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ABSTRACT Future Force Design (FFD) is a strategic planning activity that decides the programming of
defence capability options. This is a complex problem faced by the Australian Department of Defence (DoD)
and requires the simultaneous selection and scheduling of projects. Specifically, this is a NP-hard problem
known as the Project Portfolio Selection and Scheduling Problem (PPSSP). While the PPSSP is a complex
problem itself, its complexity is further increased when coupled with the additional characteristics that arise
in the context of defence-oriented planning, such as long planning periods and complex operational con-
straints. As a result, many previous studies examined only a small number of projects over a short planning
period and are largely unsuitable for the scale required in the defence sector. To address this issue, two
primary contributions are made in this paper. Firstly, this study describes a complex practical PPSSP, inspired
by the FFD process, and develops a corresponding mathematical model. Problem instances are derived from
real-world, publicly-available defence data. Secondly, to address instances of the problem, two existing meta-
heuristics are considered and a hybrid, multi-population approach is proposed. Results are compared against
those attained by a commercial exact solver and indicate that there is no statistically significant difference
in performance between the proposed multi-population approach and the exact solver. A key benefit of the
proposed meta-heuristic approach is that its run time is not significantly influenced by the complexity of the
problem instance. Additionally, many interesting practical insights regarding the solution of selection and
scheduling problems are uncovered.

INDEX TERMS Future force design, capability based planning, project portfolio selection and scheduling.

I. INTRODUCTION

The Future Force Design (FFD) problem is a complex plan-
ning task undertaken by defence organizations that assists in
making critical investment decisions for the future defence
force. This problem is often addressed using a Capability-
Based Planning (CBP) framework. CBP provides an ana-
lytical framework for delivering capabilities, suitable for
a wide variety of challenges, within the confines of an
economic framework [1]. A capability, in this context,
refers to the ability to achieve an operational effect and
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may include various integral components such as doctrine,
training, and leadership [2]. The CBP approach encour-
ages the adoption of strategies that address a wide variety
of plausible future scenarios by focusing on the develop-
ment of capabilities rather than specific countermeasures [2].
Moreover, a robust set of low-level capabilities are selected
such that they can be composed in different ways to meet
any complex requirements that may arise in the foresee-
able future. In contrast, earlier planning approaches often
focused on threat-based planning or point-scenario plan-
ning, whereby single scenarios were used to guide the plan-
ning process towards the mitigation of specific plausible
events [3].
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The first step in a CBP framework is to define a set of high-
level objectives. In the context of FFD, the 2020 Defence
Strategic Update (DSU) [4], published by the Australian
Department of Defence (DoD),! lists three primary strate-
gic defence objectives: 1) shape Australia’s strategic envi-
ronment, 2) deter actions against Australia’s interests, and
3) respond with credible military force, when required. These
high-level objectives can then be further decomposed into
sub-objectives, such as prioritization of the immediate geo-
graphical region for Australian Defence Force (ADF) deploy-
ment, enhancing the capacity to support civil authorities in
response to natural disasters and crises, and developing new
capabilities to provide deterrence from nuclear threats [4].

In the 2020 Force Structure Plan (FSP) [5], the DoD
provided a comprehensive review of their capability plans
to realign them with the new objectives given in the DSU.
To support this plan, approximately $575B in government
funding has been allocated to the DoD over the next decade,
with approximately $270B of capability investments. This
funding, referred to as the Defence budget, is comprised of
three major categories: the acquisition of new capabilities,
sustaining existing capabilities, and workforce costs. This
study focuses on the first category, namely acquisition, which
encompasses the process of selecting and scheduling the
delivery of capabilities such as military equipment, facili-
ties and infrastructure, and information and communications
technology projects.

The FSP also outlined a proposed budget for the 10-year
period starting with the 2020-21 fiscal year (FY). Specifi-
cally, the budget allocation for the acquisition category in
the 2020-21 FY was approximately $14.4B, which increases
to $29.2B in the 2029-30 FY. This represents an increase
from 34% of the total Defence budget to 40%, thereby evi-
dencing that the acquisition and delivery of new capabilities
are increasingly important to the DoD. To provide further
granularity, the FSP also revealed the proportion of capabil-
ity investments that are allocated to the primary capability
streams over the next decade. This included five major capa-
bility streams, with allocations of $75B for Maritime, $65B
for Air, $55B for Land, $15B for Information and Cyber, and
$7B for Space over the next decade. These budgets, expressed
as relative percentages, are shown in Figure 1.

At its core, the primary objective of the FFD process
is to maximize the delivery of new capabilities through
the selection and scheduling of a set of projects subject
to various operational constraints. The general problem of
selecting and scheduling a portfolio of projects is referred
to as the project portfolio selection and scheduling problem
(PPSSP). It is well-known that both the 01 selection problem
(i.e., the knapsack problem) and the resource-constrained
project scheduling problem are NP-hard. Thus, it follows that
the PPSSP, which integrates both selection and scheduling,
is also NP-hard. It has also been shown that considering the
selection and scheduling components independently will lead

! Available from: https://www.defence.gov.au/strategicupdate-2020/
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FIGURE 1. Approximate budget allocation for the five major capability
streams for the 2020-30 FYs, as outlined in the 2020 FSP.

e

to sub-optimal solutions [6]. However, much of the work in
this domain focuses on either project selection or schedul-
ing, with a tendency to consider the former [7]. Further-
more, despite the complexity associated with solving the
PPSSP, many traditional approaches to this problem make
use of exact solvers, especially in the context of defence
problems [8].

In addition to the typical complexities of the PPSSP,
project selection and scheduling in a defence context has its
own unique characteristics [9]. Specifically, defence projects
typically span across a relatively long time period and have
an associated yearly cost, which are characteristics not often
addressed in the literature. Many studies consider only a
short-term planning window, whereas defence planning must
consider both the short-term and long-term implications of
the implemented plan, especially considering that defence
planning should be considered as an administrative tool
with political repercussions, rather than a strict optimiza-
tion process [10]. Furthermore, various complex operational
constraints, such as a strict overall budget, often with addi-
tional yearly constraints, sub-budgets for various capability
streams, referred to as “‘colours of money” [11], mutually
exclusivity among the set of project options, and com-
plex precedence relationships, are common in this domain.
Additionally, Brown er al. [11] argued that ... a superfi-
cially simple annual budget constraint over a long planning
horizon is ridiculous in the real world.” in the context of
defence-oriented planning, thereby indicating the complex
nuances associated with this particular domain. Despite the
unique nature of project selection and scheduling in a defence
context, little attention has been given to this domain in the
literature [8], [12]-[17].

It was recently identified that many applications of port-
folio selection and/or scheduling in this domain made use
of exact solvers [8]. While exact solvers provide defini-
tive optimal solutions, they quickly become prohibitively
expensive in terms of computation time when the problem
size is increased, especially with the additional complexi-
ties present in FFD. The use of exact solvers is largely a
result of a disconnect between the literature and real-world
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problems, whereby the problems addressed in the litera-
ture are small-scale. As a few recent examples, all pub-
lished within the previous two years (i.e., 2019 and 2020),
Song et al. [18] considered 10 projects; Dixit and Tiwari [19]
considered 20 projects; Kumar et al. [20] considered up to
20 projects; and Song [21] considered only 6 projects. In con-
trast, the Canadian Navy Level 1 business planner is reported
to have over 1200 projects [22]. Evidently, there is a major
discrepancy between the scale of problems considered in the
literature and the large-scale, real-world problems found in
the context of defence planning. This paper aims to address
this gap in the literature.

This paper investigates the use of meta-heuristic
approaches to address a PPSSP formulated in the context
of FFD, thereby bridging the aforementioned discrepancy
between the literature and the real-world problems faced
by defence organizations. A mathematical model, inspired
by the PPSSP in the context of FFD, is proposed. The
primary motivation for the model formulation is to represent a
problem that closely aligns with the requirements of the FFD
planning process that is conducted by the Australian DoD.
Although this problem can be recognized as a PPSSP, there
are additional domain specific constraints and conditions that
make the problem challenging. In this paper, a novel formu-
lation for this special PPSSP was developed with specific
conditions.

A set of 20 large-scale problem instances are generated
using statistical distributions that closely align with, and are
directly derived from, real-world, publicly-available defence
data. A hybrid, multi-population meta-heuristic approach is
proposed to address the problem formulation. This hybrid
approach is designed to leverage the strengths of two existing
meta-heuristic approaches recently employed for a similar
problem [23], namely their accuracy and speed, respec-
tively. The proposed hybrid approach is then compared to
both of the constituent meta-heuristic techniques. Further-
more, to ascertain their absolute performance relative to an
exact solver, the meta-heuristic approaches are compared
against solutions obtained using the Gurobi™ commercial
solver.

There are two main contributions in this paper. Firstly,
the introduction of a complex practical problem and the
development of its mathematical model. This formulation is
inspired by the requirements of the real-world FFD planning
task undertaken by the Australian DoD. Secondly, the design
of a specialized solution approach for solving the developed
model.

The remainder of this paper is structured as follows.
Section II provides background information on various appli-
cations of the PPSSP and the optimization approaches exam-
ined in this study. The mathematical model describing the
proposed PPSSP formulation and the data generation process
is outlined in Section III. Section IV describes the exper-
imental procedures, the results of which are presented in
Section V. Finally, concluding remarks and avenues of future
work are given in Section VI.
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Il. BACKGROUND

This section provides a brief summary of the relevant liter-
ature on the PPSSP and an introduction to the optimization
techniques employed in this study.

A. APPLICATIONS OF THE PROJECT PORTFOLIO
SELECTION AND SCHEDULING PROBLEM

Ghasemzadeh er al. [24] proposed a 0-1 model for inte-
grated project selection and scheduling, including various
operational constraints, that was addressed with a com-
mercial exact solver. Their example application consisted
of 20 projects and an eight-year planning period. One notable
limitation was that all projects must be completed within
the planning horizon, thereby limiting the ability to con-
sider defence applications, whereby the projects typically
continue for a much longer period than the initial planning
window.

Sun and Ma [25] proposed a ‘““packing multiple boxes”
approach to project selection and scheduling in the context
of research & development projects. The study proposed an
iterative approach that considered each planning period using
an exact solver, which was then used to update the model
for subsequent planning periods. The example application
considered eight candidate projects over a five-year planning
period. The iterative approach of this study may lead to sub-
optimal solutions.

Liu and Wang [26] proposed a constraint program-
ming approach for the integrated problem of project selec-
tion and scheduling with time-dependent resources and
project inter-dependencies. Their empirical investigation
consisted of 15 projects over a planning period of two years
(i.e., 720 days), where the maximum duration for a project
was 185 days.

Garcia [27] considered the PPSSP with time windows and
limited inventory capacity. This study demonstrated that it
is difficult to solve such problems with exact approaches
and proposed a stochastic, priority-based meta-heuristic
approach. The maximum number of projects considered in
this study was 100.

Fisher et al. [28] proposed a heuristic, inspired by dynamic
programming, to select optional, low-value projects for the
Royal Canadian Navy. In the experimental section, this study
considered a 25-year planning period with up to five new
projects arriving each year.

Kumar et al. [20] proposed a tabu search algorithm for
the simultaneous selection and scheduling of projects. The
empirical investigation addressed problems with various
complexities, with the highest complexity level consisting
of 10-20 projects over 7-10 time periods.

The studies of Song et al. [21] and Song et al. [18]
proposed heuristic algorithms based on a stochastic multi-
attribute acceptability analysis approach. The case study con-
sidered in [21] was a hospital construction plan in Hefei,
China consisting of six projects with a maximum project
duration of 15 years. The case study in [18] was based on
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public housing projects in Guangzhou, China and considered
10 projects in a short-term planning period. Notably, the cost
for each project in this study was limited to only a two-year
period.

Dixit and Tiwari [19] proposed a model to address the
PPSSP using a conditional value-at-risk approach, which
was solved using a combination of a commercial simulation
engine and a meta-heuristic approach for optimization. The
case study, modelling the business needs of a dairy farm,
considered a set of 20 projects over a 20-year planning period.

As can be seen from the above applications, many
approaches consider only a relatively limited number of
projects — the maximum number identified above was
100 projects. While some of the studies included the use of
meta-heuristics or other non-exact solvers, none of the studies
included an examination of a large-scale, real-world, defence-
oriented scenario.

B. MATHEMATICAL MODELLING

Exact solvers refer to a class of mathematically-inspired
optimization approaches that can derive an optimal solution
for an optimization problem [29]. Optimization problems,
when addressed by exact solvers, are classified by the type(s)
of the decision variables (e.g., real-valued, integer, mixed,
etc.) along with the characteristics of the objective function
and constraints (e.g., linear, non-linear, etc.). For example,
a linear program refers to the case where a linear combination
of the decision variables can be used to model both the con-
straints and objective function. When the decision variables
are restricted to integer values, as will be considered in this
study, this is referred to as an integer program. An integer
program that is also linear is known as an integer linear
program.

It is well known that different problem types require differ-
ent solution approaches and can result in drastically different
algorithmic complexities. For example, a linear program over
real numbers can be solved in polynomial time whereas opti-
mizing an integer linear program is NP-hard, which means
there is no known polynomial-time algorithm to solve such
problems [30]. When addressing integer programs, one of
the most common approaches is branch and bound, which
is a technique to recursively enumerate the search space of
an optimization problem using a tree structure. Candidate
solutions are partitioned into subsets, referred to as branches,
and the best known upper and lower bounds for the objective
fitness associated with the optimal solution are maintained.
Branches that are proven incapable of leading to an improve-
ment of the bounds are discarded, thereby causing a reduction
in the number of solutions that must be enumerated. Given
that solving integer linear programs is NP-hard, using exact
solvers for many real-world problems is computationally
infeasible. In some cases, a relaxation (i.e., simplification)
of the model is used to facilitate the identification of feasi-
ble solutions in a reasonable amount of time, though these
solutions are likely to be sub-optimal with respect to the non-
relaxed model.

VOLUME 9, 2021

C. GENETIC ALGORITHM
The Genetic Algorithm (GA) [31] is a population-based
meta-heuristic inspired by the concept of Darwinian
evolution. A population of candidate solutions, referred to
as chromosomes, are evolved using selection, recombina-
tion, and mutation operators. The selection mechanisms are
designed to provide a selection bias towards chromosomes
with better objective fitness values, thereby guiding the entire
population towards promising regions of the search space.
At each generation in the optimization process, candidate
solutions are evaluated according to the supplied objective
function and are then used to generate a new population.
If desired, a proportion of the best-fit solutions are first
inserted directly into the next generation via a process known
as elitism. The elitism mechanism prevents the best-known
genetic material from being lost when generating a new
population. A selection mechanism is used to generate a
mating pool of chromosomes, with a bias towards better-fit
chromosomes. Members of the mating pool are then recom-
bined to form offspring chromosomes via the crossover oper-
ator. Crossover operators, in general, recombine the genetic
material of two or more parent solutions with the intention
of generating chromosomes that exhibit a better objective
fitness, increased population diversity, or both. The generated
offspring may, according to the value of the mutation rate
parameter, undergo a mutation process before being inserted
into the new population. In general, the mutation operator
performs a small perturbation on the genetic material of a
chromosome to introduce new genetic material into the pop-
ulation. This entire process repeats until the desired termina-
tion criteria are met. The GA provides a framework such that
different selection, mutation, and crossover operators can be
used to formulate an optimizer that is tailored to the problem
at hand.

D. BIASED RANDOM-KEY GENETIC ALGORITHM

The Random-Key Genetic Algorithm (RKGA) [32] is a real-
valued variant of the GA, often employed for combinatorial
optimization, based on the concept of random keys, which
are an indirect representation of a candidate solution. A solu-
tion encoded with the indirect representation is referred to
as a genotype, while the decoded direct representation of
a candidate solution is referred to as a phenotype. Random
keys in the RKGA are random numbers, ~U (0, 1), that are
used during the decoding of a genotype solution into its
corresponding phenotype solution. Phenotype solutions are
then evaluated and the population is sorted according to the
objective fitness. A fixed proportion of the best-fit solutions
are moved to an elite population, while the rest remain in
the non-elite population. Elitism is implemented by directly
copying the members of the elite population to the next gen-
eration. Individuals are recombined by randomly selecting
two members from the entire population (i.e., without regards
to elite vs. non-elite solutions) and performing a uniform
crossover operation. Mutation is done via immigration, which
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FIGURE 3. Flowchart of the evolution process in BRKGA.

Perform mutation

refers to the generation of new random solutions using the
same process as the initial population generation. With the
exception of the decoding process, all steps in the RKGA are
problem-independent.

The Biased Random-Key Genetic Algorithm (BRKGA)
[33] differs from the RKGA by selecting one parent for
crossover from the elite population and one parent from the
non-elite population, then biasing the crossover in favor of
the elite solution. The BRKGA has been shown to improve
the performance of the RKGA, in general [33], [34]. Fig. 2
depicts the creation of a new population in BRKGA whereas
Fig. 3 depicts the entire evolutionary process. Note that,
the proportion of elite solutions, offspring, and mutants
that make up the subsequent generation are user-supplied
parameters.

83414

E. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) [35] is an evolutionary opti-
mization algorithm that iteratively improves a population of
candidate solutions, referred to as individuals. Individuals
within the population, initially placed at random positions
in the feasible search space, are updated using mutation,
recombination, and selection operations. In the DE algorithm,
trial positions, which represent potential new positions for
an individual, are created through a recombination operator.
Similar to a GA, different operators can be employed in DE to
tailor the optimizer to the current problem being considered.
The choice of operators is usually denoted by DE/s/n/c where
s is the selection operator, n is the number of trial vectors to
be generated, and c refers to the crossover operator.

The most common variant of DE is referred to as
DE/rand/1/bin [36], whereby individuals are selected ran-
domly, a single trial position is created, and crossover is per-
formed using a binary operator. Creation of the trial position
t for an individual x in dimension i using the DE/rand/1/bin
strategy is given by

a; + F(b; — ¢;)
X; otherwise,

_ if rand() < ¢, or i = randi(D)

P =

ey

where a, b, and c are three randomly selected, distinct mem-
bers of the population that are different from the current
individual x, F € [0, 2] is the user-supplied differential
weight, rand() ~ U(0, 1), randi(D) selects a uniform random
integer in the range [1, D], D is the problem dimensionality,
and ¢, € [0, 1] is the user-supplied crossover probability.
If the generated trial position improves the individual’s fit-
ness, the trial position is accepted and the position of the indi-
vidual is updated accordingly. Otherwise, the trial position is
discarded and the individual retains its current position.

Ill. PROBLEM FORMULATION AND DATA GENERATION
This section describes the formulation of the model used in
this study as well as the process for generating synthetic data
for the examined problem instances.

A. MODEL FORMULATION

The PPSSP model proposed in this paper is motivated by
the CBP process carried out by the Australian DoD in the
context of FFD. This model extends the formulation provided
in [23] by adding capability streams, and their associated
budgets, as well as the addition of budgetary constraints
to limit the spending on initiating and maintaining ongoing
projects, respectively. The primary objective of this process
is to maximize the delivery of capabilities resulting from
the selection and scheduling of projects, subject to various
operational constraints. The remainder of this section uses the
following notation.

o N is the number of projects considered.
o T is the number of planning periods.
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« Xxj is the (binary) decision variable and is set to 1 during
the time period (¢ € T') in which project i is scheduled
to be initiated, otherwise it is set to 0.

e vj; is the value assigned to project i in year ¢ of its
lifetime.

« r is the time-discount factor.

o cj is the cost of project i in year ¢ of its lifetime.

o B; is the total available budget in year ¢.

o CS is the set of considered capability streams.

o CB; is the total budget available for capability stream s
during the planning window.

« SB; is the total budget available for starting projects in
year ?.

o OB; is the total budget available for the maintenance of
ongoing projects in year f.

e d, is the duration of project p.

o Tp is the total budgeting period, which is defined as
T + max(dp), i.e., the number of planning periods plus
the maximum project duration.

e PC(p) is the set of predecessor projects that must be
completed before project p can be started.

o ME(p) is the set of mutually exclusive projects, of which
only one from the set can be programmed.

Formally, the problem examined in this study is modelled by
(Maximize total value of projects across all years):

N T & .
max Z Z Z Xit E}i’:t};;{ (2a)

i=1 k=1 t=1

subject to
(Budget constraints in each time period):

N &k
O xicik—ir1 <Br, Vk€Tg (2b)

i=1 t=1
(Budget constraints for each capability stream):

Ny Tp k

D> > xucik-i41 < CBy, ¥seCS (2

i=1 k=1 r=1
(Maximum budget for starting projects):

N Tp

> xicii <SBr. Vk €Tg (2d)

i=1 t=1
(Maximum budget for ongoing projects):

N &k
Z inlci,k*l+l S 0Bk$ Vk € 2’ 37 ey TB (ze)

i=1 r=1
(Precedence constraints):

T T
ij, > in,, Vi € N and Vj € PC(i) (2f)
t=1

t=1

T T
> i = Y (t+dpx;. YieNandVjePCl) (g

t=1 t=1
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(Mutual exclusion constraints):
T
Y xi+xi <1, VieNandVjeMEG)  (2h)
=1
(Each project can be scheduled a maximum of one time):

T
> xig <1, VieN. (2i)
t=1

Eq. (2a), the objective function, calculates the time-
discounted total value of all projects in every year using
a discount rate of r. Time discounting is used to reduce
the value associated with a project based on the time it is
scheduled to start, if applicable, as a means to prioritize
earlier delivery of capabilities. Specifically, for each year in
the planning period after the initial planning year, the value
of a project is decreased by the discount rate r. Note that,
the value of a project is used as a proxy for the delivery
of capability and, therefore, Eq. (2a) represents the overall
delivery of capabilities achieved by the selected portfolio
and associated schedule. Eq. (2b) enforces that the cost of
all current running projects must be less than the available
budget in each time period under consideration. Eq. (2c)
enforces a long-term cumulative budget constraint, such that
the total funding allocated to each capability stream across
the entire planning horizon is within its respective predefined
allocation. Egs. (2d) and (2e) ensure that upper bounds for
the costs associated with starting and maintaining projects,
respectively, are respected. These two constraints were added
to mitigate the end effects observed in [23]. Egs. (2f) and (2g)
enforce the precedence constraints such that a project cannot
be started unless all of its prerequisites have been completed.
Eq. (2h) ensures that a project cannot be selected if one of the
projects from its mutually exclusive group, if applicable, has
been selected. Eq. (2i) ensures that a project can be selected
a maximum of one time.

A simple example of the data format and a corre-
sponding feasible schedule is shown in Fig. 4. Note that,
projects 1 and 5 are mutually exclusive, indicating that only
one of them may be selected for inclusion in the portfolio.
In this example, project 5 has been selected, thereby pre-
venting the selection of project 1. Additionally, project 3 is
a prerequisite for project 4, indicating that project 4 must
not start before project 3 has concluded. The total portfolio
value (without time discounting) for this schedule is 232,
as the sum of the values for projects 2, 3, 4, and 5. If a time
discount factor of 1% was used, i.e., r = 0.01 in Eq. (2a),
the total portfolio value would decrease to 229.48 due to
projects 4 and 5 starting in periods 4 and 3, which correspond
to values of k = 3 and k = 2, respectively. The cost profile
associated with this schedule is shown in Fig. 5.

B. DATA GENERATION
The data generation process for this study was inspired by
the process given in [17] and [23]. The initial available
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MUTUAL COST

PROJECT DURATION PREREQUISITE EXCLUSION VALUE FEASIBLE SCHEDULE
YEAR 1 YEAR 2 YEAR3 YEAR4YEAR5 1 2 3 4 5 6

Project 1 5 Project 5 89 66 17 73 67 57
Project 2 2 86 77 67
Project 3 1 40 76
Project 4 3 Project 3 44 55 87 21 -
Project 5 2 Project 1 62 90 29 -

FIGURE 4. An example depicting the data format and a feasible schedule for a simple instance of the proposed problem.

180
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COST

80 9
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20 21
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FIGURE 5. The cost profile corresponding to the schedule in Figure 4.

budget (i.e., B1) was set at $14,4392 with an annual increase
of $1,637 based on information published in the 2020
FSP [5]. Five capability streams were used with the following
proportions: Air (29.6%), Information and Cyber (7.4%),
Land (24.7%), Maritime (34.6%), and Space (3.7%) [5]. Note
that, these proportions represent the total proportion of the
available budget allocated to each capability stream within
the planning period, not individual yearly budget proportions.
The maximum proportion of budget available for starting
projects was set at 25% whereas the maximum proportion
available for ongoing projects was set at 75%.

For each project, the duration (dp) and total cost (cp)
were independently sampled from a multivariate log-normal
distribution. Similar distributions have recently been shown
to accurately model defence project expenditures [37]. The
duration and cost for each project are sampled according to

] oenormal ([2-191054] [0.246245 0.374572
o] T E 6.642006 | * | 0.374572 1.555780 ) °

3

2Monetary figures in this study are supplied in millions.
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FIGURE 6. Plot of cost and duration extracted from IIP data and
148 random points generated by Eq. (3).

where both ¢, and d, were rounded to the nearest integer
value. The parameters for the distribution given in Eq. (3)
were derived from the 2016 Integrated Investment Plan (IIP),
published by the Australian DoD [38]. Fig. 6 shows the
IIP data alongside 150 randomly generated points using the
distribution given in Eq. (3). Furthermore, each project was
randomly assigned to one of the five capability streams using
the budget proportions as the respective probabilities. For
example, a project was assigned to the Air capability stream
with a probability of 29.6%.

Given that the distribution in Eq. (3) provides only the total
cost for each project, the cost must then be distributed across
the development lifetime of the project. Distributing the cost
over the lifetime of a project is done by defining a cumula-
tive distribution function (CDF) via the Weibull distribution,
normalized within the range [0, 1]. The CDF then dictates the
percentage of project expenditure as a function of the project
completion percentage [39]. Specifically, the CDF describ-
ing the yearly expenditure of each project was generated
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according to

' o
1 —exp (F)
CDFC,.t:—la, Vtel,2,...,d, (4a)
1 — exp (3)
where
a ~ N(1.589,2) (4b)
B = max[N(0.71,0.3),0.1]. (4¢)

It should be noted that the value of o was regenerated if it
fell below 0.1. The mean values used in Egs. (4b) and (4c)
were taken from [39] and the standard deviations were deter-
mined empirically. Yearly project costs were then derived
from the cumulative yearly costs provided by the CDF at each
time period and were rounded to the nearest integer value. The
empirical cumulative distribution plots for 10 Weibull distri-
butions, generated according to Eq. (4), are shown in Figure 7.

=7
Ny~~~ /4
N7 7 /4
LS

§ %/

0.0 S

0.6 0.8 1.0
PrOJect Completion

FIGURE 7. Empirical cumulative distribution plot for 10 randomly
generated Weibull distributions according to Eq. (4).

Assigning the total value (i.e., v,) for a project was done
using a cost-duration valuation scheme, given by
dP

vy =U0,2)c,+ Y _ ~
Jj=2

U{l, 4}, 5)

where U{1, 4} is the discrete uniform distribution with sup-
port over the range [1, 4]. The value is then distributed across
the lifetime of the project using the same process as the cost,
i.e., a CDF derived from the Weibull distribution given in
Eq. (4). This valuation scheme reflects the empirical project
data provided by Defence Science and Technology Group
where the cost-value ratio generally follows a uniform dis-
tribution and the total project value depends on the project
duration. This scheme is also consistent with recent literature
regarding project benefit realisation [40]. Figure 8 presents a
plot of the total cost and value for 150 randomly generated
projects.
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FIGURE 8. Plot of total project cost and value for 150 randomly generated
projects.

To generate the set of precedences, i.e., prerequisite con-
straints, a fixed percentage of individuals were considered
as belonging to a precedence group. Groups of size two
were randomly generated, without replacement, from the
entire set of projects. Without loss of generality, for each
generated pair of projects (i, j) with i < j, project i was taken
as a prerequisite for project j. The set of mutual exclusion
constraints were generated in an analogous fashion to the
prerequisite groups, except that group sizes of both 2 and 3
were considered.

IV. EXPERIMENTAL SETUP

This section describes the experimental procedures used to
demonstrate the efficacy of the meta-heuristic approaches
when addressing the proposed PPSSP model.

A. META-HEURISTIC APPROACHES

Experiments were run using an 8-core, 3.6GHz Ryzen 7
1800X CPU with 32GB RAM running on Windows 10
Professional Edition.* Experiments were conducted using
Python,> with many components compiled using the Cython®
static compiler.

1) BRKGA AND DE

The two primary meta-heuristics considered were the
BRKGA and DE approaches. These approaches used a real-
valued genotype encoding with values in the range of [0, 1].
Genotype solutions were then decoded to their phenotype
representation, i.e., permutation vectors, by sequencing the
projects in (ascending) order of their corresponding value in
the individual. For example, an individual with a genotype
solution of [0.567, 0.329, 0.658, 0.128] would be decoded to

3This ensures that cyclical constraints were not constructed.
4Version 2004

SVersion 3.7.7

6Version 0.29.21
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the permutation vector [4, 2, 1, 3] such that the fourth project
would be considered first for scheduling, followed by the
second, first, and third projects, respectively.

The permutation vectors, i.e., phenotype solutions, repre-
sented a permutation of the values from 1 to n, where n is
the number of projects, denoting the order in which projects
were considered for scheduling, i.e., a priority vector. The
projects were then scheduled at their earliest feasible start
time. Projects that could not be feasibly scheduled were
ignored. Schedule order occurs as previously described for
the permutation vector. Note that, the start time of projects
then depends on the available budget and problem constraints.
Therefore, the permutation vector given above does not nec-
essarily mean that, for example, project 4 will be initiated
during an earlier period than project 1. An important feature
of this heuristic scheduling component is that it implicitly
prevents infeasible portfolios from being generated. There-
fore, the meta-heuristic approaches do not require expensive
constraint handling mechanisms nor do they require repair
mechanisms.

Both the BRKGA and DE approaches were run until
100 iterations had occurred with no improvement to the
global best fitness. Performance data is collected over
30 independent runs for each algorithm.

2) HYBRID META-HEURISTIC
A hybrid, multi-population meta-heuristic approach, that
would simultaneously evolve both a BRKGA and DE pop-
ulation, was also employed. The primary motivation for this
approach stems from a recent study that evaluated vari-
ous meta-heuristic approaches on a similar PPSSP formu-
lation [23]. The study of [23] found that, of the examined
meta-heuristic approaches, BRKGA demonstrated the best
performance. Preliminary experiments then determined that
DE provided the fastest convergence, with only minor reduc-
tions in solution quality. Hence, the proposed approach was
designed to leverage the strengths of both BRKGA and DE.
The proposed multi-population approach used a knowl-
edge transfer mechanism to exchange information between
the two sub-populations. To exchange information, the best
n, individuals from each sub-population were periodically
sent to the other sub-population according to the merge
frequency control parameter, f;,. The transferred individuals
were merged with the existing population and the worst
n, individuals were removed to maintain consistent popu-
lation sizes. As with the BRKGA and DE meta-heuristics,
the hybrid approach was run until 100 iterations with no
improvement to the global best fitness, taken as the best
fitness attained by either population, was observed. Further-
more, results were taken over 30 independent runs.

3) GUROBI COMMERCIAL SOLVER

As a baseline for comparison of absolute performance,
the Gurobi™ commercial solver (version 9.0.2, via the
Python interface) was also used to solve problem instances.
The Gurobi solver was run until an error gap of less than 1%
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was found, with a time limit of 5 minutes. Error gap, in the
context of Gurobi solutions, refers to the difference between
the current best feasible solution and the best maximum
bound identified. Therefore, an error gap of 1% indicates that
the solution returned by Gurobi is within 1% of the optimal
solution. It should be noted that the error gap is dependent on
both the quality of the solution and the tightness of the bound.
Therefore, a non-zero error gap does not necessarily mean a
sub-optimal solution was found.

To ascertain the performance of the meta-heuristic
approaches relative to the exact solver, an error metric for
portfolio p was calculated as:

e=<1—f(p))>k100 6)
f*@)

where f (p) is the total portfolio value associated with portfo-
lio p and f*(p) is the total portfolio value attained by Gurobi
on the same problem instance. Error values are multiplied by
100 to report as a percentage.

B. PROBLEM INSTANCES

Firstly, a set of 10 problem instances, that considered only
the yearly budget constraint, were examined. These are
meant as simplified problem instances that do not exhibit
many real-world characteristics. The initial budget was set
at $14,439 with an annual increase of $1,637, inspired by
the figures in the 2020 FSP [5]. These problem instances are
referred to as the budget-constrained instances (BCI).

To ascertain the performance in a more realistic PPSSP
scenario, a set of 10 heavily-constrained problem instances
(HCI) were generated using the parameters given in Table 1.
These problem instances contain many properties that are rep-
resentative of the optimization process underlying the FFD
process.

TABLE 1. Parameters used to generate the heavily-constrained problem
instances. Tuples (g, p) represent that a proportion p of projects were
generated in a group of size g.

Parameter Value

Projects 1000

Planning window 20 years

Budget $14,439 + $1,637(t-1)
Starting budget proportion 25%

Ongoing budget proportion 75%

Prerequisites (2,0.10)

Mutual exclusions
Capability streams
Capability stream proportions
Time discount rate

(2,0.05), (3,0.45)
5

34.6%, 29.6%, 24.7%, 1.4%, 3.7%
0.01 (i.e., 1%)

C. STATISTICAL ANALYSIS

The statistical analysis procedure, as recommended by [41],
consisted of Friedman’s test for multiple comparisons among
all methods [42], [43] with Shaffer correction [44] using a
significance level of 0.05. The performance metric used in
the statistical testing process is the average ranking across all
corresponding problem instances, calculated using the total
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portfolio value averaged across 30 independent runs on each
problem.

The critical difference, which denotes the difference in
average rank that must be observed for the performance
of two approaches to be considered significantly different,
is determined and visually presented using critical difference
plots. A critical difference plot is constructed by placing the
considered approaches on a horizontal axis such that their
positions correspond to their respective average rankings.
Approaches are then grouped by a line if the difference
between their average ranks was less than the calculated
critical difference. Thus, approaches appearing on the left
of the plot demonstrated superior performance, on average,
while grouping by a line denotes that no significant difference
in performance was observed among the approaches within
that group. In general, the critical difference relationship is
not transitive. Additionally, p-value matrices, that present the
p-values from the pairwise comparisons, are also given.

V. RESULTS AND DISCUSSION

This section presents and discusses the empirical results
obtained by the experimental procedures outlined in
Section I'V.

A. TUNING OF CONTROL PARAMETER VALUES

Control parameter values for each of the meta-heuristic
approaches were tuned using the Bayesian optimiza-
tion framework provided by the scikit-optimize package.’
The optimization process was run for 250 function calls
(i.e., parameter configurations), with the first 50 configura-
tions selected randomly. To evaluate the performance of a
parameter configuration, the fitness was taken as the average
portfolio value over 5 runs, each run for a total of 50,000 func-
tion evaluations, on a heavily constrained problem instance
with 1000 available projects over a 20 year planing period.
Specifically, the problem instance was generated with the
properties given in Table 1.

For DE, the dither and jitter parameters refer to the use
of adaptive differential weight strategies. Dither refers to
randomly modifying the differential weight using a uniform
distribution in the range of [0, 1] and is applied either uni-
formly to all individuals (scalar) or independently for each
individual (vector) [45], whereas jitter refers to a very small
random perturbation of the differential weight applied uni-
formly to all individuals. Regarding the hybrid approach,
the parameter configurations for the DE and BRKGA popu-
lations were set according to the optimal parameters reported
in Table 2.

Additionally, the proportion of offspring for BRKGA was
taken as 1 — p, — pm, where p, and p,, are the propor-
tion of elites and mutants. Unless otherwise noted, the ear-
liest scheduling mechanism was used. Furthermore, while
non-integer values are presented with 5 significant figures,
16 significant figures were used during experimentation.

7Version 0.7.4
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TABLE 2. Control parameter ranges used in the hyper-parameter
optimization process.

Approach  Parameter Range Opt.
Pop. size [10, 500] 327
Bias [0.0, 1.0] 0.36630
BRKGA Prop. elites [0.1, 0.5] 0.21573
Prop. mutants [0.1,0.4] 0.10000
Pop. size [10, 500] 83
Diff. weight (F) [0.0, 2.0] 0.00000
Cross. rate (CR) [0.0, 1.0] 0.45829
DE Crossover {bin, exp} bin
Selection {rand, best} rand
Dither {none, scalar, vector} none
Jitter {true, false} true
. Frequency (fm) [1, 100] 100
Hybrid Num. exchange (ne)  [1, 25] 19
1 2 3 4
| |
Gurobi BRKGA
Hybrid —— DE

FIGURE 9. Critical difference plot for instances with only the budget
constraint.
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FIGURE 10. p-value matrix resulting from the Friedman test over all
instances with only the budget constraint.

B. BUDGET-CONSTRAINED INSTANCES

Table 3 reports the mean, standard deviation, and minimum
value of the error metric, reported as a percentage rela-
tive to the value attained by Gurobi, over 30 runs for each
of the meta-heuristics on the budget-constrained instances.
The results from the statistical significance tests are given
via the critical difference plot in Figure 9. Furthermore,
Figure 10 presents the p-value matrix, which reports the
p-values associated with the pairwise comparison between
the approach indicated by the row and column. Note that,
the Friedman test is a two-sided test, hence the p-value matrix
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TABLE 3. Mean, standard deviation, and minimum error, expressed as a percentage, on budget-constrained instances.

BRKGA DE Hybrid
Instance | Gurobi Mean  Std. Min | Mean  Std. Min | Mean  Std. Min
BCI1 1565723 | 2.20 0.26 1.58 | 243 021 2.04 | 2.13 0.26 1.66
BCI2 1663132 | 3.19 046 242 | 343 034 271 | 3.21 039 233
BCl4 1520597 | 1.57 0.28 098 | 1.78 0.29 1.30 | 1.47 024 094
BCIS 1593587 | 1.94 022 1.58 | 2.17 026 1.70 | 1.84 0.19 152
BCI6 1681475 | 1.75 0.20 1.33 | 2.05 021 172 | 1.71 0.12  1.38
BCI7 1623788 | 1.80 0.25 141 | 2.07 0.25 149 | 1.77 027 134
BCI8 1698102 | 2.16 025 1.69 | 2.33 024 1.83 | 2.12 027 1.64
BCI9 1804336 | 2.64 032 1.95 | 3.03 0.28 254 | 2.52 024 192
BCI10 1660097 | 2.80 0.54 1.80 | 3.01 0.46 230 | 2.67 043 2.05
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400 I Ongoing - I Ongoing

Count

Time Period

(a) Gurobi
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(c) BRKGA
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Time Period
(b) DE
B Starting
500 B Ongoing |
.
c
=]
o
@]

Time Period
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FIGURE 11. Number of starting and ongoing projects at each time step on the BCI1 instance.

is symmetric. It is observed from these results that both
the mean error and the standard deviation was lowest for
the hybrid approach, indicating the best performance of the
meta-heuristic approaches. However, when considering the
mean of the minimum error values, BRKGA demonstrated
a slightly lower mean of 1.74% compared to the 1.79% for

83420

the hybrid approach. Additionally, the results from the hybrid
approach did not exhibit a statistically significant difference
when compared to the exact solver (p = 0.11).

The BRKGA approach depicted slightly higher average
error values than the hybrid approach but the difference
between the two approaches was not found to be statistically
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FIGURE 12. Costs associated with starting and maintaining projects at each time step on the BCI1 instance.

TABLE 4. Mean number of generations, function evaluations, and process time until termination on budget-constrained instances.

BRKGA DE Hybrid

Instance Gens FEs Time (s) Gens FEs Time (s) Gens FEs Time (s)
BCI1 9453 243020.7 1306.8 | 1106.3 91825.7 4579 | 11047  375656.7 2145.1
BCI2 974.7  250559.3 1387.0 | 1183.0 98189.0 497.5 | 1018.7 346416.7 1978.9
BCI3 | 1021.3  262552.7 1393.2 955.0  79265.0 376.6 983.7 334516.7 1790.6
BCI4 979.0  251673.0 1434.2 | 1096.7 91023.3 4739 | 1012.7  344376.7 1904.5
BCI5 | 1064.7 273689.3 1468.2 | 1067.0  88561.0 4489 | 1031.3 350723.3 2037.7
BCI6 | 1139.7 292964.3 1668.9 | 1096.0  90968.0 4737 | 1007.7  342676.7 2002.5
BCI7 976.7  251073.3 1375.4 | 1088.7  90359.3 478.7 | 1039.0 353330.0 2107.8
BCI8 | 1194.7 307099.3 1623.5 | 1178.7 97829.3 492.8 | 1003.3  341203.3 1874.3
BCI9 | 1146.3  249677.7 1618.3 | 1106.7 91853.3 462.7 | 1019.0  346530.0 2031.9
BCII0 | 1064.7 273689.3 1501.2 | 1104.0 91632.0 479.7 997.7  339276.7 1996.5

significant (p = 0.30). However, due to the non-transitive
nature of the critical difference, the BRKGA approach did
exhibit a significant difference in performance when com-
pared to the exact solver (p = 0.01). The DE approach
demonstrated the worst performance overall. In the worst
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observed case, the average performance of DE was 5.69%
worse than that of the exact solver. Overall, the difference in
performance between DE and BRKGA was not significantly
different when considered across all 10 problem instances

(@ =0.11).
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FIGURE 13. Total portfolio value added at each time step on the BCI1 instance.

Gurobi BRKGA

Hybrid —— " DE

FIGURE 14. Critical difference plot for heavily-constrained instances.

In terms of absolute performance, compared to the exact
solver, the average error for the hybrid approach ranged
between 1.47% and 3.99% whereas the minimum error was
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FIGURE 15. p-value matrix resulting from the Friedman test over all
heavily-constrained instances.

observed between 0.94% and 3.18%. The worst performing
approach, namely DE, exhibited a worst-case minimum error
of 3.28%. Thus, it is evident that the results attained by
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FIGURE 16. Number of starting and ongoing projects at each time step on the HCI1 instance.
TABLE 5. Mean, standard deviation, and minimum value of the error metric on heavily-constrained instances.
BRKGA DE Hybrid
Instance | Gurobi Mean Std. Min | Mean Std. Min | Mean Std. Min
HCI1 1107896 | 2.80 037 2.06 | 3.09 036 241 | 2.89 054  1.99
HCI2 1164760 | 2.61 096 0.68 | 2.92 0.84 097 | 2.67 091 1.05
HCI3 1172136 | 3.32 041 271 | 3.58 048 253 | 3.16 040 246
HCI4 1115471 | 2.82 034 227 | 3.16 031 259 | 279 031 2.18
HCIS 1135912 | 1.65 037 0.82 | 2.12 031 1.51 | 1.57 0.34 094
HCI6 1204453 | 2.74 028 2.18 | 2.97 034 244 | 270 028 215
HCI7 1151680 | 2.75 0.68 1.18 | 2.99 059 1.69 | 2.73 0.63 1.17
HCIS 1208879 | 2.39 042 1.61 | 2.78 045 1.81 | 2.37 036  1.67
HCI9 1289799 | 5.15 049 437 | 5.69 047 451 | 529 043 455
HCI10 1165229 | 4.20 0.55 321 | 4.06 049 3.00 | 3.96 042 3.3

the meta-heuristic approaches were competitive with those

attained by the exact solver.

Figure 11 shows both the number of projects starting and
ongoing in each time period on the BCI1 instance. Results
for the meta-heuristic approaches depict the best run for
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the corresponding problem instance. The first observation
was that all approaches heavily back-load projects such that
approximately 300 projects were started in the final time
period. This is an example of an end effect [11], which
occurs due to there being no special treatment of the final
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FIGURE 17. Costs associated with starting and maintaining projects at each time step on the HCI1 instance.

TABLE 6. Mean number of generations, function evaluations, and process time until termination on heavily-constrained instances.

BRKGA DE Hybrid

Instance Gens FEs Time (s) Gens FEs Time (s) Gens FEs Time (s)

HCI1 | 1188.7 305557.3 1779.2 | 1183.0 98189.0 551.6 965.3  328283.3 1926.6

HCI2 | 1140.7 2932213 1697.2 | 1125.0 93375.0 482.7 | 1075.0  365570.0 2070.0

HCI3 | 1020.3  262295.7 1436.4 | 1107.0 91881.0 467.2 | 1075.0  365570.0 2014.1

HCI4 | 1093.7 2811423 15772 | 1078.7 89529.3 474.0 | 1150.7 391296.7 2318.0

HCIS | 1072.7 2757453 1548.8 | 1087.3  90248.7 4657 | 918.3  312303.3 1737.0

HCI6 | 1250.0 321320.0 1807.2 | 1077.3 89418.7 471.6 | 1113.0 378490.0 2162.3

HCI7 | 1047.0 269149.0 1509.7 | 1154.7 95837.3 499.1 933.7  317516.7 1810.1

HCI8 | 1046.3  268977.7 1482.8 | 1330.0 110390.0 520.3 | 1019.0  346530.0 2022.1

HCI9 | 1051.3  270262.7 1478.1 | 1001.7 83138.3 421.2 955.3  324883.3 1816.3

HCII0 | 1061.7  272918.3 1529.4 | 13303 110417.7 572.5 | 10443 3551433 1983.8
time period. Specifically, with only the budget constraint, entire budget to fund ongoing projects, as shown in Figure 12.
there was no mechanism to ensure that budget allocations In contrast, the meta-heuristic approaches tended to start a
after the planning window were sensible. As a result, all slightly larger number of projects in the first time period,
examined approaches leverage the fact that no new projects followed by a brief lull in project initiation. This earlier
are initiated after the planning horizon, thereby allocating the start of projects led to a quicker delivery of capabilities,
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FIGURE 18. Total portfolio value at each time step on the HCI1 instance.

as demonstrated by the plot of value added at each time
shown in Figure 13. Figure 13 also shows that the meta-
heuristic approaches have a more balanced and consistent
delivery of capabilities, albeit with a much larger spike at
the end of the planning period, whereas the portfolio found
by Gurobi exhibited multiple peaks in capability delivery,
with a notable decline immediately before the end of the
planning window. An additional observation was that for all
examined approaches, the delivery of capabilities extended
for approximately 30 years after the planning window.

To compare the running time of the meta-heuristic
approaches, Table 4 gives the average number of genera-
tions (Gens), function evaluations (FEs), and process time
until termination. However, a few explicit notes regarding
the values presented in Table 4 are warranted. Firstly, recall
that the termination criterion was set as 100 generations
with no improvement to the fitness and, as a result of the
different population sizes, the number of function evaluations
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are somewhat misleading. Secondly, the algorithms were
implemented using a multi-process approach and the run
time was calculated as the difference between start time
and completion time for each process. Moreover, the run
time is heavily dependent on the implementation, which may
be inadvertently optimized more heavily for one particular
approach. Therefore, the run-time is not generally indicative
of the true run time for each approach. Rather, the average
run time is more indicative of the overall time taken for all
30 runs, though should not necessarily be interpreted in this
manner. Therefore, the measurements provided in Table 4
should be taken relative to each other, rather than as absolute
measurements.

Considering the notes above, a few key observations can
be made from Table 4. The number of generations required
for the hybrid approach to reach convergence was slightly
lower, in general, than the other two approaches. However,
this result is a bit more nuanced in that the population size
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FIGURE 19. Total cost by capability stream at each time step on the HCI1 instance.

is the sum of the population sizes for both the BRKGA and
DE approaches. As a result, the running time of the hybrid
approach was significantly longer; the run time of the hybrid
approach was approximately 1.5x longer than BRKGA and
4-5x longer than DE. This observation makes the choice of
optimization approach, among those considered, much less
clear than if considering performance alone. Specifically,
the hybrid approach takes 4-5x longer than the DE approach,
but the absolute difference in performance was generally
within 0.5%. Moreover, the BRKGA approach depicted even
closer performance to the hybrid approach, but took approx-
imately 66% of the run time.

C. HEAVILY-CONSTRAINED INSTANCES

Table 5 reports the mean, standard deviation, and mini-
mum value of the error metric over 30 runs for each of the
meta-heuristic approaches on the heavily-constrained prob-
lem instances. Figures 14 and 15 present the results of the
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statistical significance testing via the critical difference plot
and the p-value matrix, respectively. As with the lesser-
constrained instances, the hybrid approach demonstrated the
best performance of the meta-heuristics and was found to
have no statistically significant difference in performance
when compared to the exact approach (p = 0.07). However,
the relatively low p-value of 0.07 demonstrates that the rel-
ative performance of the hybrid approach, as compared to
the exact solver, was degraded as a result of the increased
difficulty of the problem instances.

As observed with the simpler instances, the BRKGA
exhibited slightly worse performance than the hybrid
approach while the DE approach performed the worst overall.
However, the difference in performance between the hybrid
and BRKGA approaches was not statistically significant
(p = 0.39). Similarly, the performance of the BRKGA and
DE approaches were not found to have a statistically signifi-
cant difference (p = 0.11). Again, the BRKGA demonstrated
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FIGURE 20. Total portfolio value by capability stream at each time step on the HCI1 instance.

a lower mean of minimum errors, at 2.11%, than the hybrid
approach, at 2.13%. Nonetheless, only the hybrid approach
was found to have no statistically significant difference when
compared to the exact solver (p = 0.07).

Considering the absolute performance, compared to the
exact solver, the hybrid approach exhibited a mean error of
between 1.57% and 5.29%, with a minimum error between
0.94% and 4.55%. However, it should be noted that the results
for all meta-heuristic approaches on the HCI9 instance were
strikingly poor when compared to the exact solver. Exclud-
ing the HCI9 problem instance, the largest mean error for
the hybrid approach was 3.96% while the worst-case mini-
mum error was 3.13%. In contrast, the DE approach, which
was again the worst overall, depicted a mean error between
2.12% and 5.69% (or 4.06%, excluding HCI9) whereas the
minimum error was between 0.97% and 4.51% (or 3.00%,
excluding HCI9).
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To further examine the differences in performance,
Figures 16 to 20 provide an in-depth profile of the portfolio
from the exact solver and the best results from each meta-
heuristic approach on the HCI1 problem instance. Figure 16
shows the number of projects that were started and ongo-
ing in each time period. Notably, the end effect observed
in the less-constrained instances (see Figure 11c) was par-
tially mitigated by the introduction of various constraints.
Specifically, limiting the proportion of the budget available
to maintain ongoing projects ensured that the budget out-
side of the planning window was not allocated solely to
the maintenance of projects. As can be seen in Figure 17c,
the proportion of budget used to maintain ongoing projects
continued to be capped at 75%, even outside the planning
window, thereby permitting the initiation of new projects.
Furthermore, the number of projects initiated in the final plan-
ning period was less than 200 — a significant decrease from the
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approximately 300 projects started in the final period when
these constraints were not considered. Another interesting
observation was that, despite the limited budget for starting
projects, the number of projects initiated in the first planning
period was approximately the same. This indicates that lower-
cost projects, also likely shorter in duration, were prioritized
in the presence of heavily-constrained environments.

Figure 18, which shows the value added at each time
period on the HCI1 instance, demonstrates that the delivery
of capabilities was much more consistent in the constrained
instances compared to the instances with only budget con-
straint. Specifically, the distributions depicted a much higher
delivery of capabilities in the earlier years with a far less
prominent peak at the end of the planning window. One
notable observation was that the portfolio returned by Gurobi
demonstrated a significantly higher value in the first year of
the planning period whereas the meta-heuristic approaches
generally led to better delivery of capabilities in the middle
of the planning period.

Finally, Figures 19 and 20 show the cost and value added at
each time period by capability stream. These figures demon-
strate that the delivery of capability in each stream was spread
across the entire planning window. As expected, the capa-
bility stream with the highest costs and value added was
stream 1, which had the largest proportion of the budget.
Another noteworthy observation was that the value added by
capability stream 2 in the final planning period had a large
peak for all approaches.

To compare the running time of the meta-heuristic
approaches, Table 6 gives the average number of generations
(Gens), function evaluations (FEs), and process time until
termination on the heavily constrained problem instances.
The same notes as mentioned in Section V-B apply to these
convergence results. In general, the observations were quite
similar to those made from Table 4. Specifically, the hybrid
approach required fewer generations to reach convergence,
in general, than the other approaches but took approximately
1.5x as long as BRKGA and 4-5x as long as DE in terms
of overall run time. The results once again indicated that
the DE was able to attain relatively similar performance
compared to the hybrid approach, though with a statisti-
cally significant difference, at a fraction of the running time.
Another noteworthy observation was that despite the signif-
icantly increased complexity introduced as a result of the
additional constraints, the run time required for convergence
on the heavily constrained instances was not significantly
higher than when considering the simpler instances. This
can largely be attributed to the heuristic scheduling compo-
nent that implicitly handles the problem constraints, thereby
eliminating the need for an explicit constraint handling tech-
nique or repair mechanism. Furthermore, this implies that
the time needed to reach a reasonable solution is not heav-
ily influenced by the problem difficulty — this is an impor-
tant and noteworthy property of the proposed meta-heuristic
approaches.
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VI. CONCLUSION AND FUTURE WORK

This study investigated the PPSSP in the context of FFD.
Three meta-heuristic approaches, namely DE, BRKGA, and
a hybrid, multi-population approach, were examined on
two sets of problem instances. The meta-heuristics incor-
porated an underlying scheduling heuristic that implicitly
addresses operational constraints, thereby reducing the prob-
lem complexity. To ascertain their absolute performance,
the meta-heuristic approaches were also compared against
a commercial exact solver. The results indicated that the
proposed hybrid approach exhibited no statistical difference
in performance when compared to the exact solver. While the
DE approach exhibited a statistically significant difference in
performance when compared to the hybrid approach, it was
found to provide solutions with only a slight degradation in
quality, but took 4-5x less overall run time. In absolute terms,
the performance of DE was typically less than 0.5% worse
than the hybrid approach and within 5% of the fitness attained
by the exact solver.

In summary, the key novelties of this study were twofold.
Firstly, this study investigated a formulation of the PPSSP
heavily inspired by the FFD process. Furthermore, the data
generation process used statistical distributions derived from
real-world defence data. Secondly, a hybrid, multi-population
meta-heuristic approach was proposed to address a set
of large-scale PPSSP problems that exhibited characteris-
tics found in real-world defence project scheduling. This
approach was found to exhibit no statistically significant
difference in performance compared to an exact solver.

There are several avenues for expansion on this study.
An effective approach to mitigating the observed end effects
could be to extend the planning window beyond the desired
planning period, and then only considering projects initiated
within the planning period. Advantage may also be gained
by allowing small budget variations and then addressing
the violations by either reducing the budget allocation in
future years or through a penalization mechanism. Another
exploration could investigate over-programming as a hedging
strategy to prevent underspends and schedule delays. Analy-
ses could also include applying uncertainty in project costs,
duration, and values as well as exploring multi-objective
approaches.
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