
Received March 23, 2021, accepted May 22, 2021, date of publication June 3, 2021, date of current version June 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085997

MapReduce Model Using FPGA Acceleration for
Chromosome Y Sequence Mapping
ASMAA G. SELIEM 1, HESHAM F. A. HAMED2,3, AND WAEL ABOUELWAFA 4
1Faculty of Engineering, Nahda University, Beni Suef 62764, Egypt
2Electrical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt
3Telecommunication Engineering Department, Egyptian Russian University, Badr 11829, Egypt
4Bio-Medical Engineering Department, Faculty of Engineering, Minia University, Minya 61519, Egypt

Corresponding authors: Asmaa G. Seliem (asmaa.seliem@s-mu.edu.eg) and Wael Abouelwafa (wael.wafa@minia.edu.eg)

ABSTRACT Genome assemblies sequenced by a Whole Genome Shotgun (WGS) project predict an
organism’s function and history. Sequence alignment is the foundation of bioinformatics by a computational
search through large genome sequence databases, which generally requires enormous amounts of memory
and takes a long execution time. In this paper, an Optimized Smith-Waterman algorithm based on the Gotoh
algorithm with an affine gap for accuracy alignment, the divide and conquer technique, and the MapReduce
framework implemented to establish a parallel process. This model was implemented on Virtex 7 field-
programmable gate arrays (FPGAs). These techniques provide a better performance, reduce the hardware
requirements, improve the accuracy, increase the computational throughput, and accelerate the alignment
process for big data available in a complete Y chromosome. The hardware proposed system can achieve
high performance, low time consumption 1.699 ns, and decrease FPGA utilization for big data alignments
Y chromosome is used as an example.

INDEX TERMS MapReduce, PHSW-DC, Gotoh, smith-waterman, Y chromosome.

I. INTRODUCTION
Bioinformatics is an emerging field focusing on developing
computational methods (hardware and software) to collect,
handle, and analyze biological data for DNA sequence map-
ping. Genome sequencing is used to determine the order of
DNA nucleotides adenine (A), cytosine(C), guanine (G), and
thymine (T), which form the genetic code for storing biolog-
ical information [1]. The human genome (reference genome)
comprises more than 3 billion of these nucleotides [2].
Human DNA samples are slashed into billions of small frag-
ments, called reads, and a sequencer decides each read’s
nucleotide order.

An entire genome is sequenced by next-generation
sequencing (NGS) machines that determine the nucleotide
sequence of short DNA fragments (short reads), which low-
ers the cost and increases the throughput of DNA sequenc-
ing, helping scientists find genes much more easily and
quickly [1].

Figure (1) shows the mapping process that makes up
each strand to obtain an individual organism’s genetic code.

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra Bertoldo.

FIGURE 1. Mapping process after NGS.

The mapping process is challenging because of the large size
of a given genome [1] and short DNA fragments from NGS
by determines the location in the reference sequence to each
read maps best.

There are two problems associated with such map-
ping; first, the mapping speed is low because of the big
data. Second, the algorithm’s accuracy for successfully
mapping [3].

Scientists use two methods to solve the mapping problem-:
heuristic methods and exact methods. Heuristic methods
solve the mapping problem more rapidly than accurate

83402 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2675-5949
https://orcid.org/0000-0001-7449-8014


A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

methods do. However, such methods, BLAST [4] and
FASTA [5], suffer from accuracy. Therefore, bioinformat-
ics researchers use dynamic programming, which is more
efficient; the Smith-Waterman algorithm is a well-known
sequence alignment algorithm for finding relationships
between two sequences of all possible lengths.

Several methods have been utilized to accelerate the map-
ping process. Some of these methods approach this prob-
lem via software by using efficient algorithms. In contrast,
the other uses special hardware or a hybrid approach, which
combines both software and hardware approaches [1].

Softwaremethods such asMaq [6], BFAST [7], Bowtie [8],
and BWA [9] require days or weeks to map a whole genome.
One major problem in software applications is low memory
access. In CPUs incorporating hardware methods, the data
paths are fixed, and the cache memory does not help much
when the amount of data is immense. Thus, various com-
puting architectures, such as GPUs and FPGAs, are used
to exploit the traditional type of parallelism of each of
these architectures [10]. CPU implementation is the slowest
of these approaches because CPUs have limited pipelining
and consecutive execution capabilities. GPU performance
has increased with advancing chip technology, reflected in
the much higher performance achieved with much lower
power. In direct comparison with GPU implementation,
FPGA implementation shows a much better GCUPS per
Watt ratio.

Past endeavors incorporating short-read mapping utilizing
FPGAs have yielded performance levels different from soft-
ware tools [3].

SWPS3 [11] accelerates the Smith-Waterman algorithm
through multi-threading and SIMD vector instructions in
Intel’s x86 or IBM’s Cell architecture. CUDASW++ [12]
is a CUDA implementation of the algorithm, and Altera
provides an FPGA- implementation for its XD1000 plat-
form [13]. Milik and Pulka reduced the processing time by
optimizing the hardware architecture and benefitting FPGAs’
properties [14].

Because physical constraints prevent the frequency scaling
of CPUs and power consumption is becoming a critical prob-
lem, parallel processing has turned into the prevailing world-
view for extensive scale figuring applications; thus, FPGAs
have been widely explored for various high-performance
computing applications in recent years. Compared with other
computing platforms in parallel, such as GPGPUs and multi-
cores clusters, the FPGA has advantages as follows: i) FPGAs
are reconfigurable, and it is easy to change functionalities
without changing the platform; ii) logic elements in FPGA
work in an ordinarily fine-grained parallel manner with
high flexibility similar to those in software approaches; and
iii) FPGAs represents the best hardware devices that can
follow Moore’s law persistently [15].

The MapReduce model has been investigated in most par-
allel computing platforms in the past few years. For exam-
ple, in its clusters, Google introduced the first MapReduce
system [16].

There are numerous tools based on Burrows-Wheeler that
use HadoopMapReduce to boost BWA efficiency [17]. In the
meantime, the high power consumption of multi-core chips
represents a wall for the massive usage of such chips. For the
general use of GPU platforms, the MapReduce framework
has also been explored [18].

A parallel process was applied to align DNA sequences
reducing computational time with a custom architecture
implemented on the FPGA to provide a more robust solution
to take advantage of the algorithms in complete parallel while
retaining a comparatively low power profile [19].

However, a MapReduce framework was implemented on
Cell clusters. Yeung et al. [20] adopted both an FPGA and
GPU to implement a MapReduce framework.

This paper focuses on a scalable MapReduce framework
based on FPGA to reduce the need for development cycles
of FPGA-based computing for big data analysis. In this
framework, multi-level parallelism is utilized, ranging from
the bit-level to the task level. Demonstrating the proposed
framework’s practicability, we implement the enhanced
‘‘Smith-Waterman (SW) algorithm’’ using Gotoh with an
affine gap and a parallel platform by the divide and conquer
technique [15] implemented on FPGA-based architecture to
accelerate the mapping process. The study’s significance lies
in improving performance and optimizing the amount of
power used with reasonable accuracy.

II. MATERIALS AND METHODS
Mapping accuracy is a bioinformatics problem solved in this
paper by optimizing the Smith-Waterman algorithm using
the Gotoh affine gap with parallel hardware implementa-
tion. Big data is another problem that is solved by three
different techniques divide and conquer, MapReduce model,
and FPGA implementation. These methods are used for the
human Y chromosome, the sex-determining chromosome in
many species; males have one Y chromosome and one X
chromosome, while females have two X chromosomes.

The human Y chromosome is specially presented to high
mutation rates due to the environment in which it is housed.
It is gone solely through sperm, which undergoes multiple
cell divisions during gametogenesis. Each cellular division
gives a further chance to aggregate base-pair mutations.
Additionally, sperm are secured in the uncommonly oxidative
condition of the testis, which empowers further transforma-
tion. However, her extraordinary reference gets this number
for the relative change rates in male and female germlines for
human genealogy.

A significant strata forming mechanism is an inversion of
the Y chromosome, which suppresses X - Y recombination in
males in the inversion zone. The non-recombining regions on
theX andY chromosomes develop and diverge independently
after each inversion. Also, in the absence of male recombi-
nation, non-recombining regions accumulate DNA elements,
such as transposable or repetitive elements, and sequences
with GC content shifts [21]

VOLUME 9, 2021 83403



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

The Y chromosome genes count estimation according
to NCBI are (73) Protein-coding genes & (122) Non-
coding RNA genes and (400) Pseudogenes (NCBI Reference
Sequence: NC_000024.10) with a length of (57,227,415 bps).
According to The human reference genome GRCh38, which
was released from the Genome Reference Consortium, all
these techniques will be described.

A. OPTIMIZATION OF SMITH-WATERMAN ALGORITHM
BY GOTOH ALGORITHM
The Smith-Waterman algorithm is used widely due to its
capability to ensure high accuracy [22]. On the other hand,
the Gotoh algorithm is considered the more restricted case of
affine gap costs. Therefore, the Gotoh and Smith-Waterman
algorithms are combined into one approach to computes the
local affine alignment of two sequences using affine gap
scoring.

Gotoh’s algorithm’s significant advantage is finding the
minimum cost in O(MN) steps to align two sequences.
Gotoh’s algorithm attempts to discover just a single (rather
than all) of the ideal alignments. However, Taylor described
a modification of Gotoh’s algorithm that consistently finds
at least one optimal alignment [23]. The Gotoh and Smith-
Waterman algorithms are combined as follows:
• Initialize matri
• Make a calculation matrix and a high score.
• Traceback alignment (TB process).

The first step, M+1 by N+1 matrix, is generated by a
dynamic programming approach, where M is the length of
the reference sequence complete Y chromosome, and N is
the length of the query sequence. The first column and row
are filled with zeros according to equation (1); the matrix
cells score calculated and loaded using the local alignment
score D(i,j) beginning from the top-left corner where S(i,j)
denotes the substitution score value obtained by aligning
character Reference Ri against character Query Qj according
to equation (2) and E, F represents the gap penalty cost g and
β (the cost of aligning a character to space, also known as gap
insertion, deletions, or replacement) to give more flexibility
and accuracy in alignment; these factors can be calculated by
equations (3,4) for the rows and columns to get the final result
as indicated by equation (5).

D(i,0) = D(0,j) = 0 (1)

S (ai, bi) =

{
5 ai = bi match
−4 ai 6= bi mismatch

(2)

Ei,j = max

{
Di−1,j + g
Ei−1,j + β

(3)

Fi,j = max

{
Di,j−1 + g
Fi,j−1 + β

(4)

Di,j = max


Di−1,j−1 + S(a, b)
Ei,j
Fi,j
0

(5)

FIGURE 2. (a) Smith-waterman matrix fill, and (b) cell calculation
procedure.

Aftermatrix calculation, backtracing is performed from the
highest score; several paths lead back to the original point,
as shown in Figure (2).

The Smith-Waterman algorithm optimized by the Gotoh
algorithm [24] has a running time of O(N2) and a memory
requirement of O(N), where O refers to complexity, and N is
the sequence size. Given the large size of genomic datasets,
the computation time can be significantly decreased.

This paper’s remainder is organized as follows; Section II
describes the materials and methods used, including the
Smith-Waterman algorithm optimized by the Gotoh algo-
rithm, parallel hardware Smith-Waterman algorithm with
the divide and conquer technique, the MapReduce pat-
tern for big data problem, hardware Implementation on
FPGAs, Section III describes the results of the paper. Finally,
section IV provides a discussion of the findings.

B. DIVIDE AND CONQUER TECHNIQUE
Divide and conquer is a robust algorithm for solving con-
ceptually complex problems: all the technique requires is to
divide an issue into sub-issues, which decreases the size of
the case to be solved.

The proposed algorithm uses D&C to divide the com-
plete Y chromosome’s length into (N∗ the size of the query
sequence) and conquer each alignment process’s results to get
the final result. This division reduces the complexity of the
main structure and reduces the amount of memory used.

Each subsequence will align with the Query in many pro-
cesses at the same time. Then, the other subsequences are
pipelined to the alignment in the same manner, as shown
in figure (3).

The D&C technique is naturally adapted for execution
in multi-processor Frameworks, especially shared-memory
systems. The communication of data between processors
should be arranged ahead of time, as certain sub-issues can
be executed on the various process. Furthermore, the D&C
technique naturally tends to make efficient use of memory
caches. The reason is that once a sub-issue is sufficiently
small, it can be illuminated inside the reserve without being
susceptible to slower principle memory access.

83404 VOLUME 9, 2021



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

Algorithm 1 Optimized Smith-Waterman Algorithm by
Gotoh
##Inputs
RSequence � Reference sequence of length m to be
aligned
QSequence� Query sequence of length n to be aligned
Gap plenty = 10
Match = 5 and mismatch = -4
load data sequence and generate the intial aligment
Matrix
for i < m+1
for j < n+1
IF RSequence(i)= QSequence(j)
cell(i,j) = cell(i-1,j-1) + match

End
IF RSequence (i)/= QSequence(j)
cell(i,j) = cell(i-1,j-1) +Mismatch

End
for K1 < i-1
loop for rolls over the row to get maximum value

in the row begin from
k_row := cell(above) –(GapPenalty+ (GapExt ∗ k1))

value
end
for K2 < j-1

loop for rolls over the column to get maximum
value in the column begin from

k_col := Row_vector(left) – (GapPenalty +
(GapExt ∗ k2)) value

end
end

end
for i < m+1

for j < n+1
get the high Score of Matrix its position and

End
End
for i < position_row of highScore
for j < position_column of highScore
get the alignment sequence by trace back processing

End
End
outputs
RSequence_output align reference sequence
QSequence_output align query sequence

C. MAPREDUCE PATTERN FOR BIG DATA PROBLEM
The proposed model gives two natives, map and reduce.
The input data to a computing task are part of many <add,
value> pairs and a map function processes them to create
a set of intermediate <add, value> pairs. Intermediate pairs
with similar intermediate keys are grouped and passed to the
reduce function. Then the MapReduce runtime framework
addresses parallel execution by issuing multiple maps and
reducing tasks to computation nodes.

Algorithm 2 Parallel Pseudo-code
Step 1: Divide reference sequence to p Query sub-
sequences
Step 2: Compute matrix and conduct alignment for p
processes
Process (1)
Optimized smith waterman algorithm by Gotoh
Process (2)
Optimized smith waterman algorithm by Gotoh
...

Process (p)
Optimized smith waterman algorithm by Gotoh
Step 3:
Combine the result from each process
OptA _alignment A = Opt A1 & Opt A2 & Opt A3
Opt B_alignment = Opt B1 & Opt B2 & Opt B3

FIGURE 3. The proposed hardware, divide, and conquer technique with
the parallel process for alignment where n is the number of subsequence
reference, and p is the number of processes.

Proposed FPGA MapReduce (FPMR) Framework:
we present five different forms of the MapReduce frame-

work. Furthermore, dedicated processors are designed for
various applications under the FPMR framework for FPGA.

Five MapReduce Design Patterns
1. Input-Map-Reduce-Outpu
2. Input-Map-Output
3. Input-Multiple Maps-Reduce-Outpu
4. Input-Map-Combiner-Reduce-Output
5. Input-Multiple Maps-Multiple Reductions Output

The proposed model use Pattern (5) to take input from many
files with different schema, different processes are carried out
in the reducers, and the output is then combined in the end
stage, which we use in our system as shown in Figure (4).

Proposed MapReduce Data Flow
The MapReduce data flow can be simplified as follows:
In the initial < add, the local memory in FPGA prepares

value > pairs. Then the mappers and reducers perform oper-
ations on the FPGA.

VOLUME 9, 2021 83405



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

FIGURE 4. The five patterns of MapReduce.

The mappers process the initial input < add,value > pairs
and create intermediate < add, value > pairs. The reducers
then join the intermediate pairs to acquire the last results.
In bioinformatics applications, reducers’ outputs should be
further processed to obtain a single result to resolve this issue
using the D&C technique.

The data controller is responsible for communicating with
the FPGA, transmitting data to the mappers, and receiving the
reducers’ data.

The basic workflow and scheduling policy are as follows:

1. Produce < add, value > pairs on the FPGA local
memory.

2. Write the FPGA registry configuration parameters.
3. The processor scheduler assigns each mapper.
4. Mappers process the assigned < add, value > pairs and

store the generated intermediate <add, value> pairs in
the local memory controlled by a data controller.

5. When all the tasks are completed, the results are
returned to the data controller’s primary host memory.

Processor
There are two types of processors on a chip designed,

mappers and reducers. Mappers and reducers are specifically
designed according to the target chromosome Y. The pro-
cessing times of mappers vary depending on the number of
mappers, data size, and reducers assigned according to genes
separated. Then the data are exchanged between mappers and
reducers.

Storage Hierarchy and Data Controller
There are two levels of storage in our framework. The

first level is the local memory divided into two parts; one
stores the initial <add, value> pairs. The second part stores
the intermediate <add, value> pairs and serves as the shared
memory for mappers and reducer; the second level is the
processor’s registry file designed for temporary variables,
configuration parameters, and results.

Local memory
Local memory is implemented in on-chip RAMs. The

intermediate results acquire from a mapper are stored in the
local memory, and the reducer will obtain the intermedi-
ate data from the local memory. Thus, multiple RAMs are
implemented, and They can be reached through mappers and
reducers simultaneously.

Register file
The register file stores the temporary variables. The frame-

work’s parameters and the results during processor operation.
Data controller
The data controller is responsible for the following three

functions: 1) dispatching of requested data to mapper;
2) communicate data between mapper and reducer, and

3) store the output data from reducers.

D. HARDWARE IMPLEMENTATION ON FPGA
The proposed system is simulated onVirtex-7, which involves
a TSMC 28 nm HPL process, a 40 nm V6, 6.8 billion transis-
tors, 2million logic cells. Technology Integrated 12-bit ADCs
in 17 channels at 1 MSPS, low-power mode: 0.9 V.

The proposed solution assigns 2 bits for each DNA char-
acter for faster alignment. The design was synthesized from
VHDL using Xilinx software tools. ISE 14.7 is used to write
and simulate the VHDL code.

The symbols are coded as follows (A = 00, C = 01,
G = 10, and T = 11). Therefore, the input for sequences
N or M was implemented in the simulation based on a size
of 2-bits; for example, for M = A T C G, the system can
implement M = 00, 11, 01,10, Similarly, for N = T C G A,
for example, the system can implement N = 11, 01, 10, 00.
In this experimental local memory of FPGA is divided

into two parts. Every part of local memory has two mappers,
and each one goes to four reducers used for calculation
processing.

The proposed algorithm comprises three main hard-
ware components: memories, a processing unit, and a
comparator—the allocated local memories store reference
sequences and query sequences involving less utilization and
higher speed than other systems. The memory size bottleneck
is a significant problem when the forward process is imple-
mented on an FPGA.

The processing unit computes the array value for each
character by an optimized smith waterman algorithm. Values
are computed for every combination of deletions, insertions,
and matches. Affine gap penalties make the alignments more
biologically relevant, as the matrix fill stage takes most of the
overall processing time.

Finally, the comparator performs the traceback step to
compare the query and reference sequences and obtains the
alignment results. The design does depend on a clock, thus
making it a synchronized system.

At the beginning of the optimized S-W flow chart, the ref-
erence sequence A(i) and query sequence B(j) are loaded
and then compared to determine whether they match, and the
gap penalty (gap constant) is subtracted. Figure (5) displays
the HPSW-DC algorithm design, which is implemented on
an FPGA. The figure shows how two sequences are aligned
where Mi, Ni is an input on the comparator, and the result
goes to the first adder and is then added to the value of a
diagonal cell. The first adder output is input to a maximum
value selection step with the left cell’s value added to the
gap. Next, the maximum value output is input to another

83406 VOLUME 9, 2021



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

FIGURE 5. Flow chart of the optimized S-W algorithm.

maximum value selection step with the value of the upper
cell, which is added to the gap. Finally, the second maximum
value selection step’s output is input to a finalmaximumvalue
selection step with zero to obtain the final result Hi,j.

III. RESULTS
In this experiment, we select chromosome Y, the most
mutated chromosome in the human genome, which is very
useful for bioinformatics research; to increase the accuracy
for alignment, we optimize the smith waterman algorithm
by Gotoh affine gap, which increases the accuracy for the
mapping process. Furthermore, adding the divide and con-
quer technique with parallel processing decreases the bio
O notation from N2 to PN. Then the last Stage to solve
the big data problem chromosome Y this experiment using
MapReduce pattern (four reducers for eachmapper) to handle
this data on FPGA and transferring all this information to
VHDL code implemented on Virtex 7. We are achieving by
the end 1.69 ns for chromosome Y (57 Mbps).

The schematic diagrams of the complete proposed system
shown in figure (6) show Local memories that store chro-
mosome files and the counter that shares the address and
Smith-Waterman block for processing, and figure (7) demon-
strate the UART block that obtains output from the Smith-
Waterman block and outputs the result to the PC second
stage. First, the Y chromosome is converted to a FASTA
file with 0 or 1 bit (.coe) files to FPGA memory. Each file
has 571000 lines with 48bits per line; a Python program
performs this transformation from the original file. Next, this
file is loaded into two different memories (the size of each is
3.5MB) on the FPGA as a part of the mapping process using
a counter to assign different addresses for every line in these

FIGURE 6. The MapReduce used pattern.

files with the value stored in the memory; the data are then
transferred to the output of this memory to the two reduc-
ers (SW_Gquery6_gene24) which execute an optimization
algorithm to calculate the final alignment via four parallel
processes. Finally, the divided results are then transferred to
obtain the Y chromosome’s final alignment using the counter
to map the previous process’s address and values.

Table 1 shows an up to date comparison between this
paper, and other implementations CloudSW has outstand-
ing performance as a cloud software (0.1224 sec.) and
achieves up to 621 times speedup over SparkSW(1 min.
11sec.) with an Execution time taken by SPARK-MSNA for
datasets with different similarity. Datasets were of equal size
(3.75MB) [30].

OpenCL-based FPGA predicts performance and track
optimizations on different platforms used in GCUPS as

VOLUME 9, 2021 83407



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

FIGURE 7. First stage.

FIGURE 8. Second Stage.

FIGURE 9. Simulation results were obtained for the alignment of
chromosome Y by four parallel processes.

a performance indicator, which is not accurate as a separate
one because the size of reference and Query is the most
critical factor for comparison.

In the last column, an innovative reconfigurable supercom-
puting platform – XD1000 is developed by Xtreme Data Inc.
to exploit FPGA technology’s rapid progress and the high-
performance of Hyper-Transport. The protocols used in this

TABLE 1. compares PHSW-DC and the other methods for sequence
alignment with time, size, frequency, and types of kit.

paper are more accurate with big data sequences and fast
alignment.

IV. CONCLUSION
Smith-Waterman is one of the most important and accurate
algorithms for inference of DNA sequencing to predict an
organism’s function and history, but it requires intensive com-
putation. Furthermore, the time to complete the alignment,
to achieve short execution time, researchers need to have
access to expensive high-performance computing clusters,
which are usually not available; faster and more efficient
sequencing hardware will continue making DNA sequencing
cheaper and amenable for use in forensics, medical diagnosis,
and even biological computing.Moreover, FPGA exemplifies
one of the best attempts to handle large-scale bioinformatics
problems by parallel computing systems. However, various
types of parallelism characterize it. This paper solved this
problem by significantly reducing the computing time using
the divide and concur technique for algorithm processes in
parallel sequence alignment that is implemented as well as
data-level parallelism MapReduce framework for big data
(Y chromosome) without losing the inference accuracy the
design uses Smith-Waterman algorithm optimized by the
Gotoh algorithm to obtain higher efficiency and high accu-
racy. Virtex XC7VX485T-3ffg1157 is used to implement
the optimized algorithm for chromosome Y’s alignment to
demonstrate the effect of the MapReduce model in achiev-
ing low time consumption of 1.699 ns, decreasing FPGA
utilization.

The design uses advanced parallel computing illustrated
by FPGA exhibit not only new possibilities to accelerate
bioinformatics algorithms.

REFERENCES
[1] S. R. Bhalekar and P. G. Chilveri, ‘‘A review: FPGA based word match-

ing stage of BLASTN,’’ in Proc. Int. Conf. Pervasive Comput. (ICPC),
Jan. 2015, pp. 1–4.

83408 VOLUME 9, 2021



A. G. Seliem et al.: MapReduce Model Using FPGA Acceleration for Chromosome Y Sequence Mapping

[2] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, ‘‘A novel high-throughput accel-
eration engine for read alignment,’’ in Proc. IEEE 23rd Annu. Int. Symp.
Field-Program. Custom Comput. Mach., May 2015, pp. 199–202.

[3] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, and
W. L. Ruzzo, ‘‘Hardware acceleration of short read mapping,’’ in Proc.
IEEE 20th Int. Symp. Field-Program. Custom Comput. Mach., Apr. 2012,
pp. 161–168.

[4] R. Dharayani, W. C. Wibowo, Y. Ruldeviyani, and A. Gandhi, ‘‘Genomic
anomaly searching with BLAST algorithm using MapReduce framework
in big data platform,’’ in Proc. Int. Workshop Big Data Inf. Secur. (IWBIS),
Oct. 2019, pp. 27–32.

[5] M. Aledhari, M. Di Pierro, and F. Saeed, ‘‘A Fourier-based data minimiza-
tion algorithm for fast and secure transfer of big genomic datasets,’’ in
Proc. IEEE Int. Congr. Big Data (BigData Congr.), Jul. 2018, pp. 128–134.

[6] H. Li, J. Ruan, and R. Durbin, ‘‘Mapping short DNA sequencing reads
and calling variants using mapping quality scores,’’ Genome Res., vol. 18,
pp. 1851–1858, Nov. 2008.

[7] N. Homer, B. Merriman, and S. F. Nelson, ‘‘BFAST: An alignment tool
for large scale genome resequencing,’’ PLoS ONE, vol. 4, no. 11, p. e7767,
Nov. 2009.

[8] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, ‘‘Ultrafast
and memory-efficient alignment of short DNA sequences to the human
genome,’’ Genome Biol., vol. 10, no. 3, p. R25, May 2009.

[9] H. Li and R. Durbin, ‘‘Fast and accurate short read alignment with
Burrows-Wheeler transform,’’ Bioinformatics, vol. 25, pp. 1754–1760,
Jul. 2009.

[10] N. Cadenelli, Z. Jaksić, J. Polo, and D. Carrera, ‘‘Considerations in using
OpenCL on GPUs and FPGAs for throughput-oriented genomics work-
loads,’’ Future Gener. Comput. Syst., vol. 94, pp. 148–159, May 2019.

[11] A. Szalkowski, C. Ledergerber, P. Krähenbühl, and C. Dessimoz,
‘‘SWPS3—Fast multi-threaded vectorized smith-waterman for IBM
Cell/B.E. and ×86/SSE2,’’ BMC Res. Notes, vol. 1, no. 1, p. 107,
Oct. 2008.

[12] Y. Liu, A. Wirawan, and B. Schmidt, ‘‘CUDASW++ 3.0: Accelerating
smith-waterman protein database search by coupling CPU and GPU SIMD
instructions,’’ BMC Bioinf., vol. 14, no. 1, p. 117, Apr. 2013.

[13] P. Zhang, G. Tan, and G. R. Gao, ‘‘Implementation of the Smith-Waterman
algorithm on a reconfigurable supercomputing platform,’’ in Proc. SC,
2007, pp. 39–48.

[14] L. Di Tucci, K. O’Brien, M. Blott, and M. Santambrogio, ‘‘Architec-
tural optimizations for high performance and energy efficient Smith-
Waterman implementation on FPGAs using OpenCL,’’ in Proc. DATE,
2017, pp. 716–721.

[15] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, ‘‘FPMR:
MapReduce framework on FPGA,’’ in Proc. 18th Annu. ACM/SIGDA Int.
Symp. Field Program. Gate Arrays, 2010, pp. 93–102.

[16] S. Maitrey and C. K. Jha, ‘‘MapReduce: Simplified data analysis of big
data,’’ Procedia Comput. Sci., vol. 57, pp. 563–571, 2015.

[17] M. AlJame and I. Ahmad, ‘‘DNA short read alignment on apache spark,’’
Appl. Comput. Inform., 2020.

[18] S. C. Purbarani, H. R. Sanabila, A. Bowolaksono, and B. Wiweko, ‘‘A sur-
vey of whole genome alignment tools and frameworks based on Hadoop’s
MapReduce,’’ in Proc. Int. Workshop Big Data Inf. Secur. (IWBIS),
Oct. 2016, pp. 65–70.

[19] A. Zeni, M. Crespi, L. Di Tucci, and M. D. Santambrogio, ‘‘An FPGA-
based computing infrastructure tailored to efficiently scaffold genome
sequences,’’ in Proc. IEEE 27th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2019, p. 333.

[20] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C. C. C. Cheung,
A. P. C. Chan, and P. H. W. Leong, ‘‘Map-reduce as a programming model
for custom computing machines,’’ in Proc. 16th Int. Symp. Field-Program.
Custom Comput. Mach., 2008, pp. 149–159.

[21] R. S. Pandey, M. A. Wilson Sayres, and R. K. Azad, ‘‘Detecting evolution-
ary strata on the human X chromosome in the absence of gametologous
Y-linked sequences,’’ Genome Biol. Evol., vol. 5, pp. 1863–1871, 2013.

[22] T. F. Smith and M. S. Waterman, ‘‘Identification of common molecular
subsequences,’’ J. Mol. Biol., vol. 147, no. 1, pp. 195–197, Mar. 1981.

[23] S. Altschul and B. Erickson, ‘‘Optimal sequence alignment using affine
gap costs,’’ Bull. Math. Biol., vol. 48, nos. 5–6, pp. 603–616, 1986.

[24] O. Gotoh, ‘‘An improved algorithm for matching biological sequences,’’
J. Mol. Biol., vol. 162, no. 3, pp. 705–708, Dec. 1982.

[25] S. Pal, S. Mondal, G. Das, S. Khatua, and Z. Ghosh, ‘‘Big data in biology:
The hope and present-day challenges in it,’’Gene Rep., vol. 21, Dec. 2020,
Art. no. 100869.

[26] B. Xu, C. Li, H. Zhuang, J. Wang, Q. Wang, and X. Zhou, ‘‘Efficient
distributed smith-waterman algorithm based on apache spark,’’ in Proc.
IEEE 10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 608–615.

[27] L. Di Tucci, K. O’Brien, M. Blott, andM. D. Santambrogio, ‘‘Architectural
optimizations for high performance and energy efficient smith-waterman
implementation on FPGAs using OpenCL,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 716–721.

[28] E. Houtgast, V.-M. Sima, and Z. Al-Ars, ‘‘High performance streaming
smith-waterman implementation with implicit synchronization on intel
FPGA using OpenCL,’’ in Proc. IEEE 17th Int. Conf. Bioinf. Bioeng.
(BIBE), Oct. 2017, pp. 492–496.

[29] P. Zhang, G. Tan, and G. R. Gao, ‘‘Implementation of the smith-waterman
algorithm on a reconfigurable supercomputing platform,’’ in Proc. 1st Int.
Workshop High-Perform. Reconfigurable Comput. Technol. Appl. Held
Conjunct (SC-HPRCTA), 2007, pp. 39–48.

[30] V. Vineetha, C. L. Biji, and A. S. Nair, ‘‘SPARK-MSNA: Efficient algo-
rithm on apache spark for aligning multiple similar DNA/RNA sequences
with supervised learning,’’ Sci. Rep., vol. 9, no. 1, pp. 1–11, Dec. 2019.

ASMAA G. SELIEM was born in Minia, Egypt,
in 1990. She received the B.Sc. degree in electron-
ics and communication engineering from Minia
University, Minia, in 2012, the Diploma degree
from the Information Technology Institute (ITI)
Open Source Track, in June 2015, and the
M.Sc. and Ph.D. degrees in electronics and com-
munications engineering from Minia University,
in 2016 and 2020, respectively. She was a Lecturer
with the Department of Electrical Engineering,

Nahda University, Beni Suef, Egypt, in 2016.

HESHAM F. A. HAMED was born in Giza, Egypt,
in 1966. He received the B.Sc. degree in electrical
engineering and the M.Sc. and Ph.D. degrees in
electronics and communications engineering from
Minia University, Minia, Egypt, in 1989, 1993,
and 1997, respectively. He was a Teacher Assis-
tant with the Department of Electrical Engineer-
ing, Minia University, from 1989 to 1993. From
1993 to 1995, he was a Visiting Scholar with Cairo
University, Cairo, Egypt. From 1995 to 1997, he

was a Visiting Scholar with the Group of VLSI, Texas A&M University,
College Station, TX, USA. From 1997 to 2003 and from 2003 to 2005, he
was an Assistant Professor and an Associate Professor with the Department
of Electrical Engineering, Minia University. From 2005 to 2007, he was a
Visiting Researcher with Ohio University, Athens, OH, USA. He is currently
a Professor and theViceDean of Post-Graduate Studies andResearchers with
the Faculty of Engineering, Minia University. He has authored over 65 arti-
cles and one book chapter. His current research interests include analog and
mixed-mode circuit design, low-voltage low-power analog circuits, current-
mode circuits, nanoscale analog, and digital integrated circuits design field-
programmable gate arrays.

WAEL ABOUELWAFA received the Ph.D. degree
in bio-medical engineering and systems from
Cairo University, Cairo, Egypt, in 2012. He is cur-
rently an Assistant Professor with the Biomedical
Engineering Department, Minia University. His
current research interests include bioinformatics,
machine learning, big data analytics, and field-
programmable gate array.

VOLUME 9, 2021 83409


