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ABSTRACT Cyber-Physical Systems (CPSs) are engineered systems that are built from, and depend upon,
the seamless integration of computational algorithms and physical components. CPSs are widely used in
many safety-critical domains, making it crucial to ensure that they operate safely without causing harm
to people and the environment. Therefore, their design should be robust enough to deal with unexpected
conditions and flexible to answer to the high scalability and complexity of systems. Nowadays, it is
well-established that formal verification has a great potential in reinforcing safety of critical systems, but
nevertheless its application in the development of industrial products may still be a challenging activity.
In this paper, we describe an approach based on Satisfiability Modulo Theories (SMT) to formally verify,
at the design stage, the consistency of the system design – expressed in a given domain-specific language,
called QRML, which is specifically designed for CPSs – with respect to some given property constraints,
with the purpose to reduce inconsistencies during the system development process. To this end, we propose
an SMT-based approach for checking the consistency of configuration based-components specifications and
we report the results of the experimental analysis using three different state-of-the-art SMT solvers. Themain
goal of the experimental analysis is to test the scalability of the selected SMT solvers and thus to determine
which SMT solver is the best in checking the satisfiability of the properties.

INDEX TERMS Design verification, application of formal methods, satisfiability modulo theories.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) are real-time embedded sys-
tems in which the software controllers continuously inter-
act with physical environments, possibly with humans in
the loop. These systems are often distributed with sensors
and actuators, which monitor and control physical processes,
usually with feedback loops where physical processes affect
computations and vice-versa [1]. Recently, CPSs are gath-
ering momentum and attracting massive attention from the
research communities and large investment from industry [2].
The emerging applications of CPSs can be found in a number
of large-scale and safety-critical domains, making it crucial
to ensure that they operate safely without causing harm
to people and the environment. Application areas include
healthcare, automotive, manufacturing, industry automation,
and critical infrastructure such as, electric power, energy, and
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water resources, so CPSs design should be robust enough
to deal with unexpected conditions and, at the same time,
flexible to answer to the high scalability and complexity of
systems. Due to the critical nature of their applications and
the tight time-to-market constraints, the verification of the
CPSs design becomes an important issue in order to ensure
the correctness of these systems.

Since the 90’s, formal methods have been exploited to
improve complex automation systems (see, e.g., [3]), and cur-
rently they are often introduced in the verification of CPSs’
applications. Nowadays, it is well-established that the usage
of formal methods has a great potential in reinforcing safety
in the design of (critical) CPSs – see, e.g., the results obtained
in the context of the CERBERO EU H2020 project [4], [5]
about the application of formal methods in the design of
CPSs [6]–[8].

In this paper, we describe an approach based on Satisfi-
ability Modulo Theories (SMT) [9] to formally verify, at the
design stage, the consistency of the system design – expressed
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in a given Domain Specific Language (DSL) – with respect to
some given property constraints, with the purpose to reduce
inconsistencies during the system development process.

Such research has been developed in the context of
the ECSEL project entitled ‘‘From the cloud to the
edge smart IntegraTion and OPtimisation Technologies for
highly efficient Image and VIdeo processing Systems’’
(FitOptiVis [10]) [11], which involves 30 partners from
industry and academia. The main objective of FitOptiVis
is to develop an integral approach for smart integration
of image and video processing pipelines for CPSs cover-
ing a reference architecture, supported by low-power, high-
performance, smart devices, and by methods and tools for
combined design-time and run-time multi-objective opti-
mization within system and environment constraints. Thus,
a DSL for the design of CPSs, namely the Quality and
Resource Management [12] (QRML) has been developed by
the authors of [13], [14]. It is based on an interface-modeling
framework, which eases the dynamic reconfiguration and
multi-objective optimization of component-based systems for
quality and resource management purposes.

Checking the consistency of configuration-based com-
ponents specifications at design-time is an important task,
in order to formally ensure their correctness and satisfaction,
to avoid manual review which is time-consuming and error-
prone.Moreover, it is also crucial for reducing time-to-market
window in industrial applications use cases within the project.
In order to cope with this task, we present our SMT-based
approach implemented into a tool able to check the consis-
tency of configuration based-components design expressed
in QRML with the purpose to formally check by means of an
SMT solver whether the configurations guarantee to satisfy
all the properties.

The core of our approach is based on an SMT encoding,
where system components expressed in QRML are translated
into an instance of a satisfiability problem. In order to evalu-
ate the effectiveness of the proposed SMT approach, we have
developed an automated generator of DSL specifications
and employed three different state-of-the-art SMT solvers to
check the satisfiability of the translated SMT properties. The
purpose of the experimental analysis here reported is mainly
to test the scalability of the selected SMT solvers and thus
to determine which SMT solver is the best in checking the
satisfiability of the properties. As it will be shown later in
the paper, we demonstrate the effectiveness of the proposed
SMT -based approach to verify configuration-based compo-
nents design of various sizes within a reasonable time.

The rest of the paper is organized as follows. Section II
provides some background of SMT as well as an overview
of QRML. In Section III we briefly report about the related
work. The process of consistency checking is presented
in Section IV. In Section V we provide details about the
instances and SMT solvers involved in the experimental anal-
ysis, which results and related discussion are reported in
Section VI. We conclude the paper in Section VII with some
final remarks.

II. BACKGROUND
In this section, we introduce some concepts and terminology
that will be used in the rest of the paper. In particular, we pro-
vide a big-picture overview of SMT, followed by a description
of the key aspects of the formal interface-modeling frame-
work for Quality and Resource Management as well as the
language that derives from it.

A. SATISFIABILITY MODULO THEORIES
SMT is the problem of deciding the satisfiability of a
first-order formula with respect to some decidable theory T ,
while an SMT instance is a formula in first-order logic
where some function and predicate symbols have additional
interpretations.

Given a first-order formula φ in a decidable background
theory T , SMT problem consists in deciding whether there
exists a model, namely an assignment to the free variables
in φ, that satisfies φ. SMT generalizes the Boolean satisfi-
ability problem (SAT) by adding background theories such
as the theory of real numbers, the theory of integers, and
the theories of data structures. For example, a formula can
contain clauses like p∨ q∨ (x + 2 ≤ y)∨ (x > y+ z), where
p and q are Boolean variables and x, y and z are integer vari-
ables. Predicates over non-Boolean variables, such as linear
integer inequalities, are evaluated according to the rules of a
background theory. In this respect, there exist several theories
of practical interests, such as the quantifier-free linear integer
arithmetic (QF_LIA), where atoms are linear inequalities
over integer variables, the quantifier-free non-linear integer
arithmetic (QF_NIA), where atoms are polynomial inequali-
ties over integer variables, and the quantifier-free linear real
arithmetic (QF_LRA), which is similar to QF_LIA but with
real variables.

The current general library for SMT is the Satisfiabil-
ity Modulo Theories Library (SMT-LIB) [15], which pro-
vides standard descriptions of background theories used in
SMT systems, as well as collecting and making available
a large library of benchmarks for SMT solvers. An SMT
solver is a decision procedure which solves the satisfiability
problem, which is the problem – given a propositional for-
mula – to determine whether it is satisfiable or not. Given
an unsatisfiable SAT formula ϕ, a subset of clauses ϕC
(i.e. ϕC ⊆ ϕ) whose conjunction is still unsatisfiable is
called an unsatisfiable core of the original formula. Modern
SAT solvers can be instructed to generate an unsatisfiable
core [16]. Current state-of-the-art SMT solvers use the
so-called lazy approach, which consists on the integration of
a SAT solver and a T -solver, i.e., a decision procedure for the
given theory T . In order to decide the satisfiability of an input
formula φ, the SAT solver enumerates the truth assignments
to the Boolean abstraction of φ, while the T solver is invoked
when the SAT solver finds a satisfying assignment for the
Boolean abstraction in order to check whether the current
Boolean assignment is consistent in the theory. If the conjunc-
tion is satisfiable, then a satisfying solution (model) is found
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for the input formula φ. Otherwise, the T -solver returns an
explanation for the conflict which identifies a reason for the
unsatisfiability. Then, the conflict explanation is learned by
the SAT solver in order to prune the search until either a
theory-consistent Boolean assignment is found, or no more
Boolean satisfying assignments exist. For a comprehensive
background on SMT, please refer to [9], [17].

B. THE QUALITY AND RESOURCE MANAGEMENT
LANGUAGE
In [13], the authors present a formal interface-modeling
framework for quality and resource management that
provides an abstract description of hardware and software
components in terms of resources, quality indicators and
working configurations. From the Quality Resource Manage-
ment (QRM) framework derives the related language which
aims to support the configuration component-based design of
CPSs. In general, a DSL is a language designed to be useful
for describing a limited set of tasks in a specific domain,
in contrast to general-purpose languages that are supposed to
be useful for more generic tasks in crossing multiple applica-
tion domains [18]. DSLs usually have a concrete syntax and
an implicit or explicit semantics.

In the following we report some of the definitions given
in [13] that will be useful for the understanding of the subse-
quent sections.

A configuration c is a set of parameters that capture the
configurable working points of the component. In particu-
lar, the parameters are represented by an input, an output,
a required budget, a provided budget, and a quality.
Definition 1 (Configuration Space): A configuration

space S is the Cartesian product Q1 × Q2 × · · · × Qn of a
finite number of partially-ordered sets (posets). A poset is a
setQwith a partial-order relation�Q. A configuration c is an
element of a configuration space c ∈ S. We define C ⊆ S to
be the set of possible configurations for a given component.
Definition 2 (Free Product): Let S1 and S2 be configura-

tion spaces, let C1 ⊆ S1 and let C2 ⊆ S2. The free product of
C1 and C2 is the Cartesian product C1×C2 in the configura-
tion space S1 × S2.
Definition 3 (QRM Interface): The QRM interface of a

component is a set of configurations from a six-dimensional
configuration space S ⊆ Qi × Qo × Qr × Qp × Qq × Qx
where:
• Qi models the inputs
• Qo models the outputs
• Qr models the required budget
• Qp models the provided budget
• Qq models the quality
• Qx models the parameters

In the framework, input and required budget specifications
capture the requirements of the component, while output,
provided budget and quality capture their promises.

The difference between qualities and parameters is that
the former is used by the quality and resource manager
for optimization, the latter is used by external actors, e.g.,

the user, to control the selection of subsets of configurations.
In the following, we consider qualities and parameters to be
integer values and, when not otherwise specified, we use the
name properties to refer to both of them. Moreover, with a
slight abuse of notation, we use C (with C ⊆ S) to refer to
the component defined by that configuration space. Finally,
the elements of Qi and Qo are typed channel objects and the
elements of Qr and Qp are typed budget objects. Channels
model data that the components require in input or provide
in output, while budgets model resources or services that the
component provides or requires. For example, a camera can
have a power source as required budget and a video stream
as output channel. The distinction of channels and budgets
alsomakes it impossible to connect the output of a component
with a required budget and vice versa. A new type is defined
with a unique name, a list of properties and a set of constraints
on such properties.Whenwe refer to a generic element, either
channel or budget, we use the term interface element.

In addition, the framework describes three different kinds
of components composition: free, horizontal and vertical.
Definition 4 (Free Composition): Given two components

C1 andC2, the free composition is computed by first applying
the free product C1 × C2 and then by applying a grouping
derivation for each of the six dimensions of the QRM inter-
face. A grouping derivation puts two posets Qa and Qb in a
single newmulti-dimensional posetQa,b where (pa, pb) �Qa,b
(qa, qb) iff pa �Qa qa and pb �Qb qb. The result is a new
component Ccomp ⊆ Qi × Qo × Qr × Qp × Qq × Qx com-
posed of all the possible combinations of the configurations
in C1 and C2.
Using Definition 4, we can construct a component C made

by many sub-components. We define subcomp(C) to be a set
of such sub-components.
Definition 5 (Horizontal Composition): The horizontal

composition of two components C1 and C2 is similar to the
free composition, but the set of configurations is constrained
to the ones for which the output of the former component
matches with the input of the latter. Moreover, the resulting
component does not provide the output and does not require
the satisfied input anymore.
Definition 6 (Vertical Composition): The vertical compo-

sition of two components C1 and C2 is similar to the free
composition, but the set of configurations is constrained to the
ones for which the provided budget of the former component
matches with the required budget of the latter. Moreover,
the resulting component does not provide the budget and does
not require the satisfied budget anymore.

Figure 1 shows an example of a system expressed using
QRML [14], a domain-specific language that implements
the QRM interface. Looking at the figure, we can see the
definition of component SmartCamera, composed of the
components Camera and CPU connected together, and it
is available in two configurations: low_frequency and
high_frequency. In the first configuration, the fram-
erate of the camera is set to 30 and the frequency of the
computational capability provided by theCPU is 100, while in
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FIGURE 1. Example of system expressed in QRML.

the second configurations the values are 60 and 200, respec-
tively. Moreover, SmartCamera makes available also the
quality power that can be used at runtime to choose
which configuration to run. Notice also that Camera and
CPU do not have the configuration because they only
implement a single default configuration. The specification
also defines a budget (ComputationalCapability)
and a channel (VideoStream). Finally, at the system level,
only an instance of SmartCamera is instantiated, but the
same component declaration can be instantiated multiple
times with different values.

To make a parallel with the QRM framework described
before, given a configuration c = (Qi, Qo, Qr , Qp, Qq, Qx)
let us suppose to have three possible configurations for the
CPU component

c1 = (⊥,⊥,⊥,CC(100),⊥,⊥)

c2 = (⊥,⊥,⊥,CC(150),⊥,⊥)

c3 = (⊥,⊥,⊥,CC(200),⊥,⊥)

and two possible configurations for the Camera

c4 = (⊥,VS(30),CC(100),⊥,⊥,⊥)
c5 = (⊥,VS(60),CC(200),⊥,⊥,⊥)

where ⊥ is the void poset, while CC and VS are short-
hands for the ComputationalCapability budget and
the VideoStream channel, respectively. For example,
VS(30) is a VideoStream channel with a framerate of 30.
The free composition of the two components is simply:

c1,4 = (⊥,VS(30),CC(100),CC(100),⊥,⊥)
c1,5 = (⊥,VS(60),CC(200),CC(100),⊥,⊥)
c2,4 = (⊥,VS(30),CC(100),CC(150),⊥,⊥)
c2,5 = (⊥,VS(60),CC(200),CC(150),⊥,⊥)
c3,4 = (⊥,VS(30),CC(100),CC(200),⊥,⊥)
c3,5 = (⊥,VS(60),CC(200),CC(200),⊥,⊥).

However, if we apply a vertical composition, as in the
example in Figure 1, not all of these configurations are fea-
sible. Moreover, we have to remove the required and pro-
vided budgets, because they cancel each other out. Therefore,
the result of the vertical composition is:

c1,4 = (⊥,VS(30),⊥,⊥,⊥)
c3,5 = (⊥,VS(60),⊥,⊥,⊥).

III. RELATED WORK
In this section, we report on the most relevant and recent
contributions in the field. Considering that our approach has
the QRM framework as a starting point, the purpose of this
section is not to compare our approach to others but rather
to present some important related works in order to increase
awareness about the context in which our contribution can be
collocated in the scientific literature.

Several approaches that investigate ways to provide early
fault detection when developing safety-critical industrial sys-
tems using DSLs have been proposed in the scientific lit-
erature. For instance, in [19], the authors have extended a
DSL tailored to model heterogeneous robots swarm with
a denotational semantics that supports both automatic and
semi-automatic verification in the form of model checking
and theorem proving. Several works in this field have often
used logic solver approaches, namely mapping a model gen-
eration problem into a logic problem, which is usually solved
by SMT or SAT solvers. Some techniques that validate a
wide range of properties related to the semantics of the DSL
have been proposed in [20], [21], where the authors translated
the DSL instances and properties into SMT problems, and
then the model is analyzed using the SMT solver Z3. If the
property does not hold, delta debugging is used to identify the
rules in the DSL instance that contribute to the failure.

Complete frameworks with standalone specification lan-
guages have been presented in [22] and in [23], which use
the SMT solver Z3 and the SAT solver Sat4j [24], respec-
tively. One more complete tool is presented in [25], where
the authors describe Clafer, a class modeling language with
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FIGURE 2. Tree Structure of the specification.

first-class support for feature modeling. The language is sup-
ported by tools for model analysis, which is performed by
translating the models into the input language of the under-
lying back-end solvers Alloy [23], Z3, and Choco 3 [26].
Finally, another interesting work is presented in [27], where
the authors propose an automated validation framework to
formally check the specification of DSLs in the avionics
domain by using Z3 and Alloy as back-end reasoners.

IV. CONSISTENCY CHECKING
The goal of this section is to describe the process of checking
the consistency of a given specification. The consistency
checking aims to automatically verifying if each component
of the system can be instantiated in at least one configuration,
and if there exists a feasible assignment for each property
satisfying all constraints. To achieve this goal, we encode a
system described in QRML into an instance of a satisfiability
problem in Quantifier Free Linear Arithmetic over Integers
(QF_LIA in [15]).

As illustrated in Section II, a component C is defined by
the QRM interface, namely a set of configurations in which
such component can be instantiated. As shown in the example
reported in Figure 1, in QRML a configuration is described
by a set of statements defining:
• the elements composing the interface of the compo-
nent: inputs, outputs, required budgets, provided bud-
gets, quality and properties;

• the sub-components subcomp(C) that are part of C and
their connections;

• a set of arithmetic constraints that limit the possible val-
ues of properties of the component, its sub-components
and the elements composing its interface. We call exp(c)
the list of such constraints.

The first step of the process consists in sorting the compo-
nents in topological order, considering the sub-components
as dependencies. In the example in Figure 1 a possible topo-
logical order could be [CPU, Camera, SmartCamera, S].
If the topological sort fails, it means that there is a circular
dependency and the process stops.

If there are no circular dependencies, each component
is built in the given order, namely all its dependencies are
resolved and replaced by their definitions. If an element is
not defined or has a wrong type (e.g., a channel is defined as
required budget), an error is reported.

If the building step succeeds, the resulting model is a tree
composed of components, configurations, channels, budgets,
qualities and properties. We define a function id(.) which
assigns an identifier to each element of the tree, which will
be useful during the encoding stage.

The next step is the binding of the components interface
in order to achieve a horizontal or vertical composition. For
the horizontal composition, we consider the inputs i ∈ Qi
and outputs o ∈ Qo involved in the composition and we
constraint their id (and the ids of their properties) to be the
same, i.e., id(i) = id(o). In this way the constraints applied
to them actually refer to the same object. If there is a type
mismatched an error is returned. In a similar way, the same
is done for the vertical composition with budgets r ∈ Qr
and p ∈ Qp. Figure 2 shows the result of the whole process
considering the example in Figure 1 as input.

Given the tree obtained by the previous steps, the encoding
procedure works as follows. First, for each node of the tree
a new variable is created, using the id as variable name:
properties and qualities are defined as integer variables, while
the remaining ones are defined as Boolean variables. The
latter variables are used to indicate if a particular component,
configuration or interface element is instantiated or not.

Secondly, starting from the root componentC , we build the
following assertion:

id(C)→
∨
c∈C

id(c) (1)

and for each configuration c ∈ C :

id(c)→
( ∧
e∈exp(c)

e
)
∧

( ∧
x∈subcomp(C)

id(x)
)

(2)

Assertion (1) states that if a component is instantiated, then
at least one of the configurations must be true. In practice,
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only one of them should be true at a given time, but since we
are only interested in checking if at least one configuration
is feasible, the disjunctive clause is sufficient. Assertion (2)
states that if a particular configuration c is selected, then the
constraints exp(c) declared in cmust hold and the subcompo-
nents subcomp(C) defined into the configuration must exist.
Regarding the horizontal composition, let consider a con-

straint that connects an output o, identified by id(o), with an
input i identified by id(i). We have already seen that having
id(o) = id(i) = id∗ forces the encoding to apply the con-
straints on both i and o, on the same object, as the semantics
of the language implies. However, the binding between i and
o also says something else, that is not enforced yet: for a
connection between i and o to hold, i and omust exist in some
configuration. For example, if we want to connect the output
o of a sub-component C1, and this component can exist in
three possible configurations, but only one of them expose the
output o, we want to restrict the configuration space of C1 to
only that specific configuration.Moreover, we can extend this
idea to sub-sub-components and so on, involving more levels
of the tree described before. Therefore, defining input(c) and
output(c) as the sets of all possible inputs and outputs, respec-
tively, that are part of the sub-tree originating from c and
defining path(c, n) as the set containing the configurations
crossed to reach the node n of the same sub-tree, we have the
Assertion (3) for each configuration c and each horizontal
composition between i and o, such that id(i) = id∗ and
id(o) = id∗.

id(c) →
( ∨

i∈input(c)
id(i)=id∗

∧
ci∈path(c,i)

id(ci)
)

∧

( ∨
o∈output(c)
id(i)=id∗

∧
co∈path(c,o)

id(co)
)

(3)

The vertical composition works in a similar way, but we
have required budgets instead of inputs, and provided budgets
rather than outputs.

We recursively build assertions (1), (2) and (3) for each
sub-component x ∈ subcomp(C). The procedure terminates
because we previously checked that there is no circular
dependency. Finally, we have to assert that the root id(C)
must be true, otherwise the formula is trivially satisfied by
setting all boolean variables to false.

Following the steps described above, the specification
shown in Figure 1 is translated into the set of SMT constraints
depicted in Figure 3.

The tool implementing the translation here described is
available for download at [34].

V. INSTANCES AND SOLVERS
In order to evaluate the scalability of a set of SMT solvers,
we have implemented an automated generator (available
at [34]) of QRML specifications and employed three state-of-
the-art SMT solvers to check the satisfiability of the translated
SMT constraints.

FIGURE 3. SMT Encoding example.

The generator can produce a specification according to a
large series of parameters, such:
• components: the number of components C to define;
• interface_elements: the number of channels (Qi, Qo)
or budgets (Qr , Qp) to define (randomly picked accord-
ing to a uniform distribution);

• properties: the number of properties to define for each
component, channel and budget;

• configs: the number of configurations c ∈ S per
component;

• depth (δ): the depth of component/sub-component
hierarchy;

• subcomps: the number of sub-components per compo-
nent (|subcomp(C)|), except for components at depth 0,
which do not have any further dependency;

• expressions: the number of expressions (randomly gen-
erated, considering a set of arithmetic operators and the
set of accessible properties) for each configuration;

• interface_elements_per_component: the number of
channels and/or budgets composing the interface of each
component. The type and direction (i.e., if they are
required or provided) is chosen randomly;

• connection_rate: the rate of generated feasible connec-
tions between compatible inputs and outputs or required
and provided budgets.

The generator works as follows: first, it generates the
specified number of interface elements, randomly choosing
the type (channel or budget) and assigning unique names to
them. For each interface element, a number properties of
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properties is generated, assigning a name to each of them.
It starts generating d components

δ
e components with δ = 1,

which do not have any subcomponent, then b components
δ
c

components with δ = 2 and so on, so that the depths of
components are evenly distributed from 1 to δ. For example,
if the generation starts with components = 7 and δ = 3,
the generator will produce 3 components with δ = 1, 2 com-
ponents with δ = 2 and 2 components with δ = 3. For
components with δ > 1 the subcomponents are computed
as follows: 1 component is randomly chosen in the set of
components with (δ − 1), while all the other (subcomp - 1)
subcomponents are randomly chosen from the components
with depth ranging from 1 to (δ − 1). Moreover, for each
component C :

• a number properties of properties is generated;
• a number interface_elements_per_component of
interface elements are randomly selected from the set of
budgets and channels previously generated;

• a number config of configurations is generated.

Notice that the subcomponents and properties are defined in
all components configurations, while the interface elements
are evenly distributed among the defined configurations.
At this point, for each configuration ci ∈ C the generator:

• generates a number expressions of expressions, ran-
domly combining some constraints, arithmetic operators
and accessible properties (i.e., the properties of the com-
ponent, its subcomponents and of the defined interface
elements);

• computes all possible feasible connections between
accessible interface elements (e.g. if a subcomponentC1
provides a budget of type X and another subcomponent
C2 requires the same type of budget, the connection is
considered feasible) and a feasible connection is ran-
domly selected with probability connection_rate. If a
connection is selected, a connection constraint is defined
in the configuration.

The procedure is repeated for each component and finally,
at the system level, one of the components with maximum
depth is instantiated, so that the specification is feasible only
if there exists at least a configuration for the selected com-
ponent and its subcomponents that satisfy all the generated
constraints. Finally, the QRML specification is automatically
translated into SMT using the encoding described in the
previous section.

For our analysis, we generate 5 benchmarks for each com-
bination of the following parameters values: components
∈ {8, 16, 32, 64, 128}, configs ∈ {2, 4, 8, 16, 32, 64, 128},
depth ∈ {2, 4, 8} and properties ∈ {0, 2, 4, 8}. We keep
the value of some parameters fixed: interface_elements =
components, subcomps = 5, expressions = 2, inter-
face_elements_per_component = 3, and connec-
tion_rate = 0.5. In such settings, we therefore generate
2100 different benchmarks.

The three SMT solvers involved in our experimenta-
tion were selected from among participants to the QF_LIA

division in the Single Query Track of the SMT Competition
2019 [28], namely Z3 (version 4.8.8) [29], CVC4 (version
1.7) [30] and SMTInterpol (version 2.5) [31]. The brief char-
acteristics of these systems are listed below.

• Z3 is state-of-the-art SMT solver developed and main-
tained by Microsoft Research, which is focused at solv-
ing problems arising in software analysis and verifica-
tion. It can be used to check the satisfiability of logical
formulas over one or more theories. Z3 provides a com-
pelling match for verification components and software
analysis since several similar software constructs map
directly into its supported theories.

• CVC4 is an efficient open-source automatic theorem
prover for SMT problems. It can be used to prove the
validity (or, dually, the satisfiability) of first-order for-
mulas in a large number of built-in logical theories and
their combination, including rational and integer linear
arithmetic, arrays, bitvectors and a subset of non-linear
arithmetic. CVC4 is intended to be an open and exten-
sible SMT engine, and it can be used as a stand-alone
tool or as a library, with essentially no limit on its use
for research or commercial purposes.

• SMTInterpol is an SMT solver written in Java which
supports the quantifier-free combination of the theories
of uninterpreted functions, linear arithmetic over inte-
gers and reals, and arrays. Furthermore, SMTInterpol
can produce models, proofs, unsatisfiable cores, and
interpolants.

VI. EXPERIMENTAL ANALYSIS
In this section, we present the results of the experiments
involving solvers and instances presented in Section V. All
the experiments here reported ran on a workstation equipped
with an Intel Xeon E31245 @ 3.30GHz CPU and 32GB
RAM running Lubuntu 18.10 64bits. For all the experiments,
we granted a time limit of 600 CPU seconds (10 minutes) and
a memory limit of 30GBs. The source code and data used in
the experiments are available at [34].

Our first experiment aims to test the scalability of selected
SMT solvers on generated instances. The results of such
experiments are reported in Figure 4 (top). Looking at the
figure, we can see that CVC4 outperforms SMTInterpol and
Z3, solving 2098 instances (out of 2100), while the remaining
solvers were able to solve 1849 and 1795 instances, respec-
tively. It is worth to notice that no discrepancies have been
reported in the satisfiability result returned by the solvers.

Despite the fact that CVC4 is able to solve almost all
the instances in the whole dataset, looking in detail at the
results, we can see that there are parameters settings for
which CVC4 did not report the best CPU time. In order
to investigate this point, we compute a dataset considering
the median performance for each instance, i.e., for each pair
solver/instance, we consider the median value obtained from
the 5 random generated samples of the given instance. Notice
that the median is computed separately for each solver, so the
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FIGURE 4. Performance of SMT solvers involved in the experiments on
the whole dataset (top) and considering the median time value computed
on the set of samples for each instance (bottom). Figures are organized
as follows: in the x-axis is depicted the total amount of instance, while in
the y-axis the CPU time in seconds.

reported performance can be related to a different sample; this
process can help us to make our analysis more robust.

Regarding the performance of the involved solvers in this
dataset, we report that CVC4 is again the best solver; it
was able to solve all the instances (420) in 5332.15 CPU
seconds (s). The picture does not change with respect to the
previous one, because the second best solver was SMTInter-
pol, which was able to solve 375 instances in 12456.92 s,
while Z3 tops to 359 solved instances in 7117.58 s. Their per-
formance is depicted in the cactus plot in Figure 4 (bottom).

Looking in details at the results, we can report a picture
similar to the one obtained considering the whole set of
instances: CVC4 is the best solver in general, but is not
the best one for each instance. This consideration lets us
introduce our second experiment, that consists in the analysis
of the Virtual Best Solver (VBS), i.e., considering a problem
instance, the oracle that always fares the best among available
solvers. Looking again at the bottom of Figure 4, we can
see that VBS solves the same amount of instances solved
by CVC4 but spending 5014.30 CPU seconds. This different
amount of time is due to the fact that CVC4 contributed to
the VBS with 220 (out of 420) instances, while the second
contributor was Z3 with 200 instances. Notice that, despite

SMTInterpol solved 16 instances more than Z3, it did not
contribute to the composition of the VBS.

The mapping for each instance between its parameters – in
terms of feature described in Section V – and the best solver
can help us to understand which is the best solver for a given
setting. In our last experiment we investigate this point, and
we compare the structure of the encodings related to the pool
of instances in which CVC4 was the best solver against the
pool in which Z3 was the best one. In order to refine our
analysis, we discard all instances solved in less than 1 s and
the ones for which the CPU time difference was less than 5%.
At the end, we obtained a pool of 173 instances; for 139 of
them the best solver was CVC4.

Concerning the analysis of the encoding related to this
pool of instances, we report that we did not obtain a clear
picture considering one feature at time. This is the motivation
for which we introduce in our analysis a Machine Learning
classifier, namely J48, the WEKA [32] implementation of
the C4.5 [33] decision tree algorithm. We employed this
algorithm (with WEKA default configuration) for data min-
ing purposes, setting up a multinomial classification prob-
lem, which is structured as follows. Given a set of patterns,
i.e., input vectors X = {x1, . . . , xk} with xi ∈ Rn, and a cor-
responding set of labels, i.e., output values Y ∈ {1, . . . ,m},
where Y is composed of values representing the m classes of
themultinomial classification problem, in ourmodeling, the n
features are the parameters described in Section V, while the
m classes are m SMT solvers (m= 2, namely CVC4 and Z3).
Given a set of patterns X and a corresponding set of labels Y ,
the task of a multinomial classifier c is to construct c from
X and Y so that when we are given some x? ∈ X we should
ensure that c(x?) is equal to f (x?).
Considering the dataset composed as described before,

we report that the model obtained after a run of J48 shows that
CVC4 is the best choicewhen the total amount of components
is less or equal to 64, but excluding the cases in which the
number of properties are equal to 0 and the total amount
of configurations is greater than 16; in these cases, the best
choice is Z3. Z3 is also the best choice when the total number
of components is greater than 64 and the total amount of
configurations in smaller or equal to 4.

VII. CONCLUSION
In this paper, we have proposed an SMT-based approach for
checking the consistency of configuration based-components
design expressed in QRML in order to reduce faults and risks
during the development process. Such an approach has been
implemented into a tool which is available at [34]. Further-
more, to evaluate the scalability of the proposed approach,
we developed an automated generator of DSL specifications
and employed three different state-of-the-art SMT solvers to
check the satisfiability of the encoded SMT properties. As we
have shown in the experimental analysis, we demonstrated
the effectiveness of the proposed SMT-based approach to
verify configuration-based components design of various
sizes within a reasonable time.
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