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ABSTRACT Coronoid systems actually arrangements of hexagons into six sides of benzenoids. By nature,
it is an organic chemical structure. Hollow coronoids are primitive and catacondensed coronoids. It is also
known as polycyclic conjugated hydrocarbons. The mathematical study of chemicals is of great interest
to different specialties researchers. While graph theory always played a significant role to make chemical
structures understandable and blessed with applications also. After transforming the chemical structure into
a graph, one can implement different theoretical and implicative studies on structures. Metric dimension
is considered as one of the most studied and implicative parameters of graph theory. In this concept, few
suggested vertices are chosen such as the remaining vertices have unique locations or identifications. In this
study, we discussed different metric-based parameters for the hollow coronoid structure.

INDEX TERMS Hollow coronoid, metric dimension, resolving set, fault-tolerant metric dimension.

I. INTRODUCTION
Chemical graph theory is considered a varied field and
combination of chemistry and mathematics. It is actually
an application of mathematics and therefore, it is known as
mathematical chemistry. It deals with the study of different
chemical structures, networks, and their topologies in the
form of a graph (usually vertex and edge). This applied
mathematics contributed a lot, it either solved complex mys-
teries or provides the tools to make them understandable.
By drawing a graph or by transforming it to a graph, a chem-
ical structure (network) shows its easiest or understandable
topology. In different past studies shows that while transform-
ing to graph, a chemical network’s atom becomes vertex, and
the line (bond) joining between atoms renamed as edges.

There are many different ways to analyze and study the
electric circuits in terms of graph theory, we are moving to
presents some graph-theoretical parameters as an application
in electronics. In 1975, [17], [45] introduced an effective con-
cept of visualization of a network, in this idea few principal
nodes are selected so that one can attain the complete set of
principal nodes in a unique identification in terms of distance
vector, it is known as resolving set or metric basis. This
concept lays down the foundation of many graph-theoretical
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parameters which are also implemented in different engi-
neering, chemical, electrical, and other sciences. The fault-
tolerant resolving set is another way of studying a network,
in which the failure of a single principal node from resolving
set can be tolerated and the entire set of principal nodes still
have a unique position, it is defined by [6].When the entire set
of principal nodes divided into subsets and putting the condi-
tion of getting the unique position of a set of principal nodes is
called a partition resolving set [7]. The above concepts are the
topics of well-known metric-based resolvability parameters
and studied for different graphs, networks, and structures.

The authors of [8], [18], [26], addressed the computational
complexity and proved that all the resolvability parameter
studied in this paper belongs to the problem of NP-hardness.
The researchers are motivated by the fact that the metric
dimension has a variety of functional uses in our everyday
lives, and it has been extensively researched. Metric dimen-
sion is applied on different topics of fields such as weighing
problem of coins [46], robot navigation also related to this
concept by [25], pharmaceutical chemistry always been a
part of the application of graph theory and particular to this
topic discussed in [8], different studies conducted about the
combinatorial optimization in [42] also related to this con-
cept, coastguard Loran, sonar and facility location problems
related to this concept in the seminal paper by [45], computer
networks [28], for more detailed study of the applications of
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this parameter [32], [33]. Partition dimension is also falling
in different applications of real-world, for example, for the
strategies, decoding, and coding of games and especially the
mastermind games brief in [11], the popular relation which
is named as Djokovic-Winkler linked to this concept [6],
the piloting or the guidance of a robot also associated with
this unique idea [25], the procedure of discovering a network
and also its verification related to this concept by [4]. For
more usage and applications of these resolvability parame-
ters, we refer to see [8], [17], [22], [23], [30].

As we discussed above that this has numerous use in the
chemical field, much work has done with graph prospectives
and metric dimension also consider important to study dif-
ferent structures with it, like the structure of H-Naphtalenic
and VC5C7 nano-tubes discussed with metric concept [20],
some upper bounds of cellulose network considering metric
dimension as a point of discussion [43], metric of silicate star
are computed in [44], a two-dimensional lattice of α-boron
nanotubes discussed with specific applications in terms of
metric dimension in [19]. For the partition dimension, a graph
with n−3, partition dimension discussed in [3], (4, 6) is
a special type of fullerene structure and it is also studied
by [29] with the concept of partition dimension, There are
few very recent research on the bounded partition dimension,
we encourage to have a look the articles [10], [27], [31].
The bounds of partitioning on the specific type of nanotube
are studied in [39]. All the resolvability parameters of graph
theory on the polycyclic aromatic hydrocarbons are discussed
in [2]. For the fault-tolerant concept discussed in [21] for
basic graphs, [34] for different interconnection networks
along with implementation of its applications, some recent
work can be acquired by the references [35], [36], [41].

In different applications of the usage of graph theory,
the terminologies changed accordingly. Like, when an elec-
trical circuit transformed into a graph, the current sources
(or open circuits) renamed as vertices, while the voltage
sources and passive elements replaced by edges. The vertices
are known as principal nodes (or nodes) and edges become
line segments (or branches) [47]. In this study, we can use
any of the terms defined above, like principal nodes or simply
nodes for the term of vertices, and line segments or branches
may use for edges. Following are some very basic concepts
and preliminary mathematical definitions especially useful
for understanding the research work that has been done here.
Definition 1 [31]: Suppose ℵ (V (ℵ) ,E (ℵ)) is an undi-

rected graph of a chemical structure (network) with V (ℵ) is
called as set of principal nodes (vertex set) and E (ℵ) is the
set of branches (edge set). The distance between two principal
nodes ζ1, ζ2 ∈ V (ℵ) , denoted as d (ζ1, ζ2) is the minimum
count of branches between ζ1−ζ2 path.
Definition 2 [45]: Suppose R ⊂ V (ℵ) is the subset of

principal nodes set and defined as R = {ζ1, ζ2, . . . , ζs}, and
let a principal node ζ ∈ V (ℵ) . The identification or loca-
tions r(ζ |R) of a principal node ζ with respect to R is actu-
ally a s−ordered distances (d(ζ, ζ1), d(ζ, ζ2), . . . , d(ζ, ζs)).
If each principal node from V (ℵ) have unique identification

according to the ordered subset R, then this subset renamed
as a resolving set of network ℵ. The minimum numbers of the
elements in the subset R is actually the metric dimension of
ℵ and it is denoted by the term dim (ℵ) .
Definition 3 [6]: A particular chosen ordered subset

which were actually resolving set symbolize by R of a net-
work ℵ is considered to be a fault-tolerant denoted by (Rf ),
now if for each member of ζ ∈ R, with the condition R\ζ
is also remain a resolving set for the network ℵ. The mini-
mum number of elements in the fault-tolerant resolving set is
known as the fault-tolerant metric dimension and described
as dimf (ℵ) .
Definition 4 [7]: Let Rp ⊆ V (ℵ) is the s-ordered

proper set and r
(
ζ |Rp

)
= {d(ζ,Rp1), d(ζ,Rp2), . . . ,

d(ζ,Rps)}, is the s-tuple distance identification of a principal
node ζ with respect to Rp. If the entire set of principal nodes
have unique identifications, then Rp is the partition resolving
set of the set of principal node of a network ℵ. The minimum
count of subsets in the partition resolving set of V (ℵ) is
defined as the partition dimension (pd (ℵ)) of ℵ.
Theorem 1 [9]: Let dim (ℵ), dimf (ℵ) are the metric and

fault-tolerant metric dimension of graph ℵ respectively. Then

dimf (ℵ) ≥ dim (ℵ)+1.

II. CONSTRUCTION OF HOLLOW CORONOID HC
(
p, q, s

)
In 1987, the term coronoid was devised by [5], due to its
possible relation with benzenoid. Because a benzenoid with a
hole in the center is known as a coronoid. Coronoid is rooted
in organic chemistry and falls in the category of polyhex
systems. The graph shown in Figure 1, is a hollow coronoid
structure. Hollow coronoid is also contained Kekule with
the specific values of parameters (p = q = s = 3) [13].
Also, the circumcoronene is known as peri-condensed ben-
zenoids and related with hollow coronoids [39]. Actually
a hollow coronoid contained six sides p, q, s, p′, q′, s′ as
shown in Figure 1. It is considered a sub-cluster of primi-
tive coronoids and is further categorized as catacondensed
coronoids [14].
For a new variety of hollow coronoid topologies, one can

find in [38]. In which authors discussed some topological
properties of this structure and its relevance also. There is
another name of this structure which is called a zigzag-edge
coronoid [15]. The authors discussed some useful properties
related to the topology of hollow coronoid. For the math-
ematical study of coronoid and related structures, we refer
to see [12]. For the polynomial study of hollow coronoid,
the recent research work is [1]. In which authors computed
some types of polynomials. The link of hollow coronoid with
polyhex discussed in [16]. In this study, the authors discussed
themathematical chemistry of coronoid structure. For a better
understanding of hollow coronoid and its generalizations,
we refer to see the lecture notes and books [13], [14].
In this work, we consider a hollow coronoid with p = p′,

q = q′, s = s′ with total six sides, but the three (p, q, s)
sides are symmetric to other three (p′, q′, s′). We label this
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FIGURE 1. Hollow coronoid with p = 5, q = s = 4..

hollow coronoid as HC (p, q, s) , with p, q, s ≥ 2. The
structure contained total 8 (p+q+s−3) vertices or nodes,
in which 4 (p+q+s−3) are with degree two and the same
amount of vertices with degree three. The total count of edges
(branches, line segments or bonds) are 10 (p+q+s−3) . The
vertex and edge set of hollow coronoid structureHC (p, q, s) ,
are describe as:

V (HC (p, q, s)) = {ai, a′i, : 1 ≤ i ≤ 2s−1}

∪{bi, b′i, : 1 ≤ i ≤ 2p−1}

∪{ci, c′i, : 1 ≤ i ≤ 2q−1}

∪{di, d ′i , : 1 ≤ i ≤ 2s−3}

∪{ei, e′i, : 1 ≤ i ≤ 2p−3}

∪{fi, f ′i , : 1 ≤ i ≤ 2q−3},

E (HC (p, q, s)) = {aiai+1, a′ia
′

i+1, : 1 ≤ i ≤ 2s−2}

∪{bibi+1, b′ib
′

i+1, : 1 ≤ i ≤ 2p−2}

∪{cici+1, c′ic
′

i+1, : 1 ≤ i ≤ 2q−2}

∪{didi+1, d ′id
′

i+1, : 1 ≤ i ≤ 2s−4}

∪{eiei+1, e′ie
′

i+1, : 1 ≤ i ≤ 2p−4}

∪{fifi+1, f ′i f
′

i+1, : 1 ≤ i ≤ 2q−4}

∪{ai+1di, a′i+1d
′
i , : 1 ≤ i (odd) ≤ 2s−3}

∪{bi+1ei, b′i+1e
′
i, : 1 ≤ i (odd) ≤ 2p−3}

∪{ci+1fi, c′i+1f
′
i , : 1 ≤ i (odd) ≤ 2q−3}

∪{a1c1, a′1c
′

1, a2s−1b1, a
′

2s−1b2p−1,

b′2p−1c
′

2q−1, b
′

1c2q−1, d1f1, d
′

1f
′

1, d2s−3e1,

d ′2s−3e2p−3, e
′

2p−3f
′

2q−3,

e′2p−3f
′

2q−3, e
′

1f2q−3}.

To make it understandable, we assigned the specific call-
ings to different clusters of vertices. Like, outside vertices of

hollow coronoid are labeled as ai, a′i, bi, b
′
i, ci and c

′
i.While,

the vertices inside the hollow coronoid are di, d ′i , ei, e
′
i, fi and

f ′i .We can do the same assignments for the edges as well.
Furthermore, the vertice marking used in the findings

described in Figure 1, and the generalizeHC (p, q, s) , can be
made by combining the vertex and edge sets of HC (p, q, s) ,
defined above.

III. RESULTS ON THE RESOLVABILITY OF
HOLLOW CORONOID
Following is the core of this study in Lemma 1. It is chosen a
suitable subset for resolving set from V (HC (p, q, s)) .
Lemma 1: If HC (p, q, s) be the graph of hollow coronoid

with p, q, s ≥ 2, then the cardinality of its resolving set is 3.
Proof: Let R = {a1, b1, b2p−1}, is the ordered subset

and to show that the R is one of the candidate of resolving set
of HC (p, q, s) , with cardinality 3. Now, given below are the
identifications of the entire set of nodes of HC (p, q, s) , with
respect to the nodes in R.
For i = 1, 2, . . . , 2s−1, the r (ai|R) and r

(
a′i|R

)
, are

following;

r (ai|R) = (i−1, 2s−i, 2 (s+p−1)−i) ,

r
(
a′i|R

)
=


(2 (2s+p)−5−i, 2 (p+s−1)−i, 2s−i) ,

if i = 1, 2, . . . , 2s−2;

(2 (s+p−1) , 2 (p+s−1)−i, 2s−i) ,
if i = 2s−1.

For i = 1, 2, . . . , 2p−1, the r (bi|R) and r
(
b′i|R

)
, are

following;

r (bi|R) = (2s−2+i, i−1, 2p−1−i) ,

r
(
b′i|R

)
=


(2q−1+i, 2 (q+s)−1, 2 (q+s+p−2)−i) ,

if i = 1;

(2q−1+i, 2 (q+s−2)+i, 2 (q+s+p−2)−i) ,
if i = 2, 3, . . . , 2p−1.

For i = 1, 2, . . . , 2q−1, the r (ci|R) and r
(
c′i|R

)
, are

following;

r (ci|R) = (i, 2s−i+1, 2 (s+p)−3+i) ,

r
(
c′i|R

)
=


(2 (2q+p−2)−i, 2 (s+p)−3+i, 2s−1+i) ,

if i = 1, 2, . . . , 2q−2;

(2 (q+p)−1, 2 (s+p)−3+i, 2s−1+i) ,
if i = 2q−1.

We can see that all the outside vertices of HC (p, q, s)
have unique locations (identifications). Now we can find the
locations for inside vertices of HC (p, q, s) .
For i = 1, 2, . . . , 2s−3, the r (di|R) and r

(
d ′i |R

)
, are

following;

r (di|R) = (i+1, 2s−i, 2 (s+p−2)−i) ,

r
(
d ′i |R

)
= (2 (2s+p)−7−i, 2 (p+s−2)−i, 2s−i) .
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For i = 1, 2, . . . , 2p−3, the r (ei|R) and r
(
e′i|R

)
, are

following;

r (ei|R) = (2 (s−1)+i, i+1, 2p−1−i) ,

r
(
e′i|R

)
= (2q−1+i, 2 (q+s−2)+i, 2 (s+p+q−3)−i) .

For i = 1, 2, . . . , 2q−3, the r (fi|R) and r
(
f ′i |R

)
, are

following;

r (fi|R) = (2+i, i−1+2s, 2 (p+s)−5+i) ,

r
(
f ′i |R

)
= (2 (2q+p−3)−i, 2 (p+s)+i−5, 2s−1+i) .

Identifications of thewhole group of nodes ofHC (p, q, s) ,
emerged from the above data, we can observe that all the
principal nodes possessed the unique identifications and
meet the concept of a resolving set by concluding that
|R| = 3. �
Theorem 2: Let the graph of hollow coronoidHC (p, q, s) ,

with p, q, s ≥ 2. Then

dim (HC (p, q, s)) = 3.

Proof: To prove that the metric dimension of
HC (p, q, s) , is 3, by the method of double inequality and
referring the Lemma 1, which is already proved that R =
{a1, b1, b2p−1}, is a candidate of the resolving set has the
cardinality 3.

Now we will prove that dim (HC (p, q, s)) ≥ 3. On con-
trary assume that dim (HC (p, q, s)) = 2, and R′ is the
resolving set with cardinality two is possible. Given below
are some cases to check that |R′| = 2 is possible or not.

Let the index notations, S1 = {1, 2, . . . , 2s−1}, S2 = {1,
2, . . . , 2p−1}, S3 = {1, 2, . . . , 2q−1}, S4 = {1, 2, . . . ,
2s−3}, S5 = {1, 2, . . . , 2p−3} and S6 = {1, 2, . . . , 2q−3}.
Case 1: For |R′| = 2, and R′ ⊂ {ai : 1 ≤ i ≤ 2s−1} ⊂

V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 2: For |R′| = 2, and R′ ⊂ {bi : 1 ≤ i ≤ 2p−1} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
bl |R′

)
= r

(
em|R′

)
, where l ∈ S2 and m ∈ S5.

Case 3: For |R′| = 2, and R′ ⊂ {ci : 1 ≤ i ≤ 2q−1} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 4: For |R′| = 2, and R′ ⊂ {a′i : 1 ≤ i ≤ 2s−1} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 5: For |R′| = 2, and R′ ⊂ {b′i : 1 ≤ i ≤ 2p−1} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
bl |R′

)
= r

(
em|R′

)
, where l ∈ S2 and m ∈ S5.

Case 6: For |R′| = 2, and R′ ⊂ {c′i : 1 ≤ i ≤ 2q−1} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
bl |R′

)
= r

(
em|R′

)
, where l ∈ S2 and m ∈ S5.

Case 7: For |R′| = 2, and R′ ⊂ {di : 1 ≤ i ≤ 2s−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 8: For |R′| = 2, and R′ ⊂ {ei : 1 ≤ i ≤ 2p−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 9: For |R′| = 2, and R′ ⊂ {fi : 1 ≤ i ≤ 2q−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and m ∈ S4.

Case 10: For |R′| = 2, and R′ ⊂ {d ′i : 1 ≤ i ≤ 2s−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
fm|R′

)
, where l ∈ S1 and m ∈ S6.

Case 11: For |R′| = 2, and R′ ⊂ {e′i : 1 ≤ i ≤ 2p−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
al |R′

)
= r

(
em|R′

)
, where l ∈ S1 and m ∈ S5.

Case 12: For |R′| = 2, and R′ ⊂ {f ′i : 1 ≤ i ≤ 2q−3} ⊂
V (HC (p, q, s)) . Such case implied that |R′| 6= 2, because
r
(
fl |R′

)
= r

(
cm|R′

)
, where l ∈ S6 and m ∈ S3.

Case 13: For |R′| = 2, and R′ ⊂ {ai, bj : 1 ≤ i ≤ 2s−1,
1 ≤ i ≤ 2p−1} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
al |R′

)
= r

(
dm|R′

)
, where l ∈ S1 and

m ∈ S4.
Case 14: For |R′| = 2, and R′ ⊂ {ai, cj : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2q−1} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
bl |R′

)
= r

(
em|R′

)
, where l ∈ S2 and

m ∈ S5.
Case 15: For |R′| = 2, and R′ ⊂ {ai, a′j : 1 ≤ i, j ≤

2s−1} ⊂ V (HC (p, q, s)) . Such case implied that |R′| 6= 2,
because r

(
a′l |R

′
)
= r

(
d ′m|R

′
)
, where l ∈ S1 and m ∈ S4.

Case 16: For |R′| = 2, and R′ ⊂ {ai, b′j : 1 ≤ i ≤ 2s−1,
1 ≤ i ≤ 2p−1} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
cl |R′

)
= r

(
fm|R′

)
, where l ∈ S3 and

m ∈ S6.
Case 17: For |R′| = 2, and R′ ⊂ {ai, c′j : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2q−1} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
cl |R′

)
= r

(
fm|R′

)
, where l ∈ S3 and

m ∈ S6.
Case 18: For |R′| = 2, and R′ ⊂ {ai, dj : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2s−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
b′l |R

′
)
= r

(
e′m|R

′
)
, where l ∈ S2 and

m ∈ S5.
Case 19: For |R′| = 2, and R′ ⊂ {ai, ej : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2p−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
b′l |R

′
)
= r

(
e′m|R

′
)
, where l ∈ S2 and

m ∈ S5.
Case 20: For |R′| = 2, and R′ ⊂ {ai, fj : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2q−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
c′l |R
′
)
= r

(
f ′m|R

′
)
, where l ∈ S3 and

m ∈ S6.
Case 21: For |R′| = 2, and R′ ⊂ {ai, d ′j : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2s−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
cl |R′

)
= r

(
fm|R′

)
, where l ∈ S3 and

m ∈ S6.
Case 22: For |R′| = 2, and R′ ⊂ {ai, e′j : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2p−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
c′l |R
′
)
= r

(
f ′m|R

′
)
, where l ∈ S3 and

m ∈ S6.
Case 23: For |R′| = 2, and R′ ⊂ {ai, f ′j : 1 ≤ i ≤ 2s−1,

1 ≤ i ≤ 2q−3} ⊂ V (HC (p, q, s)) . Such case implied that
|R′| 6= 2, because r

(
al |R′

)
= r

(
cm|R′

)
, where l ∈ S1 and

m ∈ S3.
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All the cases for |R′| = 2, enclosed that there does not exist
a set with cardinality two which is the candidate for resolving
set and it further indicated that two metric dimension of
HC (p, q, s) is not possible. Hence; dim (HC (p, q, s)) ≥ 3.

Furthermore,

dim (HC (p, q, s)) = 3.

�
Lemma 2: Let the graph of hollow coronoid HC (p, q, s) ,

with p, q, s ≥ 2. Then the cardinality of fault-tolerant resolv-
ing set of HC (p, q, s) , is 4.

Proof: To show that the graph HC (p, q, s) , has a fault-
tolerant resolving set of cardinality 4, let Rf is a candidate
for the fault-tolerant resolving set and it is taken as, Rf =
{a1, b1, b2p−1, e′2p−3}. Now, given below are the identifica-
tions of the entire set of nodes of HC (p, q, s) , with respect
to the nodes in Rf .

We divide the proof into two following cases on the values
of p, q and s.
Case 1:When p = 2, 3 and q = s = 2.
For i = 1, 2, . . . , 2s−1, the r

(
ai|Rf

)
and r

(
a′i|Rf

)
, are

following;

r
(
ai|Rf

)
=


(i−1, 2s−i, 2 (s+p−1)−i, 2p+2) ,
if i = 1, 3;

(1, 2 (s−1) , 2 (s+p−2) , 2p+1) ,
if i = 2.

r
(
a′i|Rf

)
=



(2 (2s+p)−5−i, 2 (p+s−1)−i,
2s−i, i−1) ,
if i = 1, 2, . . . , 2s−2;

(2 (s+p−1) , 2 (p+s−1)−i, 2s−i,
i−1) ,
if i = 2s−1.

For i = 1, 2, . . . , 2p−1, the r
(
bi|Rf

)
and r

(
b′i|Rf

)
, are

following;

r
(
bi|Rf

)
= (2s−2+i, i−1, 2p−1−i, 2 (p+1)−i) ,

r
(
b′i|Rf

)
=



(2q−1+i, 2 (q+s)−1, 2 (q+s+p−2)
−i, 2p+3−i) ,
if i = 1;

(2q−1+i, 2 (q+s−2)+i, 2 (q+s+p−2)
−i, 2p+3−i) ,
if i = 2, 3, . . . , 2p−1.

For i = 1, 2, . . . , 2q−1, the r
(
ci|Rf

)
and r

(
c′i|Rf

)
, are

following;

r
(
ci|Rf

)
=


(i, 2s−i+1, 2 (s+p)−3+i, 2p+3) ,
if i = 1, 3;

(i, 2s−i+1, 2 (s+p)−3+i, 2p+2) ,
if i = 2

r
(
c′i|Rf

)
=



(2 (2q+p−2)−i, 2 (s+p)−3+i,
2s−1+i, i) ,
if i = 1, 2, . . . , 2q−2;

(2 (q+p)−1, 2 (s+p)−3+i, 2s−1+i, i) ,
if i = 2q−1.

We can see that all the outside vertices ofHC (p, q, s) have
unique locations and it will not effect if we deleted any of
the member of Rf . Now we can find the locations for inside
vertices of HC (p, q, s) .
For i = 1, 2, . . . , 2s−3, the r

(
di|Rf

)
and r

(
d ′i |Rf

)
, are

following;

r
(
di|Rf

)
= (i+1, 2s−i, 2 (s+p−2)−i, 2p) ,

r
(
d ′i |Rf

)
= (2 (2s+p)−7−i, 2 (p+s−2)−i, 2s−i, 2) .

For i = 1, 2, . . . , 2p−3, the r
(
ei|Rf

)
and r

(
e′i|Rf

)
, are

following;

r
(
ei|Rf

)
= (2 (s−1)+i, i+1, 2p−1−i, 2p−i) ,

r
(
e′i|Rf

)
= (2q−1+i, 2 (q+s−2)+i, 2 (s+p+q−3)

−i, 2p+1−i) .

For i = 1, 2, . . . , 2q−3, the r
(
fi|Rf

)
and r

(
f ′i |Rf

)
, are

following;

r
(
fi|Rf

)
= (2+i, i−1+2s, 2 (p+s)−5+i, 2p+1) ,

r
(
f ′i |Rf

)
= (2 (2q+p−3)−i, 2 (p+s)+i−5, 2s−1+i, 3) .

Case 2:When p, q, s ≥ 3.
For i = 1, 2, . . . , 2s−1, the r

(
ai|Rf

)
and r

(
a′i|Rf

)
, are

following;

r
(
ai|Rf

)
=


(i−1, 2s−i, 2 (s+p−1)−i, 2 (q+p−2)) ,
if i = 1;

(i−1, 2s−i, 2 (s+p−1)−i, 2 (q+p)−7+i) ,
if i = 2, 3, . . . , 2s−1.

r
(
a′i|Rf

)
=



(2 (2s+p)−5−i, 2 (p+s−1)−i, 2s−i, 2q) ,
if i = 1;

(2 (2s+p)−5−i, 2 (p+s−1)−i, 2s−i, 2q,
2q−3+i) ,
if i = 2, 3, . . . , 2s−2;

(2 (s+p−1) , 2 (p+s−1)−i, 2s−i,
2q−3+i) ,
if i = 2s−1.

For i = 1, 2, . . . , 2p−1, the r
(
bi|Rf

)
and r

(
b′i|Rf

)
, are

following;

r
(
bi|Rf

)
=



(2s−2+i, i−1, 2p−1−i,
2 (s+p+q−3)−i) ,
if i = 1, 2, . . . , 2p−2;

(2s−2+i, i−1, 2p−1−i, 2 (s+q)−3) ,
if i = 2p−1.
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r
(
b′i|Rf

)
=



(2q−1+i, 2 (q+s)−1, 2 (q+s+p−2)
−i, 2p−1−i) ,
if i = 1;

(2q−1+i, 2 (q+s−2)+i, 2 (q+s+p−2)
−i, 2p−1−i) ,
if i = 2, 3, . . . , 2p−2;

(2q−1+i, 2 (q+s−2)+i,
2 (q+s+p−2)−i, 2) ,
if i = 2p−1.

For i = 1, 2, . . . , 2q−1, the r
(
ci|Rf

)
and r

(
c′i|Rf

)
, are

following;

r
(
ci|Rf

)
=



(i, 2s−i+1, 2 (s+p)−3+i,
2 (q+p−2)−i) ,
if i = 1, 2, . . . , 2q−2;
(i, 2s−i+1, 2 (s+p)−3+i, 2p−1) ,
if i = 2q−1

r
(
c′i|Rf

)
=



(2 (2q+p−2)−i, 2 (s+p)−3+i,
2s−1+i, 2q−i) ,
if i = 1, 2, . . . , 2q−2;
(2 (q+p)−1, 2 (s+p)−3+i,
2s−1+i, 3) ,
if i = 2q−1.

We can see that all the outside vertices ofHC (p, q, s) have
unique locations and it will not effect if we deleted any of
the member of Rf . Now we can find the locations for inside
vertices of HC (p, q, s) .

For i = 1, 2, . . . , 2s−3, the r
(
di|Rf

)
and r

(
d ′i |Rf

)
, are

following;

r
(
di|Rf

)
= (i+1, 2s−i, 2 (s+p−2)−i,

2 (q+p−3)+i) ,
r
(
d ′i |Rf

)
= (2 (2s+p)−7−i, 2 (p+s−2)−i,

2s−i, 2q−3+i) .

For i = 1, 2, . . . , 2p−3, the r
(
ei|Rf

)
and r

(
e′i|Rf

)
, are

following;

r
(
ei|Rf

)
= (2 (s−1)+i, i+1, 2p−1−i,

2 (p+q+s−4)−i) ,
r
(
e′i|Rf

)
= (2q−1+i, 2 (q+s−2)+i,

2 (s+p+q−3)−i, 2p−3−i) .

For i = 1, 2, . . . , 2q−3, the r
(
fi|Rf

)
and r

(
f ′i |Rf

)
, are

following;

r
(
fi|Rf

)
= (2+i, i−1+2s, 2 (p+s)−5+i,

2 (q+p−3)−i) ,
r
(
f ′i |Rf

)
= (2 (2q+p−3)−i, 2 (p+s)+i−5,

2s−1+i, 2 (q−1)−i) .

Identifications of the complete vertex set of hollow coro-
noid HC (p, q, s) , emerged from the above data in the form

of r
(
.|Rf

)
, we can observe that all the principal nodes pos-

sessed a unique identifications and meet the concept of fault-
tolerant resolving set and further implied that

∣∣Rf ∣∣ = 4. �
Theorem 3: If the graph of hollow coronoid HC (p, q, s) ,

with p, q, s ≥ 2, then

dimf (HC (p, q, s)) = 4.

Proof: To show that the graph of hollow coro-
noid HC (p, q, s) , has 4, fault-tolerant metric dimension,
by the implementation of method of double inequality, for
dimf (HC (p, q, s)) ≤ 4, we are referring the Lemma 2,
which is already proved that the fault-tolerant resolving set
Rf is a candidate with cardinality 4 and it can be settled as
Rf = {a1, b1, b2p−1, e′2p−3}.
Now for dimf (HC (p, q, s)) ≥ 4, by contradiction we get

dimf (HC (p, q, s)) = 3,which is not possible by Theorems 1
and 2. It is implied that the graph HC (p, q, s) does not have
dimf (HC (p, q, s)) = 3. Hence; dimf (HC (p, q, s)) ≥ 4.

Now by relating both inequalities, end up with conclusion
that

dimf (HC (p, q, s)) = 4.

�
Lemma 3: Let the graph of hollow coronoid HC (p, q, s) ,

with p, q, s ≥ 2. Then the cardinality of partition resolving
set of HC (p, q, s) , is at most 4.

Proof: To show that the graph of hollow coro-
noid HC (p, q, s) , has a candidate for the partition resolv-
ing set with cardinality 4, and it is taken as Rp =

{Rp1, Rp2, Rp3, Rp4},whereRp1 = {a1}, Rp2 = {b2}, Rp3 =
{b2p−1}, Rp4 = V (HC (p, q, s)) \{a1, b1, b2p−1}. Now the
given below are the identifications of the complete set of
nodes of HC (p, q, s) , with respect to the Rp.
For i = 1, 2, . . . , 2s−1, the r

(
ai|Rp

)
and r

(
a′i|Rp

)
, are

following;

r
(
ai|Rp

)
= (i−1, 2s−i, 2 (s+p−1)−i, z1) ,

r
(
a′i|Rp

)
=


(2 (2s+p)−5−i, 2 (p+s−1)−i, 2s−i, 0) ,
if i = 1, 2, . . . , 2s−2;
(2 (s+p−1) , 2 (p+s−1)−i, 2s−i, 0) ,
if i = 2s−1.

z1 =

{
1 if i = 1;
0 otherwise.

For i = 1, 2, . . . , 2p−1, the r
(
bi|Rp

)
and r

(
b′i|Rp

)
, are

following;

r
(
bi|Rp

)
= (2s−2+i, i−1, 2p−1−i, z2) ,

r
(
b′i|Rp

)
=



(2q−1+i, 2 (q+s)−1,
2 (q+s+p−2)−i, 0) ,
if i = 1;
(2q−1+i, 2 (q+s−2)+i,
2 (q+s+p−2)−i, 0) ,
if i = 2, 3, . . . , 2p−1.

z2 =

{
1 if i = 1, 2p−1;
0 otherwise.
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For i = 1, 2, . . . , 2q−1, the r
(
ci|Rp

)
and r

(
c′i|Rp

)
, are

following;

r
(
ci|Rp

)
= (i, 2s−i+1, 2 (s+p)−3+i, 0) ,

r
(
c′i|Rp

)
=



(2 (2q+p−2)−i, 2 (s+p)−3+i,
2s−1+i, 0) ,
if i = 1, 2, . . . , 2q−2;

(2 (q+p)−1, 2 (s+p)−3+i,
2s−1+i, 0) ,
if i = 2q−1.

We can see that all the outside vertices ofHC (p, q, s) have
unique locations. Now we can find the locations for inside
vertices of HC (p, q, s) .

For i = 1, 2, . . . , 2s−3, the r
(
di|Rp

)
and r

(
d ′i |Rp

)
, are

following;

r
(
di|Rp

)
= (i+1, 2s−i, 2 (s+p−2)−i, 0) ,

r
(
d ′i |Rp

)
= (2 (2s+p)−7−i, 2 (p+s−2)−i, 2s−i, 0) .

For i = 1, 2, . . . , 2p−3, the r
(
ei|Rp

)
and r

(
e′i|Rp

)
, are

following;

r
(
ei|Rp

)
= (2 (s−1)+i, i+1, 2p−1−i, 0) ,

r
(
e′i|Rp

)
= (2q−1+i, 2 (q+s−2)+i,

2 (s+p+q−3)−i, 0) .

For i = 1, 2, . . . , 2q−3, the r
(
fi|Rp

)
and r

(
f ′i |Rp

)
, are

following;

r
(
fi|Rp

)
= (2+i, i−1+2s, 2 (p+s)−5+i, 0) ,

r
(
f ′i |Rp

)
= (2 (2q+p−3)−i, 2 (p+s)+i−5,

2s−1+i, 0) .

Identifications of the complete set of principal nodes of
HC (p, q, s) , we can observe that all the principal nodes pos-
sesses a unique identifications and meet the defined concept
of partition resolving set and stating that

∣∣Rp∣∣ = 4. �
Theorem 4: Let the graph of hollow coronoidHC (p, q, s) ,

with p, q, s ≥ 2. Then

pd (HC (p, q, s)) ≤ 4.

Proof: To show that HC (p, q, s) , has the partition
dimension which is 4. From Lemma 3 given above shows that
there is a candidate of the partition resolving set with cardi-
nality 4 and it is been taken as, Rp = {Rp1, Rp2, Rp3, Rp4},
where Rp1 = {a1}, Rp2 = {b2}, Rp3 = {b2p−1}, Rp4 =
V (HC (p, q, s)) \{a1, b1, b2p−1}. By using Lemma 3, it is
concluded that

pd (HC (p, q, s)) ≤ 4.

�

IV. CONCLUSION
Studying chemical structures in the terminologies of graph
theory is an attractive and very useful concept. It helps chem-
ical researchers to study different chemical networks and
topologies in more accurate and easiest form. We pursue

such motivation and studied a very impressive cluster of
organic chemistry.We studied hollow coronoid topologywith
six sides and computed its metric, fault-tolerant metric, and
its generalization which is known as partition dimension.
We proved that the above parameters are constant and do not
depend on the number of vertices of the hollow coronoid.
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