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ABSTRACT In this paper, a novel optimal adaptive-gains super-twisting sliding-mode control
(OAGSTSMC) using actor-critic approach is proposed for a high-speed permanent-magnet synchronous
motor (PMSM) drive system. First, the super-twisting sliding-mode controller (STSMC) is adopted for
reducing the chattering phenomenon and stabilizing the PMSM drive system. However, the control perfor-
mance may be destroyed due external disturbances and parameter variations of the drive system. In addition,
the conservative selection of the STSMC gains may affect the control performance. Therefore, for enhancing
the standard super-twisting approach performance via avoiding the constraints on knowing the disturbances
as well as uncertainties upper bounds, and to achieve the drive system robustness, the direct heuristic dynamic
programming (HDP) is utilized for optimal tuning of STSMC gains. Consequently, an online actor-critic
algorithm with HDP is designed for facilitating the online solution of the Hamilton-Jacobi-Bellman (HJB)
equation via a critic neural network while pursuing an optimal control via an actor neural network at the
same time. Furthermore, based on Lyapunov approach, the stability of the closed-loop control system is
assured. A real-time implementation is performed for verifying the proposed OAGSTSMC efficacy. The
experimental results endorse that the proposed OAGSTSMC control approach achieves the PMSM superior
dynamic performance regardless of unknown uncertainties as well as exterior disturbances.

INDEX TERMS Actor-critic neural network, adaptive control, adaptive dynamic programming, high-speed
PMSM,Hamilton-Jacobi-Bellman, Lyapunov stability, optimal control, super-twisting sliding-mode control.

I. INTRODUCTION
Recently, numerous processing methods of micro-
electromechanical systems (MEMS) have been industrial-
ized for minimizing the power dissipation, the weight, and
the size of the micromotors. For particular industrial appli-
cations, micromotors are deliberated as promising nomi-
nees to accomplish high-performance operation. The micro
permanent-magnet synchronous motors (micro PMSMs)
have high robustness, high efficiency, better reliability, along
with high speed operation in comparison with further micro-
motors [2], [3]. Moreover, micro PMSMs are promising can-
didates for numerous practical applications e.g. power driving
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devices inMEMS, surgical devices, medical diagnostic, secu-
rity equipment, along with micro autonomic robots [4].

Numerous control approaches have been investigated for
micromotors [1], [5]–[12], [14]–[20]. A comparative analysis
of inverter topologies has been carried out and a 6-phase
5-level inverter has been designed as well as verified exper-
imentally at a high frequency of 2 MHz [5]. Encoderless
speed control approaches have been presented [6]–[12]. For
micro PMSMs encoderless control, the rotor position angle
is estimated in the control approaches [6], [7]. In [8]–[10],
an observer for estimating the rotor position angle of the
micro PMSM along with robust H∞ controller have been
presented. The investigation of encoderless control of slotless
PMSMwithout current control loops is developed in [11] and
the three-phase back emfs are estimated via first-order delay
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filter to construct the three-phase voltages are accomplished
in [12]. An intelligent Petri-fuzzy neural network (PFNN)
controller as well as a robust identifier have been introduced
in [13] for micro PMSM system. In [14], an adaptive inverse
control approach including an adaptive controller has been
introduced. In [15], an optimal design of encoderless-based
speed controller has been introduced. Furthermore, a motion
controller containing an optimal position controller along
with a tuning parameter feed-forward controller has been
introduced for micro PMSM system [16]. A sliding-mode
observer (SMO) has been presented as a robust encoder-
less control approach for high-speed micro PMSM in [17].
A novel nonlinear controller has been designed using an
adaptive backstepping controller with recurrent radial basis
function neural network (RRBFNN) uncertainty estimator
along with robust control for fulfilling the PMSM robust per-
formance [18], [19]. In [20], an adaptive backstepping robust
optimal control technique for accomplishing high-dynamic
response of micro PMSM drive has been proposed. The
optimality and robustness of the control performance are
achieved by adding a nonlinear optimal controller to the
adaptive backstepping controller. The optimal control input
can be approximated via employing the critic neural network
for online Hamilton-Jacobi-Bellman (HJB) solution via the
adaptive dynamic programming (ADP).

Because the PMSM is a nonlinear system, the linearization
nearby one operating point cannot be employed for designing
the controller. Thus, for resolving this problem, nonlinear
control approaches are successfully employed. Sliding-mode
controller (SMC) can be generally utilized because of its
ease of realization along with robustness alongside both
uncertainties along with external disturbances. The SMC
possess a variable control system structure with less sen-
sitivity alongside parameter variations along with exterior
disturbances [21]–[31]. In [28], traditional SMC state-of-
the-art over soft computing was introduced. The SMC suffers
from the chattering problem that is appeared as noise in
the output variables due to the switching at high frequency
of the control input. The mixing between the sliding-mode
techniques along with fuzzy-logic-based approach [24] has
developed as an alternative technique for dealing with control
systems characterized through nonlinearity along with uncer-
tainties. Though, the SMC technique is a robust approach
and can control the nonlinear systems, it undergoes from
the chattering phenomenon. An indirect adaptive fuzzy SMC
was presented in [25] to deal with the chattering problem
for the nonlinear systems. For evading the SMC chattering
problem, various techniques have been utilized such as intel-
ligent along with adaptive approaches in [21], [24] along with
high-order SMC techniques in [32]–[51]. In [36], STSMC as
well as high order sliding-mode observer have been utilized to
control along with estimate the altitude velocity of unmanned
aircraft system. The STSMC has been introduced in [39] for
coping with the chattering phenomenon that can occur in tra-
ditional SMC. The output of the feedback control via STSMC
was investigated for perturbed double-integrator system.

In [40], [41] a Lyapunov-based super-twisting adaptive SMC
has been introduced. The dynamical adapted control gains
have been employed for guaranteeing the establishment of
a 2nd order sliding mode [42]. In [43], a super-twisting
algorithm via 2nd order sliding-mode observer (2-SMO) is
developed to avoid the chattering problem in traditional SMO
for PMSM drive. In [44], a variable-gain super-twisting algo-
rithm based Lyapunov theory is proposed to alleviate the chat-
tering phenomenon for linear time invariant systems. In [45],
a second-order sliding-mode control is proposed to enhance
the dynamic performances for LC-coupling hybrid active
power filter. In [46], a composite supertwisting sliding
mode control via backstepping is designed to improve the
dynamic behavior of the nonlinear magnetic levitation sys-
tems. In [47], an adaptive super-twisting sliding mode con-
trol via nonlinear fractional-order PID scheme and extended
state observer for controlling the speed of the PMSM drive
is developed to accomplish high dynamic performance as
a result of external disturbance. In [48], an adaptive slid-
ing mode control strategy is built based on the high-order
sliding mode control to effectively decrease the chatter-
ing of the system and decrease the errors of the observer
and repress the mismatch of the system model. In [49],
an adaptive super-twisting sliding-mode observer is built
considering the nonlinear behavior of the VSI for sensorless
control of the PMSM drive. In [50], a higher-order super-
twisting sliding-mode observer (SMO) is proposed for drop-
ping chattering and singularity happening in traditional SMO.
An adaptive super-twisting SMO in conjunction with moving
average filter via phase-locked loop is designed to estimate
the speed of PMSM accurately. In [51], a super-twisting
sliding-mode observer (SMO)with themodel reference adap-
tive system (MRAS) for sensorless control of linear induction
motor drives is proposed. In addition, a super-twisting SMO
via Popov’s hyperstability theory is adopted for stator current
observer.

Based on the above discussion, it is clear that super-
twisting sliding mode-based controllers possess an intrin-
sic robustness alongside parameter disparities along with
exterior disturbances. However, the control of high-speed
PMSM drive systems using the STSMC technique carries
novel challenges that have not been yet straight introduced
in the aforementioned researches or have not been eluci-
dated in an adequate manner. Specifically, both the robust-
ness as well as optimal parameter tuning characteristics in
the super-twisting control approaches should be taking into
account in the STSMC design for PMSM in order to follow a
target trajectory with the best accuracy in presence of param-
eter uncertainties along with exterior disturbances. Although
in the literature, the control approaches for the high-speed
motors can guarantee the stability, but the controller optimal
design did not considered. This optimal control approach
should ensure the stability of the closed-loop system as
well as reduce the controller cost. Accordingly, the opti-
mal controller design is generally important in practical
applications.
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FIGURE 1. The proposed OAGSTSMC for PMSM drive system.

The nonlinear optimal control obstacle always entails solv-
ing the HJB equation that comprises solving nonlinear par-
tial differential equations [52], [53]. Nevertheless, adaptive
dynamic programming (ADP) has been utilized in solving
the problems of the optimal control, it undergoes from the
curse of dimensionality, which was primarily because of
the backward-in-time approach. For avoiding this struggle,
based on function approximation, ADP has been presented
by Werbos in [54] as an approach for coping with the
problems of the optimal control forward-in-time. Therefore,
ADP is considered an effective approach which can solve
the optimal control problems. The problem of the optimal
control can be converted to the solution of HJB equation,
which is a nonlinear partial differential equation for time
varying systems [55]–[57]. ADP technique has been utilized
for solving the problems of the optimal tracking control as
discussed in [58]–[63]. Furthermore for nonlinear systems
in [64]–[71], online approaches for solving the continuous
HJB equation have been presented using neural networks.
ADP approaches can be classified into heuristic dynamic
programming (HDP), dual heuristic dynamic programming
(DHP), globalized DHP (GDHP). For these approaches, there
exists an action dependent (AD) versions such as AD heuris-
tic dynamic programming (ADHDP) and AD dual heuristic
dynamic programming (ADDHP) [54], [55], [72]–[76]. The
HDP is one of the adaptive critic design approaches that can
provide amethod of computing both the optimal control along
with the value function via approximations [54]. Through
this approach, the curse of dimensionality can be addressed.
For efficiently computing the optimal solutions, the DHP as
well as the GDHP as an adaptive critic structures has been
proposed [55].

The aim of this paper is designing an OAGSTSMC
approach using actor-critic neural network for the PMSM
drive. Fig. 1 depicts the drive system structure of the proposed

OAGSTSMC. For practical applications, the compounded
disorders along with precise lumped parameter uncertain-
ties are difficult to be known before the PMSM control
operation. Therefore, a novel nonlinear control approach is
considered based on the super-twisting sliding-mode control
with optimal adaptive-gains with actor-critic neural networks
along with adaptive dynamic programming for fulfilling the
target optimal performance. Via employing Lyapunov sta-
bility theorem, the OAGSTSMC technique is constructed
for accurately controlling the PMSM rotor angular speed.
First, an improved STSMC is adopted as the robust con-
cept for reducing the chattering phenomenon and achiev-
ing the trajectory tracking of the PMSM drive system.
Following this, actor-critic neural networks via direct HDP
(ACNN-HDP) approach is employed for optimal tuning of
the STSMC gains. For a robust response of the super-twisting
control approach in coping with uncertainties, complex dis-
turbances, along with optimal performance of the HDP-based
control systems, an OAGSTSMC is proposed that accom-
plishes entirely the stated properties. The proposed control
design validation is endorsed through the simulation and
verified experimentally at the parameter uncertainties. The
major achievements of this paper include:

1) Developing a novel optimal adaptive-gains super-
twisting sliding-mode control via actor-critic based
HDP control configuration.

2) Considering the robustness and optimal param-
eter tuning characteristics in the design of the
STSMC to achieve the high-dynamic performance
in presence of parameter uncertainties and exterior
disturbances.

3) Improving the performance in terms of best accuracy
of trajectory tracking and disturbance rejection capa-
bilities in comparison with the conventional STSMC is
achieved.
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4) Designing online optimal tuning algorithms for
STSMC parameter based on HDP approach that
reduces the control effort and the chattering level to
achieve an optimal performance.

5) Applying Lyapunov-based adaptive strategy to the
STSMC to reduce the control efforts and improve the
control performance.

This paper is structured as: Section II introduces the
mathematical model of the PMSM with disparity in param-
eters and exterior disorders. In Section III, the standard
form of the STSMC algorithm and the stability analysis
are addressed. Section IV includes the design procedures of
the OAGSTSMC scheme with actor-critic neural networks
and HDP. Furthermore, Section IV introduces the adap-
tive training methods along with the stability study of the
proposed OAGSTSMC technique. The dSPACE DS1102 is
employed for implementing the proposed control approaches.
The PMSM drive has been studied for investigating the
dynamic response throughout the extrinsic load disturbances.
Section V presents the validation results for endorsing the
OAGSTSMC effectiveness for the PMSM. Section VI con-
cludes the paper and summarizes the contributions of the
paper.

II. MATHEMATICAL MODELING AND PROBLEM
FORMULATION
A. PMSM DYNAMIC MATHEMATICAL MODEL
The field oriented control (FOC) technique is widely
employed for the PMSM control. The FOC aims to achieve
a high-torque aptitude for the PMSM. The PMSM analytical
modeling in the rotating reference frame is expressed by (1)
& (2) [18]–[20]:

V r
qs = Rsirqs + Lss

d
dt
irqs + ωrLssi

r
ds + ωrλ

′
m (1)

V r
ds = Rsirds + Lss

d
dt
irds − ωrLssi

r
qs (2)

The electromagnetic torque is expressed by (3):

Te =
3
2
·
Pn
2
· λ′m · i

r
qs = Kt irqs (3)

The PMSM equation of motion is described by (4):

Te − TL = Jm (2/Pn)
d
dt
ωr + βm (2/Pn) ωr (4)

The PMSM dynamic model in (1)-(4) using the FOC
in the synchronous reference frame can be expressed
by (5) [18]–[20]:

ω̇r =
Kt
Jm
irqs −

βm

Jm
ωr −

1
Jm
TL

i̇rqs = −
Rs
Lss

irqs − ωr i
r
ds −

1
Lss
ωrλ
′
m +

1
Lss

V r
qs

i̇rds = −
Rs
Lss

irds + ωr i
r
qs +

1
Lss

V r
ds

(5)

where iqs, ids, Vqs, and Vds, represent the stator currents
along with voltages, respectively. Rs & Lss denote the stator

TABLE 1. PMSM parameters.

resistance along with the stator self-inductance, respectively.
Jm, βm, θr , ωr , as well Pn represent the motor inertia, friction
coefficient, the PMSM rotor position angle, PMSM electrical
rotor angular speed, as well the number of motor poles,
respectively. TL & Te denote the load and electromagnetic
torques, respectively. Kt = (3/2)(P/2)λ′m represents the
torque constant. x1 = ωr , x2 = iqs and x3 = ids. The parame-
ters of the three-phase PMSM are given in Table 1 [18]–[20].

B. PROBLEM FORMULATION AND CONTROL OBJECTIVE
PMSM can be considered as a nonlinear system, which can
be represented in the state forms via considering the uncertain
dynamics as expressed by (6) and the lumped uncertainties
in (7) & (8) [18]–[20]:

ẋ(t) = fn(x)+ gn(x)u+ D(x) (6)

D(x) = 1f (x)+1g(x)u+ d (7){
|1f (x)| < 1f and |1g(x)| < 1g (8)

The states, the nonlinear continuous functions g(x) along
with f (x) as well as the control inputs of the PMSM are given
by:

x(t) = [ x1 x2 x3 ]T = [ωr irqs irds ]
T (9)

fn(x) =

 fωfq
fd

 =
 −(βm/Jm)x1
−(Rs/Lss)x2 − x1x3 + (λ′m/Lss)x1

−(Rs/Lss)x3 + x1x2


(10)

gn(x) =

 gω 0 0
0 gq 0
0 0 gd

 =
Kt/Jm 0 0

0 1/Lss 0
0 0 1/Lss


(11)

u = [ ir∗qs V r∗
qs V r∗

ds ]
T (12)

where x(t) = [x1, x2, . . . , xn]T ∈ <
n represents the

state vector, meanwhile, u(t) = [u1, u2, . . . , un]T ∈

<
n represents the control input vector, g(x(t)) ∈ <n×n

& f (x) ∈ <n are nonlinear functions, as well g(x) is
invertible. D(x(t)) ∈ <

n represents unknown lumped
uncertainties that hold the unidentified modeling errors,
1g(x) & 1f (x) denote the parameter disparities, which are
greater than zero, τd represents the exterior disorders, which
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includes the load torque disturbance as well as frictional
torque.

Nevertheless the PMSM control methods can guarantee
the system stability, but they did not take into account the
optimal control obstacle. The stability is considered a chief
target in the closed-loop control design. The valued control
approach must ensure the stability of the closed-loop system.
Hence, the design of the optimal control is important prac-
tically. Fig. 1 depicts the proposed OAGSTSMC structure
for high-dynamic performance PMSM. From the PMSM per-
turbed nonlinear dynamic model expressed through (6)-(11),
the nonlinearities are exist because of the multiplied PMSM
rotor speed, the permanent flux term along with the dq stator
current terms. The disturbances can be happened because
of the nonlinear characteristics of the CRPWM inverter.
This can be considered a significant reason of challenging
designing a robust control of PMSM. Moreover, the param-
eters disparities can increase the nonlinearities along with
reduce the performance of the system. For designing a supe-
rior control for the PMSM, specific factors e.g. the sys-
tem nonlinearities, parameter variations and extrinsic load
disturbances should be eliminated through the attenuation
level. Constructively, the entire nonlinear dependence could
be intended into the parameter uncertainties (7) as well as
the proposed controller can be designed robust adequate to
withstand unmodeled dynamics as well as uncertainties. The
nonlinear continuous functions g(x) as well as f (x) are con-
sidered uncertain along with bounded, the exterior distur-
bance d is bounded as well unidentified, along with 1gx)
& 1f (x) are unidentified bounded uncertainty. According to
these suppositions, the unknown lumped uncertainties D(x)
possesses un upper bound ||D(x(t))|| ≤ δ, as δ > 0. Accord-
ing to (7), the lumped uncertainties D(x) rely on the u(t),
which is the control input, parameter disparities along with
the exterior disturbance. Thus, exterior disturbances, param-
eter disparities, along with nonlinearities can be disregarded
through designing a robust controller for the PMSM. There-
fore, these nonlinearities along with uncertainties must be
considered throughout the PMSM controller design. There-
fore, this paper presents the OAGSTSMC using actor-critic
approach for controlling the PMSM effectively. According
to the suggested strategy, the STSMC coefficients are con-
sidered as the design control objective and these coefficients
are adjusted through online learning of actor-critic neural
networks with HDP.

III. STSMC DESIGN
A. THE STANDARD STSMC DESIGN
The STSMC can be designed for permitting the x(t), which
is the state vector to track the xd (t), which is target tra-
jectory as well as the tracking error e(t) approaches zero.
This tracking error can be distinct by e(t) = xd (t) − x(t);
whereas, x(t) = [x, ẋ, . . . , x(n−1)] denotes the state vec-
tor; as well xd (t) = [xd , ẋd , . . . , x

(n−1)
d ] represents the tar-

get trajectory vector. The sliding surface can be expressed

by (13):

s(t) =
(
∂

∂t
+λ

)(n−1)

e=
n−1∑
l=0

(n− 1)!
l!(n−l−1)!

(
∂

∂t

)(n−l−1)

λle

(13)

where λ is greater than zero, which states the slope of the
sliding surface. SMC can be performed through two phases:
the 1st phase is the approaching one in case s(t) 6= 0 as
well as the 2nd phase is the sliding one once s(t) = 0.
For guaranteeing the tracking error transition when reaching
the sliding one, the adequate condition can be expressed as
in (14):

1
2
d
dt
s2(t) = s(t)ṡ(t) ≤ ϕ |s(t)| ; ϕ > 0 (14)

ṡ(x, t) =
n∑
l=0

(n− 1)!
l!(n− l − 1)!

(
∂

∂t

)(n−l−1)

λl ė

= e(n) + γs (15)

where γs =
∑n

l=1
(n−1)!

l!(n−l−1)!

(
∂
∂t

)(n−l−1)
λl ė.

The sliding surface derivative can be expressed as (16):

ṡ(x, t) = γs + x
(n)
d − x

(n)

= γs + x
(n)
d − fn(x)− gn(x)u− D(x) (16)

In case the system is limited to the sliding surface, such as
s(t) = 0, it will be limited within the equivalent control ref-
erence ueq, which can be acquired via employing the surface
variance conditions, e.g., s(t) = 0 & ṡ(t) = 0 [26], [27].
According to (16), without taking into account the model
perturbations, the corresponding control law at ṡ(t) = 0 can
be expressed by (17):

ueq(t) =
1

gn(x)

[
−fn(x)+ γs + x

(n)
d

]
(17)

The switching control law is designed via employing
super-twisting technique as in (18):

ust (t) = u̇1 + u2 =
∫ t

0
σ1sgn(s(x, t))dt

+ σ2 |s(x, t)|(1/2) sgn(s(x, t)) (18)

The STSMC law is acquired via summing (17) & (18) as
in (19):

uSTSMC (t)

=
1

gn(x)

−fn(x)+ γs + x(n)d +

∫ t

0
σ1sgn(s(x, t))dt

+σ2 |s(x, t)|(1/2) sgn(s(x, t))

 (19)

where σ1 > 0, σ2 > 0 and σ1 > ϑ >
∣∣Ḋ(t)∣∣; ϑ denotes the

derivative of the uncertainty upper bound as well ϑ > 0.
Since the system has relative degree 1, the second deriva-

tive of the sliding surface (16) is given by:

s̈(x, t) = γ̇s + x
(n+1)
d − ḟn(x)− gn(x)u̇− Ḋ(x)

= φ(x, t)− 0(x, t)u̇ (20)
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where φ(x, t) = γ̇s+x
(n+1)
d − ḟn(x)−ġn(x)u−Ḋ and0(x, t) =

gn(x). In order to satisfy the constraint (14) and to ensure the
convergence and stability of the system, the control gains σ1
and σ2 should be chosen as follows:

σ1 >
ρ

0m

σ2 ≥
4ρ
02
m
.
0M (σ1 + ρ)
0m(σ1 − ρ)

|φ ≤ ρ| , ρ > 0

(21)

where σ1 and σ2 are variable controller parameters, ρ is a
positive norm bound on the smooth uncertain function φ
and 0m and 0M are lower and upper positive bounds on the
smooth uncertain function.

B. STABILITY ANALYSIS OF THE STANDARD STSMC
Select a Lyapunov function candidate as indicated in (22):

V (t) =
1
2
sT s (22)

Differentiate V (t) and using (16) will give (23):

V̇ (t) = sT ṡ

= sT [
∫ t

0
σ1sgn(s))dt − σ2 |s|(1/2) sgn(s)+ D(t)]

≤ −σ2

∣∣∣sT ∣∣∣ |s|(1/2) − ∣∣∣sT ∣∣∣ ∫ t

0
σ1dt +

∣∣∣sTD(t)∣∣∣
≤ −σ2

∣∣∣sT ∣∣∣ |s|(1/2) − ∣∣∣sT ∣∣∣ ∫ t

0
σ1dt +

∣∣∣sT ∣∣∣ ∫ t

0
Ḋ(t)dt

(23)

Because σ1 > ϑ >
∣∣Ḋ(t)∣∣, then (23) becomes:

V̇ (t) ≤ −σ2
∣∣∣sT ∣∣∣ |s|(1/2) − ∣∣∣sT1 ∣∣∣ ∫ t

0
σ1dt +

∣∣∣sT1 ∣∣∣ ∫ t

0
ϑdt

= −σ2

∣∣∣sT ∣∣∣ |s|(1/2) − ∣∣∣sT1 ∣∣∣ (∫ t

0
σ1dt −

∫ t

0
ϑdt)

≤ −σ2

∣∣∣sT ∣∣∣ |s|(1/2) ≤ 0 (24)

As V̇ is less than or equal zero, thus, V̇ is negative semi-
definite, afterwards, the closed-loop system’s global asymp-
totic stability is assured, along with s(t) ≡ 0 when V̇ ≡ 0.
Hence, s(t) = 0 as well as ṡ(t) = 0 in a limited time, will
ensure the PMSM stability as well as robustness. Proof is
accomplished.

C. STSMC DESIGN FOR SPEED AND CURRENT
CONTROL OF PMSM
1) SPEED CONTROL DESIGN USING STSMC
In this section, the outer loop super-twisting sliding-mode
speed control is deigned based on the standard STSMCwhich
is introduced in previous section.

The derivative of sliding surface for speed loop can be
expressed by (25):

ṡω(x, t) = γsω + ω̇∗r − ω̇r
= γsω + ω̇

∗
r − fω(x)− gω(x)u

∗
qs − Dω (25)

Based on (19), the super-twisting sliding-mode speed con-
trol law is designed as:

ir∗qs (t)

=
1

gω(x)

−fω(x)+ γsω + ω̇∗r + ∫ t

0
σ1ωsgn(sω(x, t))dt

+σ2ω |sω(x, t)|(1/2) sgn(sω(x, t))


(26)

where fω = −(βm/Jm)ωr , gω = Kt /Jm; σ1ω and σ2ω are
the control gains of the super-twisting sliding-mode speed
controller. ir∗qs is the reference torque current component in
q-axis.

2) CURRENT CONTROL DESIGN USING STSMC
Similarly, the inner loop super-twisting sliding-mode current
controllers in d-q axes are designed. The reference currents
ir∗qs and ir∗ds remain on their sliding surfaces sq(t) = 0 and
sd (t) = 0, by applying the suitable voltage vectors V r∗

qs and
V r∗
ds at each sampling time. The derivative of sliding surfaces

for d-q axis current control loops are given by:

ṡq(t) = γsq + i̇r∗qs − i̇
r
qs

= γsq + i̇r∗qs − fq − gqV
r∗
qs − Dq

(27)

ṡd (t) = γsd+ i̇r∗ds − i̇
r
ds

= γsd + i̇r∗ds − fd − gdV
r∗
ds − Dd

(28)

According to (19), the super-twisting sliding-mode control
laws are designed as

V r∗STSMC
qs (t) =

1
gq

[
−fq + γsq + i̇r∗qs +

∫ t
0 σ1qsgn(sq(t))dt

+σ2q
∣∣sq(t)∣∣(1/2) sgn(sq(t))

]
(29)

V r∗STSMC
ds (t)=

1
gd

[
−fd + γsd + i̇r∗ds +

∫ t
0 σ1d sgn(sd (t))dt

+σ2q |sd (t)|(1/2) sgn(sd (t))

]
(30)

where V r∗STSMC
qs and V r∗STSMC

ds are the reference command
voltages in d-q axis, fq = −(Rs/Lss)irqs−ωr i

r
ds+ (λ′m/Lss)ωr ,

fd = −(Rs/Lss)irds + ωr i
r
qs, gq = 1/Lss, gd = 1/Lss; σ1q,

σ2q, σ1d and σ2d are the control gains of the super-twisting
sliding-mode current controllers. The stability analysis of the
speed and current controllers can be proved like the standard
STSMC given in Section III.

It is observed that the STSMC laws (19), (26), (29) and (30)
depend on the σ1, σ2, λ and the nonlinear functions fn(x)
and gn(x). Though, the choice of the control gains σ1 along
with σ2 in the approaching phase needs defining the upper
bound of D(t)& Ḋ(t). Moreover, the functions fn(x) & gn(x)
are not accurately identified beforehand for industrial appli-
cations. Also, the sign(s) origins a chattering problem. For
enhancing the performance of the standard super-twisting
approach by avoiding both the chattering and the constraints
on the knowledge of disturbances and uncertainties upper
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bounds, an adaptive-gains STSMC (AGSTSMC) is designed
as follows.

IV. ADAPTIVE-GAINS SUPER-TWISTING SLIDING-MODE
CONTROL (AGSTSMC) DESIGN
The adaptive gains super-twisting sliding-mode control
(AGSTSMC) is formulated in the following theorem.
Theorem 1: Consider the control input (18), (19). Suppose

the perturbation D is bounded as D ≤ µ |s(x, t)|(1/2) where,
µ > 0 is unidentified. Afterwards, for any initial conditions
x(0), s(0), the sliding surface s = 0 will be reached in finite
time via super-twisting control law in (19) with the adaptive
gains in (31) [40]:

˙̂σ1−AG =

 ξ
√
α

2
if s 6= 0

0 if s = 0

˙̂σ2−AG = κξ

√
α

2

(31)

where α, ξ and κ denote arbitrary positive constants.
Proof: Theorem 1 proof is similar to [40], [41].

The STSMC-AG control law in general form is designed
as (32) and (33):

uSTSMC−AG

=
1

gn(x)

[
−fn(x)+ x

(n)
d +

∫ t
0 σ̂1−AGsgn(s(x, t))dt

+σ̂2−AG |s(x, t)|(1/2) sgn(s(x, t))+ γs

]
(32){

σ̂1−AG = [ σ̂1ω−AG σ̂1q−AG σ̂1d−AG ]

σ̂2−AG = [ σ̂2ω−AG σ̂2q−AG σ̂2d−AG ]
(33)

where fn(x) = [fω(x), fq(x), fd (x)], gn(x) = [gω(x), gq(x),
gd (x)], s(x, t) = [sω(x, t), sq(x, t), sd (x, t)], γs =

[γω, γq, γd ], x(t) = [ωr , irqs, i
r
ds] and ẋd (t) = [ω̇r , i̇rqs, i̇

r
ds].

σ̂1−AG(t) and σ̂2−AG(t) are the adaptive control gains, and
the outputs of the speed and current AGSTSMC con-
trollers of the PMSM drive system are uSTSMC−AG(t) =
[ir∗STSMC−AGqs ,V r∗STSMC−AG

qs ,V r∗STSMC−AG
ds ].

In this case, the AGSTSMC control law will derive the
system’s (1) trajectory to the ideal 2-sliding mode, i.e. s(t) =
ṡ(t) = 0 in finite time. However, the adaptive gains σ̂1−AG(t)
and σ̂2−AG(t) can be overestimated. Therefore, an optimal
online gain tuning scheme based on actor-critic neural net-
work algorithm via the HDP technique is proposed for ful-
filling the PMSM drive system robustness as given in the
following section.

V. THE DESIGN OF THE OAGSTSMC
The optimal online gain tuning approach in this section is sug-
gested to enhance the AGSTSMC control approach accord-
ing to the optimal dynamic response for the PMSM. In the
design of the OAGSTSMC scheme, the ACNN-HDP algo-
rithm, as an optimal adaptive mechanism tuner, is adopted
to optimize the AGSTSMC coefficients. According to the
proposed strategy, these coefficients are considered as the
design control objective and the ACNN-HDP tuner adjusts

these coefficients through online learning of actor-critic neu-
ral networks. The structure of the proposed OAGSTSMC for
the PMSMbased on the ACNN-HDP tuner is shown in Fig. 1.
The ACNN-HDP algorithm produces the commands 4̂1oac
and 4̂2oac to tune and optimize the gains of the proposed con-
trol scheme. The OAGSTSMC control algorithm is designed
as:

uSTSMC−OAG

=
1

gn(x)

[
−fn(x)+ x

(n)
d +

∫ t
0 4̂1sgn(s(x, t))dt

+4̂2 |s(x, t)|(1/2) sgn(s(x, t))+ γs

]
(34)

4̂1(t) = σ̂1−AG(t)+ 4̂1oac(t) (35)

4̂2(t) = σ̂2−AG(t)+ 4̂2oac(t) (36){
4̂1oac = [ 4̂1oac−ω 4̂1oac−q 4̂1oac−d ]

4̂2oac = [ 4̂2oac−ω 4̂2oac−q 4̂2oac−d ]
(37)

where 4̂1oac and 4̂2oac denote the optimal adaptive gains
estimated by the ACNN-HDP optimal tuner for the PMSM
speed and current controllers.

Through the following sections, the implementation
process of optimal adaptive gains tuning based on the
ACNN-HDP is introduced.

A. DIRECT HDP CONTROL ALGORITHM
The direct HDP structured in Fig. 2, is a learning algorithm
for adapting the critic and the action components. These two
components can be implemented using any kind of differ-
entiable function approximator. The most widely used value
function approximators in practical applications are neural
networks [73], [75]. Let us express the utility function in the
ACNN-HDP at instant t as:

r(t) = fr (t)Cr f Tr (t) (38)

where fr (t) = [zT (t), 4T
ac(t)], z(t) = [ s(t) x(t) ], s(t) =

[ sω sq sd ]T , x(t) = [ωr irqs irds ]
T and Cr (t) is a

positive-definite diagonal matrix. The vector z(t) includes the
sliding surfaces s(t) and state x(t) that can be applied to the
actor NN. The reinforcement function r(t) is required to be
bounded semi-definite function of the vector z(t) and control
inputs.

FIGURE 2. Implementation process of the direct HDP.
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A cost-to-go function is adopted as:

J (z(t), 4ac(t)) =
∞∑
t=0

βr(z(t +1t),4ac(t +1t)) (39)

where 0 < β < 1 denotes a discount factor for the infinite
horizon problem and 4ac = [41ac 42ac ].
The optimal cost function J∗(z(t)) is the solution of (39)

which satisfies the following HJB equation:

J∗(z(t)) = min
4ac(t)

(
r(z(t), 4ac(t))+ βJ∗(z(t +1t)

)
(40)

TheACNN-HDP technique can be employed as policy iter-
ation for solving the HJB equation (40). Moreover, J∗(z(t))
can be approximated via Ĵ (z(t)), which denotes the critic
neural network output. The critic NN inputs are z(t) and the
optimal adaptive gains 4ac(t) which are estimated by the
actor neural network.

B. CRITIC NEURAL NETWORK
The critic neural network is used to approximate the cost
function J and it uses the output of the actor neural network
as one of its inputs. The critic network inputs are z(t) =
[ s(t) x(t) ] and the optimal adaptive gains 4ac(t) which are
estimated by the actor neural network. Define the error func-
tion for the backpropagation of the critic network as:

ec(t) = β Ĵ (t)− [Ĵ (t −1t)− r(t)] (41)

For the critic NN weights update, a target function can be
minimized expressed by (42):

min
$c(t)

Ec(t) = min
$c(t)

1
2
eTc (t)ec(t) (42)

Fig. 3 depicts the architecture of the critic, which is a
multi-layer perceptron (MLP) network comprises an input
layer, a hidden layer and an output layer. The activation
function for critic neural network is chosen as:

ψc(t) =
1− e−t

1+ e−t
(43)

FIGURE 3. Structure of the critic neural network model.

The critic neural network signal propagation and the basic
functions can be expressed by:

8cj(t) =
n∑
i=1

zi(t)$c1,ij(t)+
m∑
i=1

4aci(t)$c2,ij(t)

j = 1, . . . ,Nch (44)

2cj(t) = ψc(8cj(t)) =
1− e−8cj(t)

1+ e−8cj(t)
j = 1, . . . ,Nch (45)

where $c1,ij(t) and $c2,ij(t) are the weights of the critic
neural network, n andm are the number of inputs and outputs
of the actor neural network, respectively. The critic neural
network has Nci = (n+m) input nodes, Nch hidden nodes and
one output node.8cj(t) alongwith2cj(t) denote the input and
output of the jth hidden node, respectively. The approximated
cost function can be expressed by (46):

Ĵ (t) =
Nch∑
j=1

$c2,j2cj(t) (46)

The weight update law from the hidden through the output
layer for the critic neural network using gradient-descent
adaptation is given by:

1Wc(t) = −ηc(t)
∂Ec(t)
∂Wc(t)

= −ηc(t)
∂Ec(t)

∂ Ĵ (t)

∂ Ĵ (t)
∂Wc(t)

= −ηc(t)βec(t)2c(t) (47)

Wc(t +1t) = Wc(t)+1Wc(t) (48)

where ηc(t) > 0 represents the critic NN learning at time t
that regularly decays with time to an insignificant value
and Wc denotes the weight vectors form hidden to output
layer in the critic NN. The online learning algorithms based
gradient-descent method for the critic NN are given in the
Appendix.

C. ACTOR NEURAL NETWORK
The action component will be represented by an actor neu-
ral network and its main goal is to generate control policy.
Similar to the critic neural network, an MLP structure with
one hidden layer is used as depicted in Fig. 4. The actor
NN is adopted for estimating the optimal adaptive gains of
the STSMC. The inputs to the actor network is z(t). The
error function for the actor neural network backpropagation
is defined by (49):

ea(t) = Ĵ (t)−3u (49)

where 3u is the desired ultimate target value of the entire
cost-to-go as well as can be regularly set to 0, which means
the accomplishment learning implementation for all t . The
actor NN target function is identified via (50):

min
$a(t)

Ea(t) = min
$a(t)

1
2
eTa (t)ea(t) (50)
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FIGURE 4. Structure of the actor neural network model.

FIGURE 5. The whole developed DSP-based high-speed PMSM schematic
diagram.

Similarly, the signal propagation and the basic functions of
the actor neural network are represented by:

8aj(t) =
Nai∑
i=1

zi(t)$a1,ij(t), j = 1, . . . ,Nah (51)

TABLE 2. Actor-critic neural networks learning parameters.

2aj(t)=ψa(8aj(t))=
1− e−8aj(t)

1+e−8aj(t)
, j = 1, . . . ,Nah (52)

�ak (t) =
Nai∑
i=1

$a2,jk (t)2aj(t), k = 1, . . . ,Nao (53)

4ack (t)=ψa(�ak (t))=
1− e−�ak (t)

1+e−�ak (t)
, k = 1, . . . ,Nao (54)

where $a1,ij and $a2,jk are the weights of the actor neu-
ral network. The actor neural network has Nai input nodes,
Nah hidden nodes and Nao output nodes. 8aj(t) along with
2aj(t) denote the input and output of the jth hidden node,
respectively. �ak (t) & 4ack (t) represent the input along with
the kth output node, respectively. The ψa(t) is the activation
function for actor neural network and is chosen as for the
critic neural network (43). The estimated optimal adaptive
gains via ACNN-HDP optimal tuner are given by:

4̂oac(t) =
1− e−�a(t)

1+ e−�a(t)
(55)

4̂oac(t) = [ 4̂1oac(t) 4̂2oac(t) ] (56)

The weight update law for the actor neural network using
gradient-descent adaptation can be expressed as:

1Wa(t) = −ηa(t)
∂Ea(t)
∂Wa(t)

= −ηa(t)
∂Ec(t)

∂ Ĵ (t)

∂ Ĵ (t)
∂4(t)

∂4(t)
∂Wc(t)

= −ηa(t)ea(t)Wc(t)[(1−42(t))/2]2a(t)

×

[
Wa(t)[(1−22

c(t))/2]Wa1(t)
]

(57)

Wa(t +1t) = Wa(t)+1Wa(t) (58)

where ηa(t) > 0 is the actor neural network learning at instant
t that regularly decays with time to an insignificant value
andWa denotes the weight vectors through the actor network.
The online learning algorithms details based gradient-descent
method for the actor neural network is given in the Appendix.

D. CONVERGENCE ANALYSES
The main target of this section is to afford a convergence
bound for the online learning utilizing Lyapunov stability
approach to demonstrate that the actor and critic NNs weight
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FIGURE 6. Simulation results of the PMSM dynamic response using PID
without external disturbance.

FIGURE 7. Simulation results of the PMSM dynamic response using SMC
without external disturbance.

FIGURE 8. Simulation results of the PMSM dynamic response using
STSMC without external disturbance.

estimation errors are uniformly ultimately bounded (UUB).
In [72], it was shown that if the input-to-hidden layer weights
$c1,ij(t) and $a1,ij(t) are selected initially random and pre-
served constant as well as if the number of hidden layer neu-
rons is adequately large, afterwards the NN approximation
error can be made arbitrarily small. Thus, only the weights
of the output layer $c2,j(t) and $a2,jk (t) are suggested to
be updated throughout learning. So, from now these weights
are denoted by Wc and Wa on the manuscript. As a result,

FIGURE 9. Simulation results of the PMSM dynamic response using
ASTSMC without external disturbance.

FIGURE 10. Simulation results of the PMSM dynamic response using
OAGSTSMC without external disturbance.

the approximated cost function in (46) can be expressed
by (59):

Ĵ (t) = Ŵ T
c (t)2c(t) (59)

Correspondingly, 4̂ac(t) in (55) can be expressed in a
matrix form as in (60):

4̂ac(t) = Ŵ T
a (t)2a(t) (60)

Substituting (41), (46) and (47) into (48), the weights of
the critic neural network can be estimated by (61):

Ŵc(t +1t) = Ŵ T
c (t)− ηc(t)βec(t)2c(t)

= Ŵ T
c (t)− ηc(t)

×β
(
β Ĵ (t)− [Ĵ (t −1t)− r(t)]

)
2c(t)

= Ŵ T
c (t)− ηc(t)β2c(t)

[
βŴ T

c (t) 2c(t)

+ r(t)− Ŵc(t −1t)2c(t −1t)
]T

(61)

Similarly, the actor neural network weights are estimated
based on (58) along with (49), (53) and (57) as:

Ŵa(t +1t) = Ŵ T
a (t)− ηa(t)ea(t)[

Ŵ T
c (t)[(1−2

2
c(t))/2]$̂c1,ij(t)

]
2a(t)
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FIGURE 11. Simulation results of the PMSM rotor speed tracking error
performance using different control schemes.

= Ŵ T
a (t)− ηa(t) 2a(t)

× [Ŵ T
c (t)Gjk (t)][Ŵ

T
c (t)2c(t)]T (62)

where, Gjk (t) represents a matrix of Nch × n dimension,
as well as its elements are represented by (63):

Gjk (t) =
1
2
[1−22

c(t)]$̂cj,m+k (t)

j = 1, . . . ,Nch k = 1 . . . ,m (63)
FIGURE 12. Simulation results of the PMSM dynamic response using PID
scheme.
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FIGURE 13. Simulation results of the PMSM dynamic response using
SMC.

FIGURE 14. Simulation results of the PMSM dynamic response using
STSMC scheme.
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FIGURE 15. Simulation results of the PMSM dynamic performance using
ASTSMC scheme.

FIGURE 16. Simulation validation results of the PMSM dynamic response
using OAGSTSMC scheme.
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FIGURE 17. Enlarge simulation validation results of the load regulation
performance for the PMSM using PID scheme.

Let the optimal weights of the critic along with actor NNs
W ∗c and W ∗a , respectively, are represented by:

W ∗c = argmin
Ŵc

∥∥∥β Ĵ (t)− [Ĵ (t −1t)− r(t)]
∥∥∥ (64)

W ∗a = argmin
Ŵa

∥∥∥Ĵ (t)∥∥∥ (65)

where || · || represents the 2-norm.
Consider the weight estimation errors for critic along with

actor neural networks is defined as W̃ = (Ŵ − W ∗). Then,
the weight update laws in (47) and (57) for both actor along
with critic neural networks define the dynamic system of the
estimation errors and can be expressed by:

W̃c(t +1t) = W̃c(t)− h(Ŵc(t), Ŵc(t −1t),

2c(t),2c(t −1t)) (66)

W̃a(t +1t) = W̃a(t)− h(Ŵa(t), Ŵa(t −1t),

2a(t),2a(t −1t)) (67)

Assumption 1: The critic along with action neural network
weights and their activation functions are assumed to be
bounded, i.e.,

∥∥∥Ŵa

∥∥∥ ≤ WaM ,
∥∥∥Ŵc

∥∥∥ ≤ WcM ,
∥∥W ∗a ∥∥ ≤ WaM ,∥∥W ∗c ∥∥ ≤ WcM , ‖2a‖ ≤ 2aM , ‖2c‖ ≤ 2cM , ‖r‖ ≤ rM and

‖G‖ ≤ GM .
Theorem 2:Consider the output of the critic neural network

is given as (59) as well as the critic neural network weights

FIGURE 18. Enlarge simulation validation results of the load regulation
response for the PMSM using SMC scheme.

update based on (61), the actor neural networkweights update
according to (62) using the gradient-descent algorithm. The
reinforcement signal is bounded within 0 ≤ r(t) ≤ 1. After-
wards, the errors between the optimal weightsW ∗c ,W

∗
a along

with their estimates Ŵc(t), Ŵa(t) denote UUB, respectively,
if Assumption 1 and the following conditions are fulfilled:

ηc <
1

β2 ‖2c(t)‖2

ηa <
1

‖2a(t)‖2

1/
√
2 < β < 1

(68)

Proof of Theorem 2: See the Appendix.
The stability analysis of (66) and (67) will be studied to

verify the asymptotic performance of the weight estimation
errors W̃c along with W̃a. The details of the stability analysis
are given in the Appendix by introducing Lemma 1 and
Lemma 2 which will be used in Theorem 2 proof.
Remark: In the above sections for different controllers’

design, it is observed that the super-twisting sliding-mode
control laws (19), (26), (29), (30), (32) and (34) depend on the
nonlinear functions f (x) and g(x), which are not accurately
identified beforehand for industrial applications. For enhanc-
ing the performance of the control system by avoiding the
constraints on the knowledge of disturbances and uncertain-
ties upper bounds, an adaptive neural identifiermay be used to
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FIGURE 19. Enlarge simulation validation results of the load regulation
performance for the PMSM using STSMC scheme.

approximate f (x) and g(x). The control scheme configuration
will be actor-critic-identifier structure. In our future research,
the actor-critic-identifier structure will be used for online tun-
ing the super-twisting sliding-mode control gains and identify
the nonlinear functions f (x) and g(x) to enhance the PMSM
dynamic performance.

VI. VALIDATION RESULTS
Firstly, the simulation on the PMSM is conducted to verify
the effectiveness of the proposed online OAGSTSMC scheme
compared with the PID, SMC, STSMC and ASTSMC control
schemes. Then, the experimentation tests are implemented for
endorsing the proposed controllers’ design validity. The sim-
ulation tests are performed in MATLAB according to the
control scheme established through Figs. (1)-(4) while the
experimental tests are implemented through the experimental
setup depicted in Fig. 5 [18]–[20].

A. EXPERIMENTAL SETUP
Fig. 5 depicts the block diagram of the proposed control
scheme for the high speed PMSM. For implementing the con-
trol operation, a dSPACE DS1102 with TMS320P14 along
with TMS320C31 DSPs are employed. The control boards
have numerous I/O ports (PIO, ADC, DAC, along with
encoder interface) for acquiring the measured signals as well
as send the accurate control actions. The inverter PWM

FIGURE 20. Enlarge simulation results of the load regulation
performance for the PMSM using ASTSMC scheme.

signals are produced via a carrier frequency (15 kHz). The
sampling time for the current control loops is set to 0.2ms.
While the speed control loop operates at a sampling time
of 1msec.

B. SELECTION OF ACTOR AND CRITIC NNS
The appropriate actor and critic NNs are selected as follows.
First, in order to evaluate the effectiveness of the learning con-
trol algorithms in simulation and implementation, the param-
eters of the actor-critic neural networks are given in Table 2.
The OAGSTSMC based on actor-critic NNs via HDP are
trained online based on two stop criterions. The training of the
actor and critic NNs is accomplished utilizing their internal
cycles na and nc, respectively. At each time step, the update
of Wa and Wc weights is carried out at most na and nc times,
respectively, or stopped once the tolerance error Ta and Tc
have been reached.

C. SIMULATION RESULTS
Numerical simulations are carried out for investigating the
efficacy of the proposed OAGSTSMC with actor-critic iden-
tifier for optimal adaptive gains applied to the PMSM. The
MATLAB simulation results of applying the OAGSTSMC
to the PMSM are analyzed based on the control system pre-
sented in Fig. 1 to Fig. 4. In addition, the PID, SMC, STSMC
and ASTSMC control approaches are applied to the same
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FIGURE 21. Enlarge simulation results of the load regulation
performance for the PMSM drive using OAGSTSMC scheme.

system to compare them with the proposed OAGSTSMC.
The simulation results of the comparative PMSM dynamic
response without any external disturbances are shown in
Figs. (6)-(10). Fig. 6 depicts the PMSM dynamic response
using the PID control scheme. The dynamic performance of
the drive system using SMC scheme is introduced in Fig. 7.
The PMSM dynamic response via employing the STSMC
scheme for the similar operating conditions is given in Fig. 8.
At the similar operating conditions, the dynamic response of
the drive system using the ASTSMC approach is depicted
in Fig. 9. The PMSM dynamic response via using the
OAGSTSMC is depicted in Fig. 10. According to Fig. 10,
the proposed OAGSTSMC converges quicker than other four
controllers and tracks the target trajectory with minimum
tracking errors. According to these results, the maximum
tracking speed errors via the PID is nearly 6.966 rad/sec,
the SMC is 6.376 rad/sec, the STSMC is 5.533 rad/sec,
the ASTSMC is 2.731 rad/sec and the OAGSTSMC is
0.873 rad/sec. Therefore, the proposed OAGSTSMC com-
pared with other controllers tracks the target trajectory with
less tracking errors. As depicted in Fig. 11, the quicker con-
vergence of tracking of the target trajectory through the lon-
gitudinal as well as transverse directions is similarly evident.

Similarly, the simulation results of the PMSM dynamic
response by applying the external disturbance of 0.5 mN.m
at t = 1.25 sec and removed at t = 3.75 sec and then

FIGURE 22. Enlarge simulation results of the external disturbance
regulation performance for the PMSM drive system using different
control schemes.

FIGURE 23. Experimental results of the PMSM using OAGSTSMC without
external disturbance.

repeated again are illustrated in Fig. 12 to Fig. 16. The
drive system dynamic response from top to bottom are the
speed command and actual rotor speed, tracking speed error
and the d-q axis reference as well as actual currents in
the rotating and stationary reference frames, respectively.
Fig. 12 provides the PMSM dynamic response using the
PID control approach. Fig. 13 illustrates the PMSM dynamic
performance using SMC scheme. The dynamic response of
the drive system via employing the STSMC scheme for
the similar operating conditions is introduced in Fig. 14.
At the similar operating conditions, the PMSM dynamic
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FIGURE 24. Experimental validation results of the PMSM using SMC
without external disturbance.

FIGURE 25. Experimental validation results of the PMSM using STSMC
without external disturbance.

FIGURE 26. Experimental validation results of the PMSM using ASTSMC
without external disturbance.

response using the ASTSMC scheme is depicted in Fig. 15.
The dynamic response of the drive system via using the
OAGSTSMC is given in Fig. 16. Additionally, the capabilities
of external disturbance rejection are investigated as shown
in Fig. 17 to Fig. 21. From the simulation results shown in
Fig. 12 to Fig. 15 and Fig. 17 to Fig. 20, at the full load
condition, the PID controller makes the rotor speed follow
the desired speed with a maximum dip nearly 300 rad/sec

FIGURE 27. Experimental validation results of the PMSM using PID
without external disturbance.

FIGURE 28. Enlarge experimental validation results of the rotor speed
tracking error performance for the PMSM drive system using different
control schemes.

(7.96%) with a recovery time nearly 0.5 sec. Utilizing the
SMC, the maximum dip approached 140 rad/sec (3.71%)
through a recovery time nearly 0.3 sec. Using STSMC
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FIGURE 29. Experimental results of the PMSM dynamic performance
using PID control scheme.

the maximum dip reached to 74 rad/sec (1.96%) through
a recovery time nearly 0.2 sec. Applying the ASTSMC,
the maximum dip reached to 63 rad/sec (1.66%) through
a recovery time nearly 0.15 sec. According to Fig. 16 and
Fig. 21, which show the trajectory tracking of the drive
system, the proposed OAGSTSMC converges quicker than
other four controllers as well as follows the target trajectory
with minimum tracking errors with a maximum dip nearly
30 rad/sec (0.79%) at full load within a recovery time of
about 0.1 sec. The output signal of controller reveals the
lowest level of overshoot compared with the other controllers.
The comparison between the PID, SMC, STSMC, ASTSMC
and OAGSTSMC control schemes during external distur-
bance regulation performance are given in Fig. 22. Obvi-
ously, the tracking errors rapidly approach zero that prove
the OAGSTSMC approach robustness. Thus, the tracking
errors have been minimized significantly and load regulation
aptitudes have been investigated in comparison with the PID,
SMC, STSMC alongwith ASTSMC control approaches. As a
result, the designed OAGSTSMC structure has better control
performance. Furthermore, the results have proved a signifi-
cant minimization of the high dip of the PMSM rotor angular
speed via employing the OAGSTSMC approach. Therefore,
the proposed OAGSTSMC scheme performs better than PID,
SMC, STSMC and ASTSMC control schemes in minimizing
tracking errors, chattering level, as well as control effort.

FIGURE 30. Experimental validation results of the PMSM dynamic
performance using SMC control scheme.

Eventually, the proposed OAGSTSMC approach provides
numerous merits based on its robustness, tracking accuracy,
optimality and suitability with the control of the PMSM.

D. EXPERIMENTAL VALIDATION RESULTS
The PMSM hardware laboratory setup with the same param-
eters used in the SIMULINK model is verified to inves-
tigate the developed OAGSTSMC compared to the PID,
SMC, STSMC and ASTSMC approaches. The experimen-
tal tests are done based on the control approaches depicted
in Fig. 1 through Fig. 5. The results of applying the pro-
posed OAGSTSMC to the experimental setup of PMSM
drive system shown in Fig. 5 are demonstrated. Indeed to
OAGSTSMC, the PID, SMC, STSMC along with ASTSMC
approaches are applied to the same system for conducting a
comparative study. The desired speed trajectory is chosen as
in simulation section. The experimental results of the com-
parative dynamic performance without external disturbance
are shown in Fig. 23 to Fig. 27. Fig. 23 depicts the dynamic
performances via employing the PID control, Fig. 24 depicts
the performance of the SMC, Fig. 25 depicts the STSMC
for the similar operating conditions, Fig. 26 shows the
performance of the ASTSMC meanwhile Fig. 27 depicts
the OAGSTSMC performance. From the trajectory track-
ing shown in Fig. 27, the OAGSTSMC converges quicker
than PID, SMC, STSMC and ASTSMC as well as follows
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FIGURE 31. Experimental results of the PMSM drive dynamic
performance using STSMC control scheme.

FIGURE 32. Experimental results of the PMSM drive dynamic
performance using ASTSMC control scheme.

the target trajectory with less tracking errors. From these
results, it is obvious that the OAGSTSMC in compari-
son to the PID, SMC, STSMC and ASTSMC follows the

FIGURE 33. Experimental validation results of the PMSM dynamic
performance using OAGSTSMC control scheme.

FIGURE 34. Enlarge experimental validation results of the load regulation
performance for the PMSM drive using PIDC scheme.

desired trajectory accurately with robust performance as
demonstrated in Fig. 28. Similarly, the experimental results
by applying the external disturbance condition given in
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FIGURE 35. Enlarge experimental validation results of the load regulation
performance for the PMSM drive via SMC scheme.

simulation are illustrated in Fig. 29 to Fig. 33. The dynamic
response from top to bottom are the speed command and
actual rotor speed, tracking speed error and the d-q axis
reference as well as actual currents in the rotating reference
frame, respectively. The dynamic performances using the
PID control is depicted in Fig. 29, the SMC is introduced
in Fig. 30, the STSMC for the similar operating conditions
is given in Fig. 31, the ASTSMC is given in Fig. 32 and the
OAGSTSMC is given in Fig. 33. Enlarge dynamic response of
external disturbance capabilities of the PID, SMC, STSMC,
ASTSMC and OAGSTSMC are introduced in Fig. 34 to
Fig. 38, respectively. From the trajectory tracking and load
regulation performance shown in Fig. 33 and Fig. 38, obvi-
ously the OAGSTSMC converges quicker than PID, SMC,
STSMC and ASTSMC as well as tracks the target trajectory
in less tracking errors and less rotor speed dip at full load con-
dition. The tracking errors rapidly approach zero that endorse
the OAGSTSMC robustness. Thus, the tracking errors and the
speed dip have been reduced significantly and the load reg-
ulation aptitudes have been confirmed versus the PID, SMC,
STSMC and ASTSMC schemes. From these results, it is
obvious that the OAGSTSMC follows the desired trajectory
accurately with robust and optimal control performance for
PMSM drive system. In addition, the control performances
are continuously improved using the proposed OAGSTSMC
despite PMSM drive is impacted by the external load torque
disturbance as well as the disturbances from the unknown
internal system dynamics and parameter uncertainties.

FIGURE 36. Enlarge experimental validation results of the load regulation
performance for the PMSM drive via STSMC scheme.

E. ASSESSMENT AND COMPARISON OF
CONTROL RESPONSE
In this section, the results of applying OAGSTSMC to
the PMSM are presented. To illustrate the advantages and
effectiveness of the proposed OAGSTSMC, the PID, SMC,
STSMC, and ASTSMC are also applied for comparison.
For accurate evaluation for the proposed OAGSTSMC along
with quantitative comparison of its response with other
controllers, three response indices are taking into account
namely maximum tracking error (MTE) average tracking
errors (ATE), as well as standard deviation of tracking
error (SDTE) [20]. The control performance can be readily
compared via (69)-(71) as:

MTE = maxk
√
T (k)2 (69)

ATE =
n∑

k=1

T (k)
n

(70)

SDTE =

√√√√ n∑
k=1

(T (k)− Tmean)2

n
(71)

where. T (k) = [ωmr (k) − ωr (k)].
In Fig. 39, numerous comparative performance evalua-

tions according to the MTE, ATE along with SDTE are
introduced for OAGSTSMC, the PID, SMC, STSMC, and
ASTSMC. For investigating the performance of these con-
trollers, numerical results are performed via the performance
indices that are illustrated in Table 3. These numerical results
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FIGURE 37. Enlarge experimental validation results of the load regulation
performance for the PMSM drive via ASTSMC scheme.

FIGURE 38. Enlarge experimental validation results of the load regulation
performance for the PMSM drive via OAGSTSMC scheme.

illustrate the OAGSTSMC superiority compared with other
four controllers. Entirely of the MTE, ATE along with SDTE
indicators have smaller values for the OAGSTSMC than

TABLE 3. The PMSM performance evaluation.

FIGURE 39. Performance evaluation of the PID, SMC, STSMC, ASTSMC and
OAGSTSMC schemes for PMSM. (a) MTE, (b) ATE, along with (c) SDTE.

the PID, SMC, STSMC, and ASTSMC. This indicates the
OAGSTSMC merits in more tracking precision. The results
similarly indicate the STSMC and ASTSMC superiority ver-
sus the PID along with SMC for all of these indexes as given
in Fig. 39. The regulation of external disturbance capabilities
for the five controllers is given in Fig. 40. Fig. 40 depicts
the maximum speed dip characteristics of the PID, SMC,
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FIGURE 40. Maximum speed dip characteristics of the PID, SMC, STSMC,
ASTSMC and OAGSTSMC schemes under full load condition for the PMSM
drive system.

TABLE 4. Features of control schemes.

STSMC, ASTSMC and OAGSTSMC schemes under full
load condition for the PMSM drive system. It is evident
that the proposed OAGSTSMC has better external load
disturbance regulation performance with decreased speed
dip in comparison with PID, SMC, STSMC and ASTSMC
schemes. Fig. 40 illustrates the tracking errors enhance-
ment via the OAGSTSMC along with ASTSMC approaches
compared with the PID, SMC and STSMC approaches.
As depicted, the response measures of the PMSM are consid-
erably improved via employing the proposed OAGSTSMC.
Accordingly, the OAGSTSMC via actor-critic online algo-
rithm achieve precise demands. Therefore, the proposed
OAGSTSMChas proved its effectiveness for the PMSMdrive
system speed control for industrial applications in compari-
son with the other applied controllers.

Although the computation burden of the proposed
OAGSTSMC is larger than the PID, SMC, STSMC and
ASTSMC approaches to accomplish the control algorithms
and adaptive laws, the superiority of control performance is
achieved. Nowadays, high-performance DSPs are utilized to
give flexible environments with high implementation rates
for sophisticated control approaches. The features of different
control schemes are summarized in Table 4.

VII. CONCLUSION
In this paper, a novel OAGSTSMC scheme utilizing actor-
critic neural networks for applying on PMSM drive sys-
tem with the target of increasing the tracking precision as
well reducing the maximum speed dip under external distur-
bances has been presented. First, the SMC has been designed
for stabilizing the PMSM. Afterwards, for improving the
control system response, the STSMC has been adopted for

reducing chattering. Nevertheless, the control performance
can be destroyed due to external disturbances and unidenti-
fied internal system dynamics along with parameter uncer-
tainties of the PMSM drive system. As well, the control
performance may be affected due to the conservative selec-
tion of the STSMC gains. Therefore, an ASTSMC scheme
is adopted to improve the control performance by avoid-
ing the constraints on knowing the uncertainties along with
disturbances upper bounds. Afterwards, for fulfilling the
robustness, adaptive and optimal control performance of the
drive PMSM system, the HDP is used for the optimal tuning
of OAGSTSMC gains. Accordingly, an online actor-critic
algorithm with HDP is designed for facilitating the online
solution of the HJB equation via a critic neural network while
seeking an optimal control via an actor neural network at the
same time. Furthermore, via employing Lyapunov approach,
the closed-loop control system stability is assured. The
MATLAB/SIMULINK results along with the experimental
validation results confirmed the OAGSTSMC superiority in
minimizing the tracking errors, level of chattering as well as
rotor speed dip at external load disturbance in comparison to
PID, SMC, STSMC and ASTSMC schemes. The contribu-
tions of this paper are implementing along with developing a
novel OAGSTSMC scheme to be applied on the PMSM drive
to achieve adaptive, robust, and optimal control performance
against significant disturbances.

APPENDIX
A. ON-LINE LEARNING ALGORITHMS USING
GRADIENT-DESCENT TECHNIQUE
Fig. 2 depicts the online learning of the control algorithms
for approximating the HJB equation via the critic neural
network though pursuing an optimal control via actor neural
network at the same time. The gradient descent algorithm for
computing the actor as well critic neural networks the optimal
weights is suggested for implementing the online direct HDP
controller [73], [75].

1) THE CRITIC NEURAL NETWORK ONLINE LEARNING
ALGORITHMS
The gradient-descent adaptation algorithm is employed for
updating the weights of the critic NN. Updating laws of
$c1,ij(t) &$c2,ij(t) can be expressed as:

1$c2,j(t) = −ηc(t)
∂Ec
∂$c2,j

= −ηc(t)
∂Ec
∂ Ĵ (t)

∂ Ĵ (t)
∂$c2,j

= −ηc(t)βec(t)2cj(t) (A1)

1$c1,ij(t) = −ηc(t)
∂Ec(t)
∂$c1,ij(t)

= −ηc(t)
∂Ec(t)

∂ Ĵ (t)

∂ Ĵ (t)
∂2cj(t)

∂2cj(t)
∂8cj(t)

∂8cj(t)
∂$c1,ij(t)

= −ηc(t)βec(t)$c2,j(t)[(1−22
cj(t))/2]zi(t)

(A2)
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The weights can be updated via employing (A3) & (A4):

$c2,j(t +1t) = $c2,j(t)+1$c2,j(t) (A3)

$c1,ij(t +1t) = $c1,ij(t)+1$c1,ij(t) (A4)

where ηc(t) > 0 denotes the critic neural network learning
rate parameter of the connecting weights within instant t that
regularly decays with time to an insignificant value.$c1,ij(t)
&$c2,ij(t) are the weight vectors within the critic network.

2) THE ACTOR NEURAL NETWORK ONLINE LEARNING
ALGORITHMS
Likewise, the gradient-descent adaptation algorithm is used
for the weights updating of the actor neural network. Updat-
ing laws of$a1,ij(t) and$a2,jk (t) are given by:

1$a2,jk (t)

= −ηa(t)
∂Ea

∂$a2,jk (t)

= −ηa(t)
∂Ea
∂ Ĵ (t)

∂ Ĵ (t)
∂4ack (t)

∂4ack (t)
∂�ak (t)

∂�ak (t)
∂$a2,jk (t)

= −ηa(t)ea(t)$c2,j(t)[(1−42
ack (t))/2]2aj(t)

·

Nch∑
i=1

[
$a2,jk (t)[(1−22

cj(t))/2]$a1,ij(t)
]

(A5)

1$a1,ij(t)

= −ηa(t)
∂Ea

∂$a1,ij(t)

= −ηa(t)
∂Ea
∂ Ĵ (t)

∂ Ĵ (t)
∂4ack (t)

∂4ack (t)
∂�ak (t)

∂�ak (t)
∂2aj(t)

·
∂2aj(t)
∂8aj(t)

∂8aj(t)
∂$a1,ij(t)

= −ηa(t)ea(t)[(1−42
ack (t))/2]$c2,j(t)[(1−22

cj(t))/2]zi

·

Nch∑
i=1

[
$a2,jk (t)[(1−22

cj(t))/2]$a1,ij(t)
]

(A6)

The weights are updated using (A7) and (A8):

$a2,jk (t +1t) = $a2,jk (t)+1$a2,jk (t) (A7)

$a1,ij(t +1t) = $a1,ij(t)+1$a1,ij(t) (A8)

where ηa(t) > 0 denotes the actor neural network learn-
ing rate parameter of the connecting weights at instant t
that is regularly decays with time to a small value. $a1,ij(t)
&$a2,jk (t) are the weight vectors within the actor network.

B. STABILITY ANALYSIS
The Lyapunov stability framework in the following section,
is adopted for proving the UUB property of (66) and (67).

1) LEMMA 1
Consider the output of the critic neural network is given
as (59), the critic neural network weights update according

to (61) and Assumption 1 is fulfilled, afterwards for

V1(t) =
1
ηc

tr[W̃ T
c (t)W̃c(t)] (A9)

The 1st difference of V1(t) is expressed by (A10).

1V1(t)

≤ −β2 ‖εc(t)‖2 − β2(1− ηcβ2 ‖2c(t)‖2)

×

∥∥∥εc(t)+W T
c (t)2c(t) + β−1r(t)

−β−1Ŵ T
c (t −1t)2c(t −1t)

∥∥∥2
+ 2

∥∥∥∥βW T
c (t)2c(t)+ r(t)−

1
2
Ŵ T
c (t −1t)2c(t −1t)

−
1
2
W T
c (t)2c(t −1t)

∥∥∥∥2 + 1
2
‖εc(t −1t)‖2 (A10)

where W̃c(t) = (Ŵc(t) − W ∗c ) represents the error between
the optimal weightsW ∗c along with its estimates Ŵc(t):

εc(t) =
(
Ŵc(t)−W ∗c

)T
2c(t) = W̃c(t)2c(t) (A11)

where εc(t) represents the approximation error of the output
of the critic neural network.

Proof of Lemma 1: The 1st difference of Lyapunov func-
tion candidate V1(t) can be expressed as:

1V1(t) =
1
ηc

tr[W̃ T
c (t +1t)W̃c(t +1t)− W̃ T

c (t)W̃c(t)]

(A12)

Using the update law (61), the weight estimation error of
the critic neural network can be expressed by (A13):

W̃c(t +1t) = Ŵc(t +1t)−W ∗c
= W̃c(t)− ηc(t)β2c(t)

×

[
βŴ T

c (t) 2c(t)+ r(t)− Ŵc

× (t −1t)2c(t −1t)]T (A13)

The (A13) can be substituted into (A12), thus, (A14) can
be obtained:

1V1(t)=−β2 ‖εc(t)‖2 − β2(1− ηcβ2 ‖2c(t)‖2)

×

∥∥∥εc(t)+W T
c (t)2c(t) + β−1r(t)

−β−1Ŵ T
c (t −1t)2c(t −1t)

∥∥∥2
+

∥∥∥βW T
c (t)2c(t)+r(t)−Ŵ T

c (t−1t)2c(t−1t)
∥∥∥2

(A14)

Using the Cauchy-Schwarz inequality, (A10) can be
obtained [73], [75].
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2) LEMMA 2
Consider the actor neural network output is given by (60), the
actor neural network weights update according to (62) and
Assumption 1 is fulfilled, afterwards for

V2(t) =
1
ςηa

tr [W̃ T
a (t)W̃a(t)] (A15)

The 1st difference of V2(t) can be expressed by (A16):

1V2(t)

≤
1
ς

{
−

[∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 − ηa(t) ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖2a(t)‖2
]

×

∥∥∥W T
c (t)2c(t)

∥∥∥2 + ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖εa(t)‖2
+ 4

∥∥∥W T
c (t)2c(t)

∥∥∥2 + 4 ‖εc(t)‖2
}

(A16)

where W̃a(t) = (Ŵa(t)−W ∗a ) represents the error difference
between the optimal weightsW ∗a and its estimates Ŵa(t):

εa(t) =
(
Ŵa(t)−W ∗a

)T
2a(t) = W̃a(t)2a(t) (A17)

where εa(t) denotes the approximation error of the output
of the actor neural network as well as ς > 0 denotes the
weighting factor.

Lemma 2 Proof: The 1st difference of Lyapunov func-
tion candidate V2(t) is expressed as in (A18):

1V2(t) =
1
ςηc

tr [W̃ T
a (t +1t)W̃a(t +1t)− W̃ T

a (t)W̃a(t)]

(A18)

Using the update law (62), the weight estimation error of
the actor neural network is given by:

W̃a(t +1t)

= Ŵa(t +1t)−W ∗a
= W̃a(t)− ηa(t) 2a(t)[Ŵ T

c (t)G(t)][Ŵ
T
c (t)2c(t)]T (A19)

Substituting (A19) into (A18) one gets:

1V2(t)

=
1
ς

{
−2[Ŵ T

c (t)G(t)]εa(t)
(
Ŵ T
c (t)2c(t)

)T
+ ηa(t)

∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖2a(t)‖2
∥∥∥W T

c (t)2c(t)
∥∥∥2}
(A20)

The 1st difference of V2(t) is expressed by (A21):

1V2(t)

=
1
ς

{
−

[∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 − ηa(t) ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖2a(t)‖2
]

×

∥∥∥W T
c (t)2c(t)

∥∥∥2 − ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖εa(t)‖2
+

∥∥∥W T
c (t)2c(t)− Ŵ T

c (t)G(t)εa(t)
∥∥∥2} (A21)

Using the Cauchy-Schwarz inequality, (A16) can be
obtained [73], [75], [76].

3) PROOF OF THEOREM 2
Select a Lyapunov function candidate to be (A22):

Vt (t) = V1(t)+ V2(t)+ V3(t)

=
1
ηc

tr[W̃ T
c (t)W̃c(t)]+

1
ςηa

tr [W̃ T
a (t)W̃a(t)]

+
1
2
‖εc(t −1t)‖2 (A22)

where ς > 0 denotes the weighting factor.
The 1st difference of V (t) is expressed by (A23).

1V (t) = V (t +1t)− V (t) = 1V1(t)+1V2(t)+1V3(t)

(A23)

V3(t) =
1
2
‖εc(t −1t)‖2 (A24)

The first difference of V3(t) is expressed by (A25).

1V3(t) =
1
2

[
‖εc(t)‖2 − ‖εc(t −1t)‖2

]
(A25)

Substituting the results of Lemma 1 (A10), Lemma 2 (A16)
in (A23) and using Assumption 1, the following result is
obtained:

1V1(t)

= 1V1(t)+1V2(t)+1V3(t)

≤ −

(
β2 −

1
2
−

4
ς

)
‖εc(t)‖2 − β2(1− ηcβ2 ‖2c(t)‖2)

×

∥∥∥εc(t)+W T
c (t)2c(t) + β−1r(t)

−β−1Ŵ T
c (t −1t)2c(t −1t)

∥∥∥2
−

[∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 − ηa(t) ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖2a(t)‖2
]

×

∥∥∥W T
c (t)2c(t)

∥∥∥2 + 2
∥∥∥βW T

c (t)2c(t)+ r(t)

−
1
2
Ŵ T
c (t −1t)2c(t −1t)−

1
2
W T
c (t)2c(t −1t)

∥∥∥∥2
+
1
ς

∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖εa(t)‖2 + 4
ς

∥∥∥W T
c (t)2c(t)

∥∥∥2 (A26)
Using the conditions in (68) and choose ς to satisfy the

following condition:

ς >
4(

β2 − 1/2
) (A27)

The first difference (A26) can be expressed as:

1V1(t)

= 1V1(t)+1V2(t)+1V3(t)

≤ −

(
β2 −

1
2
−

4
ς

)
‖εc(t)‖2 − β2(1− ηcβ2 ‖2c(t)‖2)

×

∥∥∥εc(t)+W T
c (t)2c(t) + β−1r(t)

−β−1Ŵ T
c (t −1t)2c(t −1t)

∥∥∥2
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−
1
ς

[∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 − ηa(t) ∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖2a(t)‖2
]

×

∥∥∥W T
c (t)2c(t)

∥∥∥2 + ℵ2 (A28)

where ℵ2 is given by

ℵ
2
= 2

∥∥∥βW T
c (t)2c(t)+ r(t) −

1
2
Ŵ T
c (t −1t)2c(t −1t)

−
1
2
W T
c (t)2c(t −1t)

∥∥∥∥2 + 1
ς

∥∥∥Ŵ T
c (t)G(t)

∥∥∥2 ‖εa(t)‖2
+

4
ς

∥∥∥W T
c (t)2c(t)

∥∥∥2 (A29)

Using the Cauchy-Schwarz inequality, (A29) can be rewrit-
ten as:

ℵ
2
≤ 8

[∥∥∥W T
c (t)2c(t)

∥∥∥2+ r2(t)1
4

∥∥∥Ŵ T
c (t−1t)2c(t−1t)

∥∥∥2
+

1
4

∥∥∥W T
c (t)2c(t −1t)

∥∥∥2]+ 2
ς

∥∥∥Ŵ T
c (t)G(t)

∥∥∥2
×

[∥∥∥W T
a (t)2a(t)

∥∥∥2 + ∥∥∥W T
a (t)2a(t)

∥∥∥2]
+

4
ς

∥∥∥W T
c (t)2c(t)

∥∥∥2
≤

(
8β2 + 4+

4
ς

)
W 2
cM2

2
cM

+
4
ς
W 2
cMG

2
MW

2
aM2

2
aM + 8r2M = ℵ

2
M (A30)

whereWcM ,WaM , 2cM , 2aM , GM along with rM denote the
upper bounds ofWcM (t),WaM (t),2cM (t),2aM (t),GM (t) and
rM (t), respectively.

If the conditions in (68) are fulfilled, afterwards for any:

‖εc(t)‖ >
ℵM(

β2 − 1
2 −

4
ς

) (A31)

The 1st difference 1V (t) ≤ 0 holds. Based on Lyapunov
extension theorem [67], this proves that the errors between the
optimal weightsW ∗a&W

∗
c along with their estimates Ŵa(t) &

Ŵc(t)are UUB, respectively.
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