
Received May 20, 2021, accepted June 1, 2021, date of publication June 4, 2021, date of current version June 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3086531

SIR1R2: Characterizing Malware Propagation in
WSNs With Second Immunization
XIAOTONG YE, SISI XIE, AND SHIGEN SHEN , (Member, IEEE)
Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China

Corresponding author: Shigen Shen (shigens@usx.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61772018.

ABSTRACT As an infrastructure of Internet of Things, WSNs (Wireless Sensor Networks) play a more and
more important role. However, WSNs are vulnerable to malware and malware can destroy their data security
and integrity, which motivates us to explore the role of malware propagation in WSNs. First, according to
the actual propagation characteristics of malware in the WSNs and the process of the density change of all
node types, we propose an epidemiology-based malware propagation model in consideration of a secondary
immune mechanism. Then we set up differential equations to describe the propagation model. By solving
differential equations, we can obtain two kinds of equilibrium points indicating that the density of all node
types tends to be stable in the WSNs. One is to achieve an equilibrium where only susceptible nodes exist in
the WSNs. The other is that malware always exists in the WSNs. Moreover, we prove the local and global
stability of these two equilibrium points. Eventually, we analyze the influence and effect of the secondary
immunity, forgetting mechanism and containment mechanism on malware propagation in the WSNs, and
validate the proposed model through simulations.

INDEX TERMS wireless sensor networks, malware propagation, secondary immunization, epidemiology,
equilibrium point.

I. INTRODUCTION
WSNs (Wireless Sensor Networks) [1], [2] have been utilized
in many domains, for examples, monitoring temperature,
pressure and humidity in the environment, detecting andmon-
itoring animals and automobiles [3], [4], establishingwireless
communication links in a wireless body sensor network [5].
These WSNs are self-organized networks that consist of
thousands of sensor nodes (SNs) [6]. Generally, SNs are
able to sense and collect information from the very harsh
environments, and to return information according to some
requests from users [7]. However, SNs have easily become
attack targets ofmalware because of their resource constraints
and weak defense capability [8], [9].

In fact, malware that was developed by external actors has
seriously threatened the security of WSNs [10], [11]. It can
disrupt or deny the normal operation ofWSNs [12]–[14] after
it attacks the WSNs successfully. Some studies have shown
the harmfulness of malware on SNs. For example, an attacker
may endanger an SN by its physical interfaces or tamper
with the hardware itself so that malware can introduce wrong
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measurements to WSNs [15]. Besides, malware can attack an
SN and propagate itself throughout the WSNs by infecting
neighbor SNs with communications.

Therefore, the research of malware has become an issue
that cannot be ignored in the field of WSNs security. In addi-
tion, it is very important to detect and defend malware accu-
rately and effectively. Although SNs deployed in WSNs can
update the software through a specific protocol without man-
ual operation, it is impossible to completely avoid the WSNs
being attacked by malware because these protocols are likely
to open a door for attackers to propagate malware [16], [17].
In order to understand the propagation process of WSNs
malware, epidemic models [18], [19] have been suggested as
a viable approach.

Epidemic theory from epidemiology can be broadly
employed to formulate malware propagation due to a strong
similarity in the propagation process of biological viruses
and WSNs malware [20]. Generally, typical states such as
Susceptible, Infectious, and Recovered are combined to con-
struct traditional deterministic epidemic models including
SI (Susceptible-Infectious) and SIR (Susceptible-Infectious-
Recovered) [21]. But there are some limitations when these
general epidemic models are employed to formulate the
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propagation process of WSNs malware. First, the infectious
SN is unconscious of malware propagation and cannot termi-
nate malware propagation. Second, the forgetting mechanism
is not involved. When a period of time passes, the infectious
SN may forget those SNs which have been infected. Third,
it is not considered secondary immunity, or even multiple
immunity.

We take secondary immunization into account that SNs in
WSNs have a certain ability to resist malware and become
basic immune SNs after being infected for a period of time,
resulting in our epidemic model called SIR1R2. This is moti-
vated by the fact that the recovered SNs may not be able to
withstand the second malware attack, because other hidden
vulnerabilities of SNs may be attacked by malware again.
It can be found that the same SN can get stronger immunity
after being attacked twice bymalware than the case it recovers
from the first attack. In other words, the SN is transformed
into a basic immune SN after recovering from the first attack,
and the SN can obtain a preliminary immune ability. Only
after the SN survives under the second attack launched by
malware, the SN will get the complete immune ability.

To perform this work, our methods include epidemic
theory, stability theory of differential equations, the next-
generation matrix method, Routh-Hurwitz stability theory,
and Lyapunov functions. We employ epidemic theory to for-
mulate our model SIR1R2. We achieve the equilibrium points
of our epidemic model by stability theory of differential
equations.We further compute the basic reproduction number
using the next-generation matrix method. We also prove the
locally and globally asymptotically stable points of our model
with Routh-Hurwitz stability theory and rational Lyapunov
functions, respectively.

Our contributions mainly lie as follows:
(1)We propose a novel epidemic model, SIR1R2, consider-

ing the secondary immunization based on the forgetting and
containment mechanisms. This model accurately describes
dynamic states of malware propagation in WSNs. We further
build a corresponding mathematical model.

(2) According to the propagation model proposed,
we establish the corresponding differential equations and
obtain the equilibrium points. We further obtain the basic
reproduction number to determine the propagation threshold
of WSNs malware by solving the equations. Then we use
the Routh-Hurwitz criterion to judge the local stability of
equilibrium points through the eigenvalue equations of the
corresponding Jacobian matrix. We also prove the global
stability of equilibrium points by setting up rational Lyapunov
functions.

(3)We conduct numerical simulations to verify the stability
of the equilibrium points. Moreover, we qualitatively analyze
the effects of secondary immunization on malware propaga-
tion in WSNs according to the parameters of the model.

We arrange the rest of this paper as follows. Related work
and some WSNs malware propagation problems are summa-
rized in Section II. Then, we set up a WSNs malware propa-
gation model based on a secondary immunization mechanism

in Section III. We verify the dependability of the propagation
model through theoretic analyses in Section IV. Through
simulation experiments, we show the effect of secondary
immunization parameters onmalware’s propagation inWSNs
in Section V. Finally, we draw our conclusions and give the
future work.

II. RELATED WORK
Recently, there are many researchers who have done studies
of epidemic propagation. We pick some representative mod-
els from those as the basis for our study of WSNs malware
propagation. The most fundamental epidemic model is called
SI, where any node can only change from the susceptible to
the infectious. Afterwards, two classic models are formulated
to model the propagation process of malware. The first model
for dynamic propagation is the two-state SIS (Susceptible-
Infectious-Susceptible) model [22], [23]. Here, nodes exist
only in healthy or infectious. The susceptible nodes can be
changed into infectious nodes, and malware can be removed
from the infectious nodes andmake them turn into the suscep-
tible state again in that model. The second model is the SIR
model, which can be described as the densities of susceptible,
infectious, and recovered nodes. Furthermore, according to
the simple states but different transformation rules, the SIRS
model [24], [25] is also available.

Based on the above models, there are some models intro-
ducing other states according to characteristics of WSNs.
Khanh [26] proposed an SIQR model by adding a new state
called Quarantine, where a node effected by the detection
program can be immediately labeled as a worm-node or
be released after being quarantined for a period of time.
Keshri and Mishra [27] presented an SEIR model, which
shows the transmission dynamics of WSNs malware prop-
agation with latency and immunity delays. Shen et al. [28]
extended the traditional SIR model by adding the state D
(Dead) in consideration of losing its functionality because
of electricity exhaustion or malware attack. Moreover, some
works have referred to the SEIR model which involves the
state E (Exposed). Shen et al. [29] also proposed an SNIRD
model including states N (iNsidious) and D (Dysfunctional),
where N denotes the case that malware may prevent itself
from being captured by the IDS and SNs in the state N
have no intention to infect other neighbor SNs even if they
have been infected. Sharma and Gupta [30] proposed another
SEIR model based on cellular automata. López et al. [31]
extended the SIR model to describe the propagation of
random jamming attacks. Zhang et al. [32] presented an
SAIS (Susceptible-Alert-infectious-Susceptible) model to
evaluate the effectiveness of different alerting strategies.
Acarali et al. [33] built a botnet propagation model called
IoT-SIS for WSNs-based IoT networks, which reflects
IoT-specific characteristics. Zhang and Xu [34] set up an
SICD (Susceptible-Infectious-Cured-Dead) model with two
particular non-cooperative states, which characterizes the
D2D malware propagation process. Xia et al. [35] proposed
an IDEPSR model for analyzing malware propagation in
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TABLE 1. Individual characteristics and stability of WSNs malware propagation models.

city IoT, which reflects social features including the
propagation and identification abilities of smart devices.
Hernandez et al. [36] introduced an SCIRAS model for sim-
ulating the propagation process of zero-day malware, con-
sidering states Susceptible, Carrier, Infectious, Recovered,
Attacked, and Susceptible. Li et al. [37] proposed a DDSEIR
model to analyze CPS malware propagation based on states
Disseminate, Discriminate, Spread, Exposed, Ignorant, and
Recover. Liu et al. [38] presented an SILS model to dis-
close the epidemic process in wireless rechargeable sensor
networks, which consists of states Susceptible, Infectious,
Low-energy, and Susceptible. Muthukrishnan et al. [39] gave
a WSNs node-based epidemic SITPS model including states
Susceptible, Infectious, Traced, Patched, and Susceptible.
Other typical models consist of an SEIRS-V [40]model intro-
ducing V (Vaccination) into the SEIR model, an SEIRS-V
model considering the factor of software diversity [41],
a VCQPS model reflecting both the heterogeneity and mobil-
ity of SNs [42], an epidemic SEIQRV model aggregating
quarantine and vaccination techniques [43], a general SEIR
model with vaccination-based sliding control [44], an SIC
model reflecting countermeasure and network topology [45],
an SIQVD model based on time delay and changeable infec-
tion probability [46], an SIR-based containment model with
mobile social IoT [47], an SEIRD model with Cellular
Automaton [48], as well as an SEIRS-V model considering
the impact of mobile devices [49].

The improvement of the basic model can not only add
specific states and introduce different influencing factors,
but also affect malware propagation by introducing dif-
ferent influencing factors. To study dynamic behaviors,
Zhu et al. [50] introduced discrete delay time and presented
a novel malware propagation model with reaction-diffusion
equations for MWSNs (mobile wireless sensor networks).
Shen et al. [51] applied a continuous-time Markov chain
to assess the reliability of clustered WSNs under malware
diffusion. Moreover, Shen et al. [52] forecasted the malware
propagation process by a developed non-zero-sum game.
Xu et al. [53] introduced a Win-Stay, Lose-Likely-Shift
approach into a Prisoner’s Dilemma (PD) game framework
because of some selfish nodes refusing cooperation in the
WSNs. Farooq and Zhu [54] proposed an analytical model
for exploring the D2D malware propagation. To clearly com-
pare individual characteristics of WSNs malware propaga-
tion models herein, we make tabulation discussions listed
in Table 1.

However, there are still some WSNs malware propaga-
tion problems to be solved. One is how to describe the
scene that an SN can only gain most immunity after the
first infection, but not completely resist the unknown mal-
ware. The other is how to express the immunity incre-
ment after the number of infectious SNs increases. Herein,
we try to solve both two problems by supplementing a
complete immune state to the traditional SIR model, taking
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into account the forgetting and containment mechanisms
in WSNs.

III. BUILDING A MALWARE PROPAGATION MODEL
CONSIDERING SECONDARY IMMUNIZATION
We set up a state transition diagram of WSNs malware
propagation considering secondary immunity. For this aim,
we supplement a new type of an SN which has stronger
immunity against malware called completely recovered state
based on the original SIR model. Consequently, we construct
a novel epidemic model SIR1R2, where all SNs are belonged
to be in one of four possible states:

1) Susceptible state (S): The SNs in state S have not
been contaminated by WSNs malware and they are
defenseless to WSNs malware.

2) Infectious state (I ): The SNs in state I have been
contaminated by WSNs malware and these SNs may
successfully contaminate some SNs in state S.

3) Basically recovered state (R1): The SNs in state R1
are cleaned off malware for the first time, and have a
basic ability to resist malware andmay be contaminated
again.

4) Completely recovered state (R2): The SNs in state R2
are transformed from SNs in R1, which is to reflect
the fact that SNs will have stronger immunity against
malware after being contaminated and recovered again.

Next, we illustrate our WSNs malware propagation model,
SIR1R2, as described in Fig. 1. Susceptible SNs are contam-
inated by malware due to mutual communication, and they
will be transformed into infectious SNs which can propagate
the malware and infect other SNs. Generally, we cure infec-
tious SNs by patching security programs and they are able to
build up their basic resistance to the known malware. Infec-
tious SNs can be naturally changed into basically recovered
SNs based on the stimulus from malware under the influence
of the containment mechanism. If basically recovered SNs
do not have sufficient immunity, they may be infected by
the same kind of malware again. Thus, these SNs’ states
will be changed from R1 into R2 after being infected and
recovered from the same malware again. With time going by,
any infectious SNs may be changed into susceptible SNs due
to the existence of unknown malware. In addition, we may
patch SNs so that susceptible SNs may have immunity to
specific malware. This stimulus causes susceptible SNs to be
changed to recovered ones directly.

FIGURE 1. Node state transition diagram.

According to characteristics of SNs and propagation char-
acteristics of malware in the WSNs under the secondary
immune mechanism, we introduce S(t), I (t), R1(t), and R2(t)
at time t to be the density of SNs in states S, I , R1, and R2,
respectively. We can easily achieve

S(t)+ I (t)+ R1(t)+ R2(t) = 1. (1)

To make the WSNs work meaningfully, we impose an
infectious SN in the WSNs at least and no recovered SNs.
Moreover, the number of all the remaining susceptible SNs
in the WSNs should obviously be much larger than 1. Thus,
we can achieve 

S(t) ≈ 1
I (t) ≈ 0
R1(t) = 0
R2(t) = 0

(2)

Because the transformation probabilities of all kinds of
SNs should be in [0, 1], we can obtain

0 ≤ α, β, λ, γ1, θ1, γ2, θ2 ≤ 1
γ2 < γ1

θ2 < θ1

(3)

Then, we can formulate the WSNs malware propagation
model by a system including a group of differential equations
as

dS(t)
dt
= −(λ+ θ1)S(t)I (t)+ βI (t)+ γ1R1(t)+ γ2R2(t)

dI (t)
dt
= λS(t)I (t)− αI (t)− βI (t)

dR1(t)
dt
= αI (t)+ θ1S(t)I (t)− γ1R1(t)− θ2R1(t)

dR2(t)
dt
= −γ2R2(t)+ θ2R1(t)

(4)

IV. ANALYZING STABILITY OF OUR MODEL
WITH SECONDARY IMMUNE
A. EQUILIBRIUM POINTS
Here, we adopt themethod of letting the differential equations
in system (4) be zero, in order to attain equilibrium points
of our WSNs malware propagation model. After calculation,
we can achieve two equilibria for tuple < S, I ,R1,R2 >.
Then we can determine the threshold of our model to indicate
whether WSNs malware will propagate steadily or vanish
gradually.

For convenience of description, we represent the densities
of SNs in I , S, R1, and R2 be x1, x2, x3, and x4, respectively.
In this manner we set

x = [x1 x2 x3 x4]T. (5)

We define the function Fi(x) as the speed of i-th type of
SNs being changed into infectious ones. V+i (x) and V−i (x)
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represent the rates of i-th type of SN increment and
decrement. Let

Vi(x) = V−i (x)− V+i (x). (6)

According to (4), we can obtain

Fi(x) =

{
λSI i = 1
0 i = 2, 3, 4

(7)

We set

F = [F1(x) F2(x) F3(x) F4(x)]T, (8)

then obtain

F = [λSI 0 0 0]T. (9)

We set

V = [V1(x) V2(x) V3(x) V4(x) ]T, (10)

where V1(x) denotes the rate of infectious SNs being changed
into other SN types, and V2(x), V3(x), and V4(x) denote the
density change rates of susceptible SNs, basic recovered SNs,
and completely recovered SNs in the WSNs, respectively.
According to (4), (6) and (10), we can obtain

V =


βI + αI

(λ+ θ1)SI − γ1R1 − γ2R2 − βI
−αI + γ1R1 + θ2R1 − θ1SI

γ2R2 − θ2R1

 . (11)

We define ẋi as the change rate of i-th type in the WSNs.
Then, we obtain

ẋi = Fi(x)− Vi(x). (12)

When the density of all SN types does not change, meaning
that all change rates are 0, malware propagation in the WSNs
reaches an equilibrium state. We thus obtain
ẋ1 = λS(t)I (t)− αI (t)− βI (t) = 0
ẋ2 = −(λ+ θ1)S(t)I (t)+ βI (t)+ γ1R1(t)+ γ2R2(t) = 0
ẋ3 = αI (t)+ θ1S(t)I (t)− γ1R1(t)− θ2R1(t) = 0
ẋ4 = −γ2R2(t)+ θ2R1(t) = 0

(13)

By solving (13), we can get two equilibrium points Y1 =

[ S1 I1 R11 R12 ]T and Y2 = [ S2 I2 R21 R22 ]T where

Y1 = [1 0 0 0]T (14)

and

Y2 =



α + β

λ
(λ− α − β)(λα + θ1α + θ1β)γ2

(γ2 + θ2)(λα + θ1α + θ1β)+ λγ2(γ1 + θ1)
(λ− α − β)(λα + θ1α + θ1β)γ 2

2

λ(γ2 + θ2)(λα + θ1α + θ1β)+ λ2γ2(γ1 + θ1)
θ2(λ− α − β)(λ− α − β)γ2

λ(γ2 + θ2)(λα + θ1α + θ1β)+ λ2γ2(γ1 + θ )


.

(15)

According to (14) and (15), we get a malware-free equilib-
rium that no malware in the WSNs will exist when the WSNs
reaches the equilibrium point Y1. At that time, there are only
susceptible SNs. We also get a malware-endemic equilibrium
Y2. In other words, when the WSNs reaches the equilibrium
point Y2, malware propagates steadily in the network, at the
same time, the density of all SN types in the WSNs keeps
dynamic equilibrium.

B. BASIC REPRODUCTION NUMBER
Generally, the next-generation matrix method can be applied
to obtain the basic reproduction number ρ(fv−1), which is in
fact ‘‘the spectral radius of the next-generation matrix’’ [56].
Here, f and v denote the advent and transition rates of
infectious SNs at malware-free equilibrium Y1, respectively.
According to (7), (14), and (15), we can get

f =
∂F1(x)
∂I

∣∣∣∣
Y1

= λ

v =
∂V1(x)
∂I

∣∣∣∣
Y1

= α + β

(16)

The basic reproduction number ρ(fv−1) can then be
achieved by

ρ(fv−1) =
λ

α + β
. (17)

In (17) ρ(fv−1) is generally regarded as R0, which reflects
the number of infectious SNs within an average disease cycle
of 1/r (r is the cure rate) when all of them are susceptible.
The threshold 1 is used to determine whether the malware
will be dead or not. If R0 > 1, the specific malware will con-
tinue to propagate in the WSNs, and the density of malware
will increase continuously. Until a certain value is reached,
the density of infectious SNs will stabilize, and the density of
all kinds of SNs will be in a dynamic equilibrium state. When
0 < R0 < 1 exists, the malware cannot survive in the WSNs,
and the malware will gradually disappear in the WSNs at
last.

C. STABILITY ANALYSIS OF EQUILIBRIUM POINTS
Theorem 1: When R0 < 1, Y1 is the locally asymptotically

stable point.
Proof: The Jacobian matrix of (4) is

J=


−(λ+ θ1)I −(λ+ θ1)S + β γ1 γ2

λI λS − α − β 0 0
θ1I α − θ1S −γ1 − θ2 0
0 0 θ2 −γ2

. (18)

For S(t) = 1 − I (t) − R1(t) − R2(t), the Jacobian matrix
of (4) for the malware-infected WSNs can be changed into

J1 =

 λS − α − β 0 0
α − θ1S −γ1 − θ2 0

0 θ2 −γ2

 . (19)
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At the equilibrium point Y1, we get

J1(Y1) =

 λ− α − β 0 0
α − θ1 −γ1 − θ2 0

0 θ2 −γ2

 . (20)

Let ϑ be the eigenvalue of (20), we get the characteristic
polynomial as

ϑ3
+ m1ϑ

2
+ m2ϑ + m3 = 0, (21)

where
m1 = γ2 + θ1 + α + β − λ

m2 = (α + β − λ)(γ1 + θ2)+ (α + β − λ+ γ1 + θ2)γ2
m3 = (α + β − λ)(γ1 + θ2)γ2

(22)

From R0 = λ
α+β

< 1, we can get

α + β − λ > 0. (23)

Moreover, from (3), we know 0 ≤ γ, θ ≤ 1 and

(γ2 + θ1 + α + β − λ)(α + β − λ)(γ1 + θ2)

> (α + β − λ)(γ1 + θ2)γ2. (24)

Therefore, it is obvious that
m1 > 0
m2 > 0
m2 · m1 > m3

(25)

According to the criterion of Routh-Hurwitz stability [55],
when R0 < 1, Y1 is locally asymptotically stable. We com-
plete the proof. �
Theorem 2: When R0 > 1, Y2 is the locally asymptotically

stable point.
Proof: According to (18) and dR2(t)

dt = −γ2R2+ θ2R1 =
0, the Jacobian matrix of (4) for the malware-infected WSNs
can be changed into

J2 =

−(λ+ θ1)I −(λ+ θ1)S + β γ1
λI λS − α − β 0
θ1I α − θ1S −γ1 − θ2

 , (26)

and the Jacobian matrix J2 at equilibrium point Y2 is

J2(Y2) =


−(λ+ θ1)I −(λ+ θ1)

α + β

λ
+ β γ1

λI 0 0

θ1I α − θ1
α + β

λ
−γ1 − θ2

,
(27)

where

I =
(λ− α − β) (λα + θ1α + θ1β) γ2

(γ2 + θ2) (λα + θ1α + θ1β)+ λγ2 (γ1 + θ1)
.

Let ϑ̃ be the eigenvalue of (27), the characteristic polyno-
mial is

ϑ̃3
+ m̃1ϑ̃

2
+ m̃2ϑ̃ + m̃3 = 0, (28)

where 
m̃1 = λI + θ1I + γ2
m̃2 = I (αλ+ αθ1 + βθ1 + γ2λ+ γ2θ1)
m̃3 = Iγ2(αλ+ αθ1 + βθ1).

(29)

According to 0 ≤ α, β, λ, γ1, θ1, γ2, θ2 ≤ 1 and
0 < I < 1, it is obvious that m̃1 > 0 and m̃3 > 0 can be
obtained. Further, we can get m̃3 < m̃2 and m̃3 < m̃1.

In summary, we get
m̃1 > 0
m̃3 > 0
m̃2 · m̃1 > m̃3

(30)

According to the criterion of Routh-Hurwitz stability, it can
be obtained that m̃1 · m̃2 > m̃3 is valid. This completes the
proof. �
Theorem 3: The equilibrium point Y1 is the globally

asymptotically stable point when R0 < 1.
Proof:We set up a Lyapunov function L1(t) as

L1(t) = I (t), (31)

whose derivative is

dL1(t)
dt
=

dI (t)
dt
= λSI − αI − βI

≤ (λ− α − β)I . (32)

When R0 < 1, we can easily achieve λ − α − β < 0
from (17). Thus,

dL1(t)
dt
= 0 (33)

if and only if I = 0, which means

lim
t→∞

I (t) = 0. (34)

We further achieve

lim
t→∞

S(t) = 1, (35)

lim
t→∞

R1(t) = 0, (36)

and

lim
t→∞

R2(t) = 0 (37)

by substituting (34) into our model system (4). Consequently,
Y1 is globally attractive. Joined by the conclusion that Y1
is locally asymptotically stable from Theorem 1, Y1 is the
globally asymptotically stable point when R0 < 1. This
completes the proof. �
Theorem 4: The equilibrium point Y2 is the globally

asymptotically stable point when R0 > 1.
Proof: In this case we set up a Lyapunov function L2(t)

as

L2(t) =
1
2
ζ1(R0 − 1)(S − S2)2 + ζ2(I − I2 − I2 ln I ), (38)
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where ζ1 and ζ2 are parameters. We then achieve the deriva-
tive of L2(t) as

dL2(t)
dt

= ζ1(R0 − 1)(S − S2)
dS
dt
+ ζ2(1−

I2
I
)
dI
dt

= −ζ1(R0 − 1)(S − S2)2(λ+ θ1)I

+(S − S2)(ζ1(R0 − 1)(βI+γ1R1 + γ2R2 − (λ+ θ1)S2I )

+ζ2λ(I − I2))

, −ζ1(R0 − 1)(S − S2)2(λ+ θ1)I + (S − S2)3. (39)

Let 3 = 0 by adjusting ζ1 and ζ2, thus

dL2(t)
dt
= −ζ1(R0 − 1)(S − S2)2(λ+ θ1)I ≤ 0 (40)

for any ζ1 > 0. When R0 > 1,

dL2(t)
dt
= 0 (41)

if and only if S = S2, which means

lim
t→∞

S(t) = S2. (42)

We further achieve

lim
t→∞

I (t) = I2, (43)

lim
t→∞

R1(t) = R21, (44)

and

lim
t→∞

R2(t) = R22 (45)

by substituting (42) into our model system (4). Consequently,
Y2 is globally attractive. Joined by the conclusion that Y2
is locally asymptotically stable from Theorem 2, Y2 is the
globally asymptotically stable point when R0 > 1. This
completes the proof. �

Therefore, in the case of Y1 from Theorems 1 and 3,
no matter how many infectious SNs appear in the WSNs,
when the density of all kinds of SNs in the network stabilizes,
the infectious SNs will disappear and malware can no longer
propagate in the WSNs. On the other hand, when R0 > 1,
the equilibrium point Y1 is unstable, because if R0 > 1
meaning λ

α+β
> 1, then m2 > 0 in (21). According to the

Routh-Hurwitz stability criterion [55], it can be concluded
that Y1 is unstable. So as long as one SN in the WSNs is
infected by malware, malware will propagate throughout the
WSNs and will not disappear.

FromTheorems 2 and 4, it can be concluded that if there are
infectious SNs in theWSNs satisfyingR0 > 1, theWSNswill
achieve the dynamic equilibrium at Y2, that is, the density of
four SN types will keep a dynamic equilibrium, which also
shows that malware will not be eliminated in the WSNs.

V. VALIDATING OUR MALWARE PROPAGATION
MODEL WITH SECONDARY IMMUNITY
Here, we will use numerical simulation experiments to
analyze the influence and effect of the secondary immu-
nity, forgetting mechanism and containment mechanism on
WSNsmalware propagation, and validate the proposedmodel
SIR1R2 through simulations. Besides, we will thoroughly
analyze the correctness and stability of our model. In the
experiments, we set γ2 = γ 2

1 and θ2 = θ21 . As for the function
of secondary immunity, we set the initial densities of all kinds
of SNs in the WSNs as S(0) = 0.6, I (0) = 0.1, R1(0) = 0.3,
and R2(0) = 0, respectively, because completely recovered
SNs cannot exist without secondary immunity.

A. VALIDATION FOR MODEL SIR1 R2
1) STABILITY VALIDATION FOR THE MALWARE-FREE
EQUILIBRIUM
Figs. 2 and 3 respectively study the propagation process of
malware in the WSNs with secondary immunity where the
basic production numbers are different. To this end, we set the
initial densities of all kinds of SNs in theWSNs as S(0) = 0.6,

FIGURE 2. Different SN densities in the model SIR1R2 where R0 = 0.9.

FIGURE 3. Different SN densities in the model SIR1R2 where R0 = 0.2.
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I (0) = 0.1, R1(0) = 0.17, and R2(0) = 0.13. Moreover,
we set α = 0.2, β = 0.3, λ = 0.45, θ1 = 0.3, γ1 = 0.4,
θ2 = 0.09, and γ2 = 0.16 in Fig. 2, where the basic
production number R0 = 0.9. On the other hand, we set
α = 0.2, β = 0.3, λ = 0.1, θ1 = 0.3, γ1 = 0.4,
θ2 = 0.01, and γ2 = 0.16 in Fig. 3, where R0 = 0.2. It is
obvious that R0 in the two cases are both less than 1, which
satisfies the condition of Theorems 1 and 3. By observing the
simulation results, we see that malware finally disappears in
the WSNs. That is, the densities of the infectious SNs and
the two types of recovered SNs are 0, and the density of the
susceptible SNs is 1. The results reflect that the propagation
equilibrium point is (1, 0, 0, 0), which validates stability for
the malware-free equilibrium in the model with secondary
immunization.

From the comparison between Fig. 2 and Fig. 3, in the case
of R0 < 1, the closer R0 is to 0, the faster the malware in the
WSNs will die out and reach the malware-free equilibrium.
For example, when t = 20, the density of the SNs reaches
(1, 0, 0, 0) in Fig. 3; but in Fig. 2, this state can only be
reached in the future.

2) STABILITY VALIDATION FOR THE MALWARE-ENDEMIC
EQUILIBRIUM
Here, we validate stability for the malware-endemic equi-
librium of our model, as depicted in Figs. 4 and 5. We set
α = 0.3, β = 0.3, λ = 0.9, θ1 = 0.3, γ1 = 0.3, θ2 = 0.09,
and γ2 = 0.09 in Fig. 4, where R0 = 1.5. From Fig. 4,
the equilibrium point is about (0.661, 0.097, 0.125, 0.117).
On the other hand, in Fig. 5, we set α = 0.3, β = 0.3,
λ = 1.2, θ1 = 0.3, γ1 = 0.3, θ2 = 0.09, and γ2 = 0.16,
where R0 = 2.0, and the equilibrium point is about (0.498,
0.153, 0.178, 0.171). Both two cases indicate I (t) > 0; there-
fore, when R0 > 1, the malware will eventually propagate
stably in the WSNs. From Figs. 4 and 5, it can be obtained
that the closer R0 is to 1, the faster the WSNs will reach the
stable state. In addition, the slowerWSNswill reach the stable
state when R0 is larger and farther away from 1.

FIGURE 4. Different SN densities in the model SIR1R2 where R0 = 1.5.

FIGURE 5. Different SN densities in the model SIR1R2 where R0 = 2.0.

B. VALIDATION FOR THE EFFECT OF THE FORGETTING
AND CONTAINMENT MECHANISM
First of all, Fig. 6 shows different cases of infectious SNs
under different θ indicating the effect of the forgetting mech-
anism. It can be seen that under the condition R0 > 1, when β
increases, the density of the infectious SNs will be less at last.
Moreover, under the condition of R0 < 1, when β increases,
the infectious SNs will die out faster. Therefore, it can be
concluded that the larger the probability of forgetting mecha-
nism is, the less the number of infectious SNs reaching to the
dynamic equilibrium will be. The forgetting mechanism has
restrained malware propagation in the WSNs.

FIGURE 6. Effect of the forgetting mechanism in the model SIR1R2 under
θ1 = 0.3, γ1 = 0.3, θ2 = 0.09, and γ2 = 0.09.

Then, we concentrate on the effect of the containment
mechanism. From Fig. 7, when R0 > 1 the density of the
infectious SNs will be less in the case of larger α, on the
contrary, the density of the infectious SNs will be larger.
However, under the condition R0 < 1, the density of the
infectious SNs will tend to 0 faster and the WSNs will reach
the equilibrium faster whenα is larger. It can be concluded the
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FIGURE 7. Effect of the containment mechanism in the model SIR1R2
under θ1 = 0.3, γ1 = 0.3, θ2 = 0.09, and γ2 = 0.09.

containment mechanism has restrained malware propagation
in the WSNs.

C. COMPARISION WITH THE BASIC SIR MODEL
To show the effectiveness of our secondary immunity-based
model SIR1R2, we compare it with the basic SIR model.
Figs. 8–10 respectively study the density change process of
various SNs in the WSNs over time, showing the WSNs
malware propagation process under the function of secondary
immunity.

FIGURE 8. Comparison of changeable densities of infectious SNs in two
models.

Without loss of generality, we set twomodels with the same
parameter values. In addition, we choose S(t), I (t), R(t) as
contrast aspects, because they can reflect the effectiveness of
malware diffusion models. We set S(t) = 0.88, I (t) = 0.05,
and R(t) = 0.07 (R1(t) = 0.07 and R2(t) = 0 in the model
SIR1R2) at beginning.
From Fig. 8, the density of infectious SNs in the proposed

model SIR1R2 with secondary immunity drops and reaches

FIGURE 9. Comparison of changeable densities of susceptible SNs in two
models.

FIGURE 10. Comparison of changeable densities of recovered SNs in two
models.

0 just spending about 40 units of time. However, it takes
longer and longer for the infectious SNs to be died out in
the SIR model. More specially, the density of infectious SNs
changes to 0 at approximately 80 units of time in the SIR
model.

According to Figs. 9 and 10, the proposed model SIR1R2
with secondary immunity is more effective than the basic SIR
model in terms of reaching the equilibrium. When malware
propagation in the WSNs reaches the equilibrium, there is
a higher density of recovered SNs and a lower density of
susceptible SNs in the proposed SIR model. Consequently,
the defense capability of the entire WSNs becomes stronger.

VI. CONCLUSION
Based on the theory of infectious diseases, a novel epidemic
model called SIR1R2 considering the secondary immunity
mechanism was presented. We have achieved differential
equations characterizing the dynamics of various SNs belong-
ing to states Susceptible, Infectious, basically recovered, and
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completely recovered. We have shown that no malware in
the WSNs will exist when the WSNs reach the malware-free
equilibrium, and that malware propagates steadily when the
WSNs reach the endemic equilibrium point. As a result,
the stability of our model with secondary immune have been
analyzed based on the basic reproduction number obtained.
In this manner, we have explained the malware propagation
behaviors under different actual conditions.

From the view of a practical point, the theoretical results
presented in this paper is of guiding significance to inhibit
malware propagation in WSNs. Based on Theorems 1−4,
the infectious SNs will disappear and malware can no longer
propagate in the WSNs when R0 < 1, whereas malware
will propagate throughout the WSNs and will not disappear
when R0 > 1. In addition, secondary immunity has an impact
on malware propagation in WSNs in despite of R0 > 1 or
R0 < 1. Further, when R0 < 1, the malware propagation in
the WSNs will decelerate if the value of R0 is approaching 1,
while the propagation will accelerate if the value of R0 is
approaching 1 when R0 > 1. On the other hand, in the
case of R0 < 1, malware disappears faster when θ becomes
larger; however, in the case of R0 > 1, the final density of
malware will be less when θ becomes smaller. Moreover,
we concentrate on the forgetting mechanism and containment
mechanism. They both have a deterrent effect on malware
propagation in WSNs.

Although we have solved the problem on how to char-
acterize the WSNs malware propagation dynamics through
the proposed model SIR1R2 with the secondary immunity,
there still exists an interesting work on how to present
optimal control strategies. The alternative methods may
include SN immunity optimization, transformation probabil-
ities optimization, and WSNs topology optimization and so
on. We plan to do it in the future.

REFERENCES
[1] I. G. A. Poornima and B. Paramasivan, ‘‘Anomaly detection in wireless

sensor network using machine learning algorithm,’’ Comput. Commun.,
vol. 151, pp. 331–337, Feb. 2020.

[2] S. Feng, S. Shen, L. Huang, A. C. Champion, S. Yu, C. Wu, and Y. Zhang,
‘‘Three-dimensional robot localization using cameras in wireless multi-
media sensor networks,’’ J. Netw. Comput. Appl., vol. 146, Nov. 2019,
Art. no. 102425.

[3] J. Liu, X. Wang, G. Yue, and S. Shen, ‘‘Data sharing in VANETs based
on evolutionary fuzzy game,’’ Future Gener. Comput. Syst., vol. 81,
pp. 141–155, Apr. 2018.

[4] H. Radhappa, L. Pan, J. X. Zheng, and S. Wen, ‘‘Practical overview of
security issues in wireless sensor network applications,’’ Int. J. Comput.
Appl., vol. 40, no. 4, pp. 202–213, Oct. 2018.

[5] S. Shen, K. Hu, L. Huang, H. Li, R. Han, and Q. Cao, ‘‘Optimal report
strategies for WBANs using a cloud-assisted IDS,’’ Int. J. Distrib. Sensor
Netw., vol. 11, no. 11, Nov. 2015, Art. no. 184239.

[6] W. Elsayed, M. Elhoseny, S. Sabbeh, and A. Riad, ‘‘Self-maintenance
model for wireless sensor networks,’’ Comput. Electr. Eng., vol. 70,
pp. 799–812, Aug. 2018.

[7] A. Belfkih, C. Duvallet, and B. Sadeg, ‘‘A survey on wireless sensor net-
work databases,’’Wireless Netw., vol. 25, no. 8, pp. 4921–4946, Nov. 2019.

[8] S. Shen, L. Huang, H. Zhou, S. Yu, E. Fan, and Q. Cao, ‘‘Multistage
signaling game-based optimal detection strategies for suppressingmalware
diffusion in fog-cloud-based IoT networks,’’ IEEE Internet Things J.,
vol. 5, no. 2, pp. 1043–1054, Apr. 2018.

[9] S. Shen, H. Li, R. Han, A. V. Vasilakos, Y.Wang, and Q. Cao, ‘‘Differential
game-based strategies for preventing malware propagation in wireless
sensor networks,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 11,
pp. 1962–1973, Nov. 2014.

[10] X. Wang, Q. Li, and Y. Li, ‘‘EiSIRS: A formal model to analyze the
dynamics of worm propagation in wireless sensor networks,’’ J. Combinat.
Optim., vol. 20, no. 1, pp. 47–62, Jul. 2010.

[11] L. Xiao, Y. Li, X. Huang, and X. Du, ‘‘Cloud-based malware detection
game for mobile devices with offloading,’’ IEEE Trans. Mobile Comput.,
vol. 16, no. 10, pp. 2742–2750, Oct. 2017.

[12] M. B. Bahador, M. Abadi, and A. Tajoddin, ‘‘HLMD: A signature-based
approach to hardware-level behavioral malware detection and classifica-
tion,’’ J. Supercomput., vol. 75, no. 8, pp. 5551–5582, Aug. 2019.

[13] J. Liu, S. Shen, G. Yue, R. Han, and H. Li, ‘‘A stochastic evolutionary
coalition game model of secure and dependable virtual service in sensor-
cloud,’’ Appl. Soft Comput., vol. 30, pp. 123–135, May 2015.

[14] J. Liu, J. Yu, and S. Shen, ‘‘Energy-efficient two-layer cooperative defense
scheme to secure sensor-clouds,’’ IEEE Trans. Inf. Forensics Security,
vol. 13, no. 2, pp. 408–420, Feb. 2018.

[15] V. P. Illiano and E. C. Lupu, ‘‘Detecting malicious data injections in
wireless sensor networks: A survey,’’ ACMComput. Surveys, vol. 48, no. 2,
Nov. 2015, Art. no. 24.

[16] P. De, Y. Liu, and S. K. Das, ‘‘An epidemic theoretic framework for
vulnerability analysis of broadcast protocols in wireless sensor networks,’’
IEEE Trans. Mobile Comput., vol. 8, no. 3, pp. 413–425, Mar. 2009.

[17] P. De, Y. Liu, and S. K. Das, ‘‘Deployment-aware modeling of node
compromise spread in wireless sensor networks using epidemic theory,’’
ACM Trans. Sensor Netw., vol. 5, no. 3, pp. 1–33, May 2009.

[18] H. Zhou, S. Shen, and J. Liu, ‘‘Malware propagation model in wireless
sensor networks under attack–defense confrontation,’’ Comput. Commun.,
vol. 162, pp. 51–58, Oct. 2020.

[19] R. K. Shakya, K. Rana, A. Gaurav, P. Mamoria, and P. K. Srivastava,
‘‘Stability analysis of epidemic modeling based on spatial correlation
for wireless sensor networks,’’ Wireless Pers. Commun., vol. 108, no. 3,
pp. 1363–1377, Oct. 2019.

[20] R. P. Ojha, G. Sanyal, P. K. Srivastava, and K. Sharma, ‘‘Design and anal-
ysis of modified SIQRS model for performance study of wireless sensor
network,’’ Scalable Comput. Pract. Exper., vol. 18, no. 3, pp. 229–241,
Sep. 2017.

[21] C. N. Angstmann, B. I. Henry, and A. V. McGann, ‘‘A fractional-order
infectivity SIR model,’’ Phys. A, Stat. Mech. Appl., vol. 452, pp. 86–93,
Jun. 2016.

[22] Q. Wu and X. Fu, ‘‘Immunization and epidemic threshold of an SIS model
in complex networks,’’ Phys. A, Stat. Mech. Appl., vol. 444, pp. 576–581,
Feb. 2016.

[23] S. Huang, ‘‘Global dynamics of a network-based WSIS model for mobile
malware propagation over complex networks,’’ Phys. A, Stat. Mech. Appl.,
vol. 503, pp. 293–303, Aug. 2018.

[24] C.-H. Li, C.-C. Tsai, and S.-Y. Yang, ‘‘Analysis of epidemic spreading of
an SIRS model in complex heterogeneous networks,’’ Commun. Nonlinear
Sci. Numer. Simul., vol. 19, no. 4, pp. 1042–1054, Apr. 2014.

[25] L. Yang, M. Draief, and X. Yang, ‘‘Heterogeneous virus propagation in
networks: A theoretical study,’’ Math. Methods Appl. Sci., vol. 40, no. 5,
pp. 1396–1413, Mar. 2017.

[26] N. H. Khanh, ‘‘Dynamics of a worm propagation model with quaran-
tine in wireless sensor networks,’’ Appl. Math. Inf. Sci., vol. 10, no. 5,
pp. 1739–1746, Sep. 2016.

[27] N. Keshri and B. K. Mishra, ‘‘Two time-delay dynamic model on the
transmission of malicious signals in wireless sensor network,’’ Chaos,
Solitons Fractals, vol. 68, pp. 151–158, Nov. 2014.

[28] S. Shen, H. Zhou, S. Feng, L. Huang, J. Liu, S. Yu, and Q. Cao,
‘‘HSIRD: A model for characterizing dynamics of malware diffusion in
heterogeneous WSNs,’’ J. Netw. Comput. Appl., vol. 146, Nov. 2019,
Art. no. 102420.

[29] S. Shen, H. Zhou, S. Feng, J. Liu, and Q. Cao, ‘‘SNIRD: Disclosing rules of
malware spread in heterogeneous wireless sensor networks,’’ IEEE Access,
vol. 7, no. 1, pp. 92881–92892, Jul. 2019.

[30] N. Sharma and A. K. Gupta, ‘‘Impact of time delay on the dynamics of
SEIR epidemic model using cellular automata,’’ Phys. A, Stat. Mech. Appl.,
vol. 471, pp. 114–125, Apr. 2017.

[31] M. López, A. Peinado, and A. Ortiz, ‘‘An extensive validation of a SIR
epidemic model to study the propagation of jamming attacks against IoT
wireless networks,’’ Comput. Netw., vol. 165, Dec. 2019, Art. no. 106945.

82092 VOLUME 9, 2021



X. Ye et al.: SIR1R2: Characterizing Malware Propagation in WSNs

[32] T. Zhang, L.-X. Yang, X. Yang, Y.Wu, and Y. Y. Tang, ‘‘Dynamic malware
containment under an epidemic model with alert,’’ Phys. A, Stat. Mech.
Appl., vol. 470, pp. 249–260, Mar. 2017.

[33] D. Acarali, M. Rajarajan, N. Komninos, and B. B. Zarpelão, ‘‘Modelling
the spread of botnet malware in IoT-based wireless sensor networks,’’
Secur. Commun. Netw., vol. 2019, Feb. 2019, Art. no. 3745619.

[34] L. Zhang and J. Xu, ‘‘Differential security game in heterogeneous device-
to-device offloading network under epidemic risks,’’ IEEE Trans. Netw.
Sci. Eng., vol. 7, no. 3, pp. 1852–1861, Jul. 2020.

[35] H. Xia, L. Li, X. Cheng, C. Liu, and T. Qiu, ‘‘A dynamic virus propagation
model based on social attributes in city IoT,’’ IEEE Internet Things J.,
vol. 7, no. 9, pp. 8036–8048, Sep. 2020.

[36] J. D. H. Guillen, A. M. del Rey, and R. Casado-Vara, ‘‘Security counter-
measures of a SCIRAS model for advanced malware propagation,’’ IEEE
Access, vol. 7, pp. 135472–135478, 2019.

[37] L. Li, J. Cui, R. Zhang, H. Xia, and X. Cheng, ‘‘Dynamics of complex net-
works: Malware propagation modeling and analysis in industrial Internet
of Things,’’ IEEE Access, vol. 8, pp. 64184–64192, 2020.

[38] G. Liu, B. Peng, and X. Zhong, ‘‘A novel epidemic model for wireless
rechargeable sensor network security,’’ Sensors, vol. 21, no. 1, Dec. 2020,
Art. no. 123.

[39] S. Muthukrishnan, S. Muthukumar, and V. Chinnadurai, ‘‘Optimal control
of malware spreading model with tracing and patching in wireless sen-
sor networks,’’ Wireless Pers. Commun., vol. 117, no. 3, pp. 2061–2083,
Apr. 2021.

[40] S. Hosseini and M. A. Azgomi, ‘‘A model for malware propagation in
scale-free networks based on rumor spreading process,’’ Comput. Netw.,
vol. 108, pp. 97–107, Oct. 2016.

[41] B. K. Mishra and N. Keshri, ‘‘Mathematical model on the transmission of
worms in wireless sensor network,’’ Appl. Math. Model., vol. 37, no. 6,
pp. 4103–4111, Mar. 2013.

[42] S. Shen, H. Zhou, S. Feng, J. Liu, H. Zhang, and Q. Cao,
‘‘An epidemiology-based model for disclosing dynamics of malware
propagation in heterogeneous and mobile WSNs,’’ IEEE Access, vol. 8,
pp. 43876–43887, 2020.

[43] R. P. Ojha, P. K. Srivastava, G. Sanyal, and N. Gupta, ‘‘Improved model for
the stability analysis of wireless sensor network against malware attacks,’’
Wireless Pers. Commun., vol. 116, no. 3, pp. 2525–2548, Feb. 2021.

[44] H. Jiao and Q. Shen, ‘‘Dynamics analysis and vaccination-based sliding
mode control of a more generalized SEIR epidemic model,’’ IEEE Access,
vol. 8, pp. 174507–174515, 2020.

[45] X. Zhang and C. Gan, ‘‘Global attractivity and optimal dynamic counter-
measure of a virus propagation model in complex networks,’’ Phys. A, Stat.
Mech. Appl., vol. 490, pp. 1004–1018, Jan. 2018.

[46] Y. Yao, Q. Fu, W. Yang, Y. Wang, and C. Sheng, ‘‘An epidemic model
of computer worms with time delay and variable infection rate,’’ Secur.
Commun. Netw., vol. 2018, pp. 1–11, Mar. 2018, Art. no. 9756982.

[47] Q. Xu, Z. Su, K. Zhang, and S. Yu, ‘‘Fast containment of infectious diseases
with E-healthcare mobile social Internet of Things,’’ IEEE Internet Things
J., early access, Feb. 26, 2021, doi: 10.1109/JIOT.2021.3062288.

[48] H. Zhang, S. Shen, Q. Cao, X. Wu, and S. Liu, ‘‘Modeling and analyzing
malware diffusion in wireless sensor networks based on cellular automa-
ton,’’ Int. J. Distrib. Sens. Netw., vol. 16, no. 11, pp. 1–9, Nov. 2020.

[49] S. Hosseini and M. A. Azgomi, ‘‘Dynamical analysis of a malware propa-
gationmodel considering the impacts ofmobile devices and software diver-
sification,’’Phys. A, Stat. Mech. Appl., vol. 526, Jul. 2019, Art. no. 120925.

[50] L. Zhu, H. Zhao, and X. Wang, ‘‘Stability and bifurcation analysis in a
delayed reaction–diffusion malware propagation model,’’ Comput. Math.
Appl., vol. 69, no. 8, pp. 852–875, Apr. 2015.

[51] S. Shen, L. Huang, J. Liu, A. Champion, S. Yu, and Q. Cao, ‘‘Reliability
evaluation for clustered WSNs under malware propagation,’’ Sensors,
vol. 16, no. 6, Jun. 2016, Art. no. 855.

[52] S. Shen, H. Ma, E. Fan, K. Hu, S. Yu, J. Liu, and Q. Cao, ‘‘A non-
cooperative non-zero-sum game-based dependability assessment of het-
erogeneous WSNs with malware diffusion,’’ J. Netw. Comput. Appl.,
vol. 91, pp. 26–35, Aug. 2017.

[53] H. Xu, D. Wang, S. Shen, Y. Shi, and Q. Cao, ‘‘An efficient approach for
stimulating cooperation among nodes in wireless sensor networks,’’ Int. J.
Distrib. Sensor Netw., vol. 12, no. 5, May 2016, Art. no. 2873439.

[54] M. J. Farooq and Q. Zhu, ‘‘Modeling, analysis, and mitigation of dynamic
botnet formation in wireless IoT networks,’’ IEEE Trans. Inf. Forensics
Security, vol. 14, no. 9, pp. 2412–2426, Sep. 2019.

[55] A. Singh, A. K. Awasthi, K. Singh, and P. K. Srivastava, ‘‘Modeling and
analysis of worm propagation in wireless sensor networks,’’Wireless Pers.
Commun., vol. 98, no. 3, pp. 2535–2551, Feb. 2018.

[56] P. van den Driessche and J. Watmough, ‘‘Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease trans-
mission,’’ Math. Biosci., vol. 180, nos. 1–2, pp. 29–48, Nov. 2002.

XIAOTONG YE received the B.S. degree in com-
puter science and technology from Zhejiang Nor-
mal University, Jinhua, China, in 2001, and the
M.S. degree in software engineering from Tongji
University, Shanghai, China, in 2005.

He is currently a Lecturer with the Department
of Computer Science and Engineering, Shaoxing
University, Shaoxing, China. His current research
interests include the Internet of Things, cyber
security, cloud computing, and game theory.

SISI XIE received the B.E. degree in computer
science and technology from Shaoxing University,
Shaoxing, China, in 2019. Her current research
interests include the Internet of Things and cyber
security.

SHIGEN SHEN (Member, IEEE) received the
B.S. degree in fundamental mathematics from
Zhejiang Normal University, Jinhua, China,
in 1995, the M.S. degree in computer science and
technology from Zhejiang University, Hangzhou,
China, in 2005, and the Ph.D. degree in pattern
recognition and intelligent systems from Donghua
University, Shanghai, China, in 2013.

He is currently a Professor with the Department
of Computer Science and Engineering, Shaoxing

University, Shaoxing, China. His current research interests include the
Internet of Things, cyber security, cloud computing, and game theory.

VOLUME 9, 2021 82093

http://dx.doi.org/10.1109/JIOT.2021.3062288

