
Received April 4, 2021, accepted May 10, 2021, date of publication June 4, 2021, date of current version June 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086689

RefDetect: A Multi-Language Refactoring
Detection Tool Based on String Alignment
IMAN HEMATI MOGHADAM 1, MEL Ó CINNÉIDE 2, FAEZEH ZAREPOUR3,
AND MOHAMAD AREF JAHANMIR 1
1Department of Computer Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
2School of Computer Science, National University of Ireland, Dublin, D04 V1W8 Ireland
3Department of Computer Engineering, Allameh Jafari Institute of Rafsanjan, Rafsanjan 77181, Iran

Corresponding author: Iman Hemati Moghadam (i.hemati@vru.ac.ir)

This work was supported by Science Foundation Ireland grant 13/RC/2094_2 to Lero - the Science Foundation Ireland
Research Centre for Software.

ABSTRACT Refactoring is performed to improve software quality while leaving the behaviour of the
software unchanged. Identifying refactorings applied to a software system is an important activity that leads
to a better understanding of the evolution of the software system, and several techniques have been proposed
and implemented to address this issue. The vast majority of existing refactoring detection techniques are
language-specific, including the accepted state of the art, RMiner, which is exclusively Java-based. Although
impressive performance has been achieved to date, there is scope for improvement in refactoring detection
and such improvement would enhance both refactoring research and practice. In this paper, we propose a
novel, language-neutral technique to identify refactorings in commit histories. Our approach is motivated
by a desire to explore the use of string alignment algorithms in refactoring detection, and to determine if
such approaches are competitive with the state of the art. The proposed approach has been implemented
in a tool called RefDetect, evaluated, and compared with the current state-of-the-art refactoring detection
tool: RMiner. In experiments we applied RefDetect to 514 commits of 185 Java applications containing
5,058 true refactoring instances, achieving an f-score slightly better than that achieved by RMiner (87.3%
vs. 86%). RefDetect clearly outperformed RMiner in method and class based refactorings, achieving
f-scores respectively of 87.7% vs. 81.7% for method-level refactorings and 92.1% vs. 86.9% for class-level
refactorings. To demonstrate the language-independence of RefDetect, we conducted a further study with
four C++ applications, achieving high values for both precision (96.1%) and recall (94.1%). The achieved
results indicate that RefDetect performs better than the current state of the art in refactoring detection and is
demonstrably capable of handling different programming languages.

INDEX TERMS Refactoring, refactoring detection, alignment algorithm, empirical studies, Java, C++.

I. INTRODUCTION
Refactoring is a key practice in contemporary software devel-
opment. In Agile development, where little upfront design
is performed, it is the practice that enables the design
of the software to evolve. It also plays a central role in
Test-Driven Development and is regarded as an essential
practice in keeping the codebase ‘‘clean’’ and amenable to
further development. It has also attracted considerable inter-
est from researcher, with a recent survey paper [1] finding
over 3,000 papers on refactoring topics including refactoring
at different levels (from architecture to code), applied inmany
domains e.g. cloud computing, mobile development, web

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

development, and applied for many purposes including to
improve software design (the most common goal of refac-
toring), and also to improve software performance, software
security, and most recently to reduce the energy consumption
of software.

Given this interest in refactoring as a research topic and
its practical importance in software development, it is not
surprising that identification of refactorings has been an
active research topic for many years [2]–[12]. For practi-
tioners, understanding the nature and extent of the refac-
torings applied to a system helps in understanding how the
system has evolved and how it has been maintained. For
refactoring researchers, the starting point for their investi-
gations frequently involves the identification of refactorings
that have been applied as the project evolved. According to a

86698 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5478-9858
https://orcid.org/0000-0002-3498-7056
https://orcid.org/0000-0001-9505-0104
https://orcid.org/0000-0003-3264-185X

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

recent survey spanning 86 articles [13], the most investigated
applications for detecting changes that occurred between two
program versions are in order: understanding system evo-
lution, reperforming changes in different contexts, change
impact analysis, correlating changes to other metrics, and
predicting/suggesting future changes. On the other hand,
detecting patterns of change and reperforming changes in
different contexts are mentioned as the most desirable future
applications.

Many attempts have been made to automate the process
of refactoring detection [4]–[12], with the current state of
the art being represented by the RMiner tool, the work
of Tsantalis et al. [2], [3]. In experiments, RMiner proved
itself capable of detecting 40 refactorings types with a pre-
cision and recall of 99.6% and 94% respectively. While
these results are impressive, and RMiner has proved to be a
very valuable tool in refactoring research, it does not mean
that other approaches to refactoring detection should not be
explored.

In this paper, we present a novel approach to refactoring
detection based on string alignment, which we embody in our
tool, RefDetect. While RMiner uses the ASTs of two consec-
utive commits to determine what refactorings have occurred,
our approach models the software design embodied in each
commit as a string and then employs a string alignment algo-
rithm, FOGSAA [14], as a basis for determining the changes
that have occurred and detecting which of them represent
refactoring operations. Our approach employs two passes,
and uses refactorings detected in the first pass to enhance
detection in the second pass. As it is string-based, it depends
purely on language-independent entities and relationships
and can therefore be easily extended to other programming
languages.

In contrast to RMiner, our approach relies on thresholds.
However these thresholds are very general and in our experi-
ments we calibrate them only once based on a small number
of commits (10) and a number of seed refactorings from
edge cases observed in the implementation of RefDetect.
These thresholds remain unchanged throughout our experi-
ments involving 514 commits of 185 Java applications, which
gives confidence that they do not need to be adjusted on a
per-application basis. The two-step approach employed by
RefDetect also helps to reduce issues related to similarity
thresholds. In the first round, weak thresholds are usedmainly
to detect rename refactorings as well as new and deleted
entities. In the second round, stronger thresholds are used
to filter out false positive cases (i.e. improve precision) and
also use refactorings detected in the first round to reduce false
negatives (i.e. improve recall).

In experiments we applied RefDetect to 514 commits
of 185 Java applications containing 5,058 true refactor-
ing instances, achieving an f-score slightly better than
that achieved by RMiner (87.3% vs. 86%) on the same
dataset. RefDetect clearly outperformed RMiner in method
and class based refactorings, achieving f-scores respec-
tively of 87.7% vs. 81.7% for method-level refactorings and

92.1% vs. 86.9% for class-level refactorings. To demonstrate
the language-independence of RefDetect, we conducted a
further study with four C++ applications, achieving high
values for both precision (96.1%) and recall (94.1%). These
results indicate that RefDetect performs somewhat better
than the current state of the art in refactoring detection, and
is demonstrably capable of handling different programming
languages.
This paper makes the following contributions:
(1) We present a novel approach based on an alignment
algorithm to detect refactorings applied between two program
versions. The proposed approach is independent from any
programming language, although Java and C++ languages
are used to evaluate the approach.
(2) We implement our refactoring detection algorithm as a
tool that operates on Java and C++ applications. RefDetect
currently supports 27 refactoring types, including composite
refactorings.
(3) We compare RefDetect with the current state-of-the-art
refactoring detection tool: RMiner [3], where an extensive
empirical study on 514 commits from 185 open source Java
repositories including 5,058 true refactorings are performed
(Section IV-C).
(4)We compare the memory consumption and execution time
of our tool with RMiner [3], where the results show that
RefDetect is efficient and performs better than RMiner in a
number of key ways (Section IV-C4).
(5) We evaluate our tool with four C++ applications includ-
ing 305 true refactorings where 96.1% precision, and 94.1%
recall achieved (Section IV-D).

The rest of the paper is structured as follows. Section II
provides an overview and discussion of related works.
Our approach to automatic detection of the refactorings
that occurred between two program versions is presented
in Section III. The correctness and completeness of our
approach is evaluated in Section IV, while the limitations
of the proposed approach and threats to the validity of our
study are discussed in Sections V andVI respectively. Finally,
in Section VII, we provide our conclusions and discuss pos-
sible related future research.

II. RELATED WORKS
Detecting changes that occurred between two program ver-
sions and categorizing them as refactoring instances is inves-
tigated in several research works. A large part of the work
in this field are based on differencing algorithms to detect
if changes applied between two versions of a system can
be categorized as refactoring instances. This line of work
is related to ours as we use an alignment algorithm as a
differencing algorithm to detect changes applied between two
versions of a software system.

In an ideal case, using a differencing algorithm the refac-
torings that take place between two program versions can
be detected based only on the original and new versions
of the system. However, approaches based on differencing
algorithms suffer from two drawbacks: Firstly, they cannot

VOLUME 9, 2021 86699

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

determine hidden changes,1 and secondly, they cannot deter-
mine the order of applied refactorings. In the following para-
graphs we discuss some influential related works in this
regard in a chronological order.

The first refactoring detection approach based on a dif-
ferencing algorithm introduced by Demeyer et al. [4]. They
use a set of heuristics defined as a combination of low-level
source code metrics to identify occurrence of likely refac-
torings in two successive versions of a program [4]. As an
example, the Extract Superclass refactoring is detected when
the depth of inheritance tree is increased, and the number
of methods and fields in a class in the hierarchy structure is
decreased while they are increased in the new class added
in the hierarchy structure. However, the evaluation results
show a low precision for four different types of refactorings
detected by this approach. A reason for a low precision is
because of partial overlap between the heuristics where some
false negative refactorings were reported as false positives for
other refactorings [4]. The proposed approach, as confirmed
by Demeyer et al., was also vulnerable to renaming and it was
also imprecise when many changes are applied on the same
piece of code [4].

Weißgerber and Diehl [5] propose a signature-based tech-
nique to identify candidate refactorings and use a token-based
code clone detection tool (i.e., CCFinder [15]) to rank the
identified candidates. In the proposed approach, as first step,
pairs of code entities (classes, methods, and fields) which
have some similarities in their signatures and in the given
versions of the program they are removed, added or changed
are compared and a candidate refactoring is detected if
applied changes satisfy conditions for a refactoring type [5].
To rank the detected refactorings, for each candidate refactor-
ing, the bodies of corresponding entities are compared and,
if they are similar, then it is more likely that the changes do
not transform the behaviour of the code and the candidate
refactoring is more likely to be a correct one. The approach
is evaluated on two open-source Java projects and a good
level of recall (89.5%) was achieved. However, the eval-
uation is based on refactorings determined manually from
commit logs, and it has been proven that commit messages
are not reliable indicators of refactoring activity [12], [16].
It is also worthy of note, as confirmed by Weißgerber and
Diehl, that the approach is deficient in finding refactor-
ings when several refactorings are performed on the same
entity [5].

In a similar work, Dig et al. [6] develop Refactor-
ingCrawler2 as an Eclipse plug-in which uses a text-based
similarity metric (i.e., Shingles encoding [17]) to find cor-
responding entities. However, they use a precise semantic
analysis based on reference graphs to refine the candidate

1For example, where a method is moved around various classes before
being placed in its final target class, a refactoring detection algorithm based
on a differencing algorithm can only detect that the method has been moved
from its original class to the target one, and is unable to detect other, hidden
Move Method refactorings.

2http://dig.cs.illinois.edu/tools/RefactoringCrawler

refactorings. The evaluation results on three open-source Java
projects show a high values for both recall (90%) and preci-
sion (96%)metrics. However, as with the work ofWeißgerber
and Diehl [5], the evaluation is based on refactorings deter-
mined manually from commit logs. Later, Biegel et al. [18]
replicated Weißgerber’s approach with CCFinder, and two
other different similarity metrics: JCCD [19] and Shin-
gles [17], and they report that while the choice of similarity
metric has an effect on the ranking of candidate refactorings,
the overall results are of comparable quality [18].

Xing and Stroulia [7] develop an Eclipse plug-in named
JDEvAn which uses both lexical and structural similarity to
automatically recover refactorings which have been occurred
between two versions of a program. JDEvAn initially extracts
two UML logical design models from the source code of
two versions of a Java program, and then uses a differencing
algorithm called UMLDiff to detect differences between two
models in terms of removal, addition, moving, and renaming
of UML entities. The detected differences are then catego-
rized, where possible, as design-level refactoring instances
using certain predefined queries [20]. As an example of an
implemented query, an Extract Hierarchy refactoring is rec-
ognized if (1) a new class is added to the program, (2) the
new class inherits from at least one class in the program other
than Java.lang.object, and (3) the superclass of one or more
classes is changed to the new added class [7]. Evaluation
results on several case studies prove the quality and useful-
ness of the JDEvAn in detecting different types of refactor-
ings. However, as confirmed by Xing and Stroulia, there are
three situations where UMLDiff cannot detect rename and
move refactorings properly: (1) when the renamed or moved
entities have few relations with other parts of program, (2)
when two unrelated entities have similar names and rela-
tions, and finally (3) when other parts of program related to
renamed or moved entities are also changed significantly [7].
The latter case was also observed in our earlier work [21]
when a hierarchy structure was changed radically but related
moved methods and fields could not be detected properly
by UMLDiff.

Perte et al. [8] develop Ref-Finder,3 an Eclipse plug-in able
to detect 63 refactoring types which is the most comprehen-
sive list of refactoring types to date. Ref-Finder as first step
traverses the abstract syntax tree of one version of a program
and the next and represents their code entities (e.g. classes,
methods and fields), their structural dependencies (e.g. field
access and method invocation), and content of the code enti-
ties (e.g. method body) as a set of logic predicates. Supported
refactorings are also encoded as logic queries, and used to
query the set of extracted logic predicates to identify applied
refactoring instances [8]. Ref-Finder is the first tool capable
of detecting composite refactorings where each refactoring
consists of a sequence of atomic refactorings. This is done as
while encoding refactorings as logic queries, the dependen-
cies between refactorings are included in the definition, and

3https://sites.google.com/site/reffindertool/

86700 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

composite refactorings are detected by querying the identified
atomic refactorings [8]. For example, an Extract Superclass
refactoring is detected if a new superclass is created and a
number of PullUp Method/Field refactorings are identified
that move fields and methods to the newly created class. The
accuracy of Ref-Finder is evaluated on three open-source Java
programs and a high recall (95%) and an acceptable level
of precision (79%) is reported [8]. However, the evaluation
was based on refactorings applied in isolation (known as
root canal refactorings [16]) while in real-world scenarios,
refactorings (known as floss refactorings [16]) overlap with
other changes. This limitation is the main reason for low
recall and precision report by other researchers [9], [22], [23]
who later evaluated Ref-Finder.

Silva and Valente [9] developed RefDiff, a tool capable
of detecting 13 refactoring types. In contrast to the previous
algorithms, RefDiff, for efficiency, only analyses files that are
changed, added or deleted between two versions of the pro-
gram. To find similar entities exist in the two extracted mod-
els, RefDiff represents classes and methods as a multiset of
tokens where multiplicity of each entity is equal to its number
of occurrences in themultiset. As fields do not contain a body,
RefDiff considers tokens of statements that directly access
each field. To compute the importance of each token, RefDiff
employs a variation of the TF-IDF weighting scheme [24]
where a low multiplicity of a token is an indicator of a better
similarity between two entities. The accuracy and efficiency
of RefDiff was found to be better than that of RMiner [25],
RefactoringCrawler [6] and Ref-Finder [8]. However, similar
to the evaluation performed by Perte et al. [8], the evaluation
was solely based on root canal refactorings.

Recently, Silva et al. [11] extended their original tool and
introduced RefDiff 2.0,4 the first multi-language refactoring
detection tool. The implemented tool is capable of detect-
ing refactorings in Java, C and JavaScript applications. The
main improvement is that the source code is represented as
a tree structure [11], and this allows the refactoring detec-
tion approach to be independent of any programming lan-
guage. Our refactoring detection approach is also language-
neutral, although it uses a completely different approach to
that of Silva et al. [11]. We employ a string representation
of the source code and rely on relationships between enti-
ties (e.g., method invocation, field access, etc.) rather than
language-dependent programming instructions (e.g., while,
if, etc.). RefDiff 2.0 is evaluated with 185 open-source Java
applications containing 3,248 true refactoring instances, and
a high precision (96%) and an acceptable level of recall
(80%) is reported. The feasibility of the proposed approach in
detecting refactorings in other programming language is also
evaluated using a number of small scale experiments, where
the precision and recall for C and JavaScript applications
ranges from 88% to 91% [11].

Langer et al. [26] propose the first tool capable of detect-
ing refactorings on any Ecore-based modelling language.

4https://github.com/aserg-ufmg/RefDiff

The major benefit of the approach is that it reuses rules
defined for specification of refactorings also for detecting
them. Therefore, no need to define new queries for detecting
new refactorings. The approach, as first step, checks whether
the diff patterns of refactoring specifications occurred in any
changes applied in the model, and if so a likely candidate
refactoring is determined. However, diff patterns do not con-
tain details of refactoring specifications. Therefore, as second
step, for each candidate refactoring, pre- and post-conditions
of the refactoring are also evaluated. Nevertheless, it is
proven that manual and even automated refactorings do
not follow strict pre- and post-condition requirements [27].
Therefore, detecting a refactoring only if all pre- and
post-conditions are valid makes the approach less effective,
and considering weaker conditions results many false pos-
itive instances. The accuracy of the proposed approach is
investigated using experimental results obtained from one
real-world case study containing 141 refactorings, where a
high precision (98%) and an acceptable level of recall (70%)
is reported.

The majority of existing refactoring detection tools suffer
from one important weakness: ‘‘user-provided code simi-
larity thresholds’’ [2]. To overcome this weakness, Tsan-
talis et al. [2] develop a refactoring detection tool called
RMiner5 that employs a replacement technique to find sim-
ilar entities in two extracted models without defining any
entity similarity threshold. To improve the efficiency of
the algorithm, RMiner only analyses source files which are
changed, added or deleted between two versions of the pro-
gram. It is shown that this technique decreases the number
of incorrect code entity matches and consequently improves
efficiency of the algorithm [2]. A similar technique is also
used in this paper to improve the accuracy and speed of
the implemented tool. RMiner is also capable of tolerating
unparseable programs which is a weakness of the major-
ity of the aforementioned tools including RefDiff 1.0 [9],
Ref-Finder [8], UMLDiff [7] and RefactoringCrawler [6].
The approach presented in this paper is also not depen-
dent on a fully-built version of the system and is capable
of tolerating unparseable programs. RMiner is evaluated on
185 open-source Java projects containing 3,188 refactorings,
and the authors report a high precision (98%) and recall
(87%) for their approach. The superiority of RMiner is also
investigated by Tan and Bockisch [23] where RMiner outper-
forms its competitors: RefactoringCrawler [6], Ref-Finder [8]
and RefDiff 1.0 [9]. This superiority has also been observed
by Silva et al. [11], where RMiner 1.0 (the first version of
RMiner) outperforms RefDiff 2.0.

Recently, Tsantalis et al. extended their original tool
and introduce RMiner 2.0.15 [3]. The tool is capable of
detecting 40 refactorings types including low-level ones that
occur in the method body (e.g., Inline/Extract/Split/Rename
Variable). The main improvement is in the matching func-
tion, where new replacement types and heuristics are

5 https://github.com/tsantalis/RefactoringMiner

VOLUME 9, 2021 86701

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

defined. In evaluation the authors compare their tool with
existing tools including its predecessor RMiner 1.0 [2], and
RefDiff 2.0 [11]. The results, including 7,226 true refactoring
instances, show the superiority of the new version of RMiner,
where it achieves the best precision (99.6%) and recall (94%)
from the tools evaluated. The approach developed in this
paper is compared with RMiner 2.0.1. The details of com-
parison with experimental results along with details of refac-
toring detection algorithm implemented in RMiner 2.0.1 are
presented in the Evaluation Section.

In other recent work, Stevens et al. [10] propose a
tool-supported approach capable of finding minimum trans-
formations for a desired evolution pattern from changes
performed between two versions of a Java program. The
proposed approach is based on two graphs: Change Depen-
dency Graph (CDG) and Evolution State Graph (ESG).
Each node in the CDG represents a change, and edges
represent dependencies between the changes. As an exam-
ple, a change that creates a new class must be executed
before a change that moves a method to the newly-created
class. On the other hand, each node in the ESG contains
an abstract syntax tree state and each edge between two
nodes show a possible change that can be applied in the
source node and results in the target node. Dependencies
between changes are also included in the ESG by consulting
the CDG during the ESG creation process. At this stage,
users using a declarative program querying language, called
EKEKO [28], can query the resulting ESG to find desired
transformations. However, the use of EKEKO involves a
steep learning curve which militates against those with no
prior EKEKO experience using it. The proposed approach is
not also capable of detecting refactorings involving multiple
files because including dependencies across all files results
in an unfeasibly large CDG and hence an intractable search
space [10].

Krasniqi and Cleland-Huang [12] implement a commit
message refactoring detection tool called CMMiner that is
capable of detecting 12 refactoring types based on analysing
commit logs provided by developers. The proposed approach
is evaluated on four Java open source systems and com-
pared with the first version of RMiner [2]. While the
results show that relying on commit logs is not enough to
detect all applied refactorings, surprisingly CMMiner cor-
rectly identifies 10.30% to 19.51% refactorings of differ-
ent types that were not detected by RMiner [12]. While
the majority of refactorings missed by CMMiner resulted
from insufficient information in the commit logs about the
applied refactorings, the majority of refactorings not detected
by RMiner were ones that occurred across multiple com-
mits [12]. As an example, assume a case that an Extract
Superclass refactoring occurs in one commit and then in
the next commit some fields and methods are pulled up to
the newly-created class. RMiner cannot detect the applied
Extract Superclass refactoring as no methods or fields were
moved to the newly-created class when RMiner analyses

the first commit.6 On the other hand, the Extract Super-
class refactoring is not detected in the second commit as
the class under consideration is no longer a new class in
the this commit. In summary, as concluded by Krasniqi
and Cleland-Huang, the achieved results clearly indicate
that the use of information in the commit logs along with
structural and semantic information contained in the source
code can significantly improve current refactoring detection
approaches.

As mentioned, the refactoring detection algorithm
presented in this paper is based on a differencing algo-
rithm, where refactorings are identified based on differ-
ences between the original and refactored programs. The
proposed approach, as will be discussed in Section III-C,
uses similarity thresholds to match entities (classes, meth-
ods, and fields) in the original and refactored programs.
While using similarity thresholds negatively affects the accu-
racy of the approach especially when a large number of
non-refactoring changes are applied to the refactored entity7

(see Section IV-C3), it has unique features that allows it to
compete with the current state-of-the-art refactoring detec-
tion tool: RMiner [3]. The proposed approach employs a
simple, but powerful technique based on a string alignment
algorithm to detect changes applied in two program ver-
sions (see Section III-B), and then uses entities signature
and their relationships to match entities different in two
programs (see Section III-E). To reduce issues related to
similarity thresholds, a novel two-step algorithm that uses
refactorings detected in the first round to enhance detec-
tion in the second round is introduced (see Section III-C).
Furthermore, a feature that distinguishes our tool from other
ones is that it is not dependent on any particular programming
language, and is able to detect refactorings in any class-based,
object-oriented programming language, and potentially even
design models such as a UML class diagram. This feature
is achieved as the refactoring detection algorithm is not
dependent on language-dependent programming instructions
(such as while, if, etc.), and it only relies on entities’
signatures and their relationships to match entities in two
versions of a program. A detailed description is provided in
Section III-C.

III. PROPOSED REFACTORING DETECTION ALGORITHM
Our approach to refactoring detection falls into the ‘Dif-
ferencing Algorithm’ approach as described in Section II.
Fig. 1 shows an overview of the steps that are followed in
our proposed approach. As illustrated, the approach takes as
input the original and refactored versions of a program, and

6As a necessary condition for Extract Superclass refactoring type in
RMiner, at least two methods/fields should be pulled up from a subclass to
the newly-created class.

7As will be discussed in Section IV-C3, the proposed approach critically
uses already-identified refactorings in the identification of new refactorings,
an issue that not been addressed in many previous approaches, including
those proposed by Weißgerber and Diehl [5] and Xing and Stroulia [7].

86702 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 1. Overview of the proposed approach.

generates as output a set of refactoring operations applied
between the two input program versions.

The approach is divided into three steps:

1) The code is parsed (Step 1.1) and a model extracted and
represented as a sequence of characters (Step 1.2).

2) A change detection algorithm based on a sequence align-
ment algorithm is used to identify the changes existing
between the two input program versions.

3) A threshold based refactoring detection algorithm is
used to identify the set of refactoring transformations
that represents the evolution from the original version
to the refactored one.

Currently, our refactoring detection algorithm is imple-
mented as a tool that operates on Java and C++ applications.
We use Spoon8 and Eclipse CDT9 as static source code
analysis tools to respectively extract information from Java
and C++ applications, and represent the extracted infor-
mation as a sequence of characters. Clearly, Step 1 is lan-
guage dependent and different code analysis tools must be
used for different programming languages. Steps 2 and 3 are
not dependant on the programming language of the original
source code.

The remainder of this section is structured as follows.
A detailed description of how code entities are represented as
character sequences, and the employed alignment algorithm
to identify changes are presented in Sections III-A and III-B
respectively. The refactoring detection algorithm is then dis-
cussed in Section III-C. This detection algorithm relies on a
number of similarity thresholds, which are described in detail

8https://spoon.gforge.inria.fr/
9https://www.eclipse.org/cdt/

in Section III-D. The algorithm furthermore utilizes a notion
of similarity, and this is defined in detail in Section III-E.

A. REPRESENTING THE PROGRAM AS A STRING
The proposed refactoring detection algorithm employs an
alignment algorithm to compare program entities in the orig-
inal and refactored programs with each other. However, this
alignment algorithm is based on two input strings. Therefore,
initially, program entities such as classes, methods, fields etc.
must be represented as a sequence of characters.

To achieve this, we use an approach initially proposed
by Kessentini et al. [29], and later extended by Hemati
Moghadam and Ó Cinnéide [30], [31]. In the employed
approach, each entity in the input programs is represented
using a specific character as follows: class (C), interface (I),
generalisation relationship (G), attribute (A), method (M),
method parameter (P), and a call connection between two
classes as (R). For example, the representation of class B
in Fig. 2 is CGMMPR. This sequence shows that the class B
inherits from another class, contains two methods, where
the second method has one parameter, and the class has a
coupling relationship with one other class in the program.

In the proposed approach, each character also includes
more detailed information depending on the program entity
it represents such as name and type for an attribute and the
original and called class names for a call connection between
two classes. On the other hand, to improve the efficiency of
the alignment algorithm, we use a singleR character to denote
a coupling from the original class to another class without
counting the number of call connections between the two
classes. The reason is that the number of accesses to fields
and methods of other classes is usually far greater than the

VOLUME 9, 2021 86703

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 2. The design as a sequence of characters: CA (class A) CGMMPR
(class B) CGMRR (class C).

number of fields and methods in the class, so representing
every method invocation or field reference by one R character
overemphasises the importance of R relationships over the
other types when measuring similarity.

The accuracy of employed alignment algorithm depends
heavily on order of classes in the string as well as order of
method/fields, etc. within a class. To manage this issue, first
of all, we have determined a specific order for the features
of a class. The order of features of a class in the string
is as follows: generalisation relationship, attributes, meth-
ods (which themselves are ordered based on the number of
their parameters), and finally call connections. For example,
as illustrated in Fig. 2, class B is represented as CGMMPR.
We also sort classes as well as features of classes based on
their name. As an example, the exact string representation
of class diagram shown in Fig. 2 is CACGMMPRCGMRR,
where class A (CA) comes before class B (CGMMPR) and
C (CGMRR) in the string, and so on.

B. STRING-BASED SIMILARITY MEASUREMENT
To compare strings representing the input programs, we use
a sequence alignment algorithm. A sequence alignment is
a way of arranging the sequences in order to determine
degree of similarity between them [14], [32]. In this paper,
we use Fast Optimal Global Sequence Alignment Algo-
rithm (FOGSAA) [14]. The reason that we choose FOGSAA
is that while it provides the same result as the best existing
alignment algorithms, it is capable of finding the best align-
ment between two input strings with a lower computational
complexity than other global alignment approaches [14].

The algorithm is essentially a branch-and-bound tree algo-
rithm that computes the fitness score for each node in the
tree based on its present and future scores. The present score
reflects the current alignment while the future score is an esti-
mation of howwell the remaining symbols of the input strings
can be aligned. The algorithm returns nodes starting from the
root to the leaf of the best branch as the optimal alignment
between two input strings [14]. For each pair of characters
in the input strings, the alignment algorithm considers three

possibilities: match, mismatch, or gap (represented by ‘‘−’’).
If a gap is inserted in one part of a string, the algorithm
applies a penalty and it is used to improve the matching of
substrings [14].

By way of example, Fig. 3 depicts the sequences
Seq1 = CAAMM and Seq2 = CGAM being compared using
FOGSAA. FOGSAA starts its branch expansion from the root
node, and selects the best child among three possible ones
according to their fitness score (the summation of present
and future scores), and adds other two children in a priority
queue according to their fitness score. As illustrated in Fig. 3,
the pair [C, C] is selected as the fittest option, and other
two pairs namely [C, -], and [-, C] are added in the priority
queue according to their fitness score. The process continues
with the new node until the end of the first path (i.e. root-
to-leaf path), and the resulting path is considered as an initial
alignment of the input sequences. In our example, the top
path with seven nodes, depicted as solid squares, represents
an initial alignment of the input sequences.

In the second round, FOGSAA checks pairs added to the
priority queue in order to find whether there is any better
alignment, and continues by expanding pairs with a possible
fitness score (present score + future score) greater than the
best alignment score obtained so far. In our example, pair
[C, -] is selected as its future score (4) is greater than the
initial alignment score (2), and so a new branch expansion
from this node is started (the bottom path). However, during
the second round in FOGSAA, a current branch is pruned if at
any time its fitness score is not greater than the optimal branch
score obtained so far [14]. Therefore, the current branch (the
bottom path) stops after two expansions as the nodes that
can be extended from pair [-, C] do not have a possible
fitness score greater than one achieved so far (2). This process
continues until there is no promising pair in the queue, and the
best alignment is reported as the optimal alignment. In our
example, the best alignment with a fitness score equal to 3 is
indicated by the dashed squares.

Clearly, to gain the best alignment it is important to assign
the proper values to match, mismatch and the gap penalty.
As an example, in Figures 4a and 4b, the value of match
and mismatch are set to 1 and −1 respectively. However,
different values are assigned to the gap penalty and, as shown,
this results in two different alignments between similar input
strings. In Fig. 4a, the best alignment when the gap penalty
is set to −2, has a similarity score of 0 (1 − 1 + 1 + 1 −
2 = 0) while in Fig. 4b where no gap penalty is assigned,
the similarity score between input strings is equal to 3 (1+ 0
+ 1+ 0+ 1+ 0= 3). For full details of FOGSAA alignment
algorithm, interested readers are also referred to the original
paper cited above.

C. REFACTORING DETECTION ALGORITHM
In this section, the algorithm we have developed to identify
the refactorings applied between two versions of a program
is described in detail. First some terms that are used in the
algorithm are defined.

86704 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 3. Partially computed FOGSAA tree for the sequences Seq1 = CAAMM and Seq2 = CGAM where 1 and -1 values are assigned to the match and
mismatch scores respectively and 0 as gap penalty. Each node is annotated on the top with the symbol pairs that are being aligned, and on the bottom
with the present score and possible maximum future score [PrS, Fmax]. The top path, shown by solid squares, represents an initial alignment of the input
sequences, and the best alignment is illustrated with dashed squares. The ’redX’ annotations indicate paths that have been discontinued as their final
fitness score will not be greater than the present score obtained so far.

FIGURE 4. The best alignments for Seq1 = CAAMM and Seq2 = CGAM with different gap penalty.

• Entity: Represents a program element including class
(including nested classes), interface, enum, method
(including constructors), and field in programming lan-
guages.

• Matched Entities: A list containing pairs of matched
entities where an entity in the original program is
matchedwith an entitywith similar type in the refactored
program. A matched entity can be a true or a false
instance. A false instance happens when the algorithm
incorrectly matched two entities.

• Unmatched Entity: An entity in the original pro-
gram or in the refactored program which has no match
in the other program is called an unmatched entity.
An unmatched entity can be a true or false instance.
A true instance happens when the entity is actually
deleted/added in the program, and a false instance
happens when the entity is not deleted/added, but the
algorithm cannot find a match for the entity in the
corresponding program. Matched and unmatched enti-
ties are initially identified based on the best alignment
sequence.

• removedEntities, and addedEntities: Two sets that
contain initial unmatched entities in the original and
refactored programs respectively. They are identified
based on differences in the best alignment sequences.

• Uoriginal, and Urefactored: Two sets which respec-
tively contain final unmatched entities in the original

and refactored programs. These two sets are actu-
ally subsets of removedEntities and addedEntities
respectively.

• Support, and Confidence thresholds: The matching
algorithm presented in this paper uses similarity thresh-
olds to match entities in the original program with ones
in the refactored program. The entity matching algo-
rithm runs in two rounds, and in each round different
similarity threshold values are used. In fact, entity simi-
larity thresholds used in the first round of the matching
algorithm (support thresholds) are weaker than con-
fidence thresholds used in the second round. Further
details presented in Section III-D.

1) REFACTORING DETECTION ALGORITHM IN DETAILS
The proposed refactoring detection algorithm is illustrated
as pseudocode in Algorithm 1. As illustrated, the algorithm
takes as input the original and refactored versions of the
input program which are both represented as a sequence
of characters. The algorithm also receives similarity thresh-
olds (support, and confidence similarity thresholds) as last
input parameter, and produces as output the set of refactor-
ings applied between the two input program versions. As
illustrated, the proposed algorithm is divided in three main
steps: (i) inconsistency detection (Line 1), (ii) entity matching
(Line 6), and (iii) refactoring detection (Line 7). While the
first step is done once, the last two steps (ii, and iii) are

VOLUME 9, 2021 86705

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

executed in two rounds (Lines 6 to 9). A detailed description
of each step is provided as follows.
Step 1. Inconsistency Detection: The goal of this step is to

recover initial unmatched entities between the two versions
of the input program. This step is based on the FOGSAA
algorithm. As first step, FOGSAA is applied to the string
representation of the original and refactored versions of the
input program, and then a gap or mismatch character in
the best resulting alignment sequences is classified as an
unmatched situation. The implemented alignment algorithm
compares the type (e.g., class, field, etc.) as well as the
name of entities included in the input sequences to decide
about their similarities. As an example, Fig. 5 shows the best
alignment sequences that are derived from the two versions
of the program illustrated in Fig. 6. As shown, a gap in
the second position of Seq1 indicates an unmatched field
in Seq2 (representing the field counter in class_A in the
refactored program). Where a class in one program has no
similar one in other program, all entities in that class are
considered as unmatched entities in that program (e.g. entities
in the second (CA) and third parts (CGMPR) in Seq1 and Seq2
respectively).

FIGURE 5. The best alignment for the original and refactored version of
the program shown in Fig. 6.

Note that the implemented algorithm also determines the
fourth position in two sequences to be an unmatched case.
While the types of entities in this position are equal (i.e.,
method), their names are different (foo(), and getCounter() in
Seq1 and Seq2 respectively.) Comparing both type and name
of entities also allows the algorithm to correctly detect the
difference between class_B1, and class_B2 (the seventh and
ninth positions in Seq1 and Seq2 respectively), and inserts a
gap character in these positions in two sequences.

The result of the first step as illustrated in Algorithm 1,
is two sets: removedEntities, and addedEntities which con-
tain entities in the original and refactored programs respec-
tively for which the alignment algorithm could not find a
match. Note that the implemented alignment algorithm com-
pares each class in the original program with its similar one
in the refactored program to determine their differences.10

Therefore, it is only capable of detecting classes different
in two programs and also differences in classes that exist in
both programs. It is not capable of matching entities different
in both programs. For example, in Fig. 5, the FOGSAA
algorithm cannot determine that the field counter in class_B1
(eighth position in Seq1) should be matched with the field

10As mentioned in Section III-A, classes and their features in both input
strings are sorted based on their names. This increases the chance that similar
classes in two programs are compared with each other during alignment.

counter in class_A (second position in Seq2) or class_B1, and
class_B2 are the same.
Step 2. Entity Matching: To cover this issue, in the sec-

ond step of the algorithm, the similarity of each entity in
removedEntities is examined with entities of the same type
in addedEntities, and entities with a similarity value higher
than the input similarity threshold considered to be the same.
In a case that an entity is matched with more than one entity
in the corresponding program, the best match with the highest
similarity value is selected. The only exceptions are when an
entity is pushed down to multiple subclasses or when a pull
up refactoring is called on more than one similar entity in
different subclasses. In these cases, the matching algorithm
allows one-to-many and many-to-one matching respectively.
On the other hand, in a case that an entity has no similar
one in the other program, it is considered as unmatched
entity in that program. Note that non-matching entities can
occur due to refactoring or non-refactoring changes. For
example, a newly-created field is an unmatched entity due
to non-refactoring changes, while an unmatched method in
the refactored program which is extracted using an Extract
Method refactoring is the result of a refactoring.
The matching of distinct entities in the original and refac-

tored programs is the most important function used through-
out the refactoring detection algorithm used in this paper.
In fact, incorrect matching of entities at this stage greatly
reduces the accuracy of the refactoring detection algorithm.
Therefore, to reduce the possibility of erroneous matches,
a two-step conservative approach is employed (Lines 5 to 9 in
Algorithm 1). In the entity matching algorithm, the values
for the similarity thresholds are increased by about 30% in
the second round (see Table 3). In fact, the second round has
a more strict match conditions than the first round (compare
lines 4 and 8 in Algorithm 1).

The reason for using this technique is as follows: The goal
of the first round is to identify entities that have been removed
or added in the program. These entities with a high probabil-
ity have little similarity with unmatched entities in their cor-
responding program, and even low values for the similarity
threshold will not register them as being similar. Therefore,
in the first round, with a high probability we can determine
entities which are actually deleted/added in the program.11

Another goal in the first round is to identify the entities that
have been renamed. The initial assumption is that a renamed
entity in the original program has a high resemblance to an
entity with a different name in the refactored program. There-
fore, even low values for the similarity threshold will help to
find renamed entities. If the program includes small changes,
the other refactoring types detected in the first round are
also valid (for example when a method is moved to another
class using a Move Method refactoring). However, when the

11Our evaluation shows that extracted and inlined methods also have
minor similarity with other unmatchedmethods. Consequently, the algorithm
detects these methods as deleted or added entities. Later, in Step 3 of
Algorithm 1, we will discuss how determining a specific order in detecting
refactorings helps to detect these two refactoring types correctly.

86706 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

Algorithm 1 : Refactoring Detection Algorithm

Input: The original and refactored versions of the input program represented as two sequences of characters: Prg1 and Prg2.

Input: Support and confidence similarity thresholds (defined in Table 3).

Output: Set of refactoring operations applied between two versions of the input program.

Function RefactoringDetection(Prg1, Prg2, similarityThresholds): Detected Refactorings

Step 1: Extract initial unmatched entities by applying FOGSAA on the two versions of program (Prg1, and Prg2)
1: inconsistencyDetection(Prg1, Prg2): removedEntities, addedEntities
2: counter = 1
3: detectedRefs = ∅
4: thresholds = similarityThresholds.supportThreshold

5: while (counter ≤ 2) do

Step 2: For each entity in removedEntities, where possible, find its corresponding entity in addedEntities.??

6: entityMatching (removedEntities, addedEntities, thresholds, detectedRefs): matchedEntities, Uoriginal, Urefactored

Step 3: Extract refactorings using sets resulting from Step 2, and according to some predefined rules.‡‡

7: detectRefactorings(matchedEntities, Uoriginal, Urefactored): detectedRefs
8: thresholds = similarityThresholds.confidenceThreshold /* About 30% higher than the supportThreshold. */
9: counter = counter + 1

end while
10: return detectedRefs

End Function
?? See Algorithm 2 for more detail, ‡‡ See Tables 1 and 2 for more detail.

FIGURE 6. Some of the changes between the two versions: Class_B1 is renamed to Class_B2 and inherits from Class_A. Field counter in
Class_B1 is pulled up to Class_A. A new constructor is created in Class_B2, and the methods foo(), and getCounter() are respectively deleted
from, and added to, Class_A.

program involves a lot of changes (including refactoring and
non-refactoring changes), there is a possibility of incorrect
matches.

To reduce the possibility of erroneous matches, in the sec-
ond round, the similarity threshold values are increased
(Line 8 in Algorithm 1) and the matching function is called

VOLUME 9, 2021 86707

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

again for all entities included in the removedEntities and
addedEntities sets even for those entities that had a high
similarity in the first round. However, when comparing two
entities, refactorings detected in the first round are used
to improve the accuracy of the matching process. As shown
in Algorithm 1, the implemented entity matching function
(entityMatching) takes as last parameter the list of detected
refactorings (detectedRefs). This list is empty in the first
round (Line 3). However, in the second round, it contains
refactorings detected in the previous round. Overall, the refac-
torings identified in the first round provide extra information
that enables higher threshold values to be used. It is worth not-
ing that while the refactoring list proposed in the first round
is likely to contain false positive instances, our experiments
show that the benefit of the approach is much greater than the
negative effect due to false positive refactorings detected in
the first round.

Initial detected refactorings are actually used when two
entities are compared and their similarity based on their
shared relationships is measured. To clarify the matter,
the process is explained with some examples. Assume that
two methods are compared with each other by the matching
algorithm. The algorithm, apart from comparing the name of
the methods, also examines the similarity of their relation-
ships (methods and fields that are called by these twomethods
and also methods that call these two methods). However,
when the related entities are themselves refactored, the accu-
racy of relationship analysis depends heavily on refactorings
detected in the first round. In fact, relationships that are due
to entities that are identified in the first round as deleted from
the original program or as new in the refactored program
are ignored and not counted as differences between the two
methods. In addition, related entities that have been renamed
are considered identical.

The algorithm also supports changes made by other refac-
torings. For example, when a field or method called by
methods under investigation is moved to another class in
the refactored design, this class change is considered when
measuring relationships similarity. As another example, when
a method is extracted from methods under investigation,
the extracted method is not considered as a difference
between the methods.

For clarity, the process is explained with an example that
was observed during the evaluation performed in this paper.
The observed case is simplified, and presented as a design
shown in Fig. 7. As illustrated, three refactorings and three
non-refactoring changes occur in the input program as fol-
lows: ClassA is Renamed toB, Field name is Renamed to full-
Name, and method getName() is Renamed to getFullName().
Furthermore, method xyz() is Removed from the class A and
method getAge(), and field age are Added in the class B
(non-refactoring changes). In this example, the FOGSAA
algorithm correctly detects that nine changes exist between
the original and refactored designs.

In the following, we examine a scenario that may occur
during the matching of the unmatched entities in two designs.

FIGURE 7. The original and refactored designs of a simplified case
observed during evaluations. Arrows in classes show field access and
method invocation relationships.

As first step, assuming field name in the original design
is compared with fields fullName and age in the refactored
design. Since there is no similarity in their names as well as
their relationships, the algorithm regards the field name as
being completely different from the other two fields in the
refactored design. The same conditions are considered when
comparing different methods in two designs. However, in this
case, methods getName() and getFullName() are detected
as being the same. In fact, these two methods have differ-
ent names, but their relationships (with methods foo(), and
bar()) completelymatch. Therefore, the refactoring ‘‘Rename
Method getName() to getFullName()’’ is detected correctly.
As a final step, classes A and B are compared. The algorithm
detects these classes to be different ones. This happens as
the names of the classes are different, and there is not strong
similarity in methods and fields defined in these classes (only
methods foo() and bar() are similar in these classes).

As observed, in the first round, one refactoring was
detected correctly, and while no refactoring was detected
incorrectly, two valid refactorings were not detected by the
algorithm. However, it is clear that depending on the changes
have been made in the program, more false positives or false
negatives refactorings may be seen in the first round. There-
fore, in the second round, to reduce false positive instances,
the similarity threshold values are increased, and to reduce
false negatives cases, the refactorings identified in the first
round are used.

In our example, theRenameMethod refactoring detected in
the first round increases the similarity of two classes and the
algorithm correctly detects the refactoring ‘‘Rename Class
A to B’’. The rename method refactoring also increases the
relationship similarity between fields name and fullName and
the algorithm correctly identifies ‘‘Rename Field name to
fullName’’.12

As far as we know, detecting refactorings in two rounds
as presented in this paper is not considered by any pre-
vious research works. However, as will be discussed in
Section III-E, another novelty of our approach is that the
matching algorithm relies on entities name and their rela-
tionships, and does not rely on any language-dependent pro-
gramming instructions (e.g., while, if, etc.). This allows

12The importance of the similarity of entities’ names and their relation-
ships is discussed in section III-D.

86708 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 1. Refactorings detected by the proposed approach.

us to develop a multi-language refactoring detection tool.
Later in section III-E, the matching algorithm is discussed in
more detail. We will also provide more detailed information
about similarity thresholds used in the matching algorithm in
Section III-D. However, first, the final step in the refactoring
detection algorithm is discussed.
Step 3. Refactoring Detection: Deciding about applied

refactorings is the third step in Algorithm 1. Currently,
the implemented tool supports the detection of 27 refactoring
types (including composite ones) as illustrated in Table 1.
These form a representative subset of the common set of
refactorings proposed by Fowler [33].

The implemented function (Line 7 in Algorithm 1) takes
as input three sets, all produced from Step 2. While the
first input set contains pairs of entities mapped from the
original program to the refactored program (matchedEnti-
ties), the second and third input sets contain non-matching
entities in the original and refactored programs respectively
(Uoriginal and Urefactored). The refactoring detection function,
using this information and based on a set of predefined rules
as given in Table 2, determines what refactorings are deemed
to have been applied. For example, as illustrated in Table 2,
assuming o and r are the original and refactored revisions of
a program respectively. Then, an Extract Class refactoring
is detected if (i) there is a class such as cr in the refactored
program that does not match any class in the original program
(cr ∈ Ur), (ii) there is a class such as ck in the refactored
program that has no inheritance relationship with class cr

(¬inheritanceHierarchy(ck, cr), and (iii) at least two fields or
methods are moved from class ck to the newly created class
(movedEntities(ck, cr) ≥ 2).13

As another example illustrated in Table 2, a PushDown
refactoring is detected if (i) there is an entity such as eo in the
original program that is matched to at least one entity such as
er in the refactored program and (ii) the contain class of eo is
a superclass of its matched entities.

Note that, we do not include the rules defined to detect
composite refactorings in Table 2. However, these refactor-
ings are detected by combining rules of included refactorings.
As an example, an Extract and Move Method refactoring
is detected if conditions for both Extract and Move Method
refactoring types are valid for a newly created method.

D. SIMILARITY THRESHOLDS
As discussed in section III-C1, refactoring detection algo-
rithm (illustrated as Algorithm 1) is run in two rounds, and
different thresholds are used in each round of the algo-
rithm. We name thresholds used in the first round as Support
Thresholds and those used in the second round as Confi-
dence Thresholds. As shown in Table 3, each type itself
contains three parts: entity similarity threshold, name impor-
tance threshold, and relationship importance threshold. In the
following, these topics are discussed with more details.

13In Evaluation section, we will discuss the reason for the condition of
moving at least two methods or fields to the extracted class, and we will
explain how this condition can affect the accuracy of this refactoring type.

VOLUME 9, 2021 86709

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 2. Refactoring detection rules.

1) ENTITY SIMILARITY THRESHOLD
Entity similarity threshold actually shows the least similarity
that two entities (e.g., classes, fields, etc.) must have in order
to identify them as the same. As shown in Table 3, the entity
similarity threshold used as support one is about 30% less
than one used as confidence one (0.5 vs. 0.7). As discussed
in section III-C1, the reason for this increase is that to prevent
incorrect entity matching and so reduce false positive refac-
torings detected in the first round of refactoring detection
algorithm. It is worth mentioning that we used the same entity
similarity threshold for all entities (including class, method,
etc.). In other word, different thresholds are not used for
different entity types.

2) NAME IMPORTANCE THRESHOLD vs. RELATIONSHIP
IMPORTANCE THRESHOLD
The similarity between two entities are measured based on
similarity of their names as well as their relationships. In
the proposed approach, the importance of entities name and
their relationships varies. As shown in Table 3, a different
value is assigned to the name and relationship importance
thresholds. For example, in support thresholds, the value
assigned to name importance threshold is 0.4 while it is
0.6 for relationship importance threshold (relationship impor-
tance threshold = 1 - name importance threshold). On the

TABLE 3. Experimentally-evaluated similarity thresholds.

other hand, these values are also different in the support
and confidence thresholds. As show in Table 3, for example,
the name importance threshold as support one is 0.4 while it
is 0.3 as confidence one.

It was discussed that the goal in the first round of the algo-
rithm is to identify entities that have been renamed, removed
or added in the program. In the first round, the importance
of the similarity of names and relationships are specified
0.4 and 0.6 respectively. On the other hand, the value for
the class/field/method similarity threshold is considered 0.5.
This means that, for example, two methods with different
names (-0.4), but the similarity of relationships above 84%
are likely to be the same ((0.6 * 0.84) > 0.5). This allows to
identify Rename Class/Method/Field refactoring candidates

86710 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

whose relationships have been slightly changed. On the other
hand, class/method/field that have been removed or added to
the program, in a case that there is no similar names in the
corresponding design, are also easily detectable.14

In the second round of algorithm, the importance of sim-
ilarity of names decreases (0.3) while the importance of the
relationships between the entities increases (0.7). However,
as discussed in section III-C1, since the refactorings detected
in the first round are used when comparing the relationships
of entities under investigation, a reduction in false negatives
refactorings is expected. Note that meanwhile increasing the
entity similarity threshold helps to reduce false positives
instances. A detailed description of how similarity of different
entities (classes, fields, etc.) based on name and relationship
similarities is measured is provided in the section III-E.

3) CALIBRATION OF SIMILARITY THRESHOLDS
Obviously, the selected threshold values affect the preci-
sion and recall of the algorithm. Therefore, to improve the
accuracy of the algorithm, we employed the approach used
by RefDiff [9] to calibrate similarity thresholds. We have
used 10 commits of 514 project commits presented by Tsan-
talis et al. [3] to calibrate similarity thresholds. We selected
the projects based on two criteria: (i) the project contains
the most refactoring and non-refactoring changes and (ii)
includes almost all refactoring types supported by our tool.
It is worth mentioning that all refactorings detected in these
projects are confirmed by the project developers, or have
been manually reviewed and approved by Silva et al. [25],
or Tsantalis et al. [3]. We also used a dataset of seed refac-
torings contains 200 refactorings which all designed by the
authors of this paper to evaluate edge cases in C++ and Java
applications.15

Note that we calibrate thresholds only based on a small
number of commits (10) and a number of seed refactorings.
These thresholds remain unchanged throughout our experi-
ments involving 514 commits of 185 Java applications, and
four C++ applications, which gives confidence that they do
not need to be adjusted on a per-application basis.

E. SIMILARITY MEASUREMENT ALGORITHM IN DETAIL
The refactoring detection algorithm is discussed in
Section III-C. As mentioned, the approach employs a similar-
ity measurement algorithm to determine the similarity of two
entities (Step 2 in Algorithm 1). However, we did not provide
much detail about the similaritymeasurement algorithm other
than that it compares entities based on their names as well as
their relationships, and determines two entities to be the same
if they have a similarity value more than the entity similarity
threshold. In this section, the similarity measurement algo-
rithm is explained in detail.

14It is assumed that it is unlikely that a deleted entity in the original
program have a high relationship similarity with an entity with a different
name in the refactored program. The same assumed for a newly added entity.

15These programs are different than those used to evaluate the feasibility
of the refactoring detection approach with C++ applications (section IV-D).

Before delving into detail, it is useful to recall two points.
Firstly, the algorithm is based on information included in
the string representation of the input program. Secondly,
the algorithm compares entities based on their names and
their relationships with other entities, and it is not dependent
on any language-specific programming instructions (such
as while, if, switch, etc.). These two factors make it
possible to develop a refactoring detection tool that is not
dependent on any programming language.

The similarity function is presented in Algorithm 2.
As illustrated, the algorithm receives as input two entities
that should be compared, the similarity threshold values,
the list of current matching entities, and the list of refactorings
identified in the previous round. The algorithm produces as
output the similarity value of the input entities normalized
as a value between 0 and 1. To increase the speed of the
algorithm, as the first step, if the input entities were already
comparedwith each other in the current round, their measured
similarity value is returned immediately (Lines 1 and 2).
Otherwise, depending on the type of input entities (class, field
or method), the appropriate part of the algorithm, as discussed
below, is executed.

1) CLASS SIMILARITY
The similarity between two classes is measured based on
similarity between methods and fields defined in the classes
(Lines 3 to 9). In fact, methods and fields which have the
best similarity value and their similarity is greater than the
determined similarity threshold are identified as correspond-
ing entities (Line 8). After comparing entities defined in two
classes, the ratio of the number of matching entities to the
sum of the entities defined in the two classes is returned as
the similarity of the input classes (Line 9).

It is worth mentioning that when comparing classes,
the fields and methods that have been removed from the
class in the original program or added to the class in the
refactored program, both using non-refactoring changes, are
considered as differences between two classes. Otherwise,
the algorithm would find a deleted class, and a completely
new class to be strongly similar. However, changes resulting
from refactorings detected in the first round are taken into
account. For example, changes in parameters of a method
or its name respectively due to Change Method Parameter
and Rename Method refactorings are considered when com-
paring two methods. As another example, where a method
in the original class is moved to another class using a Move
Method refactoring, this is not considered as a difference
between two corresponding classes. To achieve this, as a first
step and before comparing fields and methods of the input
classes, a pre-processing is performed on fields and methods
of classes and their main entities are retrieved (Line 4).

2) FIELD/METHOD SIMILARITY
In a case that the input entities are fields, their similarity is
measured based on the similarity of their names as well as the
similarity of their relationships with other entities. As a first

VOLUME 9, 2021 86711

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

86712 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

step, the name of entities are compared with each other (Lines
11 and 12), and if the entities do not have an identical name
or the first entity is not renamed to the second one, the name
similarity threshold for those entities is set to zero.16 When
comparing two fields, the similarity of methods that call the
fields is also measured (Line 13).

However, when examining two methods, in addition to the
points mentioned, the similarity of fields and methods called
by these two methods are also examined (Lines 14 and 15).
The previously identified refactoring and non-refactoring
changes are also used here to improve the accuracy of
the algorithm (see compatibleSignatures, callers, invokers,
union, and intersection functions in Algorithm 2). As a final
step, the relationship similarity of the input entities is nor-
malized, and the similarity between two entities is computed
based on similarity of their names and relationships (Line 16).

An important issue is that the formula used to measure call
similarity between two fields or methods (Line 13) might not
work properly when the entity has more than one matching
candidate in its hierarchy structure in the corresponding pro-
gram. This case happens when an entity is pushed down to
multiple subclasses or when a pull up refactoring is called
on more than one similar entity in different subclasses.17 The
problem is described with an example.

FIGURE 8. The original and refactored designs of a program. Arrows
inside classes show field access relationships.

In Fig. 8, field name in class B is renamed to fullName
and then both fields in classes B and C are pulled up to
their direct superclass. In this example, there is only a small
similarity between field name in the original class B and
field fullName in the refactored class A. In fact, as well as
having different names, of the four methods that call field
fullName in class A, method getFullName in class B is the
only common entity between these two fields. Thus, these
fields are not identified by the matching algorithm as the
same and consequently the applied refactoringsRename Field
name to fullName, and Pull Up field name to class A are not
detected by the algorithm. The problem arises from the fact
that the relationships resulting from themethods in class C are

16The algorithm does not use any lexical or semantic similarity technique
to determine how ‘‘close’’ are the name of entities. We use equals()
method which tells that the input names are completely identical or not (see
haveSimilarName function in Algorithm 2).

17As discussed, the matching algorithm allows one-to-many and many-
to-one matching respectively for PushDown and PullUp refactoring types.

considered when comparing fields name in class B with the
field fullName in class A. To overcome this issue, we need to
change the denominator of the formula presented in Line 13
in Algorithm 2.

In fact, in the case of a pull up refactoring, only related
methods in the original design should be compared as
expressed in Eq. 1, and in a push down case only related
methods in the refactored design should be compared (the
denominator of Eq. 1 should be changed to callers(e2)). Using
this technique, fields name and fullName in classes B and C
are correctly matched with field fullName in class A, and all
applied refactorings detected correctly.

relationshipSimilarity =
intersection(callers(e1), callers(e2))

callers(e1)
(1)

It is worth mentioning that for the invokers method
(Line 15), this scenario is not established and all methods
and fields called by the methods under investigation are
examined. In fact, it is assumed that if the bodies of the two
methods are different, they are likely two different methods,
and pull up and push down refactorings do not make sense
for two different methods.

IV. EVALUATION
To evaluate the feasibility of our approach in the practical
environment, we conduct a series of experiments on Java and
C++ applications. We also compare our tool, RefDetect with
RMiner [3] which is the state-of-the-art tool for detecting
refactorings in Java applications. In this section, we first
present our research questions and validation methodology
followed by evaluation setup. We then evaluate the quality of
the approach based on precision, recall, and f-score. Time per-
formance and memory consumption are also evaluated. The
full results of our experiments can be found in the following
link [34].

A. RESEARCH QUESTIONS
We defined three main research questions to measure the cor-
rectness, completeness, and performance of the implemented
tool when applied to a real-world scenario. More specifically,
our experiment addresses the following research questions:

• RQ1: To what extent can the proposed approach
correctly detect the refactorings applied between two
successive versions of a program?

• RQ2: To what extent can the proposed approach
completely detect the all refactorings applied between
two successive versions of a program?

• RQ3: How does our approach perform in terms of exe-
cution time and memory consumption?

B. EVALUATION SETUP
In this validation, we have focused on Java and C++ appli-
cations. To address the different research questions in Java
applications, we used a dataset [35] which was initially

VOLUME 9, 2021 86713

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

proposed by Silva et al. [25], and later expanded by Tsan-
talis et al. [3]. The dataset contains more than 7,000 true
refactoring instances for 40 different refactoring types found
in 536 commits from 185 open-source Java projects hosted on
GitHub [3]. More importantly, all true refactoring instances
are validated with multiple tools and by multiple experts [3],
[11], [25], so we are confident that this dataset forms a
suitable basis for evaluating RefDetect.

We used 514 of 536 commits from 185 open-source
projects presented in the dataset. The reason that some com-
mits were excluded is that some projects were not pub-
licly available in GitHub anymore, and in a small number
of cases, the employed Java source code analyser (Spoon)
could not successfully parse source files in the input commit.
We also restricted the dataset to the 27 refactoring types
shown in Table 1. Specifically, we exclude some low-level
refactoring types such as those related to variables (e.g.
Rename/Inline Variable, etc.) and those related to annotations
(e.g. Add/Remove Parameter, Class Annotation, etc.) which
are not supported by our tool, and are in any case less inter-
esting refactorings.

We compare our tool with the current state-of-the-art refac-
toring detection tool, RMiner [3] in terms of precision, recall
and performance (execution time and memory consumption).
To measure these metrics, we run both tools under the same
environment and for each commit we analyse the detected
refactorings. The precision and recall are measured using
these standard formulae:

precision =
of correct refactorings

of recommended refactorings
(2)

recall =
of correct refactorings

of true refactorings in the dataset
(3)

We also used f-score as a combination of recall and preci-
sion to describe the effectiveness of each tool, where a value
closer to 1 indicates a better performance.

f-score =
2 * precision * recall
precision + recall

(4)

To address the various research questions in C++ appli-
cations, we conducted experiments using four C++ appli-
cations. However, the refactored program is created different
than what has been described with Java applications. In fact,
all applications used in the experiment contain some weak-
nesses in their design (known as design or code smells),
and can be improved using refactoring operations. In each
experiment, the application under investigation was refac-
tored by two Masters students, and then we used our refac-
toring detection tool to identify refactorings applied by
participants in each application. A detailed description of
experiments done with C++ applications is provided in
Section IV-D.

All of our experiments with Java and C++ applications
are conducted on a computer with an Intel Core i5-8250U
with 12GB of DDR3 memory, and a 5400 RPM HDD,

running Windows 10 64-bit OS, Eclipse JDT 4.18, CLion
2021.1.1 and Java SE 15.0.1 x64. In the coming sections we
first cover the experiments performed with Java applications
and compare our tool with RMiner and then move on to
experiments done with C++ applications.

C. RESULTS FOR JAVA APPLICATIONS
This section reports results for Java applications regarding the
research questions presented in Section IV-A. The results are
based on RefDetect 1.0 and RMiner 2.0.1.

1) DATASET CONSTRUCTION
As mentioned, in the experiments performed with Java appli-
cations, we compare our tool with RMiner based on the
dataset [35] provided by Tsantalis et al. [3]. We analyse the
detected refactorings as follows: If a refactoring is detected
by both tools and is reported as true or false positive instance
by Tsantalis et al. [3], we accept that as it is as determined
in the dataset. However, if a refactoring is detected by one
tool, but not by the other, wemanually analyse the refactoring
to know it is a true or false positive instance. This manual
validation is done by the first and third author of this paper. It
is important to note that as we are not the developers of Java
applications used in the experiments, so it is possible that we
made a mistake in categorizing the detected refactorings as
false or true positive instances. However, in situations that
RefDetect or RMiner cannot detect a correct refactoring or
detect a refactoring incorrectly, where possible we simulated
the situation using a simple test case and made this available
on the project web page [34]. This allows other researchers to
become aware of deficiencies in both these tools using some
practical examples, and helps to develop better refactoring
detection tools in the future.

Based on this procedure, 796 refactoring instances were
detected only by RefDetect, while 548 cases were detected
only byRMiner.Manual inspection revealed that among these
refactorings, 85% in RefDetect and 90% in RMiner were
detected correctly. The first impression from these numbers
is that while both tools have some commonality, each covers
some aspects not covered by the other tool.

We also extend the dataset used in this paper by including
refactorings correctly detected by RefDiff 0.1.1 [9] or RefDiff
2.0 [11], but not detected by either RefDetect or RMiner.
These refactorings are extracted from the list of refactorings
reported by Tsantalis et al. [3]. Overall, 91 refactorings as
depicted in Table 4, are added to the total number of true
refactoring instances.

2) RESULTS FOR RQ1 & RQ2 IN JAVA APPLICATIONS
Table 5 presents a comparison of precision and recall in
Java applications between RefDetect and RMiner based on
the dataset described in the previous section. In total, data
related to 27 refactoring types categorized into three groups
according to their scope as shown in Table 1 were collected.
In total, 5,058 refactorings included in the dataset, where

86714 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 4. True refactoring instances detected by RefDiff 0.1.1 [9] or
RefDiff 2.0 [11], but not detected by either RefDetect or RMiner.

RefDetect was slightly better than RMiner in terms of f-score
(87.3% vs. 86%). In fact, while RefDetect achieved a better
recall than RMiner (84.5% vs. 78.9%), RMiner achieved a
better precision (98.5% vs. 91.2%).

A detailed investigation reveals that while results for both
tools in the majority of investigated refactoring types are very
close and promising, but for some refactoring types (such as
Move and Rename Field, Inline Method, or Extract Class),
there are distinct differences between two tools. In addition,
both tools have lower recall than precision, meaning that they
miss some refactorings in comparison to the total number of
true refactoring instances included in the dataset. In the next
section, we investigate these differences in more detail and
also present the reasons for incorrect and missed refactorings
in both tools.

3) DETAILED REVIEW OF RESULTS
This section is divided into three subsections according to
scope of detected refactoring types namely field, method and
class-level refactoring types.

a: FIELD-LEVEL REFACTORING TYPES
We classified five refactoring types applicable to fields as
field-level refactoring types as shown in Table 6. In total,
468 true field-level refactoring instances were present in
the dataset. While RefDetect performs slightly better than
RMiner in PushDown Field refactoring (f-score: 96% vs.
93.9%), RMiner outperforms RefDetect in the rest of
field-level refactoring types (f-score: 89.3% vs. 82.1%). The
worst case in both tools occurred for the Move & Rename
Field refactoring type. However, a notable low precision
(41.7%) and recall (50%) was recorded for this refactoring
type in RefDetect.

b: DETAILED ANALYSIS FOR FIELD-LEVEL REFACTORINGS
A detailed investigation reveals that there are two factors
that negatively affect the accuracy of RefDetect in detect-
ing field-level refactoring types. We first discuss the main
reason for false positive instances, and then describe a sce-
nario that was the cause of half of false negative cases
in RefDetect.

False positive cases: in total, 24 field-level refactorings are
detected incorrectly by RefDetect. Our investigation shows
that in the majority of these cases, the original field is deleted

from the program and the target field is actually a newly cre-
ated one (both through non-refactoring changes). The same
scenario also happens for methods which use these fields.
In fact, majority of methods that use the original field are
deleted from the program, and majority of methods that use
the new field are themselves new in the program. However,
in all these cases, there were still fewmethods use both fields.
As discussed, the similarity of two fields is measured based
on similarity of their names as well as similarity of methods
that use these fields (Lines 10 to 13 in Algorithm 2). The
name of fields are different in majority of false positive cases
detected by RefDetect (20 of 24), and therefore it has negative
effect on similarity value. On the other hand, as described in
section III-C1, methods which are identified by the matching
algorithm as deleted or added in the program are ignored in
the relationship similarity measurement process. Therefore,
few methods which use both fields, result a high relationship
similarity value between two fields. Consequently, thematch-
ing algorithm finds these fields as being the same, and detects
an incorrect refactoring.

False negative cases: we find a scenario that was the cause
of almost half of the false negative cases in RefDetect for
field-level refactoring types. In all these false negative cases,
the refactored field is called by methods mostly different than
those called it in the original program. As a result, the match-
ing algorithm finds a low relationship similarity between two
fields and consequently cannot detect the applied refactoring.
Note that, contrary to the false positive cases, the methods
that call the field exist in both the original and refactored
programs, and are not deleted from the original program or
added to the refactored program.

RMiner, on the other hand, is more robust to aforemen-
tioned conditions which negatively affect the accuracy of
RefDetect. This mainly happens as RMiner uses a completely
different strategy for matching fields. In RMiner, all abstract
syntax tree nodes including fields are matched in three
rounds. ‘‘In the first round, the nodes with identical string
representation and nesting depth are matched. In the second
round, the nodes with identical string representation regard-
less of their nesting depth are matched, and in the last round,
the nodes that become identical after replacing the AST nodes
being different between the two nodes are matched’’ [3].
This strategy helps RMiner to be robust to changes affect
the field relationships. For instance, RMiner correctly detects
40 Move Field refactorings not detected by RefDetect. In all
these refactorings, the signature of the fields (including
their names and types) are not changed, and RMiner cor-
rectly matches them based on their signatures. However,
RefDetect cannot match correct fields as their relation-
ships through non-refactoring activities have significantly
changed.

The way RMiner matches fields also has its drawbacks.
For example, in the experiments done in this paper, we found
few cases that two fields with similar name and type, but
different functionality were incorrectly matched by RMiner.
We simulate this scenario using a simple test case observed in

VOLUME 9, 2021 86715

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 5. Precision, recall and f-score results per refactoring type.

TABLE 6. Precision, recall and f-score results per field-level refactoring type.

Aeron-4b76, and hive-abe6 applications. In this test case,
an existing field is deleted from the program and a new
field with similar name and type is created in another class
in the program. However, the new field is created for a
different functionality and it is used by completely different
methods. RMiner detects these two fields as being the same
and incorrectly detects a Move Field refactoring. Obviously,
the problem happens as methods which call the fields are
not considered during fields matching process, and fields are
matched based on their names and types.

In summary, non-refactoring activities which result signif-
icant changes in field relationships can negatively affect both
precision and recall of RefDetect. The matching strategy used
by RMiner allows it to cope with non-refactoring changes,
but it has its drawback, and ignores field relationships in the
matching process.18

c: CLASS-LEVEL REFACTORING TYPES
We classified seven refactoring types applicable to classes as
class-level refactoring types as shown in Table 7. In total,
1,253 true class-level refactoring instances appeared in
the dataset. As shown in Table 7, in terms of f-score,
RefDetect performs better than RMiner overall (92.1% vs.
86.9%). RMiner achieved a better precision than RefDetect

18We also observed that RMiner is not capable of detecting refactorings
applied to fields defined in the enum, a case that happened in facebook-
android-sdk-19d, and giraph-03ad applications. A close investigation also
reveals that 9 out of 16 false positive field related refactorings detected by
RMiner, were caused by not detected Rename Class refactorings.

(98.1% vs. 94%), while a better recall is achieved by RefDe-
tect (91% vs. 81.1%).

In terms of number of applied refactorings, Move Class
refactoring with 1,049 true instances is the most applied
refactoring (84% of class-level refactorings). It is worth men-
tioning that almost half of these refactorings occurred in only
two applications. In fact, 298 and 193 Move class refactor-
ings occurred in android-c976, and docx4j-e299 applications
respectively. In these applications, a root package is renamed,
and classes within this package are identified as moved class.
It was an easy refactoring for both RefDetect and RMiner
as minor changes were applied in the moved classes, and in
most cases the moved classes were exactly the same as their
corresponding classes in the original program.

d: DETAILED ANALYSIS FOR CLASS-LEVEL REFACTORINGS
As shown in Table 7, in terms of precision, Extract Class
refactoring type has the weakest results in both tools. The
lowest precision in both tools for this refactoring type is
mainly due to some incorrectly detectedMove Method refac-
torings (see rules defined in Table 2). Obviously, improving
the technique used to match methods and fields can have
positive effect on class-level refactoring types. However,
an important note which should be mentioned is the way
that Extract Class refactoring is defined in both RefDetect
and RMiner. Both tools defined this refactoring as follows:
Extract Class refactoring involves creating a new class and
moving at least two fields and/or methods from a class to

86716 VOLUME 9, 2021

https://github.com/real-logic/Aeron/commit/4b762c2c70f06b0c5d2cd85866424c46478c827b
https://github.com/apache/hive/commit/abe6cd5d4614eb2ae3a78d85196f4d786d5886bd
https://github.com/facebook/facebook-android-sdk/commit/19d1936c3b07d97d88646aeae30de747715e3248
https://github.com/facebook/facebook-android-sdk/commit/19d1936c3b07d97d88646aeae30de747715e3248
https://github.com/apache/giraph/commit/03ade425dd5a65d3a713d5e7d85aa7605956fbd2
https://github.com/github/android/commit/c97659888126e43e95f0d52d22188bfe194a8439
https://github.com/plutext/docx4j/commit/e29924b33ec0c0298ba4fc3f7a8c218c8e6cfa0c

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 7. Precision, recall and f-score results per class-level refactoring type.

the newly created class. However, this definition is a bit
different than one defined by Fowler [33], where the fields
and methods responsible for a relevant functionality placed
in the new class. Obviously, the accuracy of Extract Class
refactoring can be improved if the connection between meth-
ods and fields moved to the new class are also considered
when deciding about this refactoring type.

RMiner also has the lowest recall for Extract Class refac-
toring (30.1%). We observer that 80% of Extract Class
refactorings not detected by RMiner occurred in java-
algorithms-implementation-ab98. In all these cases, an exist-
ing method is changed to a new inner class with a similar
name, and a field is also moved to this newly created class.
Fig. 9 depicted an instance extracted from java-algorithms-
implementation-ab98. As shown, method testTrie is changed
to an inner class with similar name, and field trie is also
moved to this class. Method run, and getName are both newly
created methods.

On the other hand, in RefDetect, one of weakest results
in terms of recall is achieved for the Rename Class refac-
toring.19 In our investigation, we noticed that the Rename
and Move Class refactorings, being the only refactorings
dependent on class similarity thresholds, are very sensitive to
non-refactoring activities that change the number of methods
and fields defined in classes. In fact, if more than 30% of
methods and fields defined in a class are deleted or added as
new elements to the class, then the similarity of the class in
the original and refactored programs will be less than defined
threshold and classes will not be detected as being the same
(see Table 3). In fact, it was themain reason for themajority of
Move/Rename Class refactorings not detected by RefDetect.
It is important to recall that when the similarity between two
classes is measured, the fields and methods that have been
removed from the class in the original program or added to the
class in the refactored program, both using non-refactoring
changes, are considered as differences between two classes.
Otherwise, the algorithm will regards a deleted class, and

19We ignore Extract Subclass refactoring as it only occurred four times.

FIGURE 9. Illustrative diff of one Extract class refactoring taken from
java-algorithms-implementation-ab98 detected by RefDetect, but not
detected by RMiner.

a completely new class as the same class. However, note
that changes resulting from refactorings (e.g., if a method is
moved from the original class to another class) are handled
correctly by the algorithm, and they are referred to as simi-
larities between the two classes.

e: METHOD-LEVEL REFACTORING TYPES
We classified eleven refactoring types applicable to meth-
ods as method-level refactoring types as shown in Table 8.
In total, there are 3,337 occurrences of method-level refac-
torings in the dataset. As shown in Table 8, in terms
of f-score, RefDetect outperforms RMiner in detecting
method-level refactorings (87.7% vs. 81.7%). While both
tools exhibit a strong level of precision (RefDetect: 94.1%

VOLUME 9, 2021 86717

https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

TABLE 8. Precision, recall and f-score results per method-level refactoring type.

and RMiner: 99.1%), the results in terms of recall show that
both tools need some improvement (RefDetect: 83% and
RMiner: 72.2%). In fact, each tool makes unique observations
that are not evident to the other tool.

As discussed in Section III-E, when measuring the sim-
ilarity of two methods, apart from comparing their signa-
ture, their similarity in terms of methods that call them as
well as methods and fields invoked/accessed by them are
also measured (Lines 13 and 15 in Algorithm 2). It is also
worth mentioning that when a method is converted to a
sequence of characters, we only extract information about
methods and fields invoked/accessed by the method and we
do not extract any information about programming instruc-
tions (e.g. if, while statements etc.), literals, comments,
etc. used inside the method body. It is completely different
than technique used by RMiner which extracts all information
inside the method body. In the following, we will discuss the
strengths and weaknesses of matching techniques employed
by RefDetect and RMiner using examples observed in the
experiments.

f: DETAILED ANALYSIS FOR METHOD-LEVEL REFACTORINGS
Our careful examination of refactorings not detected by
RefDetect reveals that literals and comments used in the
method body can be highly effective in finding method-level
refactorings. For example, Fig. 10 shows a Rename Method
refactoring that occurred in drools-1bf287. This refactoring
is not detected by RefDetect as the method has a weak
relationship with other fields and methods in the program.
In fact, no method or field is invoked/accessed by the method,
and the method is itself only called by one another method
in the program. However, RMiner successfully detects this
refactoring as the bodies of themethods (return false;)
are a perfect match.

FIGURE 10. Illustrative diff of a Rename Method refactoring taken from
drools-1bf287 detected by RMiner, but not detected by RefDetect.

As another example, Fig. 11 illustrates a Rename Method
refactoring occurred in mockito-7f20e6. In this case, while
these methods are not called in the program, their body in
terms of their relationships with other entities in the pro-
gram are completely different from each other. Therefore,
RefDetect cannot detect these methods as being the same.
However, string literal (<Capture argument>) used in
the method body helps RMiner to successfully detect this
refactoring.

FIGURE 11. Illustrative diff of a Rename Method refactoring taken from
mockito-7f20e6 detected by RMiner, but not detected by RefDetect.

While literals used in the method body can help RMiner
to find the right matches, our experiments show that changes
in the literals can negatively affect the accuracy of RMiner.
As an example, Fig. 12 shows a case observed in bitcoinj-
7744, where boolean literals used in methods help RMiner
to detect the right two Move Method refactorings. However,
when even a boolean literal used in one of these methods is

86718 VOLUME 9, 2021

https://github.com/kiegroup/drools/commit/1bf2875e9d73e2d1cd3b58200d5300485f890ff5
https://github.com/kiegroup/drools/commit/1bf2875e9d73e2d1cd3b58200d5300485f890ff5
https://github.com/mockito/mockito/commit/7f20e63a7252f33c888085134d16ee8bf45f183f
https://github.com/mockito/mockito/commit/7f20e63a7252f33c888085134d16ee8bf45f183f
https://github.com/bitcoinj/bitcoinj/commit/7744a00629514b9539acac05596d64af878fe747
https://github.com/bitcoinj/bitcoinj/commit/7744a00629514b9539acac05596d64af878fe747

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

changed, RMiner is no longer capable of detecting the right
refactorings, and misidentified the applied refactorings.

A detailed analysis also reveal that refactoring and
non-refactoring changes applied in the method body can
negatively affect the accuracy of matching algorithm in both
RefDetect and RMiner. Each tool uses a completely differ-
ent technique to neutralize these destructive effects. In the
following, we discuss advantages and disadvantages of each
technique using cases observed in the experiments.

FIGURE 12. Illustrative diff of two Rename Method refactorings taken
from bitcoinj-7744 detected by RMiner. We changed the first true literal
in method testTransactionsRetain() to false and RMiner misidentified
the refactorings.

As discussed in section III-C1, RefDetect uses a two-step
conservative approach to match entities different in the orig-
inal and refactored programs, where changes identified in
the first round provide extra information that enables RefDe-
tect to match entities more accurately in the second round.
However, the implemented approach has a minor drawback
as follows: In a case that a method calls an existing entity
through a new call relationship, or a call to an existing
entity is deleted from a method body, then these changes
are counted as differences between two methods while they
are non-refactoring changes and should be ignored by the
algorithm. This drawback caused some of false negative cases
in method-level refactorings (especially in Extract Method
refactoring type) and field-level refactoring types (as dis-
cussed before).

As an example, Fig. 13 shows an Extract andMoveMethod
refactoring as a composite refactoring that is not detected by
RefDetect. As illustrated, the extracted method (resizeTemp-
BlockMeta) contains new calls to two existing methods
(reverseSpace, and error) and one field (LOG). These call
instructions do not exist in the instructions removed from
the method requestSpace. Consequently, the algorithm finds
a low similarity between call relationships that exist in the
extracted method and those deleted from the original method,

and cannot detect the applied Extract and Move Method
refactorings.

RMiner, on the other hand, uses a different techniquewhich
helps it to correctly detect the composite refactoring depicted
in Fig. 13. RMiner, in fact, employs a replacement technique
and uses some predefined heuristics to cover refactoring and
non-refactoring changes applied in the method body. The
replacement function receives as input two statements, and
replaces each node in the first statement with all possible
nodes in the second statement until the statements become
textually identical. Two entities with the smallest edit dis-
tance are then determined as matched ones [3]. RMiner does
not replace AST nodes that cover the entire statement (e.g.,
method invocations, and class instance creations), and instead
uses some predefined heuristics to finds their similarity [3].
As an example, two method invocations are identified as
being the same if they have similar receiver and similar list of
arguments.20 The replacement technique and heuristics used
by RMiner allow it to detect some refactorings not detected
by RefDetect. However, there are some drawbacks assigned
with this approach which are discussed through a number of
examples.

FIGURE 13. Illustrative diff of one Extract and Move Method refactoring
taken from Alluxio-ed96 detected by RMiner, but not detected by
RefDetect.

As first example, Fig. 14 illustrates a Rename Method
refactoring detected by RefDetect, but not detected by
RMiner. RefDetect uses method invocations in the meth-
ods’ bodies to detect that the two methods foo and bar are
the same, but RMiner cannot detect the refactoring as it
finds very little similarity between methods foo and bar.
The problem occurs as the replacement function does not

20Using this heuristic, method invocation objA.foo(i); is equal to
objA.bar(i); as they both have similar receiver (objA), and both methods foo
and bar have similar list of arguments. Note that this heuristic helps RMiner
to cover a case that method foo is renamed to bar.

VOLUME 9, 2021 86719

https://github.com/bitcoinj/bitcoinj/commit/7744a00629514b9539acac05596d64af878fe747
https://github.com/Alluxio/alluxio/commit/ed966510ccf8441115614e2258aea61df0ea55f5

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 14. Illustrative diff of a Rename Method refactoring detected by
RefDetect, but not detected by RMiner.

cover the replacement of the while instruction with for.
Note that while from a programmer’s point of view it is a
common replacement and the programmer can easily detect
the similarity of the two methods, it is hard to define and
covering all possible replacement types in the matching
algorithm.

As another example, Fig. 15 shows an Inline Method
refactoring occurred in truth-1768. This refactoring happened
67 times in this application and it is the main reason for a
low recall for the Inline Method refactoring type in RMiner.
As mentioned, RMiner does not replace AST nodes that
cover the entire statement such as a method invocation, and
instead uses some heuristics to cover these cases. However,
none of defined heuristics helps RMiner to detect that the
instruction asList(1, 2, 3) is the same as the instruc-
tion Arrays.asList(items) defined in the method
iterable. Therefore, it cannot detect the applied Inline
Method refactoring.

FIGURE 15. Illustrative diff of a Inline Method refactoring taken from
truth-1768 detected by RefDetect, but not detected by RMiner. This
refactoring happened 67 times in this application.

As discussed through the aforementioned examples,
despite the commonalities between RefDetect and RMiner,
there are considerable differences between them, and these
differences in some cases made one tool superior to another.

However, a very important note is that there are still details in
the refactoring detection process that have not been seen by
any of these two tools.21

As an example, Fig. 16 shows an Extract & Move Method
refactoring occurred in application cassandra-ec52. This
refactoring is only detected by RefDiff 0.1.1, and it is not
detected by RefDetect, RMiner and even RefDiff 2.0 that
is the latest version of RefDiff. As depicted, the extracted
method (geBackgroundCompactiontTaskSubmitter) contains
around two times more instructions than those deleted from
the original method. This results a similarity value lower
than similarity threshold selected in RefDetect as well as
RefDiff 2.0. RMiner also cannot detect this refactoring as it
cannot find any smaller edit distance than the one that exists
between the deleted instructions and the instructions that
exist in the extracted method. However, RefDiff 0.1.1 detects
this refactoring as it uses a set of thresholds calibrated for
each refactoring type [9]. In this case, a very low thresh-
old value allows RefDiff 0.1.1 to detect the refactorings
correctly.22

g: ANSWER TO RQ1 AND RQ2
In our evaluation with 514 commits of 185 Java applications
containing 5,508 real refactorings, RefDetect achieved an
f-score slightly better than that achieved by RMiner (87.3%
vs. 86%). RefDetect clearly outperformed RMiner in class
and method based refactorings, achieving f-scores respec-
tively of 92.1% vs. 86.9% for class-level refactorings, and
87.7% vs. 81.7% for method-level refactorings. However,
while RefDetect worked better in terms of recall (RefDetect:
84.5%, RMiner: 78.9%), RMiner scored extremely well in
terms of precision (RefDetect: 91.2%, RMiner: 98.5%). We
observed that RefDetect is sensitive to non-refactoring activ-
ities that result significant changes in relationships of refac-
tored entities. It was also observed that literals and comments
used inside method bodies are other language-independent
constructs that can be highly effective in findingmethod-level
refactorings. As future work, we intend to improve the pro-
posed approach by addressing these two issues.

4) EVALUATION ON PERFORMANCE IN JAVA APPLICATIONS
(RQ3)
We explored the performance of our approach based on two
criteria: run-time andmemory consumption. For this purpose,
wemeasured these twometrics in both RefDetect and RMiner
for all 514 commits under investigation. We measured the
time and memory used by each tool to parse the Java files
changed between the examined commit and its parent one,
and also time andmemory required to detect changes between
two commits and to categorize the detected changes as refac-
toring instances.

21A list of 91 refactorings included in the dataset, but not detected by either
RefDetect or RMiner can be found at the following address [34].

22The threshold value for Extract Method is equal to 0.1, and it is 0.4 for
Move Method refactoring type (see Table 3 in [9]).

86720 VOLUME 9, 2021

https://github.com/google/truth/commit/1768840bf1e69892fd2a23776817f620edfed536
https://github.com/google/truth/commit/1768840bf1e69892fd2a23776817f620edfed536
https://github.com/apache/cassandra/commit/ec52e77ecde749e7c5a483b26cbd8041f2a5a33c

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 16. Illustrative diff of an Extract & Move Method refactoring taken from cassandra-ec52 detected by RefDiff 0.1.1, but not detected by either
RefDetect, RMiner or RefDiff 2.0.

Similar to RMiner, we employed the JGit API to extract
contents of files changed between two commits into a Git
repository. Obviously, this technique significantly improves
the efficiency of both tools in terms of the run-time and
memory consumption.While both tools are capable of detect-
ing refactorings in a remote repository without cloning the
repository locally, to have a fair comparison and remove the
impact of Internet speed, all repositories under investigation
are first cloned locally, and then files changed in two succes-
sive commits were determined using the JGit API.

a: COMPARISON OF EXECUTION TIME
Execution time is determined as the time difference between
beginning and end of processing as measured using calls
to the System.nanoTime() Java method. Fig. 17 shows a

TABLE 9. Execution time in detail for all 514 commits.

violin plot of the distribution of the execution time for both
RefDetect and RMiner. Table 9, on the other hand, shows
details not evident in Fig. 17.
As shown in Table 9, RMiner is on average 1.2 times

faster than RefDetect (1.3 vs. 1.5). However, RefDetect is still
time efficient as 76% of commits are processed in less than
1 second. In total, it takes 10.88 and 12.50minutes for RMiner
and RefDetect respectively to process all 514 commits.

VOLUME 9, 2021 86721

https://github.com/apache/cassandra/commit/ec52e77ecde749e7c5a483b26cbd8041f2a5a33c

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

This is a clear message that both tools are efficient in terms of
execution time. However, to gain further insight into possible
performance bottlenecks of the two tools, we subjected to
greater scrutiny applications with an execution time higher
than 20 seconds.

In RefDetect for all four cases,23 the performance bottle-
neck occurred during parsing of the input source code and
converting the code to a string representation (Step 1.1 and
1.2 in Fig. 1), and in all these cases the refactoring detection
algorithm (Step 2 and 3 in Fig. 1) was fast. This pattern is
observed for all 514 considered commits, where the time
devoted to source code information extraction was higher
than time taken by the refactoring detection algorithm. There-
fore, finding the fastest parser for the programming language
under investigation is the first priority in improving the per-
formance of RefDetect.

FIGURE 17. Violin plot of execution time per commit.

We also investigated seven applications24 that resulted in
an execution time longer than 20 seconds in RMiner. The
growth in the execution time appears to be caused mainly
by the number of replacement operations performed by
the RMiner matching algorithm, which depends heavily on
the number of statements changed between two commits. In
contrast, the RefDetect matching algorithm is independent
of the number of statements changed between two com-
mits. As a result, RefDetect’s execution time for all seven

23byte-buddy-372f, clojure-309c, android-frameworks-9103, and docx4j-
e299

24java-algorithms-ab9, cordova-plugin-51f, netty-d31, hazelcast-30c,
jbpm-381, jfinal-881, and cassandra-446.

applications for which RMiner’s execution time exceeds
20 seconds, is only 17 seconds in total.

b: COMPARISON OF MEMORY CONSUMPTION
Memory consumption is defined as the amount of mem-
ory used by each tool during the refactoring detection
process. To measure the used memory, we employed
the Runtime.getRuntime().freeMemory() as well as Run-
time.getRuntime().totalMemory() Java methods. We esti-
mated memory consumption in a crude fashion by simply
subtracting the memory used at the start of the process from
the memory in use when the process terminates.

FIGURE 18. Violin plot of memory consumption per commit in megabytes.

Fig. 18 shows a violin plot of the memory used per com-
mit in terms of megabytes for both RefDetect and RMiner.
In terms of the median value, both tools require nearly the
same memory (30 vs. 28), but on average, RMiner is more
efficient, and it used almost 20% less memory than RefDetect
(47 vs. 36).

c: ANSWER TO RQ3
According to the results illustrated in Fig. 17, and 18, RefDe-
tect is around 20% less efficient than RMiner in terms of exe-
cution time and memory consumption. However, RefDetect
is still efficient and its performance is perfectly acceptable
from a pragmatic point of view.

D. RESULTS FOR C++ APPLICATIONS
This section reports results for detecting refactorings in C++
applications. To the best of our knowledge, there is no public
refactoring dataset for C++ applications like the one avail-
able for Java applications [35]. Recently, Silva et al. [11]

86722 VOLUME 9, 2021

https://github.com/raphw/byte-buddy/commit/372f4ae6cebcd664e3b43cade356d1df233f6467
https://github.com/clojure/clojure/commit/309c03055b06525c275b278542c881019424760e
https://github.com/CyanogenMod/android_frameworks_base/commit/910397f2390d6821a006991ed6035c76cbc74897
https://github.com/plutext/docx4j/commit/e29924b33ec0c0298ba4fc3f7a8c218c8e6cfa0c
https://github.com/plutext/docx4j/commit/e29924b33ec0c0298ba4fc3f7a8c218c8e6cfa0c
https://github.com/phishman3579/java-algorithms-implementation/commit/ab98bcacf6e5bf1c3a06f6bcca68f178f880ffc9
https://github.com/katzer/cordova-plugin-local-notifications/commit/51f498a96b2fa1822e392027982c20e950535fd1
https://github.com/netty/netty/commit/d31fa31cdcc5ea2fa96116e3b1265baa180df58a
https://github.com/hazelcast/hazelcast/commit/30c4ae09745d6062077925a54f27205b7401d8df
https://github.com/kiegroup/jbpm/commit/3815f293ba9338f423315d93a373608c95002b15
https://github.com/jfinal/jfinal/commit/881baed894540031bd55e402933bcad28b74ca88
https://github.com/apache/cassandra/commit/446e2537895c15b404a74107069a12f3fc404b15

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

provided a refactoring dataset that contains 90 true refac-
toring instances extracted from 20 C applications (on aver-
age around five refactorings in each application). However,
apart from its small scale, the refactorings are extracted from
C applications and therefore do not contain any class-level
refactoring types (such extract class, etc.). In addition, it does
not contain any field-level refactoring types (such as move
field, etc.) as the provided tool: RefDiff 2.0 [11] does not
support any field-level refactoring types. Overall, it only con-
tains 6 out of the 27 refactoring types supported in RefDetect.
Note that were we to extend this dataset, then as we are not
the original developers of the applications, it is likely that
we would make errors in classifying the detected refactor-
ings as true or false positive instances due to experimenter
bias [2]. In addition, there is the possibility that we would
miss some true refactoring instances because of an algorithm
design flaw, inappropriate threshold values etc. (i.e. biased
oracle) [2]. Therefore, we follow another route to evaluate
RefDetect with C++ applications.

We conducted experiments using four C++ applications
illustrated in Table 10. All applications contain some weak-
nesses in their design (known as design or code smells), and
can be improved using refactoring operations. Each applica-
tion is refactored independently by twoMaster’s students who
previously completed a software refactoring course taught by
the first author of this paper. All participants involved in the
experiment were familiar with applications under investiga-
tions and worked before with CLion IDE which was used
to refactor the applications. Overall, 10 students voluntarily
participated in this experiment.

TABLE 10. C++ applications used in this study.

We asked participants to first analyse the code assigned to
them, and then improve the program structure using refac-
toring operations. Participants were free to do the refactor-
ings manually or using refactorings provided by the CLion
IDE. We then selected from the two refactored programs
the one which contains more complete and precise refac-
torings. To simulate non-refactoring changes applied in a
real scenario, we manually injected some non-refactoring
changes into all refactored applications which resulted in
four new refactored applications. For instance, we manu-
ally injected some new instructions to an extracted methods,
or define some new fields and methods to a renamed class.
We also created another group of applications as follows: we
treat the versions refactored by participants also containing
non-refactoring changes as the new original programs and
select the real original programs as the refactored ones.

The results for experiments performed with C++ applica-
tions are presented in Table 11. As shown, overall, 305 refac-
torings were applied to applications under investigation,
where RefDetect achieved on average 96.1% precision and
94.1% recall. These results show the feasibility of the
proposed approach for detecting refactorings in program-
ming languages other than Java. Not surprisingly, all incor-
rectly detected refactorings as well as missed refactorings
were the result of non-refactoring changes injected into the
applications.

TABLE 11. C++ precision and recall results.

In summary, our evaluation with C++ applications pro-
vides some evidence that our approach is indeed language
independent and can easily be ported to work with another
language. Java and C++ are closely related languages, and
our approach only deals with the object-oriented constructs
of these languages. We would anticipate that similar results
would be observed using object-oriented codewritten in other
related languages, e.g. C#. Applying the RefDetect approach
to non-OO code, e.g. lambda expressions in Java or closures
in C# is an area for exploration, as is applying it to non-OO
languages such as C or Haskell.

A more complete analysis of how well RefDetect works
for applications written in C++ and other languages is left
for future work.

VOLUME 9, 2021 86723

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

V. LIMITATIONS
Despite the encouraging results, some of the investigated
scenarios indicated potential limitations. This section focuses
on limitations of the approach itself, and sketch some possible
extensions to address them.

A. MISSING CHANGES
As described in section III-B, the employed alignment algo-
rithm, FOGSAA, decides about differences in the two input
strings by comparing the type and name of entities included
in the strings. However, since the algorithm does not consider
the relationships between entities, the detected differences
might not all be correct. As an example, consider changes
applied in classA illustrated in Fig. 19a. In this example, Field
location and method getLocation() are removed from class
A, and field address and method getAddress() are renamed
to location and getLocation() respectively. In this example,
FOGSAA incorrectly identifies fields location as well as
methods getLocation() in classes A and B as being the same,
and recognizes field address and method getAddress() as
the only differences between classes A and B. The result is
that the refactoring detection algorithm cannot detect any of
applied refactorings.

This problem can be solved by comparing relationships
between entities in addition to their names and types.
However, examining all entities’ relationships significantly
increases the execution time of FOGSAA. In addition, in the
evaluations done in this paper, we observed few cases like
one illustrated in Fig. 19a. It is worth mentioning that
the relationships between different entities in the original
and refactored programs are compared with each other by
the matching algorithm (Step 2 in Algorithm 1). However,
as only the relationships of different entities in two programs
are compared, and a commit usually leaves most entities
unchanged, this has only a minor effect on the speed of
the algorithm.

RMiner is not also capable of detecting any of the refac-
torings applied in Fig. 19a. As mentioned in Section IV-B,
RMiner matches entities in three rounds, where ‘‘in the first
round, the nodes with identical string representation and
nesting depth are matched’’ [3]. In this example, fields loca-
tion andmethods getLocation() are incorrectly matched in the
first round, and it prevents RMiner from detecting the applied
Rename refactorings.

B. LACK OF SEMANTIC INFORMATION SUPPORT
The entity matching function (presented as Algorithm 2)
is currently based on structural information (type, name
and relationships between entities). While the results of the
experiments done in this paper show that this criterion is
sufficient to correctly identify refactorings, there are cases
that the algorithm is not able to correctly detect applied
refactorings.

As an example, consider changes applied in classes
in Fig. 19b. In this example, class Reptile and class Fish
are respectively renamed to Turtle, and Shark. However,

RefDetect cannot detect any of the applied Rename Class
refactorings. This happens because each class in the original
program completely matches with both classes in the refac-
tored program. In fact, class Reptile is identified as 100%
similar to classes Turtle, and Shark. The same also happens
for class Fish. The refactorings are not detected as the match-
ing algorithm is designed to prevent one-to-many matching
between entities.

It is obvious that using both structural and semantic infor-
mation when comparing entities can help to detect the correct
matches. Two entities are semantically similar if they use
similar words. For example, two classes are semantically
similar if their names as well as names of their fields, meth-
ods, etc. have a high semantic similarity. The determina-
tion of the semantic characteristics can be handled using
string comparison algorithms [36], through a lexical database
of English such as WordNet,25 or using well-known word
embedding methods such as word2vec26 or fastText.27 In
this example, semantic information can help to correctly
identify relationship between Fish and Shark classes as well
as Reptile and Turtle classes, and then the algorithm can
correctly identify the applied refactorings. As future work,
we intend to combine structural and semantic information to
have a more precise correspondence between entities in the
original and refactored programs during the entity matching
process.

VI. THREATS TO VALIDITY
In any experimental study, some factors influence the findings
and represent threats to validity. We discussed some limi-
tation of our approach in the previous section, and in this
section, we discuss other threats that can affect the validity
of our experiments.

Regarding to the experiments done with Java applications,
there are two important threats namely bias in the dataset,
and experimenter bias. As discussed in Section IV-B, if a
refactoring is detected by both RefDetect and RMiner, and
it is reported as true or false positive instance by Tsan-
talis et al. [3], we accept that as it is as determined in the
dataset. However, if a refactoring is detected by one tool,
but not by another, we manually analysed the refactoring to
determine it is a true or false positive one. While the refactor-
ings included in the dataset are validated with multiple tools
and by multiple experts [3], [11], [25], there were very few
cases where we classified a refactoring that was identified
as true one in the dataset as a false instance. On the other
hand, 796 refactoring instances were only detected by our
tool, where 85% of these refactorings were classified by us
as true refactoring instances. However, we are aware that it
is completely possible that we incorrectly classified a refac-
toring in our manual validation as we are not the developers
of the applications under investigation (experimenter bias).

25https://wordnet.princeton.edu/
26https://code.google.com/archive/p/word2vec/
27https://fasttext.cc/

86724 VOLUME 9, 2021

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

FIGURE 19. Examples where the matching algorithm cannot match entities correctly.

Furthermore, new refactorings detected by our tool show that
there can be still other refactoring instances not included in
the dataset (bias in the dataset). As discussed in Section IV-B,
there are still details in the refactoring detection process
that have not been seen by any of RefDetect, and RMiner.
Therefore, improvement in these tools, and even new tools in
this direction may result lower recall value for our tool than
one presented in this paper.

Regarding to the experiments done with C++ applica-
tions, there are some threats as follows. The first threat is its
small scale. Overall, 305 refactorings were applied to eight
applications (with each application being considered twice).
It is also important to acknowledge that while we manu-
ally injected some non-refactoring changes to these applica-
tions, the changes might be meaningless, as our aim was to
only create a refactored version containing non-refactoring
changes. In addition, we are fully aware of the shortcom-
ings of our tool in covering non-refactoring changes, and so
it was better if non-refactoring changes were applied by a
person not involved in developing RefDetect. Another threat
to validity with the experiments done with C++ applica-
tions is that the participants took part in the experiment did
not have the knowledge of an experienced software engi-
neer. However, they all were Master’s students who had
previously studied a software refactoring course, and were
familiar with applications under investigation. In summary,
we acknowledge that our evaluation with C++ applica-
tions is not complete compared to the evaluation done with
Java applications, and to draw stronger conclusions, fur-
ther evaluation is needed. However, our main aim was to
show the applicability of the proposed approach in detecting
refactorings in other programming languages, and this was
achieved.

Other threats to validity are related to values assigned to
match, mismatch and gap penalty used in FOGSAA algo-
rithm (see section III-B) as well as values assigned to similar-
ity thresholds used by the matching algorithm (see Table 3).
There is no doubt that to gain the best result, it is impor-
tant to assign the proper values to these variables. How-
ever, as discussed by Tsantalis et al. [3], finding a universal

threshold value which works for all applications might be
infeasible. To moderate this threat, we experimentally cali-
brate values used by FOGSAA algorithm as well as similarity
thresholds used by the matching algorithm, and also run the
matching algorithm in two rounds with different similarity
thresholds. However, as discussed in the evaluation section,
the selected thresholds can still be further optimized for some
refactoring types, especially when relationships between
entities are significantly changed using non-refactoring
changes.

VII. CONCLUSION AND FUTURE WORK
In this paper, we addressed the topic of identifying refactor-
ings applied between two versions of a program.We proposed
and implemented a novel refactoring detection algorithm
that is not dependent on any programming languages. This
is achieved through (i) representing the input programs as
sequence of characters and abstracting away the specific
details of each programming language, and (ii) relying only
on entities’ names and their relationships to match entities
that have changed between the original and refactored pro-
grams. The viability of the implemented tool, called RefDe-
tect, is demonstrated through its application to a number of
Java and C++ applications. To the best of our knowledge,
RefDetect is the first language-neutral refactoring detec-
tion tool to achieve a high level of accuracy in refactoring
detection.

To evaluate the effectiveness of the proposed approach,
we compare RefDetect with RMiner as the current state-
of-the-art refactoring detection tool in Java. We conducted
an experiment with a dataset containing 514 commits from
185 open source Java repositories, and including 5,058 true
refactoring instances. The results show that while RMiner
achieved a better precision (98.5% vs. 91.2%), RefDetect per-
formed better in terms of recall (84.5% vs. 78.9%). Overall,
in terms of f-score RefDetect was a bit better than RMiner
(87.3% vs. 86). More specifically, while RMiner was good at
detecting field-level refactoring types, RefDetect performed
better in method- and class-level refactoring types. We also
validated our approach on four C++ applications, where

VOLUME 9, 2021 86725

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

RefDetect successfully detects 94% of 305 applied refac-
torings, and only 4% of detected refactorings were detected
incorrectly.

We envisage future work taking place in a number of
directions. Firstly we intend to improve the crucial entity
matching process by combining structural and semantic infor-
mation to create a more precise correspondence between
entities in the original and the refactored programs. Secondly,
while we have demonstrated language independence in this
paper, we will use RefDetect to explore further refactoring
detection in C++ programs. Finally, RefDetect is currently
only concerned with refactoring detection, but it would also
be useful to detect the order in which refactorings were
applied in a commit. We plan to achieve this by simulating
the refactoring effects on the string representation of the
input program, without actually applying the detected refac-
torings to the program. This paves the way for RefDetect
to form part of a larger framework that helps the devel-
oper to have a better understanding of the evolution of the
program.

ACKNOWLEDGMENT
The authors would like to thank Dr. Nikolaos Tsantalis
and his colleagues for their publicly available refactoring
dataset, and their publicly available refactoring detection
tool, which enhanced greatly our ability to evaluate our
own tool.

REFERENCES
[1] C. Abid, V. Alizadeh, M. Kessentini, T. do Nascimento Ferreira, and

D. Dig, ‘‘30 years of software refactoring research: A systematic literature
review,’’ Dept. Comput. Inf. Sci., Univ. Michigan, Dearborn, MI, USA,
Tech. Rep., 2020. [Online]. Available: https://arxiv.org/abs/2007.02194

[2] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
‘‘Accurate and efficient refactoring detection in commit history,’’ in Proc.
40th Int. Conf. Softw. Eng., May 2018, pp. 483–494.

[3] N. Tsantalis, A. Ketkar, and D. Dig, ‘‘RefactoringMiner 2.0,’’ IEEE Trans.
Softw. Eng., early access, Jul. 8, 2020, doi: 10.1109/TSE.2020.3007722.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz, ‘‘Finding refactorings
via change metrics,’’ in Proc. 15th ACM SIGPLAN Conf.
Object-Oriented Program., Syst., Lang., Appl. (OOPSLA), 2000,
pp. 166–177.

[5] P. Weissgerber and S. Diehl, ‘‘Identifying refactorings from source-code
changes,’’ in Proc. 21st IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Sep. 2006, pp. 231–240.

[6] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, ‘‘Automated
detection of refactorings in evolving components,’’ in Proc. Eur. Conf.
Object-Oriented Program. (ECOOP). Berlin, Germany: Springer, 2006,
pp. 404–428.

[7] Z. Xing and E. Stroulia, ‘‘Differencing logical UML models,’’ J. Auto-
mated Softw. Eng., vol. 14, no. 2, pp. 215–259, 2007.

[8] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, ‘‘Template-based
reconstruction of complex refactorings,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2010, pp. 1–10.

[9] D. Silva and M. T. Valente, ‘‘RefDiff: Detecting refactorings in version
histories,’’ in Proc. IEEE/ACM 14th Int. Conf. Mining Softw. Repositories
(MSR), May 2017, pp. 269–279.

[10] R. Stevens, T. Molderez, and C. De Roover, ‘‘Querying distilled code
changes to extract executable transformations,’’ Empirical Softw. Eng.,
vol. 24, no. 1, pp. 491–535, Feb. 2019.

[11] D. Silva, J. Silva, G. J. De Souza Santos, R. Terra, and M. T. O. Valente,
‘‘RefDiff 2.0: A multi-language refactoring detection tool,’’ IEEE Trans.
Softw. Eng., early access, Jan. 22, 2020, doi: 10.1109/TSE.2020.2968072.

[12] R. Krasniqi and J. Cleland-Huang, ‘‘Enhancing source code refac-
toring detection with explanations from commit messages,’’ in Proc.
IEEE 27th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2020,
pp. 512–516.

[13] Q. D. Soetens, R. Robbes, and S. Demeyer, ‘‘Changes as first-class citi-
zens: A research perspective on modern software tooling,’’ ACM Comput.
Surv., vol. 50, no. 2, pp. 1–38, Jun. 2017.

[14] A. Chakraborty and S. Bandyopadhyay, ‘‘FOGSAA: Fast optimal global
sequence alignment algorithm,’’ Sci. Rep., vol. 3, no. 1, pp. 1–9,
Dec. 2013.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, ‘‘CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,’’
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[16] E. Murphy-Hill, C. Parnin, and A. P. Black, ‘‘How we refactor, and how
we know it,’’ IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5–18, Jan. 2012.

[17] A. Z. Broder, ‘‘On the resemblance and containment of documents,’’ in
Proc. Compress. Complex. SEQUENCES, Jun. 1997, pp. 21–29.

[18] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and S. Demeyer, ‘‘Com-
parison of similarity metrics for refactoring detection,’’ in Proc. 8th Work.
Conf. Mining Softw. Repositories (MSR), 2011, pp. 53–62.

[19] B. Biegel and S. Diehl, ‘‘Highly configurable and extensible code
clone detection,’’ in Proc. 17th Work. Conf. Reverse Eng., Oct. 2010,
pp. 237–241.

[20] Z. Xing and E. Stroulia, ‘‘Refactoring detection based on UMLDiff
change-facts queries,’’ in Proc. 13th Work. Conf. Reverse Eng., Oct. 2006,
pp. 263–274.

[21] I. H. Moghadam and M. Ó. Cinnéide, ‘‘Automated refactoring using
design differencing,’’ in Proc. 16th Eur. Conf. Softw. Maintenance Reeng.,
Mar. 2012, pp. 43–52.

[22] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson, ‘‘Comparing
approaches to analyze refactoring activity on software repositories,’’
J. Syst. Softw., vol. 86, no. 4, pp. 1006–1022, Apr. 2013.

[23] L. Tan and C. Bockisch, ‘‘A survey of refactoring detection tools,’’ in Proc.
6th CollaborativeWorkshop Evol.Maintenance Long-Living Syst. (EMLS),
2019, pp. 100–105.

[24] G. Salton andM. J. McGill, Introduction to Modern Information Retrieval.
New York, NY, USA: McGraw-Hill, 1986.

[25] D. Silva, N. Tsantalis, and M. T. Valente, ‘‘Why we refactor? Confessions
of GitHub contributors,’’ in Proc. 24th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., Nov. 2016, pp. 858–870.

[26] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl,
K. Wieland, and G. Kappel, ‘‘A posteriori operation detection in evolving
software models,’’ J. Syst. Softw., vol. 86, no. 2, pp. 551–566, Feb. 2013.

[27] F. Steimann, ‘‘Refactoring tools and their kin,’’ in Grand Timely Topics in
Software Engineering (Lecture Notes in Computer Science), vol. 10223,
J. Cunha, J. Fernandes, R. Lämmel, J. Saraiva, and V. Zaytsev, Eds. Cham,
Switzerland: Springer, 2017, doi: 10.1007/978-3-319-60074-1_8.

[28] C. De Roover and R. Stevens, ‘‘Building development tools interactively
using the EKEKO meta-programming library,’’ in Proc. Softw. Evol. Week
IEEE Conf. Softw. Maintenance, Reeng., Reverse Eng. (CSMR-WCRE),
Feb. 2014, pp. 429–433.

[29] M. Kessentini, R. Mahaouachi, and K. Ghedira, ‘‘What you like in design
use to correct bad-smells,’’ Softw. Qual. J., vol. 21, no. 4, pp. 551–571,
Dec. 2013.

[30] I. Hemati Moghadam, ‘‘Interactive software design improvement using
metrics-driven, multi-level automated refactoring,’’ Ph.D. dissertation,
School Comput. Sci., Univ. College Dublin, Dublin, Ireland, 2014.

[31] I. Hemati Moghadam and M. Ó Cinnéide, ‘‘Resolving conflict and depen-
dency in refactoring to a desired design,’’ e-Inform. Softw. Eng. J., vol. 9,
no. 1, pp. 37–56, 2015.

[32] S. B. Needleman and C. D. Wunsch, ‘‘A general method applicable to the
search for similarities in the amino acid sequence of two proteins,’’ J. Mol.
Biol., vol. 48, no. 3, pp. 443–453, Mar. 1970.

[33] M. Fowler, Refactoring: Improving Design Existing Code. Reading, MA,
USA: Addison-Wesley, 1999.

[34] RefDetect: A Multi-Language Refactoring Detection Tool Based
on String Alignment. Accessed: Jun. 2021. [Online]. Available:
https://sites.google.com/view/refdetect/home

[35] N. Tsantalis, A. Ketkar, and D. Dig. Refactoring Oracle. Accessed:
Mar. 2021. [Online]. Available: http://refactoring.encs.concordia.ca/
oracle/

[36] W. W. Cohen, P. Ravikumar, and S. E. Fienberg, ‘‘A comparison of string
distance metrics for name-matching tasks,’’ in Proc. Workshop Inf. Integr.
Web (IIWeb), 2003, pp. 73–78.

86726 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSE.2020.3007722
http://dx.doi.org/10.1109/TSE.2020.2968072
http://dx.doi.org/10.1007/978-3-319-60074-1_8

I. H. Moghadam et al.: RefDetect: Multi-Language Refactoring Detection Tool Based on String Alignment

IMAN HEMATI MOGHADAM received the
Ph.D. degree in software engineering fromUniver-
sity College Dublin, Ireland, in 2014. He is cur-
rently an Assistant Professor with the Department
of Computer Engineering, Vali-e-Asr University
of Rafsanjan, Iran. Prior to this, he was a Research
Associate with the Centre for Research on Evo-
lution Search and Testing (CREST), Department
of Computer Science, University College London,
U.K. His primary research interests are soft-

ware refactoring, search-based software engineering, and model-driven
development.

MEL Ó CINNÉIDE received the Ph.D. degree
in computer science from Trinity College Dublin,
Dublin, Ireland, in 2001. He is currently an Asso-
ciate Professor with the School of Computer Sci-
ence, National University of Ireland, Dublin. His
research interests include refactoring and design
patterns. He is a member of the ACM and a char-
tered engineer.

FAEZEH ZAREPOUR received the B.S. degree
in mathematics from the Vali-e-Asr University of
Rafsanjan, Rafsanjan, Iran, in 2010, and the M.S.
degree in software engineering from the Allameh
Jafari Institute of Rafsanjan, Rafsanjan, in 2021.
Her primary research interests are refactoring and
software quality.

MOHAMAD AREF JAHANMIR is currently pur-
suing the B.S. degree in software engineering with
the Vali-e-Asr University of Rafsanjan, Iran. His
primary research interest is software refactoring.

VOLUME 9, 2021 86727

