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ABSTRACT With the continuous improvement of new energy penetration in the power system, the price
of the spot market of power frequently fluctuates greatly, which damages the income of a large number
of thermal power enterprises. In order to lock in the profit, thermal power enterprises should turn the
main target of profit to the medium and long-term power market. With the continuous advancement of
the reform in China’s power system, major changes have taken place in the medium and long-term power
transactions, including the transaction target, organization method, clearing method and so on, so it is
urgent to explore the quotation strategy of thermal power enterprises under the medium and long term
market changes. Based on the theory of game equilibrium, this paper establishes non-cooperative game and
cooperative game models between thermal power companies. Considering that the traditional reinforcement
learning method is difficult to solve the multi-agent incomplete information game model, this paper uses the
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm to solve the above model. Finally,
the validity of the proposed model is proved by a numerical example. The results show that, compared with
other reinforcement learning algorithms, when solving the multi-agent incomplete information game model,
the quotation obtained byMADDPG is more accurate, the revenue is increased by 5.2%, and the convergence
time is reduced by 50%.In addition, this paper finds that in the medium and long-term power market, thermal
power companies are more inclined to use physical retention methods to make profits. The greater the market
power of thermal power companies, the greater the probability of physical retention. When low-cost thermal
power companies retain more power, they will increase market clearing electricity prices and harm market
efficiency. Regulators should focus on the market behavior of such thermal power companies.

INDEX TERMS Electricity market, bidding strategy, multi agent reinforcement learning, multi agent deep
deterministic policy gradient algorithm.

I. INTRODUCTION
With the gradual advancement of China’s electric power mar-
ket reform, some problems have also been exposed, the typi-
cal one is the large-scale loss of thermal power enterprises [1].
During the trial operation of the power spot market, power
generation enterprises have quoted zero price for startup for
many times. In an environment of loose supply and demand
for electricity, this phenomenon further depressed spot prices,
and some thermal power companies even failed to repay
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loans and declared bankruptcy. It is difficult for thermal
power companies to make sustainable profits in the spot
market [2]. Therefore, they should turn the profit target to the
medium and long-term market. With the continuous reform
of China’s power system, the scale of medium and long-
term transactions is growing, and the contract coverage is
gradually improving. Under the influence of the power spot
market, the granularity of the trading time is further subdi-
vided, and the object of transaction is gradually transferred
to the time period. Medium and long-term transactions have
undergone great changes in the object of transaction, the way
of organization and clearing methods [3]. In order to give
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full play to the role of medium and long-term transactions
in stabilizing the income of thermal power companies, and
considering the great changes in the medium and long-term
market, the bidding strategy of thermal power companies in
the medium and long-term market should be explored [4].

This paper mainly studies the bidding strategy of thermal
power companies from two aspects, including the deter-
mination of the optimal declared price of thermal power
companies and the evaluation of power market operation effi-
ciency. Firstly, it considers the impact of multi-dimensional
environmental parameters to find the equilibrium point of
the game that can maximize the benefits of thermal power
companies. Secondly, the paper evaluates the influence of the
behaviors of game players on the market efficiency under the
equilibrium state, and puts forward corrective suggestions on
the inappropriate bidding behaviors existing in the market.
At present, scholars at home and abroad divide the main
research methods into the following categories in terms of
bidding strategies of power suppliers: the first is the cost
analysis method, which takes the production cost plus certain
profit of the power producer as the quotation of the power
producer [5], [6]; the second is the clearing price forecasting
method, in which the generators predict the electricity market
price and quote within the appropriate range of the forecast-
ing [7]–[9]; the third is the competitor quotation analysis
method, which uses probability statistics or fuzzy mathe-
matics to estimate the competitor’s quotation to establish
an optimal bidding model, and finally obtains the optimal
bidding strategy by solving the model [10]; the fourth type
is game theory analysis method, in which the thermal power
companies build game theory model based on the trading
situation, and solve the game equilibrium solution as their
optimal bidding strategy [11]–[13]; the fifth is the intelligent
optimization algorithm analysis method, which solves the
optimal bidding of power suppliers by such methods as evo-
lutionary algorithm [14], [15], fuzzy adaptive algorithm [16],
reinforcement learning algorithm [17]–[19].

In the above methods, the cost analysis method, which
is the basis of the bidding strategy, does not consider the
changes of market supply and demand and the decisions of
other power suppliers, so it is difficult to maximize its own
interests; the second and thirdmethods require a large amount
of historical data to support the calculation. But the new round
of power market system reform has just started, the data
is not yet sufficient. Moreover, the market structure and its
rules are constantly changing, it is difficult to make accurate
predictions on market prices; the game theory methods have
good results for two-player game problems and perfect infor-
mation game problems, but the effects are not ideal in terms
of multiplayer games and incomplete information games;
in the process of solving game problems with traditional
intelligent optimization algorithms, it is necessary to realize
the optimization process through feedback iterations of ther-
mal power companies benefits under unknown environmental
parameters. The optimization process mainly uses traditional
reinforcement learning methods such as Q-learning [20],

Policy Gradient and other algorithms [21]–[26], and it is
implemented by setting action-reward incentives. Due to the
uncertainty of the game results under bounded rationality,
in the case of multi-agent interaction, Q-learning, Policy
Gradient and other algorithms will have problems such as
unstable environment and increased variance, which makes
power generation companies unable to achieve precise and
continuous decision-making, thus limiting the search for the
best offer.

In order to solve the optimal quotation problem of thermal
power companies under the multi-agent incomplete infor-
mation game, the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm based on the multi-agent
reinforcement learning method was proposed [27]–[30].
The neural network parameters are updated to simulate the
bounded rational process of the game to ensure that the game
process is close to reality.

This paper studies the bidding strategy of thermal power
companies in the medium and long-term power market under
the new power reform. Under the premise of maximizing
their own interests, the non-cooperative game and cooper-
ative game models between thermal power companies are
established respectively based on the game equilibrium the-
ory. In order to make up for the limitations of game theory
and traditional reinforcement learning methods to solve the
multi-agent incomplete information game problem, this paper
uses the MADDPG method to solve the game model, and
on the basis of obtaining the optimal market quotation of
thermal power companies, indirectly observes the behavior
of market entities through market efficiency. Furthermore,
by identifying loopholes in the electricitymarket mechanisms
and rules, corresponding normative policy recommendations
are put forward.

II. PRINCIPLES OF MULTI-AGENT
REINFORCEMENT LEARNING
A. MULTI-AGENT REINFORCEMENT LEARNING THEORY
Reinforcement learning is an important part of machine
learning, which is widely used in solving decision-making
problems. And it is an interactive learning method based
on the Markov decision process. The agent interacts with
the environment to maximize the long-term return and take
certain actions, then the environment returns to the agent for
a certain reward, and the above process is repeated until the
agent achieves a certain goal. The cyclic interaction process
is shown in Figure 1. At time t, the Agent starting from a
certain state st, uses strategy π (a |s ) to choose action at to
interact with the environment, and then obtains the imme-
diate return rt+1 of the environment, and transfers to the
new state st+1 according to the state transition probability
P(st+1 |st , at ).

In single-agent reinforcement learning, the environment
that the agent faces is fixed. However, most of the problems in
real life are complex adaptive system problems. The behav-
iors of subjects will influence each other, and subjects can
adjust their behavior rules through continuous observation
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FIGURE 1. The interaction process between agent and environment in
reinforcement learning.

and learning to better adapt to the environment. When study-
ing complex multi-agent system problems, it is necessary
to use multi-agent reinforcement learning [31]–[34], that is,
each agent learns to improve its own strategy by interacting
with the environment to obtain reward values, so as to obtain
the optimal strategy of the system. However, in a multi-agent
system, the learning process of the agent will become com-
plicated. Firstly, the number of action combinations of each
Agent increases exponentially with the number of agents,
the dimensionality of the solution is large, and the calculation
difficulty is high. Secondly, the environment is dynamic.
Each Agent is learning and optimizing its own strategy at the
same time, so the change of one Agent’s strategy will affect
the strategy of other Agents, and then affect the convergence
of the algorithm. Finally, the tasks of each Agent may be dif-
ferent, and they influence each other, which complicates the
reward design and directly affects the quality of the learning
strategy.

Since the Agents in the multi-agent system may involve
cooperation and competition, on the basis of single-agent
reinforcement learning, multi-agent reinforcement learning
introduces the concept of game and combines game theory
with reinforcement learning, which is conducive to solving
complex problems of multi-agent system. The basic algo-
rithms of multi-agent reinforcement learning include gradient
ascent (descent) algorithm, Q-Learning, policy hill climbing
algorithm, etc., at the same time, new algorithms are also
emerging in an endless stream, most of which are continuous
improvements to the basic algorithms.

B. MADDPG ALGORITHM
This paper mainly introduces the MADDPG algorithm based
on multi-agent reinforcement learning. The MADDPG algo-
rithm is a natural extension of the DDPG algorithm under
the multi-agent system. It belongs to centralized training and
has an algorithm framework for decentralized execution. Its
improvement is that, in order to solve the environmental
non-stationary problem of the multi-agent system, in the
modeling process of the Q-value function, the input of other
agents’ current strategy sampling actions are introduced as
additional information. The MADDPG algorithm has two
major advantages. One is that in the training phase, the actor
network of each agent makes decisions based on local infor-
mation (that is, the agent’s own actions and states). The
other is that the algorithm does not require the input of

environmental change information, nor does it require the
contact relationship between agents. Therefore, the algorithm
is not only applicable to a cooperative environment, but also
applicable to a competitive environment.

The implementation framework of the MADDPG algo-
rithm is shown in Figure 2.

For the DDPG algorithm of a single agent in Figure 2, the
implementation process is as follows:

1. Random initialization θ, ω, ω′ = ω, θ ′ = θ . Clear the
set of experience replays D,

2. Iterate from the first step of the first round,
A) Initialize as the first state S of the current state sequence

and get its eigenvector φ (S).
B) The current network in Actor A = πθ (φ (S))+ N gets

an action based on the state S,
C) Perform actions A, get new status S ′, reward R, termi-

nate status or not,
D) Store the quintuple

{
φ (S) ,A,R, φ

(
S ′
)
, is_end

}
into

the experience playback set D,
E) S = S ′,
F) Sample m samples from the experience playback set D

and calculate the current target Q value yj:

yj =

{
Rj is_endj is true
Rj + γQ

(
φ
(
Sj+1

)
,Aj+1, ω

)
is_endj is false

(1)

G) Use the mean square error loss function 1
m

m∑
j=1

(
yj −

Q
(
φ
(
Sj
)
,Aj, ω

) )2
, to update all parameters of the current

network through gradient back propagation of the neural
network,

H) Use J (θ) = − 1
m

m∑
j=1

Q (si, ai, θ) to update all param-

eters of the Actor’s current network through gradient back
propagation of the neural network.

I) If T%C = 1, then update the target network and Actor
target network parameters:

ω′ ← τω + (1− τ) ω′ (2)

θ ′ ← τθ + (1− τ) θ ′ (3)

J) If Sj+1 is the termination state, the current round iteration
is completed, otherwise go to step B).

In the MADDPG algorithm, θ = [θ1, . . . , θn] rep-
resents the parameters of the strategy of n agents,
and π = [π1, . . . , πn] represents the strategy of n
agents. For the cumulative expected reward J (θi) =

Es∼ρπ ,ai∼πi [
∑
∞

t=0γ
tri,t ] of the i-th agent, considering a

random strategy, its strategy gradient is:

∇θiJ (θi) = Es∼ρπ ,ai∼πi [∇θi logπi(ai |oi )Q
π
i (x,a1, . . . ,an)]

(4)

Among them, oi represents the observation of the i-th
agent, x = [o1, . . . ,on] represents the observation vector, and
state Qπi (x,a1, . . . ,an) represents the centralized state-action
function of the i-th agent. Since each agent can learn its own
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FIGURE 2. The implementation framework of MADDPG algorithm.

function Qπi independently and has its own reward function,
it can complete cooperation or competition tasks.

For deterministic strategy µθi , the gradient formula is:

∇θiJ (µi)=Ex,a∼D[∇θiµi(ai|oi )∇aiQ
µ
i (x,a1, . . . ,an)

∣∣ai=µi(oi) ]

(5)

In the formula, D is an experience store, and the element
composition is (x, x ′, a1, . . . , an, r1, . . . , rn).

The centralized critic update method draws on the idea of
Temporal-Difference and target network in DQN:

L(θi) = Ex,a,r,x′ [(Q
µ
i (x,a1, . . . ,an)-y)

2] (6)

y = ri + γQ
µ′

i (x ′, a1
′, . . . , an

′)
∣∣aj ′=µj ′(oj) (7)

Q
µ′

i represents the target network, µ′ = [µ1
′, . . . , µn

′]
is the parameter θj′ of the target strategy that has a lagging
update. The strategies of other agents can be obtained by
fitting approximation, without the need for communication
and interaction between agents. The critic borrows global
information for learning, while the actor only uses local
observation information.

In formula (6), the methods of fitting and approximating
the strategies of other agents are as follows: Each agent
maintains n-1 strategy approximation functions, and µ̂

φ
j
i
rep-

resents the function approximation of the i-th agent to the
j-th agent’s strategy µj. This approximate strategy learns by

maximizing the logarithmic probability of the action of agent
j and adding an entropy regularization term:

L(φji ) = −Eoj,aj [log µ̂φji
(aj
∣∣oj )+ λH (µ̂

φ
j
i
)] (8)

As long as (8) is minimized, an approximate estimate of
the strategies of other agents can be obtained. Therefore,
the formula (7) can be replaced by the following function:

y = ri + γQ
µ′

i (x ′, µ̂1
φ
j
i
(o1), · · · , µ̂

n
φ
j
i
(on)) (9)

Before update Qµi , using a sample batch of experience
playback to update µ̂

φ
j
i
.

Since the strategy of each agent is being updated and iter-
ated, the environment is unstable for a specific agent. There-
fore, in a competitive environment, an agent often overfits
a strong strategy to its competitors. But this strong strategy
is very fragile. This is because that with the updating of
competitors’ strategies, it is difficult for this strong strategy
to adapt to the new opponent’s strategy.

In order to better solve the above problems, MADDPG
proposed a strategy set idea. Strategy µi of the i-th agent
consists of a set of K sub-strategies, and only one sub-strategy
µ
(k)
i is used in each training episode. For each agent,

it is necessary to maximize the overall reward Je(µi) =
Ek∼unif (1,K ),s∼ρµ,a∼µki

[
∑
∞

t=0γ
tri,t ] of its strategy set, and to

construct a memory storage D(k)
i for each sub-strategy k.
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FIGURE 3. Schematic diagram of scenario assumptions.

Taking into account the overall effect of the optimization
strategy set, the update gradient for each sub-strategy is:

∇
θ
(k)
i
Je(µi) =

1
K
Ex,a∼D(k)

i
[∇
θ
(k)
i
µ
(k)
i (ai

× |oi )∇aiQµi (x,a1, . . . ,an)
∣∣∣ai=µ(k)

i (oi)
] (10)

III. BIDDING MODEL OF GENERATION COMPANIES IN
MEDIUM AND LONG-TERM ELECTRICITY MARKET
BASED ON MADDPG ALGORITHM
A. SCENARIO ASSUMPTIONS
This paper assumes that the research scenario is shown
in Figure 3. In the electricity market, thermal power com-
panies formulate their trading strategies based on their own
operating data and incomplete market information, with the
goal of maximizing profits. Thermal power companies sell
electricity in the electricity market, and electricity users buy
demand electricity on the grid. According to their own cost
situation and incomplete market information, each thermal
power company decides its own declared price. Based on the
cooperation of thermal power companies with different costs,
this paper sets up the following two types of scenarios, and
constructs a non-cooperative game model and a cooperative
game model between thermal power companies.

Scenario 1: Thermal power companies with different costs
do not cooperate, and thermal power companies makes quo-
tations with the goal of maximizing their own interests.

Scenario 2: Thermal power companies with different costs
can cooperate, and each thermal power company makes quo-
tations with the goal of maximizing overall benefits.

In the scenario, the market clearing mechanism of thermal
power companies transactions adopts uniform marginal price

clearing. This paper does not consider the physical constraints
of the power system network. The market clearing process is
as follows.

(1) the demander with the highest priority (the largest
declared price) and the supplier with the highest priority
(the smallest declared price) are matched first, and then the
demander and supplier with the second highest priority are
matched, and so on;

(2) When the declared prices of the demand side and the
supply side are equal, or all the demand side and the supply
side have completed the matching, the liquidation is ended
and the transaction is completed;

(3)The clearing price is the average price declared by the
last matched demander and supplier.

B. NON-COOPERATIVE GAME MODEL
1) PROFIT CALCULATION MODEL
The medium and long-term market selected in this paper
is the monthly centralized bidding market, and the profit
of thermal power companies is the profit from the sale of
electricity minus the cost of power generation. In the monthly
centralized bidding transaction, the reference cost of the ther-
mal power supplier’s quotation decision is the thermal power
supplier’s marginal power generation cost, as shown below:

CT
G (PG) = aG × (PG)2 + bG × PG + cG (11)

CB,Mon
G = aGQ

B,Mon
G

2QB,Year,DG + QB,Mon
G

TMon
+ bGQ

B,Mon
G

(12)

CT
G (PG) is the production cost of thermal power compa-

nies; aG, bG, cG is the quadratic, primary and constant coef-
ficients of the production costs of thermal power companies;
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PG is the output of thermal power units; CB,Mon
G is the power

generation cost of thermal power companies in monthly
centralized bidding transactions; QB,Year,DG is the monthly
decomposition power of the thermal power supplier’s annual
contract power; QB,Mon

G is the transaction electricity vol-
ume of thermal power companies in monthly centralized
bidding transactions; TMon is the number of monthly
hours;

The non-cooperative profit model of thermal power com-
panies can be expressed as:

RB,Mon
G = QB,Mon

G pmc−(aGQ
B,Mon
G

2QB,Year,DG + QB,Mon
G

TMon

+bGQ
B,Mon
G ) (13)

RB,Mon
G is the profit of thermal power companies inmonthly

centralized bidding transactions; pmc is the market clearing
price of the monthly centralized bidding transaction.

2) DECISION MODEL
By using their own market power and adopting a certain
bidding strategy, power producers are called market holding
behavior, including physical holding and economic hold-
ing. Physical retention refers to that the power generation
companies hold the power generation quantity to reduce the
market supply and make the power generation companies
with higher declared electricity price become the marginal
power generation companies in the market; economic reten-
tion refers to that the power generation companies declare
electricity price higher than their marginal generation cost
and make themselves become the marginal power generation
companies in the market, so as to improve the market clearing
price.

In monthly centralized bidding transactions, the declared
electricity quantity and declared electricity price of thermal
power companies are as follows.

QR,Mon
G = αGQ

S,Mon
G = αG(Q

Max,Mon
G − QB,Year,DG ) (14)

pR,Mon
G = βGC

M ,Mon
G (15)

QR,Mon
G is the declared electricity quantity of thermal power

companies in monthly centralized bidding transactions; αG
is the decision coefficient of the declared electricity quantity
in monthly centralized bidding transactions of the thermal
power companies; QS,Mon

G is the maximum monthly remain-
ing power generation capacity of thermal power companies;
QMax,Mon
G is the monthly maximum power generation capac-

ity of thermal power companies; QB,Year,DG is the monthly
decomposition power of the thermal power supplier’s annual
contract power; pR,Mon

G is the declared electricity price of
the thermal power supplier in monthly centralized bidding
transactions; βG is the decision coefficient of the declared
electricity price in monthly centralized bidding transactions
of the thermal power supplier; CM ,Mon

G is the monthly
average marginal power generation cost of thermal power
companies.

The decision-making models of various thermal power
companies are as follows:

maxRB,Mon
G

= QB,Mon
G pmc−(aGQ

B,Mon
G

2QB,Year,DG + QB,Mon
G

TMon

+bGQ
B,Mon
G ) (16)

bn,tPmin
n,t

≤ Pn,t ≤ bn,tPmax
n,t (17)

Pn,t − Pn,t−1
≤ 1PUn bn,t−1 + P

min
n,t (bn,t − bn,t−1)+ P

max
n,t (1− bn,t )

(18)

Pn,t − Pn,t−1
≤ 1PDn bn,t + P

min
n,t (bn,t − bn,t−1)+ P

max
n,t (1− bn,t−1)

(19)

TDn,t − (bn,t − bn,t−1)TD
≥ 0 (20)

TUn,t − (bn,t − bn,t−1)TU
≥ 0 (21)∑

t

ηn,t

≤ ηn,max (22)∑
t

γn,t

≤ γn,max (23)

QR,Mon
G

≤ Qmax
G (24)

pminG

≤ pR,Mon
G ≤ pmax

G (25)

Equation (17) is the thermal power output constraint;
Equations (18) and (19) are thermal power climbing con-
straints; Equations (20) and (21) are the minimum contin-
uous start stop time constraints of thermal power plants;
Equations (22) and (23) are the constraints of maximum
startup and shutdown times of thermal power plants; The
formula (24) is the quantity restriction of thermal power
enterprises, and the formula (25) is the quotation restriction
of thermal power enterprises.
Where:Pmin

n,t andPmax
n,t are theminimum andmaximum out-

put of fire motor group n respectively; bn,t is the 0-1 variable
of the start-up and stop state of unit n in period T, bn,t = 1
is the start-up state and bn,t = 0 is the shutdown state;
1PUn and 1PDn are the maximum ascent and descent rates of
unit n, respectively; TU and TD are the minimum continuous
start-up time and the minimum continuous shutdown time
respectively; TUn,t and T

D
n,t are the continuous start-up time and

continuous shutdown time of unit n at time t respectively; ηn,t
and γn,t are the switching variables of start-up and shutdown
respectively. ηn,t indicates whether unit n switches to start-up
state in time t, and γn,t indicates whether unit n switches to
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shutdown state in time t; ηn,max and γn,max are the maximum
start-up and shutdown times of unit n in t period respectively.

C. COOPERATIVE GAME MODEL
1) PROFIT CALCULATION MODEL
Various thermal power companies cooperate to form an
alliance, and they make decisions with the goal of maximiz-
ing the overall profits of the alliance. The profit function is:

RTG =
n∑
i=1

RB,Mon
Gi

= QB,Mon
Gi pmc−(aGiQ

B,Mon
Gi

2QB,Year,DGi + QB,Mon
Gi

TMon

+bGiQ
B,Mon
Gi ) (26)

RTG is the total profits function of the alliance.
The cooperative game involves the issue of how to dis-

tribute the benefits among multiple entities. Therefore, how
the cooperative benefits are distributed among the thermal
power companies will directly affect the achievement of
cooperation. In this paper, the Shapley value method is used
to study the cooperative income distribution among thermal
power companies. The core idea of this method is to distribute
the benefits of participants according to their contributions to
the alliance. The more contributions, the more benefits.

We assume that subset S ⊆ M of setM = d {1, 2, . . . ,M}
of any non-empty participant is called a coalition. The Shap-
ley value can be used to calculate the profit ϕ distributed by
participant i, as shown in formulas: (27) and (28).

ϕi =
∑
s

ω(|S|)(v(S)− v(S − {i})) (27)

ω(|S|) =
(m− |S|)!(|S| − 1)!

m!
(28)

In the above formulas: |S| is the number of participants in
subset S; v(S) is the profit of alliance cooperation including
participant i; v(S − {i}) is the alliance cooperation profit that
does not include participant i; ω(|S|) is the weighting factor;
m! is the number of all possible arrangements of participants
in the cooperative game.

If each thermal power supplier is denoted as 1, 2,. . . ,
n, then m = n. v(1), v(2), , v(n) respectively represents the
non-cooperative profit of thermal power companies 1 to n,
and v(T ) represents the total profits of the cooperation
between the two parties. According to formulas (27) and (28),
the respective benefits allocated to wind farms and electric
vehicle aggregators can be obtained.

2) DECISION MODEL
When various thermal power companies cooperate, the deci-
sion model can be described as follows:

maxRTG =
n∑
i=1

RB,Mon
Gi

= QB,Mon
Gi pmc−(aGiQ

B,Mon
Gi

2QB,Year,DGi + QB,Mon
Gi

TMon

+bGiQ
B,Mon
Gi ) (29)

Its thermal power output constraints, quotation constraints,
and volume constraints are the same as the decision-making
model of non-cooperative games.

IV. GAME MODEL SOLVING BASED ON
MADDPG ALGORITHM
In the electricity market, based on their own operating data
and incompletemarket information, each thermal power com-
pany formulates its bidding strategy with the goal of maxi-
mizing profits.

A. ACTOR STRATEGY NETWORK MODEL
The goal of the Actor strategy network is to learn and opti-
mize strategies to make performance of the strategy better
and better. Therefore, the input of the Actor strategy network
model is the state feature, and the output is the action dis-
tribution. According to scenarios 1 and 2, the status features
include the power market status and the thermal power sup-
plier’s own status, and the action distribution is the thermal
power supplier’s decision-making behavior on the declared
electricity quantity and the declared electricity price.

1) STATE
Before the start of monthly centralized bidding transactions,
regulators will disclose market information. On the one hand,
based on the public market information released by power
trading institutions, thermal power companies can judge the
supply and demand of the power market this month; on
the other hand, combined with private information such as
the maximum remaining power generation capacity, thermal
power companies can judge their share and market power
in the electricity market this month. Therefore, the status
features include two parts: the status of the electricity market,
and the status of thermal power companies themselves.

a: STATE OF THE ELECTRICITY MARKET
The state of the electricity market is expressed by the ‘‘market
supply-demand ratio’’, which is the ratio of market electricity
supply to market electricity demand.

R =
QS
QD

(30)

R is the market supply-demand ratio, QS is market supply,
QD is market demand.

b: THE STATUS OF THERMAL POWER
COMPANIES THEMSELVES
Thermal power companies’ own status is expressed by ‘‘ther-
mal power companies’ market share’’, which is the ratio of
the remaining maximum power generation of thermal power
companies to market power demand.

SG =

∑
QS,MonG

QD
(31)
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SG is themarket share of thermal power companies;QS,MonG
is the maximum monthly remaining power generation capac-
ity of thermal power companies.

Based on the market public information of the monthly
centralized bidding transaction and its own private infor-
mation, thermal power companies make decisions on the
declared electricity quantity and the declared electricity price.
The quantity and price have been shown in the decisionmodel
in the previous section.

The action distribution in the Actor strategy networkmodel
can be expressed as a two-dimensional vector [αG, βG] of the
declared power decision coefficient and the declared power
price decision coefficient. Among them, in the monthly cen-
tralized bidding transaction, the declared electric power of
the thermal power supplier cannot be less than zero and not
greater than the maximum remaining monthly power genera-
tion. Therefore, the range of the declared electric power deci-
sion coefficient αG is [0,1]; At the same time, in the monthly
centralized bidding transaction, the declared electricity price
of the thermal power supplier should be greater than or equal
to its monthly average marginal power generation cost, and
considering the monthly centralized bidding transaction reg-
ulations, thermal power companies are not allowed to make
profiteering quotations. Therefore, the range of the declared
electricity price decision coefficient βG is [1,1.2].

B. CRITIC VALUE NETWORK MODEL
The goal of the Critic value network model is to learn and
evaluate the value function, so that the value function can
more accurately evaluate the pros and cons of the strategy.
Its input is a state feature, and its output is a state value
function. The state characteristics of the Critic value net-
work model are the same as the state characteristics of the
Actor strategy network model, and the state value function is
the discounted sum of the profit of different thermal power
companies.

C. THE PROCESS OF MODEL SOLUTION
The quotation game problem of thermal power companies in
the medium and long-term power market studied in this paper
is a complex multi-agent system problem, which is suitable
formulti-agent reinforcement learningmethods. In this paper,
the MADDPG algorithm is used to solve the non-cooperative
game and cooperative game models of thermal power com-
panies with different costs. The model solution framework
is shown in Figure 4. There are n thermal power companies
in the multi-agent system, and each agent has a strategy
network.

The MADDPG algorithm uses centralized training and
distributed execution. Firstly, in the training process, n agents
use joint strategy −→π = (−→π1,

−→π2, . . . ,
−→πn) to interact with

the environment. At the same time, the joint behavior value
function Qi(o1, a1, o2, a2, . . . , on, an) of each agent i is eval-
uated, and the strategy of each agent is updated according
to the gradient of the joint behavior value function to the
strategy parameter. The policy input of each agent i is local

FIGURE 4. The solution framework of the MADDPG algorithm model.

observation oi, and the output is action ai of agent i. Secondly,
the input of agent i in the execution phase is local observation
oi, and the output is action ai of agent i.
In this paper, the input of the strategy network of the

MADDPG algorithm is the electricity market and its own
state characteristics, and the output is the quotation behavior
of thermal power companies. The input of the value network
is the same as that of the strategy network, and the output
is the value function of the quotation behavior. The strategy
network selects behaviors based on the probability distribu-
tion (that is, the declared electricity quantity and the declared
electricity price). The value network first judges the quality
of the behavior of the strategy network, and then the strategy
network adjusts the probability distribution of the behavior
according to the evaluation value of the value network. The
environmental model is a medium and long-term electricity
market clearing model. The input of this model is the action
taken by the agent, and the output is the reward obtained by
the agent and the state of the next month. The process of
using the MADDPG algorithm to solve the model is shown
in Table 1.

V. EXAMPLE ANALYSIS
A. PARAMETER SETTING
Based on the medium and long-term electricity market trans-
action data of a province in China, the basic parameters of
medium and long-term electricity market simulation bound-
ary conditions are set. The power generation type of power
generation companies is coal-fired thermal power, and the
rated capacity and power generation cost parameters are
shown in Table 2.

The monthly basic generation plan, monthly maximum
generation, monthly residual generation, market demand of
medium and long-term electricity market, supply-demand
ratio, HHI and other market situation data of each power
producer are shown in the appendix.

Market clearing: unified marginal price clearing is
adopted, and all the electricity transactions of power produc-
ers are settled according to the system marginal price.

Security check: at present, there is no monthly centralized
bidding transaction, and the market clearing power is reduced
due to the failure of security check, so this paper does not
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TABLE 1. MADDPG algorithm flow.

consider the physical constraints and security check of power
system.

Deviation assessment: unless there are random factors such
as unexpected unit failure, it is generally considered that the
power generation companies strictly implement the power
generation plan arranged by the power trading agency and
the power dispatching agency, and the deviation of contract
power is basically ignored.

There are many power selling companies and users on
the demand side. By fitting the electricity demand curve in
the monthly centralized bidding transaction, we find that the
electricity demand curve in the monthly centralized bidding

TABLE 2. Generator parameters.

transaction meets the power function of index 4, and the
demand curve fitted by historical data is as follows:

p = 0.36− 0.05× (
q

qmax
)4 (32)

p is electricity price; q is electricity demand; qmax is
monthly maximum electricity demand.

In this paper, the MADDPG algorithm of multi-agent
reinforcement learning method is adopted to solve the
power supplier quotation game model. Simulation training of
non-cooperative and cooperative scenarios is carried out on
the above data respectively. The models train 2500episodes
respectively, the batch size is 32, and the number of hidden
nodes of neural network is 500. Discount rate: 0.9; Policy
cross entropy weight: 0.01; Actor policy network learning
rate: 0.0001; Number of hidden layer nodes of actor pol-
icy network: 200; Actor policy network activation function:
relu; Critic value network learning rate: 0.01; Number of
hidden layer nodes of critical value network: 200; Critical
value network activation function: softmax. The simulation
environment is Intel Core i5-9400@2.90GHz, 6 cores and
12 threads, the memory is 16GB, the software is configured
with Python3.7.1 and Tensorflow2.2.0.

B. ANALYSIS ON BIDDING STRATEGY OF POWER
SUPPLIERS UNDER COMPETITION
All the generators are agent generators, and the biddingmodel
based on maddpg algorithm is used for bidding.

With the goal of maximizing the overall profits of gener-
ators, the DQN algorithm, DDPG algorithm and MADDPG
algorithm are used to carry out the simulation of generator
quotes in the medium and long-term power market. The
convergence results of the scalar, declared volume, quotation,
and profit of each power generation company are shown
in Table 3, and the overall profit convergence process of the
power generation company is shown in Figure 5. It can be
seen from the figure that the MADDPG algorithm starts to
converge in about 350 rounds, and the DDPG algorithm and
the DQN algorithm start to converge after about 1000 rounds.
The convergence speed of the MADDPG algorithm is about
2.8 times that of the other two algorithms. In addition, it can
be clearly observed from the figure that the convergence
result of the overall profit of the generator in the MADDPG
algorithm is significantly greater than the convergence result
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TABLE 3. Monthly basic generation plan of power suppliers.

FIGURE 5. Comparison chart between algorithms.

of the DDPG algorithm and the DQN algorithm. The reason
is that in the case of limited information, the MADDPG
algorithm adopts the fitting approximation method to obtain
the strategies of other thermal power companies, and forms a
multi-agent through different neural networks. Through the
output layer of the neural network, the agent’s continuous
behavior decision is realized, and a better quotation decision
is obtained.

Based on python, the multi-agent medium and long-
term electricity market simulation is carried out. Taking
the income of each power producer as its reward function,
the iteration and convergence process of scalar, declared
quantity, quotation and income of each power producer is
shown in the figure. By analyzing the clearing results of
medium and long-term electricity market, the bidding strat-
egy of power producers and the operation of electricity mar-
ket are explained.

Under the market clearing mechanism of unified marginal
price clearing, there is no decisive and inevitable relationship
between the system marginal price and the declared price
of other generators except the market marginal generator.
Therefore, there is a certain game behavior in the bidding
strategy of power generation companies, which is essentially

that power generation companies use their own market power
to influence the market clearing price, and then enhance their
own income.

Through the simulation results of multi-agent medium and
long-term electricity market simulation scenarios, we can
find the complex game behaviors of power producers with
different cost and price in the market.

1) HIGH GENERATION COST
This type of generator is mainly generator 1. According to
Figure 6, it is difficult for power producer 1 to obtain prof-
its through market trading for what kind of market holding
behavior or bidding strategy it adopts. It can be seen that
when generator 1 tries to raise the marginal clearing price
by increasing the quoted price and reducing the declared
quantity, it is out of the market marginal generator because of
its inferior generation cost, and the scalar value is always 0.

2) THE COST OF ELECTRICITY GENERATION IN CHINA
This type of generators are mainly generators 2 and 3. If the
price is quoted according to the ‘‘Declaration of total elec-
tricity marginal cost’’, the marginal generation cost of 2,3
generation companies will be higher than the market clearing
price, resulting in the risk of failure to win the bid. It can
be seen from the figure that at the beginning of the iteration,
generator 2 tries to take physical retention behavior to reduce
the declared electricity quantity and its marginal generation
cost, so as to win the bid and obtain the corresponding market
benefits. However, the scalar of generator 2 is almost zero,
and it is observed that the marginal clearing price is slightly
higher than the marginal cost, so generator 2 uses the form
of small profit but quick turnover to reduce the quotation and
increase the declared quantity, so as to become a marginal
generator. As can be seen from Figure 6, its strategy is
more successful. Power producer 3 is a opportunist. At the
beginning of the iteration, it raised the bid twice for economic
holding, but failed.

3) LOW GENERATION COST
This type of generators are mainly generators 4, 5 and
6, which have advantages in market power and power
generation cost. However, unless the market supply exceeds
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FIGURE 6. Iterative process of clearing indexes in competitive game.

the demand, the extra profit brought by raising the market
clearing price is often less than the loss of retained electricity.
Therefore, this type of generator often adopts a relatively safe
bidding strategy based on marginal cost pricing. As can be
seen from Figure 6, the bidding of low-cost power suppliers
4 and 6 is based on their respective marginal costs, and the
bidding is low, so they can win all the bidding; while power
supplier 5 is a opportunist. At the beginning of the iteration,
power supplier 5 tries to carry out economic retention by
increasing the bidding and declaration quantity, but the bid-
ding is too high, which exceeds the marginal clearing price,
resulting in a sharp decrease in its scalar After the quotation
of other power suppliers is stable, power supplier 5 carries
out economic retention by raising the quotation, but it is not
successful.

As can be seen from Figure 7, in the initial stage of
iteration, due to speculators’ economic or physical holding,
the market clearing price is relatively high and the clearing
power is relatively low. In the overall downward trend of
market clearing price, there are four rises, corresponding to
the two market holding behaviors of 3 and 5 respectively.

By comparing the declared capacity and the maximum
capacity of power generation companies, the vast majority of
power generation companies will adopt the physical retention
behavior, but whether the power generation companies with
different market power and generation cost levels will adopt
the physical retention behavior, and the size of the retained
capacity are different. At the same time, on the basis of
physical retention, some high market power and low-cost
power producers will also take certain economic retention

FIGURE 7. Changes of market clearing price and total clearing volume.

behavior. The bidding strategy and game behavior of power
suppliers will be more complex.

The residual supply rate is used to describe the market
power of power generation companies, and the deviation
degree of electricity price is used to describe the generation
cost level of power generation companies. The relationship
between the residual supply rate of power generation com-
panies, the deviation degree of electricity price and the pro-
portion of retained electricity are shown in figures 8 and 9.
The following conclusions can be drawn from the figure:
1) under the multi-agent decision-making, compared with the
generators with larger surplus supply rate, the generators with
smaller surplus supply rate will be more inclined to take the
market speculation of physical retention; 2) except for the

81760 VOLUME 9, 2021



D. Liu et al.: Research on Bidding Strategy of Thermal Power Companies in Electricity Market Based on MADDPG

TABLE 4. Maximum monthly power generation of power producers.

TABLE 5. Monthly surplus generation of power producers.

FIGURE 8. Relationship between surplus supply rate and electricity
retention ratio.

generators whose bidding price is too high due to too high
generation cost, the closer the deviation degree of electricity
price is to 0.0%, the larger the proportion of retained electric-
ity will be.

C. ANALYSIS ON BIDDING STRATEGY OF POWER
SUPPLIERS UNDER COOPERATIVE GAME
Based on python, the multi-agent medium and long-term
electricity market simulation is carried out. Taking the
maximization of the overall income of power generation
companies as its reward function, the iteration and conver-
gence process of scalar, declared quantity, quotation and
income of each power generation company is shown in the
figure. By analyzing the clearing results of medium and
long-term electricity market, the bidding strategy of power

FIGURE 9. Relationship between electricity price deviation and electricity
retention ratio.

generation companies and the operation of electricity market
are explained.

From Figure 10, we can see that when the total profits
maximization of power generation companies is regarded as
the reward function, power generation companies 4, 5 and
6win a large number of bids by offering high quantity and low
price; power generation companies 2 and 3 bid toomuch, so it
is difficult to win in the market; power generation company
1 with medium price wins a small number of bids. In the
initial stage of the iteration, each power producer makes a
tentative offer. After a period of learning, when their own cost
is known, the unit with lower generation cost will win the bid,
so as to achieve the goal of maximizing the overall profits of
the power producer.
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FIGURE 10. Iterative process of clearing indexes in cooperative game.

TABLE 6. Market situation.

TABLE 7. Comparison of convergence results in different algorithms’ declaration volume and quotation.

By comparing the market clearing price and clearing vol-
ume in competitive game and cooperative game, we can
get the following conclusions. When the iteration is stable,
the total market clearing in the competitive game is greater
than that in the cooperative game, and the market clearing

price in the cooperative game is also greater than that in
the cooperative game. The ultimate goal of market operation
is to optimize the allocation of resources and improve the
efficiency of comprehensive utilization of resources. The
most intuitive performance in the market is the reduction of
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TABLE 8. Comparison of convergence results between bid-winning power and income in different algorithms.

FIGURE 11. Changes of market clearing price and total clearing volume
under cooperative game.

market clearing price. It can be seen from Figure 13 that the
market efficiency of competitive game is higher than that of
cooperative game.

According to the previous paper, almost all the winning
units in the cooperative game are low-cost power produc-
ers. It can be found in Figure 11 that when the low-cost
power producers hold a large amount of electricity, themarket
clearing price will increase and the market efficiency will
be low. When the generation cost is slightly higher than the
marginal price, the market clearing price will be reduced and
the market efficiency will be improved.

VI. CONCLUSION
In this paper, a bidding model based on MADDPG reinforce-
ment learning algorithm formedium and long-term electricity
market is constructed, and the simulation of medium and
long-term electricity market is carried out based on multi-
agent. The main research conclusions are as follows.

A. BIDDING STRATEGY OF POWER SUPPLIERS
1) The bidding strategies of generation companies in medium
and long term electricity market mainly include physical
retention and economic retention. The bidding behavior of
economic holding has high prediction accuracy for market
clearing price and great market risk, so power generation
companies prefer to take the bidding behavior of physical
holding.

2)When the market supply and demand are relatively large
and the power generation companies have certain market
power, the power generation companies will have a greater
probability to take the bidding behavior of physical holding.
At the same time, the closer the deviation degree of electricity
price is to 0%, the larger the proportion of electricity holding
will be.

3) Physical retention will cause cost and substitution
effects on market efficiency: when more marginal generators
hold more electricity and the cost effect is greater than the
substitution effect, the market clearing price will decrease
and the market efficiency will increase; when more low-cost
generators hold more electricity and the substitution effect is
greater than the cost effect, the clearing price will increase
and the market efficiency will decrease

B. SUGGESTIONS ON ELECTRICITY MARKET SUPERVISION
1) In the medium and long-term electricity market, compared
with the economic retention behavior, the regulatory authori-
ties should pay more attention to the supervision of the phys-
ical retention behavior of the power generation companies.
By comparing the declared power of the power generation
companies with their installed capacity and residual power
generation, the physical retention behavior of the power gen-
eration companies can be found.

2) Different market forces and different generation costs
have different impacts on the market clearing price and
market efficiency. As the power producers with large mar-
ket power and low generation cost adopt physical holding
behavior, the market clearing price will be increased and the
market efficiency will be reduced. Therefore, the regulatory
authorities should pay more attention to the supervision and
punishment of this type of power producers.

APPENDIX
See Tables 3–8.
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