, all of the measures are reported
in Table 6.

C. AE MULTI-LOSS (AE-M)
As was proposed by this research, the AE-M uses both
cross-entropy and MSE loss functions to evaluate the model

VOLUME 9, 2021 83779

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 20. AE-S confusion matrix.

loss. Results show that the model has a perfect fitting in
the base dataset case as Training Loss and Testing Loss
are positioned over each other. However, it was relatively
over-fitted in the mixed dataset case, as Training Loss went
below the Testing Loss, as Figure 22 shows. The RFT scored
about 0.229 when the base dataset was used, while it scored
0.554 when the mixed dataset was used, as Figure 23 shows.
AUC was lower in the base dataset than the mixed dataset
case, as it is reported to be 0.915 and 0.965, respectively,
shown in Figure 24.

When AE-M is used to classify the transactions based
on their reconstruction error score against the calculated
RFT value, results shows that the distribution of the error
points was scattered in the base dataset compared to the
mixed dataset case, as shown in Figure 25. After the fraud
scores were assigned to the transactions, the confusion matrix
in Figure 27 is constructed. In both datasets, all the fraud
transactions were recalled correctly. In contrast, 100 normal
transactions were predicted as frauds in the base dataset
case, and 67 normal transactions were incorrectly classified
for the mixed dataset as well, as Figure 27 shows. Among
other performance measures that are detailed in Table 6, FPR
scored about 0.19 in the base dataset case while it scored
0.07 in the mixed dataset case.

D. VAE
Variational autoencoder showed perfect fitting in the base
dataset case, yet the Training Loss went below the Testing
Loss when the mixed dataset was used. Hence, it is over-
fitting, as Figure 26 shows. The RFT was calculated to be
0.202 for the base dataset and 0.552 for the mixed dataset to

FIGURE 21. AE-S reconstruction error fraud-score. The reconstruction error is between 0 and 25.

FIGURE 22. AE-M model loss.

83780 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 23. AE-M Recall-First threshold. The precision/recall value is between 0 and 1.

FIGURE 24. AE-M receiver operating characteristic curve and AUC.

FIGURE 25. AE-M reconstruction error fraud-score. The reconstruction error is between 0 and 25.

assign fraud scores to the predicted transactions, as shown
in Figure 28.

As Figure 29 shows, AUC reached as high as 0.9645 when
the mixed dataset was used, while it decreased to reach
0.9057 when the base dataset was used. Based on the RFT
computed value, the fraud score was assigned, showing that

the reconstruction error points are more condensed under the
threshold when the mixed dataset was used. In contrast, they
were scattered under the thresholdwhen the based dataset was
used, as Figure 30 shows.

Lastly, the confusion matrix was assembled based on the
RFT, where it shows that all the fraud transactions were

VOLUME 9, 2021 83781

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 26. VAE model loss.

FIGURE 27. AE-M confusion matrix.

correctly predicted in both datasets. Moreover, the incorrectly
predicted normal transactions decreased from 101 transac-
tions for the base dataset experiment to be 75 transactions in
the mixed dataset experiment, as depicted in Figure 31.

Accordingly, FPR decreased from 0.19 in the base dataset
to about 0.08 in the mixed dataset experiment. Table 6 shows
a summary of all the performance results in the next section.

E. DISCUSSIONS
The mixed dataset shows a better performance in almost
every measure, and Table 6 shows the overall indicators in
percentage for comparison.

The FPR dropped drastically from around 19% for the
base dataset to around 8% for the mixed dataset. This was
expected as the number of fraud class transactions in the
mixed dataset is almost double. However, the interesting
part is that the FP number itself decreased in nearly all
experiments, which implies a better model’s ability to sep-
arate the fraud class from the normal class. The reason for
this is that the shape of the reconstruction error distribution
that was nicely flattened under the threshold line. Moreover,
the proposed threshold (RFT) proved to be a good estimate,
as its value was almost doubled from around 0.2 for the base
dataset, reaching approximately 0.5 in the mixed dataset case.
This increased the model’s ability to cover a broader range of
the reconstruction error.

In anomaly detection research, a highly unbalanced dataset
is always the case, which impacts the performance of certain

TABLE 6. Overall performance results in percentage for both datasets.
The results show the mean of returns averaged over six runs. The
standard deviation is not reported since the variation is insignificant (std
less than 0.01).

measures such as precision and accordingly F1 measure; that
is, the precision considers the FP count relative to the true pos-
itive count. Thus, although the result shows a better precision
and F1 measure in the mixed dataset, reaching around 39%
and 56%, respectively, these values are still low compared to
other studies that are not in the anomaly detection domain.
The better alternatives to the F1 measure that can be used in
the anomaly detection field are ROC and AUC as the TP/FP
ratio issue does not impact them. Therefore, we obtained an
AUC value of 96.50% in the mixed dataset, which is still
comparable across different research domains.

The proposed approach of having a multi-loss function for
the autoencoder model shows the best overall result with the
mixed dataset, as its FPR went as low as 7%, while its AUC
scored 96.50%.

Although the proposed models’ overall performance and
results were good, some minor overfitting was reported in
the mixed dataset even after applying cross-validation, reg-
ularization, and dropout techniques. Solving this issue may
require access to a bigger dataset. However, in this research,
the implementation is mainly focused on the latent vector and
the reconstruction error rather than the actual output of the

83782 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 28. VAE recall-first threshold. The precision/recall value is between 0 and 1.

FIGURE 29. VAE receiver operating characteristic curve and AUC.

FIGURE 30. VAE reconstruction error fraud-score.

model. Hence, minor overfitting is not expected to have an
impact on the model’s overall performance.

In this paper, we have designed and implemented a deep
learning model that gives state-of-the-art results, in terms
of the FPR, RFT, and AUC, for improving the anti-money
laundering (AML) process. We also explored recent state-of-
the-art deep learning and unsupervised learning techniques

such as autoencoder (AE), variational autoencoder (VAE),
and generative adversarial network (GAN), and we showed
that these techniques can enhance earlier results [7], [8].

Recent works such as Pumsirirat and Yan [42] and
Paula et al. [43] both used autoencoders (AEs) to inves-
tigate fraud and money laundering. However, for the first
time, we demonstrate the applicability and effectiveness of

VOLUME 9, 2021 83783

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

FIGURE 31. VAE confusion matrix.

combining AE and VAE with WGAN methods. We use
WGAN to generate realistic synthetic fraud transactions to
solve the issue of imbalanced class labels, and such additional
transactions are then used by the AE/VAE to train the model.
Our results indicate that this approach achieves significant
improvements for fraud detection.

VI. CONCLUSION AND FUTURE WORK
Money laundering is a serious global issue that needs to be
addressed, especially considering the fast-growing datasets
that need to be evaluated and analyzed. This research
attempted to extend the work previously started in 2014 by
applying deep learning and unsupervised techniques to
improve the anti-money laundering process. More specifi-
cally, our system leveraged AE and VAE models. However,
as access to the whole dataset is not available anymore, the
current study relied on another advanced technique in deep
learning called GAN to generate more fraud transactions to
produce more reliable models.

To obtain a more balanced dataset, WGAN was used to
generate more fraud transactions, which were mixed with the
base dataset to produce the mixed dataset. This was then used
to train the autoencoders. WGAN performance scored a very
high accuracy, reaching about 99%. Hence, the generated
fraud transactions were almost identical to the real fraud
transactions.

Experimental results show that even with the base dataset,
the proposed models performed better than the original
research as it helped decrease the FPR to reach around 18%.
However, using the mixed dataset, the results were even
better as the FPR was reduced to 7%. Other measures were
enhanced, such as accuracy, which increased to 93%, and
AUC, which reached 96.50%. Results also show that the
proposed multi-loss function autoencoder performed better
than the other models.

It is worth mentioning that the model’s loss in the mixed
dataset case was slightly over-fitted. Hence, additional data
may be required to overcome this issue in the future. How-
ever, as this implementation mainly focused on the latent
vector and the reconstruction error rather than the actual
output of the models, minor overfitting is not expected to
impact the model’s overall performance.

Money laundering inherently possesses complicated
characteristics, for example, the layering phase in which
launderers distribute money between the different accounts

while trying to hide their sources. Capturing such a pattern
will require additional work such as the graph and social net-
work analysis along with the deep learning and unsupervised
techniques proposed by this study.

Despite the promising results, there is still some space for
enhancement. This could be achieved if access to a bigger
dataset is secured along with an in-depth interpretation for
the dataset attributes.

REFERENCES
[1] Money Laundering, FATF. Accessed: May 01, 2019. [Online]. Available:

https://www.fatf-gafi.org/faq/moneylaundering
[2] S. Sundarakani and M. Ramasamy, ‘‘Consequences of money laundering

in banking sector,’’ Sains Humanika, vol. 64, no. 2, pp. 1–4, Oct. 2013.
[3] I. E. Bekhouche, ‘‘Money laundering in Malaysia, regulations and poli-

cies,’’ Int. J. Law, vol. 4, no. 2, pp. 22–26, 2018.
[4] K. Dugan. Italian Bank Will Pay 1.3B Fine for Money Laundering.

New York, NY, USA. Accessed: May 01, 2019. [Online]. Available:
https://nypost.com/2019/04/15/italian-bank-will-pay-1-3b-fine-
for-money-laundering

[5] K. Dugan.UK Bank Hit With 1B in Fines for Helping Iran Launder Money.
New York, NY, USA. Accessed: May 01, 2019. [Online]. Available:
https://nypost.com/2019/04/09/uk-bank-hit-with-1b-in-fines-for-
helping-iran-launder-money

[6] Reuters. Morgan Stanley Fined 10M for Anti-Money Laundering Fail-
ures, New York, NY, USA. Accessed: May 01, 2019. [Online]. Avail-
able: https://nypost.com/2018/12/26/morgan-stanley-fined-10m-for-anti-
money-laundering-failures

[7] Z. Chen, L. D. Van Khoa, A. Nazir, E. N. Teoh, and E. K. Karupiah,
‘‘Exploration of the effectiveness of expectation maximization algorithm
for suspicious transaction detection in anti-money laundering,’’ in Proc.
IEEE Conf. Open Syst. (ICOS), Oct. 2014, pp. 145–149.

[8] Z. Chen, L. D. Van Khoa, E. N. Teoh, A. Nazir, E. K. Karuppiah,
and K. S. Lam, ‘‘Machine learning techniques for anti-money laundering
(AML) solutions in suspicious transaction detection: A review,’’ Knowl.
Inf. Syst., vol. 57, no. 2, pp. 245–285, Nov. 2018.

[9] Financial Stability Board. (Nov. 01, 2017). Artificial Intelligence
and Machine Learning in Financial Services—Market Developments
and Financial Stability Implications. [Online]. Available:
http://www.fsb.org/2017/11/artificial-intelligence-and-machine-learning-
in-financial-service/

[10] R. Wedge, J. M. Kanter, K. Veeramachaneni, S. M. Rubio, and S. I. Perez,
‘‘Solving the false positives problem in fraud prediction using automated
feature engineering,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Dis-
covery Databases, 2018, pp. 372–388.

[11] L. Rojas, E. Alonso, and S. Axelsson, ‘‘Multi agent based simulation
(MABS) of financial transactions for anti money laundering (AML),’’ in
Proc. 17th Nordic Conf. Secure IT Syst. (NordSec), Karlskrona, Sweden,
2012, pp. 1–9.

[12] Y. Şahin and E. Duman, ‘‘Detecting credit card fraud by decision trees and
support vector machines,’’ in Proc. IMECS, Hong Kong, 2011, pp. 1–6.

[13] V. Jayasree and R. V. S. Balan, ‘‘Money laundering regulatory risk evalu-
ation using bitmap index-based decision tree,’’ J. Assoc. Arab Universities
Basic Appl. Sci., vol. 23, no. 1, pp. 96–102, Jun. 2017.

[14] S.-N. Wang and J.-G. Yang, ‘‘A money laundering risk evaluation method
based on decision tree,’’ in Proc. Int. Conf. Mach. Learn. Cybern., vol. 1,
Aug. 2007, pp. 283–286.

[15] D. Savage, Q. Wang, P. Chou, X. Zhang, and X. Yu, ‘‘Detection of
money laundering groups using supervised learning in networks,’’ 2016,
arXiv:1608.00708. [Online]. Available: http://arxiv.org/abs/1608.00708

[16] Y. Zhang and P. Trubey, ‘‘Machine learning and sampling scheme: An
empirical study of money laundering detection,’’ Comput. Econ., vol. 54,
no. 3, pp. 1043–1063, 2019.

[17] L.-T. Lv, N. Ji, and J.-L. Zhang, ‘‘A RBF neural network model for anti-
money laundering,’’ in Proc. Int. Conf. Wavelet Anal. Pattern Recognit.,
Hong Kong, Aug. 2008, pp. 209–215.

[18] E. Badal-Valero, J. A. Alvarez-Jareño, and J. M. Pavía, ‘‘Combining
Benford’s law and machine learning to detect money laundering. An actual
Spanish court case,’’ Forensic Sci. Int., vol. 282, pp. 24–34, Jan. 2018.

[19] A. Chouiekh and EL Hassane Ibn EL Haj, ‘‘ConvNets for fraud detection
analysis,’’ Procedia Comput. Sci., vol. 127, pp. 133–138, 2018.

83784 VOLUME 9, 2021

Z. Chen et al.: Variational Autoencoders and Wasserstein Generative Adversarial Networks

[20] Z. Zhang, J. J. Salerno, and P. S. Yu, ‘‘Applying datamining in investigating
money laundering crimes,’’ in Proc. 9th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2003, pp. 747–752.

[21] D. K. Luna, G. K. Palshikar, M. Apte, and A. Bhattacharya, ‘‘Finding shell
company accounts using anomaly detection,’’ inProc. ACM India Joint Int.
Conf. Data Sci. Manage. Data, Jan. 2018, pp. 167–174.

[22] C. Alexandre and J. Balsa, ‘‘Client profiling for an anti-money
laundering system,’’ 2015, arXiv:1510.00878. [Online]. Available:
http://arxiv.org/abs/1510.00878

[23] M. Hegazy, A. Madian, and M. Ragaie, ‘‘Enhanced fraud miner: Credit
card fraud detection using clustering data mining techniques,’’ Egyptian
Comput. Sci. J., vol. 40, no. 3, pp. 72–81, 2016.

[24] J. Tang and J. Yin, ‘‘Developing an intelligent data discriminating system
of anti-money laundering based on SVM,’’ inProc. Int. Conf. Mach. Learn.
Cybern., vol. 6, 2005, pp. 3453–3457.

[25] Y. Tian, M.Mirzabagheri, S. M. H. Bamakan, H.Wang, and Q. Qu, ‘‘Ramp
loss one-class support vector machine; a robust and effective approach
to anomaly detection problems,’’ Neurocomputing, vol. 310, pp. 223–235,
Oct. 2018.

[26] W. An, M. Liang, and H. Liu, ‘‘An improved one-class support vec-
tor machine classifier for outlier detection,’’ Proc. Inst. Mech. Eng., C,
J. Mech. Eng. Sci., vol. 229, no. 3, pp. 580–588, Feb. 2015.

[27] D. R. Wilson and T. R. Martinez, ‘‘Improved heterogeneous distance
functions,’’ J. Artif. Intell. Res., vol. 6, pp. 1–34, Jan. 1997.

[28] K. Chitra and B. Subashini, ‘‘Data mining techniques and its applica-
tions in banking sector,’’ Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 8,
pp. 219–226, Aug. 2013.

[29] D. K. Cao and P. Do, ‘‘Applying data mining in money laundering
detection for the Vietnamese banking industry,’’ in Proc. ACIIDS, 2012,
pp. 207–216.

[30] V. Zaslavsky and A. Strizhak, ‘‘Credit card fraud detection using self-
organizing maps,’’ Inf. Secur., Int. J., vol. 18, pp. 48–63, Jan. 2006.

[31] S. Engardt, ‘‘Unsupervised learning with mixed type data for detecting
money laundering,’’ M.S. Thesis, School Elect. Eng. Comput. Sci., KTH
Royal Inst. Technol., Stockholm, Sweden, 2018.

[32] X. Liu, P. Zhang, and D. Zeng, ‘‘Sequence matching for suspicious activity
detection in anti-money laundering,’’ in Proc. Int. Conf. Intell. Secur.
Inform., 2008, pp. 50–61.

[33] N. A. L. Khac and M.-T. Kechadi, ‘‘Application of data mining for anti-
money laundering detection: A case study,’’ in Proc. IEEE Int. Conf. Data
Mining Workshops, Dec. 2010, pp. 577–584.

[34] G. Shabat, D. Segev, and A. Averbuch, ‘‘Uncovering unknown unknowns
in financial services big data by unsupervised methodologies: Present and
future trends,’’ in Proc. Workshop Anomaly Detection Finance (KDD),
vol. 71, 2018, pp. 8–19.

[35] K. A. Shaikh and A. Nazir, ‘‘A model for identifying relationships of sus-
picious customers in money laundering using social network functions,’’
in Proc. World Congr. Eng., vol. 1, 2018, pp. 1–4.

[36] A. F. Colladon and E. Remondi, ‘‘Using social network analysis to prevent
money laundering,’’ Expert Syst. Appl., vol. 67, pp. 49–58, Jan. 2017.

[37] I. Molloy, S. Chari, U. Finkler, M. Wiggerman C. Jonker, T. Habeck,
Y. Park, F. Jordens, and R. van Schaik, ‘‘Graph analytics for real-time
scoring of cross-channel transactional fraud,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2016, pp. 22–40.

[38] J. An and S. Cho, ‘‘Variational autoencoder based anomaly detection using
reconstruction probability,’’ Special Lect. IE, vol. 2, pp. 1–18, Dec. 2015.

[39] K. Babaei, Z. Chen, and T. Maul, ‘‘Data augmentation by AutoEncoders
for unsupervised anomaly detection,’’ 2019, arXiv:1912.13384. [Online].
Available: http://arxiv.org/abs/1912.13384

[40] K. Babaei, Z. Chen, and T. Maul, ‘‘Detecting point outliers using prune-
based outlier factor (PLOF),’’ 2019, arXiv:1911.01654. [Online]. Avail-
able: http://arxiv.org/abs/1911.01654

[41] A. Malathi, J. Amudha, and P. Narayana, ‘‘A prototype to detect anomalies
using machine learning algorithms and deep neural network,’’ in Compu-
tational Vision and Bio Inspired Computing. Cham, Switzerland: Springer,
2018, pp. 1084–1094.

[42] A. Pumsirirat and L. Yan, ‘‘Credit card fraud detection using deep learning
based on auto-encoder and restricted Boltzmann machine,’’ Int. J. Adv.
Comput. Sci.Appl., vol. 9, no. 1, pp. 18–25, 2018.

[43] E. L. Paula, M. Ladeira, R. N. Carvalho, and T. Marzagao, ‘‘Deep learning
anomaly detection as support fraud investigation in Brazilian exports and
anti-money laundering,’’ in Proc. 15th IEEE Int. Conf. Mach. Learn. Appl.
(ICMLA), Dec. 2016, pp. 954–960.

[44] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python
Deep Learning. Birmingham, U.K.: Packt, 2019. [Online]. Available:
https://www.packtpub.com/product/python-deep-learning-second-edition/
9781789348460

[45] D. P. Kingma andM.Welling, ‘‘Auto-encoding variational Bayes,’’ inProc.
ICLR, 2014, pp. 1–14.

[46] R. Atienza, Advanced Deep Learning With Keras. Birmingham, U.K.:
Packt, 2018, p. 369. [Online]. Available: http://www.packtpub.com

[47] J. Jordan. Variational Autoencoders. Accessed: Aug. 15, 2018. [Online].
Available: https://www.jeremyjordan.me/variational-autoencoders

[48] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial net-
works,’’ 2014, arXiv:1406.2661. [Online]. Available: http://arxiv.org/
abs/1406.2661

[49] P. Spyridon and Y. S. Boutalis, ‘‘Generative adversarial networks for unsu-
pervised fault detection,’’ in Proc. Eur. Control Conf. (ECC), Jun. 2018,
pp. 691–696.

[50] J. Klaas. Machine Learning for Finance. Packt Publishing,
Birmingham, U.K. Accessed: Aug. 05, 2019. [Online]. Available:
https://github.com/PacktPublishing/Machine-Learning-for-Finance

[51] M. Arjovsky, C. Soumith, and L. Bottou, ‘‘Wasserstein generative adver-
sarial networks,’’ in Proc. Int. Conf. Mach. Learn., Jul. 2017, pp. 214–223.

[52] L. Weng, ‘‘From GAN to WGAN,’’ Accessed: Aug. 18, 2019.
[Online]. Available: https://lilianweng.github.io/lil-log/2017/08/20/from-
GAN-to-WGAN.html

ZHIYUAN CHEN (Member, IEEE) received the
M.Phil. and Ph.D. degrees in computer science
from the University of Nottingham, in 2007 and
2011, respectively. Since 2012, she has been an
Assistant Professor with the School of Com-
puter Science, University of NottinghamMalaysia
(UNM). She is currently working as a principal
consultant for many industrial and research orga-
nizations. Before joining UNM, she has been a
Research Associate with the U.K. Horizon Digital

Economy Research Institute. Her research interests include machine learn-
ing, data mining, deep learning, and anomaly detection.

WALEED MAHMOUD SOLIMAN received the
M.S. degree in agricultural economics and man-
agement fromMinia University, in 2008, the Ph.D.
degree in economics and management from China
Agricultural University, in 2015, and the M.S.
degree in computer science from the University
of Nottingham, in 2020. His research interests
include macroeconomics, artificial intelligence
(AI), machine learning, data science, and big data.

AMRIL NAZIR is currently an Associate
Professor with the College Technological Innova-
tion, Zayed University, and the Consulting Direc-
tor/Chief Architect with CODECOMPASS LLP.
He was formerly a Senior Research Scientist with
the Malaysian Research and Development Insti-
tute for nine years. His research interests include
artificial intelligence (AI), machine learning, data
science, and big data.

MOHAMMAD SHORFUZZAMAN (Member, IEEE) is currently an Asso-
ciate Professor with the Department of Computer Science, College of
Computers and Information Technology (CCIT), Taif University, Ta’if,
Saudi Arabia. He is also a member of the Big Data Analytics and Appli-
cations (BDAAG) Research Group, CCIT. His current research interests
include applied artificial intelligence in the areas of computer vision, natural
language processing, big data, and cloud computing.

VOLUME 9, 2021 83785

