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ABSTRACT Detection and classification of vulnerable road users (VRUs) such as pedestrians and cyclists is
a key requirement for the realization of fully autonomous vehicles. Radar-based classification of VRUs can
be achieved by exploiting differences in the micro-Doppler signatures associated with VRUs. Specifically,
machine learning (ML) algorithms can be trained to classify VRUs using the spectral content of radar
signals. The performance of these models depends on the quality and quantity of the data used during the
training process. Currently, data collection is typically done through measurements or low fidelity physics,
primitive-based simulations. The feasibility of carrying out measurements to collect training data is typically
limited by the vast amounts of data required and practicality issues when using VRUs like animals. In this
paper, we present a computationally efficient, high fidelity physics-based simulation workflow that can be
used to obtain a large quantity of spectrograms from the micro-Doppler signatures of VRUs. The simulations
are conducted on full-scale VRU models with a 77 GHz, frequency-modulated continuous-wave (FMCW)
radar sensor model. Here, we collect the spectrograms of 4 targets; car, pedestrian, cyclist and dog at different
speeds and angles-of-arrival. This data is then used to train a 5-layer convolutional neural network (CNN)
that achieves nearly 100% classification accuracy after 5 epochs. Studies are conducted to investigate the
impact of training data size, velocity and observation time window size on the accuracy of the CNN. Results
from this study demonstrate how an accuracy of 95% can be realized using spectrograms obtained over a
0.2 s time window.

INDEX TERMS Automotive radar, micro-Doppler, machine learning, convolutional neural networks,
FMCW, simulation.

I. INTRODUCTION
Autonomy and electrification have emerged as key drivers of
innovation in the automotive industry in recent years. The
ultimate goal of the autonomy initiative is the deployment
of a fully autonomous (Level-5) vehicle that can safely drive
itself in any conditions that a human driver can operate in.
To achieve the autonomy goal, various advanced driver assis-
tance systems (ADAS) have been developed to provide the
vehicle with complete situational awareness. Light detection
and ranging (Lidar), radio detection and ranging (radar),
visible spectrum cameras and ultrasonic sensors are the main
sensing technologies employed in ADAS [1]–[4]. Radar is
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a relatively cheaper (compared to Lidar) sensing technology
that can be used to determine the range, velocity, and angle-
of-arrival of multiple targets simultaneously in poor lighting
conditions and inclement weather [5]. Various radar sensors
centered around 77 GHz have been developed and tested
recently for automotive applications [6]–[11].

Another motivating factor for the development of fully
autonomous vehicles is the need to make roads safer. Accord-
ing to the NHTSA, 36,835 people lost their lives in road
accidents in the U.S. in 2019 alone [12]. Research has shown
that human error is responsible for 90% of all traffic acci-
dents [13]. Collisions between vehicles and vulnerable road
users (VRUs) such as pedestrians, cyclists and pets are com-
mon types of accident on public roads that can be fatal for
the VRU or leave them severely injured [14]. Distraction on
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the part of the driver or inattention of the VRU are the main
causes of these types of accidents. Ideally, ADAS will elim-
inate this human error component by using sensors and sys-
tems that constantly detect potentially hazardous situations
and respond faster than human beings. Fully autonomous
vehicles will need to demonstrate a continuous and reliable
ability to avoid collisions with VRUs before they are deemed
safe for public roads. Crucial to this capability will be the
ability to detect and classify VRUs.

Micro-Doppler has been identified as a possible means
of classifying targets by analyzing the spectral content of
reflected radar signals [15]. Using the Doppler effect, radar
sensors can determine the velocity of targets. This velocity
is typically associated with the bulk translation of the tar-
get. However, in addition to their bulk translation, non-rigid
bodies can have further micro-motions such as rotation
and vibration that can lead to Doppler frequency modula-
tion [15], [16]. For example, the swinging arms and legs
of humans are additional micro-motions that modulate the
Doppler-induced frequency shift due to torso bulk translation.
Human micro-Doppler has been investigated in [17]–[25].
The micro-Doppler response of cyclists was investigated
in [14], [16], [26], [27]. In [28], [29], studies were con-
ducted to measure the micro-Doppler response of drones and
birds at 24 GHz and 94 GHz. Specifically, it was shown in
[28] how the wing-beat of birds and the rotation of drone
propeller blades leads to unique micro-Doppler signatures.
Micro-Doppler was also used to classify vehicle types when
considering tracked and wheeled vehicles [30].

Convolutional neural networks (CNNs) are deep-learning
(DL) algorithms capable of conducting image classification.
CNNs have been used for micro-Doppler based VRU classi-
fication. Specifically, CNNs can be trained to classify VRUs
using spectrograms (images of the time-frequency represen-
tation of the radar signals) [21], [22], [29], [32], [35]–[39].
The classification accuracy of a CNN depends on the qual-
ity, labeling and quantity of the data used to train it. For
micro-Doppler based VRU classification, this means that a
small training data sample, poorly labeled data or noisy data
can lead to overfitting. Traditionally, spectrograms have been
obtained using direct measurement [16], [17], [19], [21],
[23], [25], [31], [32], [38] and primitive-based simulations
[14], [16], [22], [24], [26], [27], [29], [32], [35], [37]. Mea-
surements are valuable, however, CNNs typically require
thousands of data samples for reliable training. Collecting
such massive data sets can be expensive, time consuming and
impractical in some cases.

Primitive-based simulations have been conducted to
rapidly obtain massive data sets that can be accu-
rately labeled. Historically, the primitive-based simulation
approach has been used because it is computationally inex-
pensive when compared to full-wave electromagnetic simula-
tions [42]. Primitive-based simulations represent distributed
targets as a series of geometrical primitives or points.
For example, the human body can be decomposed into
16 parts with time varying motion [20], [41]. Kinematics

are introduced using video motion capture (MOCAP) data
[43], [44], [47], [49], [50], [52]–[56] or kinematic models
[40], [50]. The analytical equations used in primitive-based
simulations make far-field assumptions and other radar cross
section (RCS) approximations that reduce the accuracy of
this approach for automotive radar applications which are
inherently in the near field [53]. This approach does not also
account for shadowing or multi-path wave propagation [54].
Furthermore, the primitive-based simulation approach cannot
be easily extended to complex, arbitrary targets like animals,
cyclists and cars. In [26], [57], cyclists were represented by
a multi-target reflection point model while a skeleton version
of a horse was used in [43].

In this paper, we present a high-fidelity, physics-based
shooting and bouncing ray (SBR) simulation approach that
can be used to obtain accurate spectrograms from full scale
representations of VRUs and vehicles [58]–[64]. Here we use
a synthetic, frequency-modulated continuous-wave (FMCW)
77 GHz radar sensor to obtain over 4,500 spectrograms of
four targets; pedestrian, dog, cyclist and car. Fig.1 shows the
pedestrian, cyclist, dog and car models used in this simula-
tion study along with measurement setups from [16], [25],
[28], [48] and primitive based-models used in [22], [26],
[47], [52]. We conduct studies to demonstrate variations of
VRU spectrograms as the angle-of-arrival changes. Further-
more, we demonstrate the variation in spectrograms across
the target classes. A 5-layer CNN is then trained using the
collected spectrograms and is shown to demonstrate nearly
100% accuracy after just 5 epochs. Robustness studies are
also conducted to study the impact of data set size, velocity
and time observation window on the classification accuracy
of the model. Results from this study demonstrate how a
classification accuracy of 95% can be realized using spec-
trograms obtained over a 0.2 s observation window.

This paper is organized as follows: section II focuses on the
various techniques used to obtainmicro-Doppler data. section
III focuses on micro-Doppler theory, validation of simulation
workflow and the post processing conducted on the results.
In section IV, we present the micro-Doppler response of
individual targets and how they vary as their angle-of-arrival
changes. Section V focuses on the CNN training and testing.
Here, various data set sizes and time observation windows
are used to test the CNN model robustness. A discussion
on measurement and simulation data for machine learning
applications then follows in section VI.

This paper has two main contributions. First, we present
a comprehensive, large-scale, spectrogram-based classifica-
tion study of four representatives from the classes of mobile
targets typically encountered on roads. Most previous works
have only focused on combinations of two target classes
(e.g., pedestrian and vehicle) or intra-class activity classifi-
cation (e.g., human activity classification). To the best of the
authors’ knowledge, this comprehensive study is the first of
its kind for simulation based approaches. Second, we pro-
pose a high-fidelity, physics-based simulation approach
that can be used as an optimum compromise between
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FIGURE 1. Methods used to obtain spectrograms for convolutional neural network (CNN) training. Measurement: (a) [25], (d) [16], (g) [28], (j) [48].
Primitive-based simulation:(b) [22], (e) [79], (h) [52], (k) [47]. High fidelity physics-based simulation (this work): (c), (f), (i) & (l).
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primitive-based simulations and measurement. Specifically,
our proposed simulation approach is more accurate than
primitive-based simulations while being significantly faster,
cheaper and more practical to conduct than measurements.
High-fidelity, physics-based simulation data can be used for
measurement data augmentation or as a starting point for
training CNN-based VRU classifiers that may prevent future
accidents and ultimately save lives.

II. MICRO-DOPPLER DETERMINATION METHODS FOR
CNN TRAINING
The classification accuracy of a convolutional neural network
greatly depends on the quality of data used to train it. Specif-
ically, CNNs usually require large quantities of accurate and
well labeled data to achieve better generalization for new data
classification. These constraints on the data quantity, quality
and labeling mandate a balancing act between cost, speed,
practicality, repeatability and accuracy of the methods used to
generate the CNN training data. In this section, we discuss the
two currently used micro-Doppler data generation techniques
and then propose a high-fidelity, shooting and bouncing ray
solver approach.

A. MEASUREMENT
Various campaigns have been undertaken to measure
micro-Doppler characteristics via direct measurement [16],
[17], [19], [21], [23], [25], [31], [32], [38]. A 94 GHz radar
was used for measurements in [23] to obtain spectrograms
for human motion detection. The micro-Doppler responses
of pedestrians and cyclists were measured at 77 GHz in
[16]. In [47] micro-Doppler spectrograms of a pedestrian,
bicycle and car were measured while following defined tra-
jectories using a 7.5 GHz radar. Micro-Doppler measure-
ments have also been conducted on animal subjects. Recently,
the micro-Doppler characteristics of four species of birds and
three drone types were measured using 24 GHz and 94 GHz
radar sensors in [28]. Most of the mentioned measurement
campaigns yielded accurate spectrograms in very small quan-
tities, thus making the data volume obtained unsuitable for
reliable machine learning (ML) applications. Efforts have
been undertaken to obtain larger quantities of radar data for
ML-based applications. A 77 GHz FMCW radar sensor was
used in [48] to obtain 2000 samples of measured data for
developing a feature-based support vector machine (SVM)
human-vehicle classifier. However, the dependence of this
classifier on the radar cross section (RCS) of the targets
can make it unreliable in complex environments that have
multiple, high RCS targets. A passive WiFi radar (PWR)
measurement campaign was conducted in [44] to obtain
micro-Doppler signatures of humans carrying out various
activities for healthcare monitoring. The spectrograms from
these measurements were used to train a convolutional neural
network with high levels of classification accuracy. However,
these measurements were conducted in a very controlled
indoor environment, free from noise, clutter and large RCS
targets encountered on roads.

Measurements are valuable because they can provide
highly accurate results that include all the practically encoun-
tered effects such as noise, clutter, sensor sensitivity limita-
tions, interference and complex multipath effects. However,
measurements can be expensive, time consuming and imprac-
tical or dangerous in some cases. To produce large quantities
of unique data from moving subjects requires high degrees of
control and repeatability. While it can be hard for a human
to repeat thousands of exact movements with precision, it is
nearly impossible to train an animal to do so. Consistent and
accurate data labeling are also challenging when conducting
measurements. It is also difficult to create and sustain an
interference free environment for accurate outdoor, open road
measurements at 77 GHz. It may be difficult to train a CNN
using highly noisy data. For this reason, RCS measurements
on cars, cyclists and pedestrians are usually conducted in
well controlled indoor chambers in [42], [51]. Therefore,
the speed, cost, practicality and repeatability limitations of
measurements can make them unattractive for initial CNN
training.

B. PRIMITIVE-BASED SIMULATIONS
To address the challenges posed by measurements,
primitive-based simulation methods have been used as a
means to rapidly obtain large quantities of accurately labeled
spectrograms for ML-based target classification [14], [16],
[22], [24], [26], [27], [29], [32], [35], [37]. Primitive-based
simulation methods obtain the micro-Doppler signatures
of targets by decomposing the targets into independent
points or primitive shapes. In this approach, the total radar
returns of a target are viewed as the summation of the
complex, time-varying responses of its constitutive primi-
tives [50], [52], [53]. The RCS of each primitive is calcu-
lated using a well-defined analytical formula and is applied
to the radar-range equation to determine the radar-return
signal [50], [53].

In [46], three-dimensional models of a car, bicycle, rick-
shaw and truck were decomposed into triangular facet primi-
tives and used to simulate ISAR images for automotive radar.
Here, each triangular facet was considered to be an inde-
pendent scatterer. When using the primitive-based approach,
the human body is usually represented by a series of ellip-
soids (see Fig.1). The position and velocity of each prim-
itive is obtained from kinematic models or motion-capture
(MOCAP) data. The popular Boulic et al. [40] walking
model has been extensively used to describe the walk-
ing human gait cycle. A key disadvantage of this kine-
matic model is that it only describes human walking
activities. Video motion-capture technology addresses these
challenges by providing a platform for capturing arbitrary
human activities while providing more realistic kinemat-
ics [43], [44], [47], [49], [50], [52]–[56]. The Carnegie
Mellon University (CMU) Motion Research Laboratory
human activity MOCAP database is a widely used resource
for primitive-based micro-Doppler simulation [56]. Recent
works have used Microsoft’s Kinect system as a cheaper,
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FIGURE 2. Full-scale, 3-dimensional CAD models representing ‘actors’
used in HFSS SBR+ to obtain Doppler information for spectrogram
analysis. A CNN will be trained to classify VRUs using spectrograms from
a pedestrian, car, dog and cyclist.

marker-less system for recording human activity kinematics
[49]. A limitation ofMOCAP is that it cannot be reliably used
on animals, cyclists or vehicles [43]. Furthermore, it would be
difficult to dictate the motion of an animal subject in a precise
manner for a micro-Doppler measurement campaign.

Regardless of the source or fidelity of the kinematics data,
primitive-based simulations are based on far-field approxima-
tions [39], [43], [46], [47], [49], [50], [53]. The radar-range
formulation inherently assumes that targets are in the far-
field. At high frequencies such as 77 GHz, the far field region
is several kilometers away, well beyond the range of automo-
tive radar [51], [65]. This means all of the relevant VRUs are
in the near field of the radar sensor. It was demonstrated in
[68] that the RCS of vehicles is range-dependent in the near
field and drastically changes from ranges of 5 m to 50 m. The
primitive-based simulation approach does not also explicitly
simulate wave propagation. Because of this, it cannot account
for second order effects such as multipath propagation and
shadowing between primitives [54]. This means that the accu-
racy of this approach will diminish as the radar scene geomet-
rical complexity increases. Using a similar approach, it was
also assumed in [46] that all scatterers are visible to the radar,
thus neglecting shadowing and multipath effects. As the com-
plexity of targets under investigation increases, it can become
harder to decompose targets like cyclists, road infrastructure,
animals or vehicles into primitives. Fig.1 shows low-fidelity,
primitive/point-based models of a cyclist, pedestrian, vehicle
and horse used for micro-Doppler simulations. A series of
point sized reflectors was used in [43] to represent the road.

C. RAY TRACING SIMULATIONS
The primitive-based simulation workflow was developed to
address the challenges associated with simulating electrically
large problems at high frequencies with full-wave electro-
magnetic solvers. Specifically, at 77 GHz, the wavelength
is approximately 3.9mm. Therefore, a full-scale traffic scene
can be billions of cubic wavelengths in size. Physics-based,
asymptotic, ray-tracing electromagnetic solvers address the
high computational demand issues of full-wave methods

FIGURE 3. Setup for validating the simulation workflow and the post
processing technique used in this work. The plate at the center represents
the bulk translation while the spheres represent additional rotational
micro-motion.

FIGURE 4. Spectrogram obtained from simulation setup in Fig.3. The
central line belongs to the steel plate while the sinusoidal curves belong
to the two spheres.

while retaining high accuracy for electrically large problems
[65]–[67]. A shooting and bouncing ray solver was used in
[54] to obtain the radar cross section of a human engaged in
a series of dynamic motions. In this paper, we use Ansys’
High Frequency Structure Simulator (HFSS) Shooting and
Bouncing Rays (SBR+) solver [59], [61]–[64].

HFSS SBR+ is a hybridization of geometrical optics (GO)
and physical optics (PO). Here, multiple GO rays are
launched from the transmitting antenna and vector-field
weighted by the true antenna radiation pattern (see Fig. 5).
These GO rays then ‘paint’ PO currents on the scattering
CAD geometry (in this case the radar scene and its actors).
The PO currents are then re-radiated and are considered as
the scattered field. GO is used again to create a new set of
reflected rays from the first hit points and the process goes
on and on. In this way, HFSS SBR+ uses GO to extend PO
to multiple bounces. In this work, we used 5 bounces. HFSS
SBR+ also applies physical theory of diffraction (PTD)
wedge correction and creeping waves (CW) to account for
the distortion of surface currents near discontinuities and
curvatures. Uniform theory of diffraction (UTD) is used to
augment GO rays thus allowing illumination of CAD faces
in the shadow region of the transmitter according to GO [67].
Since this approach does not require a target to be decom-
posed into primitives, this simulation workflow can be used
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FIGURE 5. Geometrical Optics-based (GO) visual ray tracing of full-scale, 3-dimensional CAD objects (‘actors’) used in HFSS SBR+ to obtain spectrograms.
Each of the lines incident on the CAD represents a GO ray track. A CNN will be trained to classify VRUs using spectrograms from a pedestrian, car, dog and
cyclist.

on any arbitrarily shaped targets as shown in Fig.2. The
approach used here means that we are appropriately treat-
ing automotive radar as a near field problem. The SBR+
approach considers the transmission, reflection, diffraction,
refraction and multi-path physics of electromagnetic wave
propagation. With this framework, the SBR+ solver can
also be used in installed antenna performance studies [61],
antenna-to-antenna coupling and for determining RCS of
electrically large targets [63]. Therefore, the physics-based
ray-tracing solver approach used in this work provides an
optimum balance between the measurement method and the
primitive-based simulation approach when trying to obtain
large quantities of spectrograms.

III. MICRO-DOPPLER THEORY AND SIMULATION
WORKFLOW VALIDATION
A. MICRO-DOPPLER THEORY
Radar is a sensing technology that can be used to determine
the range, velocity and angle-of-arrival of multiple targets
simultaneously. The range of a target can be determined
by measuring the round-trip, time-of-flight of a transmitted
signal and its reflected echo [69]. Angle of arrival can be
obtained by determining the progressive phase shift of a
signal arriving at an antenna array whose elements have a
known physical spacing [70]–[73]. Velocity is determined
by exploiting the Doppler-effect. Specifically, a target with
a velocity v relative to a stationary transmitter will induce a
frequency shift, fd in the reflected signal given by [19]

fd = Ft
2v
c
cosθcosφ (1)

Here Ft , θ , φ and c are the frequency of the transmitted
signal, angle-of-arrival in the elevation plane, angle-of-arrival
in the azimuthal plane and the speed of light, respectively.

For a point scatterer, the Doppler frequency shift is charac-
terized by a single frequency.

Non-rigid bodies can have micro-motions such as rota-
tion or vibrations in addition to their bulk translation.
Such micro-motions introduce frequency modulation on the
radar signal. This additional frequency modulation of the
reflected signal due to micro-motions on non-rigid bodies is
called the micro-Doppler effect [15], [16], [19]. In order to
exploit convolutional neural networks for VRU classification,
the embedded micro-Doppler information in the radar signal
needs to be presented in a format that CNNs can use. To do
this, micro-Doppler information is presented in the form of
a spectrogram, a slow time-frequency (TF) representation of
the signal [21], [22], [29], [32], [37], [39]. The Short-Time
Fourier Transform (STFT) is an efficient way of conduct-
ing TF analysis. The STFT approach involves conducting
a Fourier transform over a small time window (coherent
processing interval (CPI) in the case of FMCW radar) and
then sliding the window in time [19], [20]. The continuous
STFT, X (τ, f ) of x(t) is given by

STFT {x(t)}(τ, f ) ≡ X (τ, f ) =
∫
∞

−∞

x(t)w(t − τ )e−j2π ftdt

(2)

Here w(t) is the window function and f is frequency. The
spectrogram in decibels is given by

spectrogram(τ, f ) = 10log10 | X (τ, f ) |2 (3)

B. SIMULATION WORKFLOW AND POST PROCESSING
VALIDATION
The synthetic radar returns used to obtain spectrograms in this
study were obtained using HFSS SBR+. Here, HFSS SBR+
was used to create a virtual FMCW radar. A key advantage
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TABLE 1. Radar parameters for simulation setup.

of this workflow is that it gives flexibility in designing the
FMCW waveform. Specifically, it is possible to investigate
many different waveforms and how they can impact classifi-
cation. This is something that would be challenging to do in
measurements. Furthermore, simulation makes it possible to
collect data for any number of different waveforms or radar
sensors on the same scenarios. Such a capability can aid in
deciding the waveform or sensor required for target classi-
fication applications. Table 1 shows the radar performance
parameters and the associated FMCW waveform parameters
used in this study.

For a single-channel radar FMCW sensor, each CPI pro-
vides a 2-dimensional radar data matrix. The first dimension
is along the frequency samples in each chirp while the second
dimension spans samples of a single frequency from chirp to
chirp. A single range-Doppler map can be obtained by con-
ducting a 2-dimensional fast Fourier transform (FFT) on this
matrix [62]. However, the 2D FFT analysis can be reduced
to a 1D FFT analysis since spectrograms only require the
frequency content of the signal per CPI [20]. Specifically,
for each CPI, the Doppler information was extracted by con-
ducting an FFT on samples of a single frequency (range bin)
obtained over all the pulses in the CPI.

To validate the simulationworkflowused here, two rotating
steel spheres were placed around a steel plate. The steel plate
had a linear velocity of 4 m/s while the spheres rotated at
an angular velocity of π radians. At a radius r of 2 m, this
angular velocity translates to maximum linear velocities of
ωr =± 6.28m/s. Fig. 3 shows the simulation setup. The steel
plate represents bulk translation motion while the spheres
represent rotational micro-motion. The spectrogram should
show 3 distinct spectrum tracks belonging to the plate and
two spheres. From (1), the rotation of the spheres can be
represented by a variation in θ , the elevation angle. Therefore,
the spectrogram must show a straight line belonging to the
plate and two sinusoidal curves offset by π radians phase
shift. The maximum and minimum velocities of the spheres,
relative to a stationary radar sensor are

vlinear(sphere)max = vlinear(platform) + vlinear(sphere)
= 4m/s+ 6.28m/s = 10.28m/s (4)

vlinear(sphere)min = vlinear(platform) − vlinear(sphere)
= 4m/s− 6.28m/s = −2.28m/s (5)

Using (1), the linear velocity of the steel plate (bulk plat-
form) of 4 m/s corresponds to a Doppler frequency shift, fd
of 2.040 kHz for transmission frequency of 76.5 GHz. For the
spheres, their maximum and minimum velocities, 10.28 m/s
and −2.28 m/s correspond to Doppler frequency shifts
of 5.243 kHz and −1.163 kHz, respectively. Fig. 4 shows
the spectrogram obtained from the simulation setup shown
in Fig. 3. As expected, two sinusoidal curves belonging to
the rotating spheres with maxima and minima at 5.243 kHz
and −1.163 kHz, respectively are observed. A single track
corresponding to the steel plate is shown at 2.040 kHz. The
spectrogram was obtained using the discrete form of the
STFT shown in (2). Specifically, a discrete Fourier transform
was conducted on samples of a single frequency point across
all the pulses in a single CPI. Amoving time-window of 0.01 s
was then used.

IV. MICRO-DOPPLER RESPONSE OF TYPICAL ROAD
USERS
A pedestrian, four-legged animal, cyclist and car repre-
sent a large portion of moving target classes that a typical
autonomous vehicle will encounter on the road. Here we use
a dog as an ideal four-legged animal representative due to
its high adoption rate as a pet. The ultimate goal for fully
autonomous vehicles would not only be the ability to detect
each of these targets but to classify them as well. Building
upon correct classification, the next goal would be predictive
intention recognition [14]. By predicting the possible future
trajectory of a target, an autonomous vehicle can anticipate
the engagement of specific maneuvers to prevent an accident.
For example, an animal is more likely to perform random,
unpredictable movements. This means that an autonomous
vehicle in its vicinity would need to slow down in anticipa-
tion of sudden movements in any direction. In this section,
we conduct a study of the micro-Doppler responses of a
pedestrian, dog, cyclist and car. Specifically, HFSS SBR+
was used to obtain the synthetic radar returns from full scale,
3-dimensional models of each of these targets (see Fig.2)
observed over a total time of 2 s. Table 2 shows the number
of facets for each target.

The actors were animated using a coordinate system-based
approach. Each actor had an anchor coordinate-system
responsible for the bulk translational velocity. Rotation and
oscillation coordinate systems were appropriately placed to
introduce velocity-dependent micro-motions. Fig. 7 shows
the actors and their associated coordinate systems used for
animation. The cyclist motion is described using one anchor
CS and seven rotation CS. The coordinate systems on the
wheels and pedals were used as references for wheel and
pedal rotation. The cycling motion of the cyclist was intro-
duced through x, y, z translations and sinusoidal oscilla-
tions of the hips and legs using four coordinate systems.
The human and dog micro-motion was introduced through
sinusoidal-based oscillations of the limbs. Phase offsets were
also introduced for each limb for a more accurate represen-
tation. The car wheel rotation used two coordinate systems

VOLUME 9, 2021 82603



U. Chipengo et al.: High Fidelity Physics Simulation-Based CNN for Automotive Radar Target Classification

FIGURE 6. Simulation setup for obtaining the spectrograms of the actors
shown in Fig.2. A spectrogram was obtained for each target at 3 key
angles of arrival, φ = 0◦, φ = 45◦ and φ = 90◦.

centrally located at the front and back of the car. The symmet-
ric sinusoidal oscillations of the pedestrian, dog and cyclist
limbs are approximations of the true kinematics. This is a
limitation of the CS-based animationmethod used here. How-
ever, the animations look realistic enough upon inspection
for initial classification studies. Future efforts will be aimed
at integrating more realistic motions such as the ones from
MOCAP or 3D animations with the HFSS SBR+ solver for
increased fidelity.

The unique bulk velocities, rotation frequencies and oscil-
lation frequencies for each actor were all tied to a single
global time variable. Assuming a radar frame-rate of n fps,
a parametric sweep was run to advance the simulation in time,
t = 1/n. HFSS SBR+ then used the Accelerated Doppler
Processingr feature to simulate a single CPI while account-
ing for target velocity and motion within each CPI. Assuming
a frame rate of 30 fps over a 2 s time window, 61 CPIs were
simulated to obtain a single spectrogram. Using a 6 core,
Intelr Core(TM) i7 at 2.6GHz CPU, it approximately took
90s to obtain a single spectrogram.

Simulations were conducted in HFSS SBR+ to compare
with results from measurements independently conducted by
other authors in their works [16], [47], [78]. Specifically,
we used measurement setup details from [16], [47], [78] to
recreate the setups used in these works as shown in Fig. 8.
While the simulation setups were not exact replicas of the
measurement setups, our goal was to demonstrate similarity
in the measured and simulated results to validate the fidelity
of our simulation workflow. Fig. 8 shows 3 measurement
setups and their corresponding simulation setups along with
both measured and simulated spectrograms. Specifically,

FIGURE 7. Coordinate system (CS)-based animation for micro-Doppler
simulation in HFSS SBR+. Each of the actors has a single anchor CS for
the bulk translational motion. Micro-Doppler is introduced through
rotation or oscillation at the rotation CS.

in [47], a car was driven towards a radar sensor for 15 m
before executing a sharp turn 5 m away from the radar.
The spectrogram obtained from measurements shows the
characteristic micro-Doppler spread that occurs when the car
turns and exposes its wheels. Similar behavior was observed
in our simulations as shown in Fig. 8. The micro-Doppler
of a cyclist was measured at 77 GHz in [16]. This setup
was also virtually recreated in HFSS SBR+ for comparison.
Fig. 8 shows good levels of agreement between the measured
and simulated spectrograms. Both spectrograms show the
sinusoidal-like micro-Doppler induced by the pedaling legs.
Finally, the micro-Doppler of a stand-alone bicycle wheel
was simulated for comparison with measured results from
[78]. Here, a rotating bicycle wheel was placed in front of a
radar sensor. The simulated spectrogram also showed good
levels of agreement with the measured spectrogram. Here,
a micro-Doppler induced Doppler spread due to the rotating
tire treads and spokes was observed.

Similar simulations were conducted in [79]–[81] using the
primitive-based simulationmethod. Specifically, amulti-point
model of a bicyclist was simulated in [79]. Here, the bicyclist
and the bicycle were represented by more than 144 scatter
points as shown in Fig. 1(e). The model used here ignored
internal occlusions within the bicyclist and used the same
approach described in section II to obtain the total radar
returns. The simulated spectrogram is shown in Fig. 9. This
should be compared to the results shown in Fig. 8. Another
primitive-based simulation was conducted in [43]. Here,
a car was approximated by a single point scatterer. The
simulated spectrogram is shown in Fig. 9 and should be com-
pared to the results shown in Fig. 8. While the single-point
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FIGURE 8. Measurement and simulation results from similar setups conducted at 7.5 GHz and 77 GHz, respectively. The
measurements were conducted in [16], [47], [78] while the simulations are from this work.
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FIGURE 9. Micro-Doppler responses of a bicyclist [79], car [43] and car
wheel with 5 spokes [80] using primitive-based simulations. The bicyclist
is represented by over 144 points while the car is approximated by a
single point scatterer.

scatterer approximation is valid for a car moving directly
towards the radar sensor, it cannot capture any wheel-induced
micro-Doppler effects. A similar approach was used in [57]
with similar results. Finally, the micro-Doppler of a single
car wheel was simulated in [80] using a 6-point scatterer
model. Here, the wheel was assumed to have 5 spokes. The
spokes were represented by 5 point scatterers rotating around
a single point scatterer. The spectrogram from this simulation
is shown in Fig. 9 and should be compared to results from
Fig. 8. Results from [80] show the spectrogram of a wheel

TABLE 2. Description of Actors in Radar Scene.

as a set overlapping discrete sinusoidal profiles due to the
point-scatterer approximation.

Past works have shown how the primitive-based simula-
tion approach can be used to obtain accurate spectrograms
of human subjects when used in conjunction with motion
capture data [22]. However, a comparison of Fig. 8 and
Fig. 9 shows the accuracy limitations of the primitive-based
simulation approach when considering complex targets such
as bicyclists and cars. Specifically, the single-point repre-
sentation of car is not an accurate model for obtaining the
micro-Doppler of a vehicle at any angle of arrival (AoA) other
than φ = 0◦ (see Fig. 6). On the other hand, a wheel is a dis-
tributed scatterer that cannot be accuratelymodeled by a set of
discrete points as shown in Fig. 9. Such accuracy limitations
may make primitive-based simulation approaches unreliable
for obtaining micro-Doppler data for machine learning-based
classification of complex targets such as cars and bicyclists.

A. SIMULATING DEPENDENCE OF SPECTROGRAMS ON
AoA AND VRU ORIENTATION
To demonstrate the impact of the angles-of-arrival (AoA) and
orientation on the spectrograms, a spectrogram was obtained
for each target at 3 distinct AoA (φ = 0◦, φ = 45◦ and
φ = 90◦) as shown in Fig.6. While the data in this section
was obtained over 3 angles, the spectrograms for the overall
CNN training were obtained for 180 distinct AoA spanning
from φ = 0◦ to φ = 180◦.

B. PEDESTRIAN
A walking pedestrian can be considered as a target with
a bulk translation attributed to its torso. The oscillatory
micro-motions of the swinging arms and legs are responsible
for the micro-Doppler. Fig. 10 shows the spectrograms of
a pedestrian walking at a speed of 1.4 m/s observed over a
2 s time window. The spectrogram is described by a straight
line and two sinusoidal profiles that are 180◦ out of phase.
At φ = 0◦, the spectrogram of a pedestrian has similarities
to the one shown in Fig. 4. However, the spectrogram of
Fig. 4 has sinusoidal lines while the spectrogram shown
in Fig. 10 has sinusoidal profiles whose area under the
curve is completely filled in. This is because the simula-
tion conducted with a full-scale pedestrian model accounts
for the distributed nature of the pedestrian. On the other
hand, the spheres used in Fig. 3 to obtain the spectrogram
in Fig. 4 behave like point sources with less spatial distribu-
tion. The symmetrical and sinusoidal profiles obtained in the
spectrograms for pedestrians in this work are artifacts of the
sinusoidal kinematics approximation that was used here and
not the actual HFSS SBR+ solver accuracy.
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FIGURE 10. Spectrograms for a pedestrian, car, dog and cyclist at three different angles-of-arrival. The spectrogram of each target depends on the
angle-of-arrival relative to a stationary radar sensor as shown in Fig. 6.

Another important thing to note is that the bulk Doppler
frequency shift, the maxima and minima of the sinusoidal
profiles decrease as the angle-of-arrival (AoA) increases from
φ = 0◦ to φ = 90◦. Using (1) it is observed that the
overall Doppler frequency shift, fd , decreases as the AoA,
φ increases. It is also observed that as the AoA increases
from φ = 0◦ to φ = 90◦, the spectrogram profiles change
their shape from sinusoidal to triangular. This change in
profile can be attributed to two factors. First, the radar
sensor only measures the radial velocity component of the
pedestrian’s limbs and torso. Second, the human body does
not have rotational symmetry. This leads to changes in the
Doppler and micro-Doppler responses of the pedestrian as

the AoA changes. Results from this simulation confirm that
the spectrogram of a walking pedestrian changes as their
AoA changes. Furthermore, the amplitude of micro-Doppler
response detected depends on the AoA as well. A possible
practical implication of this behavior is that, for two pedes-
trians at the same range, it may be easier for a radar sensor to
accurately classify the pedestrian walking towards the vehicle
on a sidewalk (φ ≈ 0◦) than the pedestrian crossing the road
(φ ≈ 90◦).

C. CAR
A car can be decomposed into its main body and the wheels.
The bulk translation of the car is attributed to its body.

VOLUME 9, 2021 82607



U. Chipengo et al.: High Fidelity Physics Simulation-Based CNN for Automotive Radar Target Classification

FIGURE 11. Spectrograms of a dog, pedestrian, car and cyclist in the same traffic scene approaching the radar sensor at an angle of arrival of φ = 0◦ (see
Fig. 6). The simulations are conducted with and without micro-Doppler.

The rotational micro-motion of the wheels are responsible
for the micro-Doppler. Fig. 10 shows the spectrograms of a
car moving at 12 m/s (approximately 26 mph) observed over
3 different angles-of-arrival (see Fig. 6). Using (1), this cor-
responds to a Doppler frequency of 6.120 kHz. Fig. 10 shows
that a vehicle directly approaching a radar sensor (φ = 0◦)
does not exhibit pronounced micro-Doppler features. How-
ever, rotating the vehicle (φ = 45◦ & φ = 90◦) exposes
the sides of the wheels that typically have metallic rims as
shown in Fig. 2 (see Fig. 6). The sides profile of wheel
rims can present themselves as electromagnetic scatterers
especially at higher frequencies like 77 GHz where the wave-
length is 3.8 mm. Therefore, at 77 GHz, seemingly small
structural details on the rotating wheels can lead to a strong
micro-Doppler response. This behavior was observed in mea-
surements that were conducted in [47] as shown in Fig. 8.

D. DOG
The bulk translation of a running, four legged animal like
a dog can be attributed to its upper body. The oscillatory
micro-motions (responsible for micro-Doppler) are attributed
to the swinging front and back legs. Fig. 10 shows the spectro-
grams of a dog running at a speed of 7 m/s. The spectrogram
of the dog is similar to that of a pedestrian, exhibiting the
same sinusoidal profile. However, the spectrogram of a dog
shows 4 distinct curves. These curves are in groups of 2 that
are approximately 180◦ out of phase. These groups represent
the front and hind pairs of legs. Within each group of curves
are 2 additional curves that are slightly out of phase, with
each curve representing a specific limb. The spectrogram
shown here in Fig. 10 is also an approximation due to the
assumed phase-offset, sinusoidal kinematics. The accuracy
of this spectrogram can be improved by using MOCAP
data or more realistic animations. We do however remark
how important details of a running dog’s gait cycle can be
described by its spectrogram as shown here. Of even greater
significance is how simulation can be used to obtain data
that would be otherwise impossible or impractical to collect
using field measurements. Specifically, it may be futile to try

and dictate the movements of an animal in the manner done
in simulations. Using simulation, it is possible to accurately
specify the angle-of-arrival, gait, velocity and size of the
animal under observation.

E. CYCLIST
A pedaling cyclist can be viewed as a target with a bulk
translation associated with the bicycle frame, torso and arms
of the cyclist. In addition to this bulk translation, there is
additional rotational micro-motion due to the pedaling legs,
rotating wheels and pedals. Fig. 10 shows the spectrograms
obtained from a cyclist moving at a speed of 6m/s. Here, sinu-
soidal profiles belonging to the pedaling legs can be observed.
Above these profiles is a series of periodic ‘flashes’ belonging
to the pedals. It has been observed that the micro-Doppler
of the wheels and their spokes is much less pronounced
when compared to that of the pedaling legs and pedals [27].
This should be compared to car wheels that have a stronger
micro-Doppler response due to their larger size and subse-
quently higher radar cross section (RCS).

F. DISCUSSION
This study showed that each of the targets exhibit unique
micro-Doppler behavior. It was also observed that for a sin-
gle target, its spectrogram strongly depends on its angle-
of-arrival relative to the radar sensor. It is important to note
that the differences between the spectrograms of each target
class were retained regardless of the AoA under consider-
ation. To demonstrate the differences in the spectrograms,
a dog, pedestrian, cyclist and car were placed in the same
traffic scene. In this simulation, all the actors approached or
moved away from the radar sensor at an angle of φ = 0◦

(see Fig. 6). Specifically, the dog, pedestrian and car moved
towards the stationary radar sensor at speeds of 7 m/s, 1.4 m/s
and 15 m/s, respectively. The cyclist was moving away from
the radar sensor at a velocity of 8 m/s. Two simulations were
run.

In the first case, the motion of the actors was restricted to
effectively eliminate micro-Doppler effects. Here, the actors
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FIGURE 12. A 5-layer Convolutional Neural Network for VRU classification. Each of the filters in the first 3 layers is 3× 3 in size with a stride of (1,1).

FIGURE 13. Sample of spectrograms used to train a VRU classification
Convolutional Neural Network (CNN). The spectrograms were obtained via
simulation of 4 typical road users (pedestrian, dog, cyclist and car) with
varying angles of arrival and velocity relative to a stationary radar sensor.

still retained their bulk translational velocity while all the
micro-motion rotation and oscillationwere turned off. Specif-
ically, the dog, cyclist and pedestrian’s limbs do not swing
whenmicro-Doppler is turned off. The car and bicycle wheels
did not rotate as well. In the second simulation, all the normal
micro-Doppler features were turned on.Whenmicro-Doppler
is turned off, the actors in the scene are executing motion

FIGURE 14. Visualization of the 16 filters of size 3× 3 from Layer 1.

that would not be observed in practice. However, this is
a key advantage of simulation as it allows the investiga-
tion of cases that are otherwise physically impossible to
observe or measure. While such cases can be impractical,
they do provide deep insight into the phenomenon under
investigation. Fig. 11 shows the spectrograms obtained from
these two simulations. Without micro-Doppler information,
we observe that each of these actors are much harder to
distinguish. Upon re-introducing micro-Doppler, the distinct
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FIGURE 15. Visualization of some samples of feature maps extracted from the 3 convolutional layers after maxpooling.

micro-Doppler signatures can now be observed in the spec-
trogram. This is the basis for the spectrogram-based VRU
classification that will be done using a convolutional neural
network in the next section.

V. CONVOLUTIONAL NEURAL NETWORK FOR VRU
CLASSIFICATION
Radar signal based classification of VRUs has been achieved
in two ways; conventional machine learning (ML) and deep
learning (DL). In the conventional ML approach, manual
feature extraction is conducted on the radar signals at specific
points in the signal processing chain. These features are then
used to train classifiers such as the support vector machine

(SVM) [31]–[34]. In [31] classification between pedestrians
and static objects was achieved by using the radial veloc-
ity variance of each target. Specifically, moving pedestrians
exhibited a higher velocity variance than static objects.

The key drawback of traditional ML algorithms is that
they depend on manual and usually heuristic feature extrac-
tion that requires experience and deep domain knowledge.
Furthermore, these classifiers are difficult to generalize and
suffer in accuracy when presented with completely new
data [32]. On the other hand, deep learning algorithms are
capable of automatically extracting these high-level fea-
tures using a hierarchical architecture [32]. This advantage
removes the need for deep domain knowledge. Furthermore,
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FIGURE 16. Confusion matrix obtained from the CNN shown
in Fig. 12 after 5 epochs.

FIGURE 17. CNN classification accuracy over 30 epochs for different data
set sizes. DR = 1 corresponds to 4,520 samples while DR = 0.1
corresponds to 452 total samples used. A 20% validation split was used
here.

DL algorithms have easily scalable, automatic feature extrac-
tion that makes them robust.

Convolutional neural networks (CNNs) are DL algorithms
that are inspired by the visual cortex structure of the eye [29],
[32]. Using multiple convolutional layers, CNNs are able to
extract higher-level spatial features from lower-level features
[32]. Such capabilities make CNNs ideal for image classifica-
tion and speech recognition. Here, a CNN is used to classify
VRUs based on images of their spectrograms. Specifically,
using spectrograms, the VRU classification problem can be
viewed as an image classification problem.

A. CNN ARCHITECTURE
A 5-layer convolutional neural network (CNN) was used for
the image classification [75]. Fig. 12 shows the CNN archi-
tecture. This CNN features 3 convolution layers followed
by 2 fully connected layers. Layer 1, Layer 2 and Layer 3

FIGURE 18. Confusion matrix obtained from the CNN shown
in Fig. 12 after 10 epochs when trained with only 10% (DR = 0.1) of the
original data set. The confusion matrix in Fig. 16 is for the original data
set(DR = 1).

used 16, 32 and 64 filters, respectively. Each filter had a
kernel size of 3 × 3 with a stride of (1,1). Fig. 13 shows
a sample of the spectrograms used to train the CNN while
Fig. 14 shows 16 filters (single channel) from the first layer.
The rectified linear unit function (ReLU) was used as the
activation function. The output of the third layer (after max-
pooling) was connected to a dense, fully connected layer
with 128 neurons. Fig. 15 shows a sample of the extracted
feature maps from the 3 convolutional layers after conducting
maxpooling.

B. DATA COLLECTION
Before a CNN can reliably classify images, it needs to be
trained using a large data set of images that have labels
describing the particular class of each image. Fig. 13 shows
a sample of 25 spectrograms belonging to the actors shown
in Fig. 2. A total of 4,520 spectrograms, equally distributed
over the dog, pedestrian, car and cyclist classes were obtained
via simulation. For each target class, variation was achieved
by changing the velocity and angle-of-arrival (AoA) of each
target (see Fig. 6). For specific orientation and velocity val-
ues, high fidelity physics-based simulations were conducted
over a 2 s time window broken down into discrete 0.01 s time
steps. Therefore, a single spectrogram was obtained by sim-
ulating 201 coherent processing intervals (CPI). Short time
Fourier transform (STFT) analysis using the NumPy library
in Python was conducted on synthetic radar signals obtained
from the HFSS SBR+ simulations. Ansys OptiSLang [74]
was used to automate the parametric velocity/AoA variation,
STFT post-processing and file management. Specifically, for
each actor, a set of pre-defined AoA and velocity values were
passed on to OptiSLang. For example, the average walking
speed of a pedestrian is 1.4 m/s. Therefore, the pedestrian was
set to approach the stationary the radar sensor at velocities
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FIGURE 19. Sample data used to train the CNN for different velocity & time observation windows. Velocity/time window augmentation was achieved by
cropping the data. CR is the cropping ratio. CR = 1 corresponds to the original data with an observation window duration of 2 s and max/min velocity of
±20 m/s. CR = 0.1 corresponds to an observation window duration of 0.2 s and max/min velocity of ±2 m/s.

of 0.9 m/s, 1.2 m/s, 1.7 m/s, 2 m/s and 2.3 m/s (5 points).
The AoA ranged from φ = 0◦ to φ = 180◦ in incre-
ments of 1◦ (181 points) leading to 905 unique AoA/velocity
combinations. For each unique AoA/velocity combination,
OptiSLang invoked HFSS SBR+ to simulate the synthetic
radar returns required for each spectrogram. After each HFSS
SBR+ simulation was completed, post processing was done
using the integrated Python environment inside OptiSLang.
Finally, a batch script was run inside OptiSLang to save the
spectrogram and to delete any result files from the previ-
ous simulation. As previously mentioned, it took an average
of 90 s to simulate a single spectrogram using a 6 core laptop.
It took a total of 4 days and 16 hours to obtain 4,520 spectro-
grams for this study.

After collecting the data, the Keras application program-
ming interface (API) open-source toolkit was used [76] with
the NVIDIA GPU and cuDNN library for acceleration [77].
Using the NVIDIA Quadror RTX 5000 graphics card and a
6 core, Intelr Core(TM) i7 at 2.6GHz CPU, it took 22.92 s
to complete 5 epochs. For any data set size, an initial 20%
was removed from the total data and reserved for testing.
The CNN was then trained and validated using the remaining
data set with a 20% validation split. The confusion matrices
shown here were obtained by testing the CNNwith the initial,
previously unseen 20% test data set. For example, for an
initial data set of 4,520 images, 904 images were set aside for
testing. This led to a training/validation data set size of 3,616.
The CNN was then trained with 80% of the remaining data
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FIGURE 20. CNN classification accuracy over 30 epochs for different
observation time windows. Velocity/time window augmentation was
achieved by cropping the data. CR is the cropping ratio. CR = 1
corresponds to the original data with an observation window duration
of 2 s and max/min velocity of ±20 m/s. CR = 0.1 corresponds to an
observation window duration of 0.2 s and max/min velocity of ±2 m/s.

FIGURE 21. Confusion matrix for CNN after 10 epochs with a cropping
ratio, CR = 0.1. CR = 1 corresponds to the original data with an
observation window duration of 2 s and max/min velocity window of
±20 m/s (see Fig. 16). CR = 0.1 corresponds to an observation window
duration of 0.2 s and max/min velocity of ±2 m/s.

set (2,893) and then validated with 20% of the data set (723).
The confusion matrix was obtained using the test data (904).
Fig. 16 shows the confusion matrix demonstrating a classifi-
cation accuracy of nearly 100% after 5 epochs.

C. CNN ACCURACY DEPENDENCY ON TRAINING DATA
SET SIZE
In addition to the quality and labeling of the data used to
train a CNN, the accuracy of a CNN also depends on the
data set size used to train it. Specifically, as the data set gets
smaller, it becomes harder for the neural network to learn
model parameters and achieve generalization. Using general-
ization, neural networks are able to make better classification
predictions on new, previously unseen data and therefore
their accuracy improves. Here, we tested the dependence of

the CNN’s accuracy on the data set size used to train it.
Starting from the initial data set size of 4,520 spectrograms,
the size was reduced by multiplying 4,520 by a data-ratio
parameter, DR. For example, for DR = 1, the original data
set size was used (4,520 samples) while DR values of 0.5 and
0.1 correspond to 2,260 and 452 samples, respectively. A 20%
validation split was used in each case. Fig. 17 shows the
CNN classification accuracy over 30 epochs for different data
set sizes. Fig. 18 shows the confusion matrix for DR = 0.1
obtained after 10 epochs. This should be compared to the
confusion matrix obtained after only 5 epochs using the
original data set (DR = 1). As expected, as the data set size
gets smaller, the prediction accuracy of the neural network
also decreases. It is interesting to note however, that the CNN
achieves more than 90% accuracy after 15 epochs with just
10% (DR = 0.1) of the original data set.

D. CNN ACCURACY DEPENDENCY ON VELOCITY & TIME
OBSERVATION WINDOW AUGMENTATION
The quality of data used to train a CNN can impact its clas-
sification accuracy. As the data quality improves, it becomes
easier for the neural network to extract the higher-level spatial
features from the lower level features in the data. Spectro-
grams belonging to different VRUs become easier to clas-
sify as the time window of observation widens. As the time
window gets narrower, higher level features like the periodic,
sinusoidal profiles associated with a walking pedestrian can
be missed by the CNN (see Fig. 10). The velocity win-
dow can also affect spectrogram-based VRU classification.
Specifically, reducing the maximum and minimum veloc-
ities that can be measured by the radar sensor can lead
to velocity ambiguity. Velocity ambiguity was observed to
significantly distort the high level features of spectrograms
in [27]. A simple way to augment the data quality is to crop
the spectrograms. This is akin to making the observation
window smaller and reducing the unambiguousminimum and
maximum velocities.

The duration of the observation window has practical
implications on VRU classification. In highly dynamic traffic
scenes, autonomous vehicles will need to detect and classify
VRUs with minimum latency. For example, a vehicle travel-
ling at 35 mph (15.64 m/s) will cover a distance of over 30 m
in the time it takes to collect data for a 2 s wide spectrogram.
Considering the additional time needed from activation of
brakes to a complete stop, it is crucial for the VRU classi-
fication process to have minimum latency. This can be done
by reducing the observation time window duration.

The velocity window also has practical implications on
the waveform used for Doppler and micro-Doppler mea-
surement. Specifically, the velocity window is determined
by the maximum and minimum velocities that can be
unambiguously measured by the radar sensor. Assuming a
frequency-modulated continuous-wave (FMCW) radar and
symmetrical maximum and minimum velocities, the pulse
repetition frequency (PRF) is given by [27]

PRF ≥ 4Vmax/λ (6)
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Here, Vmax and λ are the maximum velocity and wave-
length at the center frequency. The velocity window is
directly proportional to Vmax . Therefore, the velocity window
can be widened by increasing the PRF. It has been observed
that for walking pedestrians and a stationary radar sensor,
the PRF can be set to 11 kHz without velocity ambiguity
[27]. However a radar sensor mounted on a host platform
travelling at a speed of 45 mph would require a higher PRF
of over 35 kHz to unambiguously determine the Doppler and
micro-Doppler of the same pedestrian [27]. This means that a
radar sensor with a lowPRFmay be able to accurately classify
a VRU when the host platform is stationary but possibly fail
when the platform is in motion. In this work, the radar sensor
was assumed to be stationary with a PRF of 20.4 kHz, corre-
sponding to maximum and minimum unambiguous velocities
of ±20 m/s.

Here we tested the dependence of the CNN’s classification
accuracy on the velocity window and observation window
duration. An additional cropping layer was added to the CNN
before the first layer shown in Fig. 12. The extent of cropping
was represented by the cropping-ratio (CR) variable. Initially,
the size of the spectrograms was 180× 180, this represents a
cropping-ratio of 1(i.e. no cropping). Fig. 19 shows a sample
of the data used to train the CNN for different velocity
and time windows. The 2-dimensional cropping conducted
on the spectrograms can be interpreted as a reduction of
the observation window and the waveform PRF (see eqn.6).
A cropping-ratio of CR = 1 represents an observation win-
dow duration of 2 s and maximum and minimum unam-
biguous velocities of ±20 m/s (PRF = 20.4 kHz). On the
other hand, a cropping-ratio of CR = 0.1 represents an
observation window duration of 0.2 s and maximum andmin-
imum unambiguous velocities of±2 m/s (PRF = 2.04 kHz).
As seen in Fig. 19, as CR decreases, it becomes harder for
a human to identify the higher-level features that describe
representative spectrograms from each class. Fig. 20 shows
the CNN classification accuracy over 30 epochs for different
observation window duration. Fig. 21 shows the confusion
matrix for CR = 0.1 obtained after 10 epochs. This should
be compared to the confusion matrix obtained after only
5 epochs using the original 2 s observation window duration
(CR = 1). As expected, as the velocity and observation
window gets smaller, the prediction accuracy of the neural
network also decreases. It is interesting to note however, that
the CNN achieves more than 95% accuracy after 15 epochs
with a 0.2s observation window. By reducing the observation
window duration while maintaining accuracy, autonomous
vehicles will be able to classify road actors as VRUs with
minimum latency, avoid collisions and possibly save lives.

VI. DISCUSSION: MEASUREMENTS VS. SIMULATION IN
ML/AI APPLICATIONS
As previously mentioned, the classification accuracy of a
convolutional neural network depends on the quality, quan-
tity and labeling of the data used to train it. In section II,
we discussed measurements as a method of obtaining data

for machine learning applications. However cost, time,
practicality and repeatability of experiments emerged as key
disadvantages. In this paper, we demonstrated a computation-
ally efficient, high-fidelity, physics-based simulation work-
flow that can be used to obtain large quantities of data for
CNN training. However, this workflow is not perfect either.
The simulations did not account for system considerations
such as receiver sensitivity, noise and other random clutter
sources that come in and out of dynamic traffic scene. This
led to very ‘clean’ spectrograms. It is highly likely that a
CNN trained using these simulated results would have a
diminished classification accuracy when presented with new,
noisy data from measurements. Considering the challenges
associated with conducting thousands of measurements at
77 GHz [16], [42], [51], it may also be difficult to begin
training a CNN with a small and noisy data set. This is the
so-called ‘cold start’ problem. An ideal approach is to strike
an optimal balance between the measurement and simulation
data sources. For example, experimental data was augmented
with simulation data to improve the classification accuracy of
a passive WiFi-based healthcare monitoring system in [44].
Here, replacement and augmentation studies were conducted
to see the impact ofmixingmeasurement data with simulation
data. Results from [44] generally showed that increasing the
simulated data in replacement studies led to a drop in the clas-
sification accuracy. However, for cases where a small amount
of measurement data was available for training, adding sim-
ulation data actually improved the classification accuracy by
8%. Therefore, in cases of low volume, noisy and imbalanced
measured data, adding simulation data to the CNN training
data can actually improve the classification accuracy on new
measured data. The goal of this work was to demonstrate a
computationally efficient, high-fidelity simulation workflow
that can be used to obtain data for initial algorithm develop-
ment or data augmentation.

VII. CONCLUSION
Radar is one of the enabling sensor technologies in advanced
driver assistance systems (ADAS). Vehicles equipped with
radar can detect and determine the range, velocity and angle-
of-arrival of multiple targets simultaneously. Before they can
be deemed safe for the roads, fully autonomous vehicles will
need to be able to accurately detect and classify vulnerable
road users (VRUs). Further analysis of the reflected radar sig-
nal spectrum can be used to classify VRUs by exploiting the
micro-Doppler effect. In this paper we used a convolutional
neural network (CNN) to classify spectrograms belonging to
a pedestrian, car, cyclist and dog. The CNN training data
set was obtained using high fidelity physics-based electro-
magnetic simulations of full scale traffic scenes at 77GHz.
A 5-layer CNN was trained using spectrograms obtained
from these simulations. The CNN achieved an accuracy of
nearly 100% after 5 epochs. Studies were conducted to inves-
tigate the impact of training data set size on the classifica-
tion accuracy of the CNN. Using only 10% of the original
data, a classification accuracy of 90% was achieved after
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30 epochs. Further studies were conducted to investigate
the impact of the velocity window and observation window
duration on the classification accuracy of the CNN. Using
10% (0.2 s) of the original velocity/time window, a classi-
fication accuracy of over 95% was achieved after 30 epochs.
This work showed how high quality, accurately labeled and
large data sets for CNN training can be obtained using high
fidelity physics-based electromagnetics simulations. Results
from this study show that a micro-Doppler based CNN can
be used to accurately classify VRUs, help to avoid collisions
and ultimately save lives on tomorrow’s roads.
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