IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 18, 2021, accepted May 27, 2021, date of publication June 3, 2021, date of current version June 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085605

POD: A Parallel Outlier Detection
Algorithm Using Weighted kNN

YANG MA™ AND XUJUN ZHAO

School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China

Corresponding author: Xujun Zhao (zxj0226 @ 126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572343, in part by the Natural
Science Foundation of Shanxi Province of China under Grant 201901D111257 and Grant 201901D211303, and in part by the Taiyuan
University of Science and Technology Scientific Research Initial Funding under Grant 20192013.

ABSTRACT Outlier detection algorithms based on k nearest neighbors (kNN) can effectively find outliers
from massive data, but most algorithms are difficult to adapt to high-dimensional data sets. In order to
highlight the importance of attributes in k nearest neighbors, we propose a weighted kNN query method,
which uses the Z-order curve to find the kNN. The method first applies information entropy to calculate
each attribute weight, and then uses the Z-order curve to encode high-dimensional data into Z-value. The
weighted kNN of each object are searched according to its Z-value. Meanwhile, a novel outlier detection
algorithm is presented based on the minimum distance and average distance between each object and its
weighted ANN. On this basis, we propose a parallel outlier detection algorithm called POD to improve the
efficiency of the outlier detection. Finally, we implement and evaluate POD algorithm on a 10-nodes Hadoop
cluster, on which synthetic and UCI standard data are tested. Experimental results show that POD achieves
high performance in terms of effectiveness, scalability and extensibility.

INDEX TERMS Outlier detection, k nearest neighbors, weights, Z-order curve.

I. INTRODUCTION

The k nearest neighbor(kNN) query is one of the simplest
machine learning algorithms. It is a method for querying
k closest objects to a given object in multidimensional
space [1], which is widely used in databases [2], data
mining [3], geographic information systems [4] and other
fields [5], [6]. Nevertheless, the kNN query which performs
well in low-dimensional space has different degrees of dete-
rioration in high-dimensional space, for example: R-tree [7]
and KD-tree [8]; most methods [9], [10] assume that all the
attributes of the data are equally important, but in practical
applications, the importance of each attribute is different, and
each attribute has a different contribution to the nearest neigh-
bor query. Thus ignoring the importance of the attributes will
seriously affect the kNN query.

Z-order is a space filling curve, which can effectively map
data objects in d-dimensional space into one-dimensional
subspace, and transform weighted KNN query in the
high-dimensional space into a linear space query. It can
improve kNN query efficiency. Outliers are some abnormal

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

data objects that are inconsistent with the general behav-
ior or model. kNN query is a staple method in outlier detec-
tion, which affects the efficiency and accuracy of outlier
results. However, most algorithms based on kNN query are
difficult to adapt to high-dimensional data sets.

In this paper, using the Z-order curve, a weighted kNN
query method and outlier data mining algorithm are pro-
posed. Firstly, the importance of all attributes is measured
by the information entropy, and the high-dimensional data
objects are encoded by the Z-order curve and mapped into
a Z-value. Secondly, the weighted kNN of each object is
queried according to the Z-value, so that it improves the
efficiency of kNN query in high-dimensional space. Then,
based on the minimum distance and average distance between
each object and its weighted kNN, the weighted kNN method
is used for outlier detection. Finally, the experimental results
verify that the effectiveness of the weighted kNN query on
both synthetic and UCI data sets.

A. MOTIVATIONS

The outlier detection algorithm based on kNN in this study is
motivated by the following three observations:

81765

https://orcid.org/0000-0003-0721-6544
https://orcid.org/0000-0003-4246-4383
https://orcid.org/0000-0003-1118-7109

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

o The traditional k nearest neighbor query method is dif-
ficult to adapt to high-dimensional data sets.

o Most k nearest neighbor query methods ignore some
differences among attributes in a dataset.

o With the increase of data volume and data dimension,
many existing outlier detection algorithms based on
kNN have poor performance.

o With the rapid development of data acquisition methods,
the outlier detection algorithm on a single node can not
meet the requirements of practical application.

Motivation 1. k nearest neighbor is a common query
method in outlier data mining, but the traditional k nearest
neighbor query method is difficult to adapt to massive high-
dimensional data sets. The k nearest neighbor query method
which performs well in low dimensional space has different
degrees of deterioration in high-dimensional space. In partic-
ular, when the amount of data increases rapidly, its k nearest
neighbor query method has low processing efficiency, and it
is difficult to meet the actual needs of massive data analysis.

Motivation 2. Most k nearest neighbors query methods
regard all attributes as equally important. However, in practi-
cal application, the importance of attributes is different. If we
ignore the differences among attributes, we will not be able
to query meaningful neighbor data objects.

Motivation 3. In the high-dimensional outlier data min-
ing, the traditional outlier detection algorithm based on kNN
mostly uses data object and its kNN object count as the outlier
score to measure the abnormal trend of the object. These
algorithms will be affected by the “dimension disaster’” in
high-dimensional space, which leads to the poor effect of out-
lier mining. In addition, these algorithms need to iterate the
artificially set parameters to get a satisfactory outlier result
set, and the selection of parameters has no prior knowledge
to use for reference. So the accuracy of outlier mining is low.

Motivation 4. MapReduce is a kind of parallel program-
ming model with scalability and high fault tolerance. MapRe-
duce divides and distributes data to multiple work nodes, and
processes these data by using the parallelism between cluster
data nodes. With the rapid development of data acquisition
methods, the outlier detection algorithm on a single node
can not meet the requirements of practical application. The
design of parallel outlier algorithm based on MapReduce
is becoming an important way for processing extreme-scale
data.

B. OUR APPROACH AND CONTRIBUTIONS
Our key contributions are summarized as follows.

1) We propose an attribute weighting method based on
information entropy, which can effectively improve the
accuracy and pertinence of k nearest neighbor query.
In order to meet the requirements of massive data sets,
we propose a sampling method for outlier detection.
In the sample data set, information entropy is used to
calculate the weights of each attribute, which provides
a weighted data set for the subsequent parallel outlier
detection algorithm.

81766

2) We propose a weighted k nearest neighbor query method
based on Z-order, in which the weighted data objects
are mapped to the Z-order space filling curve and the
corresponding Z-value is generated. So we can get the
weighted k nearest neighbor set of data objects, which
can be effectively used for high-dimensional data. At the
same time, we design its parallel method, which uses
Hadoop parallel computing platform.

3) In parallel computing weighted k nearest neighbor sets,
we use LSH strategy to divide the k nearest neighbor
candidate sets, and put the similar Z-value objects on
the same computing node. This strategy can alleviate the
problem of data skewness between nodes and improve
the accuracy of weighted k nearest neighbor query.

4) We propose a novel outlier data mining algorithm
based on weighted k nearest neighbors, which combines
the individual differences between each object and its
weighted k nearest neighbors. We also design a parallel
outlier detection algorithm, which can effectively run on
Hadoop platform.

5) We implement and evaluate our proposed parallel algo-
rithm on a 10-nodes Hadoop cluster, on which synthetic
and UCI standard data are tested. Experimental results
show that our algorithm achieves high performance in
terms of effectiveness, scalability and extensibility.

C. ROADMAP

The rest of the paper is structured as follows: Section II
introduces the related work on k nearest neighbors and out-
lier detection algorithm. Section III proposes a method of
weighted k nearest neighbor. In section IV, the outlier detec-
tion algorithm based on weighted kNN is introduced and ana-
lyzed. Section V gives a parallel algorithm’s design method
and Section VI describes experimental settings and offers
result analysis. Finally, we conclude our study in Section VIL.

Il. RELATED WORK

A. k NEAREST NEIGHBOR

Given a new input object in the training data set, the kNN
query returns k objects in the data set with the smallest
distances to it. The search process generally compares all
objects in the training set with the new input objects and
identifies the most similar k objects from them [7]. Typical
researches have been proposed to solve kNN query. Rous-
sopoulos et al. [7] proposed to use the depth-first traversal of
R-tree to query kANN. In recursion and backtracking, the sub-
trees which does not contain the nearest neighbor are pruned,
avoiding traversal of the entire R-tree. However, during the
tree construction process, there is an overlap between the
minimum boundary rectangles. The nearest neighbor query
needs to access a large number of nodes, and almost linearly
scans the entire data set, therefore it is not suitable for high-
dimensional data; In [8], it is mentioned that buffer k-d
tree [11] is the fastest kNN algorithm, which uses buffer
and modern many-core devices such as GPU to accelerate

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

in parallel. On this basis, Yang et al. [12] propose a new
kNN algorithm, which greatly reduces unnecessary visiting
nodes and distance computations; Indyk and Motwani [13]
proposed LSH, an approximation metric algorithm between
similar objects. It uses a specific hash function to build a hash
table, so that similar objects are mapped to the same bucket
with higher probability, thus their nearest neighbors are found
in each bucket. However, with the advent of the era of big
data, the LSH algorithm can no longer meet the actual needs;
Lin et al. [14] proposed a nearest neighbor query based on
Voronoi diagram. It divides the rule-based Voronoi diagram
into different cells. Each cell region is represented by a min-
imum outer rectangle and its index is constructed. Nearest
neighbors query is achieved by querying the corresponding
index; Zhang Liping [4] uses the filtering function of the
Voronoi diagram to effectively reduce the number of points to
be queried, and performs secondary screening on the objects
in the candidate set according to the obstacle distance and
the adjacent generation points, thereby kNN are queried from
the selected candidate set; Shichao Zhang [15] proposed a k
parameter computation, called S-kNN approach, by replacing
the fixed k value for all test samples with learning different &
values for different test samples according to the distribution
of the data. GOU et al [16], [17]. proposed a generalized
mean distance-based k nearest neighbor classifier, which
effectively reduces sensitiveness to parameter k. In addition,
they fused k-means local vector into k nearest neighbor algo-
rithm [16], which effectively improved the robustness and
effectiveness of kNN algorithm. In [18], a new algorithm is
developed which uses the ensemble technique and obtains
better results.

B. OUTLIER DETECTION METHOD

Outliers [19], [20] are data objects that are inconsistent with
the general behavior or model of the data. So, as an important
branch of data mining, outlier detection can often find some
real but unexpected knowledge. kNN query is a staple method
in outlier detection, which affects the efficiency and effect
of outlier detection. Ramaswamy and Kyuseok et al. [21]
first proposed an outlier detection method based on KNN.
This method mainly uses the distance between data points
and its kNN as the basis for judging outliers, but cannot
determine which point is more likely to be an outlier at the
same distance; Angiulli and Pizzuti [22] extended the above
method on the basis of the outliers factor, and proposed that
the outliers factor of each point in the data set are the sum
of distances between their own and their KNN. The larger
the outliers factor, the greater the probability of the corre-
sponding points become outliers. But it only considers the
overall level of the data point and its kNN, without taking
into account the individual differences between them. In [23],
a fuzzy clustering anomaly detection algorithm based on
session feature similarity is proposed, which improves the
efficiency of anomaly detection; In [24], Liu et al. regard out-
lier detection as a binary classification problem, and extract
potential outliers from uniform reference distribution. On this

VOLUME 9, 2021

FIGURE 1. The description of outlier detection process.

basis, they propose a single target generation antagonism
active learning outlier detection method. Debasrita et al. [25]
classified the outlier data and proposed an outlier detection
system, which used stacked automatic encoder to extract fea-
tures, and then used a whole probabilistic neural network to
detect outliers. Feng et al. [26] proposed an outlier detection
method based on Entropy Measurement on spark computing
platform. The method is divided into three stages. In the first
stage, the attribute entropy is calculated. In the second stage,
k nearest neighbors are found. In the third stage, each point
is sorted according to the degree of outliers, and outliers
are detected. Li ef al. [27] proposed a parallel outlier min-
ing method based on feature grouping for high-dimensional
classification data sets, which uses vertical transformation to
improve the efficiency and accuracy of outlier detection.

In summary, most kNN query are based on the same
importance of all attributes, that is, all attributes of data
are assumed to be equally important, but in many practi-
cal applications, each attribute is of different importance to
the neighbor query. In the meantime, some outlier detection
methods do not consider the impact of the average distance
on outliers. Other methods only consider the overall level of
data points and their kNN without considering the individual
difference between data points. Therefore, when detecting
outliers, it is necessary to take into account overall level
and individual differences at the same time. In this paper,
the main process of the outlier detection is divided into three
parts, as shown in Fig.1. In the first part, we perform weight
calculations in the sample dataset by using two formulas,
and obtain the weighted data set DS’. In the second part,
we compute Z-values for all objects and construct weighted
a kNN candidate set. In the third part, we compute weighted
kNN set of all objects and detect outliers.

Ill. WEIGHTED k NEAREST NEIGHBOR

In the process of computing the kNN of each object
using weighted kNN, the importance of the attributes
(i.e., the weights of the attributes) must be fully consid-
ered. In the absence of prior knowledge of experts or users,
the importance of attributes cannot be directly given, that is,
the attribute weight is uncertain. Information entropy uses the
average information to reflect the uncertainty of each discrete
message of the source, so it can better solve the problem that
uncertainty of attribute weight.

81767

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

A. INFORMATION ENTROPY AND WEIGHTED
k NEAREST NEIGHBOR
Information entropy [28] is defined as the average probability
of occurrence of discrete random events. The average infor-
mation is used to reflect the uncertainty of each discrete mes-
sage of the source, effectively characterizing the quantitative
measurement problem of information, and is applied to the
measurement of the attribute weight [29]. Referring to [29],
the related concepts and definitions are described as follows:
Given a data set DS, A = {A, Ay, ..., Ay} is the set of
attributes of the DS. Since each attribute needs to be given a
weight, each attribute can be treated as a single source, and n
values of the attribute (for example, A; = A1, A, ..., Ain)
are considered as the n kinds source symbols issued by
the source. It is assumed that P; = P;(A;) represents the
probability of occurrence of the source symbol A;; (or called
an event). A;;’s information /(A;;) = —logaP; which indi-
cates the information contained in the event A; when an
event occurs. For n mutually independent source symbols,
n probabilities will be generated, namely Py ... P;...P,. The
information entropy of the source is the average uncertainty
describing the source, i.e., the average information of the
source can be measured by the average of all individual
symbol information.

d

H(A) = E((Ap) = = Y _ pilog, pi. (1
=1

In this paper, the larger H(A;), the higher importance of
the attribute A;, and the more information of the attribute.
Information entropy represents the general characteristics of
the attribute A; in an average sense, consequently the infor-
mation entropy of all attributes are normalized to determine
the weight of each attribute.

Given the attribute sets A = Ay, Aa, ..., Ay of dataset DS,

the attribute weight is W(A) = wy, wa, ..., wq, where:
H(Ap)
w,:d—(lzl,z,...,d). 2)
> HA)
=1

W is the weight of the /th attribute in the attribute set.

Ramaswamy and Kyuseok [21] proposed a method to solve
the outlier detection using the kNN, but it did not consider
the influence of different attributes on the result. Therefore,
in order to solve this problem, a weighted kNN is proposed.
It allots different weights to different attributes, fully con-
sidering the impact of the importance of the attribute on the
result.

Let x;; and x;; be the /th weighted attribute value of the
ith and jth objects, and the weighted distance d;; between the
two objects is calculated by the Euclidean distance as shown
below:

d

> e — x>, 3

=1

81768

This distance is based on the weighted data set and is
not simply a Euclidean distance calculation of the original
data set.

Definition 1 (Weighted kNN): The distances between O
and other objects are calculated according to formula 3 for
any object O on the weighted data set DS’, and the weighted
kNN of O are obtained, namely k objects with the smallest
distance.

B. WEIGHTED k NEAREST NEIGHBOR BASED Z-ORDER
The search methods for weighted kNN are LSH, Voronoi
diagram, and Z-order curve, etc. The Z-order curve is a space
filling curve that passes through and passes through only once
each discrete grid in a high-dimensional space. The original
high-dimensional space query was transformed into a linear
space range query. Therefore, the Z-order curve can well
protect the proximity between high-dimensional data and can
be applied to data set with different densities.

The main purpose of using the Z-order curve to realize
kNN query is to map data objects from high-dimensional
to low-dimensional. Each data object corresponds to a
point on the Z-order curve, which is called Z-value. Thus,
the weighted kNN query in the data set can be converted
into a range query of Z-values in one dimensional space.
After weighting all the attributes of the data objects in the
high-dimensional space and mapping them onto the Z-order
curve, the weighted kNN query of the object is transformed
into the query of k objects that are closest to the Z-value of
the query object. To improve the accuracy of weighted kNN,
the concept of weighted kNN candidate sets and random
translation operations is introduced.

Definition 2 (Object Precursors): Given a data set DS,
0O = 01,0,,...,0, is the object set of DS, Z’ is the
Z-value of the object O;. After sorting all Z-values, an ordered
sequence is generated. Suppose Zi, Z, . .., Zi is k neighbor-
ing values smaller than Z’ value, the k objects corresponding
to Z1, Za, ..., Zy are called precursors of O;. Similarly, sup-
pose Zii1, Zk+2, - - -, Zox are k neighboring values greater
than the Z’ value, the corresponding k objects are called
successors of O;. The set consisting of the precursors and
successors of O; is called the weighted KNN candidate set
of O;. It is denoted as C(0O;).

Definition 3 (Weighted KNN Candidate Set): Let the ran-
dom translation vector be v; = (2"i/(d + 1),...,2"i/
(d +)i € [0,d]), vi € R, d is the dimension, and
m is the order (refer to Section 3). According to the ran-
dom translation vector, the data set DS’ is derived from DS
(i.e., DS = DS + ¥;), and the object O in the data set
is transformed into O;. The same operation is performed
repeatedly d+ 1 times with different random translation vector
v; each time. As a result, d+/ random translation copies are
generated, denoted as f, f € [0, d], and then a weighted kNN
candidate set is constructed on each copy.

The random translation is an operation of deforming the
data set DS. It can make objects whose distances are adjacent

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

TABLE 1. The inspection results of patient.

l name [nasal congestion headache [hoarse [fever [cough ‘

Jim 2 3 1 0 3
Merry 3 4 0 1 1
Jack 5 0 0 2 3
Joce 3 2 1 2 3
Sun 0 0 1 0 2
Ance 1 0 1 1 0
Lili 4 1 0 3 1
Lucy 1 2 1 1 2

in the original data set but Z-values are not adjacent become
the objects with adjacent Z-values after being deformed.

Weighted kNN candidate set and random translation oper-
ations can effectively increase the accuracy of weighted kNN,
but bring higher time complexity meanwhile. To balance this
contradiction, it is considered that performance is the best
when the translation time is set to 10 through a large number
of experiments.

The detailed steps of searching for weighted kNN by using
Z-order curve are as follows:

Step 1. The weight of each attribute is calculated in the
original data set DS according to the information entropy, and
the weighted data set DS’ is obtained instantly;

Step 2. The weighted attribute values are binary coded,
and the binary attribute values of all objects in DS’ are bit
interleaved to obtain the respective Z-values;

Step 3. The objects in data set are reordered according
to the Z-value. In the sorted result, the k precursors and k
successors of each object are found, thereby determining the
weighted kNN candidate set of all objects;

Step 4. In order to ensure the accuracy of the query
results, random translation operations are performed on DS’
according to definition 3, and f random translation copies are
generated. A weighted kNN candidate set with 2kf elements
are generated for all objects in DS’ after repeat step 2 and
step 3 for each copy;

Step 5. The Euclidean distance of each object and all
objects in its weighted kNN candidate set is calculated. The
first k of the smallest distance is the weighted kNN of the
object.

C. EXAMPLES

Table 1 is the inspection results of 8 patients, which records
5 attributes of each patient. The value of nasal congestion and
headache in a range between 0 and 5. 1 represents hoarse and
0 represents normal towards the hoarse. The range of fever
and cough is 0-3. The larger the value, the more serious the
situation for the above attribute.

Taking the nasal congestion as an example, the aver-
age value of the eight objects in this attribute is 2.375,
where it represents unhappen when the value is lower than
the average value, and otherwise, it represents occurs. The
probability value of nasal congestion p(nasal congestion) is

VOLUME 9, 2021

TABLE 2. Attribute weight.

X [PX) | HX) [onormalize HX) [w |
nasal congestion 0.5 0.5 0.2102 0.2102
headache 0.5 0.5 0.2102 0.2102
hoarse 0.625 | 0.4238 0.1782 0.1782
fever 0.375 | 0.5306 0.2231 0.2231
cough 0.625 | 0.4238 0.1782 0.1782

0.5 according to the ratio of the number of samples occurs to
the total number of samples. Through formula 1, the infor-
mation entropy of the nasal congestion H(nasal congestion)
is 0.5. The information entropy of all attributes are calcu-
lated in the same method. Finally, according to formula 2,the
weight of the nasal congestion is 0.2102. All results are shown
in Table 2.

The original inspection record values of the object Jim are
2, 3, 1, 0, and 3. The weights of the attributes are 0.2102,
0.2102, 0.1782, 0.2231, and 0.1782 in Table 2. After the
relevant weights are given to the respective attributes of Jim,
the values become 0.4204, 0.6306, 0.1782, 0, and 0.5346.
Other objects are weighted by the same method, and the
weighted data set DS’ is obtained after calculation.

In the process of calculating Z-value, the order of the
Z-order curve is first determined. The order represents the
degree to which the space is divided. The larger the order,
the thinner the space is divided. For a d-dimensional space
of order m, each dimension is divided into 2 parts, then the
space is divided into 2% grids, so the order is determined
according to the largest value p;; in the data set. That is, m is
the smallest integer that is satisfied m > %, so that all
objects can be mapped to the Z-order curve. In this example,
the maximum attribute value is 1.051, so m is calculated
as 3. For easy understanding, the two-dimensional Z-order
curve of /st order and 2nd order are given. The corresponding
Z-value (1011), = 11 after bit interleaving for the point (3,1)
of the 2nd order image in Fig.2. The detailed calculation is
shown in Fig.3, where py, p; are the binary encoding at every
attribute of the point p.

. 3 al 3 7 13]f
1 0\ Y '\\
\\ 10 & \ 12| 13
J' : N 01 3 9 1
0 e
0 2
00 ¢ > R 1D
0 1 00 01 10 11

(a) st order Z-curve (b) 2nd order Z-curve

FIGURE 2. Z-curve.

In the same way, the elements in Table 2 are rounded up to
get an integer. Taking the object Jim as an example, the values
of each attribute after rounded up are 000, 001, 000, 000,
and 001, and the Z-value (000000000001001), = 9. In turn,
the Z-values of the eight objects are 9, 24, 17, 17, 0, O, 18,

81769

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

p, =(010),

L

Z(p(pppz)) =(011 100)2 = (28)10

FIGURE 3. Bit interleaving operation of (3,1).

Sun - Lucy Jim Jack Lili Merry

Ance Joce

FIGURE 4. Straightened Z-order curve.

and 0, respectively, and then the objects in the data set DS’
are rearranged according to the Z-value to obtain Sun, Ance,
Lucy, Jim, Jack, Joce, Lili, and Merry. The correspondence
relation among them and the straightened curve is shown
in Fig. 4.

Let the number of neighbors k = 2, we take Jim as an
example to perform a weighted kNN query. According to
Fig. 4, Jim’s precursors are Ance and Lucy, and Jim is fol-
lowed by Jack and Joce, then Jim’s weighted kNN candidate
sets are Ance, Lucy, Jack and Joce. According to the random
translation vector, 5 copies of the data set are generated based
on the data set DS’. Hence, the weighted kNN candidate set
can be found in each data set(a total of 24 neighbor objects
are found, removing the same objects). The weighted kNN of
Jim is Lili and Lucy according to formula 3.

IV. OUTLIER DETECTION ALGORITHM BASED

ON WEIGHTED kNN

In the outlier detection, when the kNN method is adopted,
the relationship between kNN and the query data object needs
to be considered. However, the existing outlier detection
method only considers the overall level of the data object
and its kNN, or only considers the relationship of the kth
nearest neighbor and the data object. These do not reflect
the relationship between the data object and its kNN well.
Accordingly, individual differences between data objects also
need to be considered.

Let the weighted kNN of the query object g be gy, . . . gk,
the distance between g and each neighbor can be calcu-
lated in the light of formula 3, marked as dy 41, ..., dg g,
where d, (i = 1,2,...,k) is the distance between ¢
and its ith weighted nearest neighbor ¢;. The minimum
distance between ¢ and the weighted kNN is d,; =
min{dy 41, . .., dg k), and the average distance is dgye =

k

% > dg,qi- A new distance formula is gotten after calculating
i=1

the arithmetic mean of d,,,;, and d_,., as follows:

_ dmin + dave

dy, >

“

81770

Algorithm 1 POD
1: input: data set DS, number of data objects n, dimension
d, number of copies f, number of nearest neighbors k;
2: output: Outliers;
3: Perform weight calculations according to formula 1 and
2 to obtain the weighted data set DS’;
4: for (i=1;i<fji++) do
v o= "i/d + 1),...,2™i/(d + 1));//Construct a
random translation vector, m is the order
6: DS' = DS + v;;//Build a copy of the data set
7. Z;j = ComputeZ(DS;, n);//Calculation of Z-values for
all objects in data set DS;
8: C; = Candidate(DS;, n, k);//Construction of weighted
kNN candidate set
9: end for
10: C = CyU...UCry; //Integrate weighted candidate set in
all replicas
11: Dy, = WKNN(DS;, C,n,d, f, k); //weighted kNN of all
objects
12: Return the TOP-n objects with the highest value in Dg;

Algorithm 2 ComputeZ(DS;,n) Function
1: input: data set DS;, number of data objects n;
2: output: Z; that a set about Z-value;
3: for (j=0;j<n;j++) do
4: The attribute values of each object are binary coded;
5
6

Perform bit interleaving operations on binary encode;
The result of bit interleaving is converted to decimal,
that is the Z-value of the object;

7: Add the Z-value to the set Z;;

8: end for

9: return Z;;

Algorithm 3 Candidate(DS;,n k) Function
1: input: data set DS;, number of data object n, number of
nearest neighbors k
2: output: Weighted candidate set of all objects Cj;
3: for (j=1;j<n;j++) do
.k objects smaller than the Z-value of ¢’ are placed Z~,

and k objects larger than the Z-value of ¢’ are placed
in ZT;// ¢’ is an element in DS;;

5. Insert Z—, Z* into the weighted kNN candidate set
Ci(g);

6: end for

7: add C; to Ci(q);

8: return C;(q)

dg is a judgement criterion based on the overall level and
individual difference of g and its weighted kNN. The TOP-n
objects with the highest d, values are considered as the
outliers.

In the above algorithm, the weighted data set DS’ is
obtained by formulas 1 and 2 at first, and the random

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

Algorithm 4 WKNN(DS;, C, n, d, f, k) Function

1: input: data set DS;, Integration of weighted kNN can-
didate set for all objects C, number of data object n,
dimension d, number of copies f, number of nearest
neighbors k;

2: output: The D, value of all objects;

3: for (j=0;j<n;j++) do

4: for (t=0;j<2kf;t++) do

5 for (1=0;1<d;l++) do

6: disg = \/disq + (qi — pt)?;

7 /[Calculate the distance between the object ¢ and

the element in C(g), where p; is the tth element

in C(q)
8: end for
9: end for
10: Find the k objects with smallest dis, as the weighted
kNN of object g;
1: d, m; //Calculate the d, value of g and

its weighted kNN, di, is the minimum Euclidean
distance between g and the weighted kNN, and d,.
is the average value

12: add d, to Dy;

13: end for

14: return D,

translation vector is used to construct the random translation
copy. Then the Z-order curve is used to calculate the Z-value
of all the objects in each copy. The Z-value is stored in the set
Z;. For example, in the fifth line of the algorithm, the function
ComputeZ(DS;, n) is called to implement the construction
of the set Z;, and then the function Candidate(DS;, n, k) is
called to construct the weighted kNN candidate set of the
object in the DS;. After that, WKNN (DS;, C,n,d,f, k) is
called to get the weighted kNN, and calculate the distance
value d,; of each object, and select the TOP-n objects with the
largest distance. The TOP-n objects with the highest d, values
are considered as the outliers, where the TOP-n method was
proposed by Jiawei Han in [30]. These largest distance values
are regarded as outlier degrees, which can effectively measure
the deviation degree of an outlier, and play an important role
in the interpretation of outlier results.

The outer loop of the algorithm POD is executed f times,
and the inner loop is executed n times. The insert operations
of predecessor and subsequent in each copy are executed 2k
times in total, so the algorithm can end automatically and will
not fall into an infinite loop. The algorithm firstly assigns
corresponding weights to different attributes of the object,
then accesses k precursors and k successors of the query
object g in f copies of the data set, and calculates the distance
between the query object g and them. Finally,the d,; values
of all objects are compared to get the TOP-n objects with
the largest distance which are selected as outliers. Therefore,
the time complexity of the algorithm POD is O(fk). Since the
POD algorithm needs to generate f copies, in addition there

VOLUME 9, 2021

are n objects in each copy, the space complexity of the algo-
rithm POD is O(fn).

V. PARALLEL ALGORITHM DESIGN

MapReduce is a programming framework for processing
large data sets on Hadoop platform, which can easily run on
thousands of nodes of ordinary machines. A MapReduce task
will cut the input data set into independent small data blocks,
which are placed on the DataNode in parallel by the map task.
The reduce task will collect the output of the map task and do
the following calculation, and then output the result after the
calculation.

k nearest neighbor query is to query the k data objects
closest to a given object in the dataset according to the
similarity measure, that is, this query step is only related to
the k nearest neighbors of a given object, and has nothing to
do with other objects. In weighted kNN, different attributes
are set different weights to distinguish the importance of each
attribute. Therefore, the outlier detection algorithm based on
weighted kNN can be implemented in parallel under MapRe-
duce framework. Each DataNode is assigned an independent
data block, and the weighted kNN of the objects in these
data blocks are calculated by the map task. The reduce task
collects the weighted kNN on each DataNode and calculates
the outlier of each object. Some objects with the largest
outlier factor are regarded as outlier data. The implementation
process of the parallel weighted kNN and outlier detection
algorithm proposed in this paper is shown in Fig.5.

key value . key value
Partition ID Candidate set | © Outlier factor Outlier
101 C(o) dq(oy) 0,
| 201 C(oy) dq(o,) o
l Sampling l Map l Reduce I : Map i Reduce
. key value . key value
Partition ID | Translation object B Object ID KNN set
101 o . 1 KNN(o;)
201 0y : 2 KNN(0,)

FIGURE 5. Implementation framework of MapReduce.

A. DATA PREPROCESSING

With the development of information science, the amount
of data is increasing. When we measure the importance of
data attributes, we need to know the distribution features of
the whole data. The weight of each attribute is calculated by
scanning all data objects, which is a very time-consuming and
expensive operation. In order to solve this problem, we use
sampling technique. The data distribution of the whole data
set is replaced by the sample data set, so the attribute weights
in the whole data set are replaced by the attribute weights
in the sample data set. In order to apply to various data sets,
we propose two sampling techniques to obtain the distribution
features of the original data. If an original data set follows an
uniform distribution, we randomly and evenly extract part of
the data as the sample data. If the distribution features of an

81771

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

original data set are unknown, we use the interval sampling
method to sample. That is, we extract sample data at equal
intervals from an original data set to generate its sample data
set. Please note that calculating weights in sample data sets
can improve the efficiency of the algorithm, but it will slightly
reduce the accuracy of weights.

After the sample dataset is obtained, the information
entropy of all attributes is calculated according to formula 1,
and then the weight of each attribute is computed according
to formula 2. The weights are saved to a file and uploaded
to HDFS, so that it can be called when the data attributes are
weighted in the first MapReduce job.

B. PARALLEL CONSTRUCTION OF WEIGHTED

kNN CANDIDATE SETS

The first MapReduce job reads data set DS from HDFS,
and its running process is divided into three steps. Firstly,
the attributes of each object are weighted. Secondly, f copies
of the object are obtained according to the random translation
vector. Finally, the weighted kNN candidate set of each object
is constructed.

In Map phase, the key-value pair <key offset, value DS> is
the input information of this phase. The Map task reads the
attribute weights from the output file of data preprocessing,
and then assigns weight values to each data object. Because
the amount of data is too large, data skew phenomenon
may occur, which will cause unbalanced workload on each
node and make some nodes become performance bottlenecks.
Therefore, LSH data partition strategy is adopted to disperse
data and balance the workload of each node. For each data
object, its hash value is calculated according to the hash
function shown in formula 5, and then all the hash values form
atuple, which is a bucket number corresponding to the object.

oy = LWJ s)

where o is a data object in the dataset, w is the width value, and
« is a random vector with the same dimension as o, which is
generated by normal distribution. Each hash function maps a
d-dimensional data object to an integer. If there are num hash
functions, a hash table with num values will be formed. Each
data object is mapped into num dimension vector by hash
table, which is converted into an integer value to represent
a bucket. According to the hash value, different objects are
divided into different buckets. Next, f copies of data objects
are constructed according to the random translation vector,
in which the bucket number of each copy is the same. Finally,
<key partition-number, value object-value> is output. These
objects with the same key value are merged and sent to
a reduced node. In the reduce phase, the Z-value of each
object is calculated according to the bit crossover, in which
the precursor and successor of each object are obtained by
comparing the Z-value. The precursor and successor of an
object constitute its weighted k nearest neighbor candidate
set. Finally, <key partition-number, value kNN-candidate-
set> is taken as the output of the first MapReduce job, and

81772

the output result is saved in the HDFS file which is used as
the input of the second MapReduce job.

C. PARALLEL COMPUTING WEIGHTED kNN
The second MapReduce job reads the output file of the first
MapReduce and calculates the final weighted k nearest neigh-
bor according to the distances between each object and all
objects in its weighted kNN candidate set. Next, an outlier
factor is calculated according to the distance between each
object and its weighted k-NN, and the n objects with the
largest outlier factor are determined as outliers. In the Map
phase, the key-value pair <key offset, value weighted KNN>
is used as the input data. After these data are segmented,
the distance between each object and all elements in its
weighted kNN candidate set is calculated. Finally, k objects
with minimum distance are determined as weighted-kNN.
In the Reducer phase, the minimum distance d,,;, and the
average distance d,,. of each object are calculated, and then
the outlier factor d; of each object is calculated according
to formula 4. We compare the outlier factor d,; of all objects
and output the N objects with the largest outlier factor. The
output form is <key outlier-factor, value outlier>, in which
these output objects are outliers.

VI. EXPERIMENTAL ANALYSIS

Experimental environment: Intel(R) Core(TM) i15-4570 CPU,
2G memory, Ubuntu 14.04 operating system, parallel com-
puting platform is hadoop2.6.0, the integrated develop-
ment environment is eclipse, and Java language is used to
implement partition-based [20], OMAAWD [31] and POD
algorithms.

We process synthetic, UCI, and celestial spectral data sets

to evaluate the performance of the proposed POD algorithm.

« Synthetic data sets are generated by Microsoft Excel’s
random data generator. The data sets follow a standard
normal distribution, and are inserted into a small amount
of special data objects as outliers. These special objects
follow a uniform distribution in a range between 0 and
1 accounting for 1% of the whole data set. In this paper,
two groups of synthetic data sets are created. The first
group is D1, D2, D3, D4, and D5, where they con-
tain 500000 objects,and 20, 40, 60, 80 and 100 attributes,
respectively. The second group is S1, S2, S3 and S4,
where they contain 50 attributes, and the number of
data objects are 200000, 400000, 600000 and 1000000,
respectively.

o We use six UCI data sets in our experiments, including
Parkinsons Telemonitoring, Drug consumption (quanti-
fied), Diabetic Retinopathy Debrecen Data Set, QSAR
biodegradation, Anuran Calls (MFCCs), and EMG
Physical Action Data Set. For the convenience of
labelling, they are referred to as Park, Drug, Diab,
QSAR, Anuran, and EMG, respectively. In Table 3,
the characteristics of these data sets are summarized.
The number of outliers is 1% of the amount of data,
which are 59, 19, 12, 11, 72, and 98 respectively.

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

——f=32 -—@—f=10 ——f=5

—f=) =k=f=] —a—f=(

?

60

Accuracy(%)

40 -

10 20 30 40 50
k

(a) The impact on accuracy.

FIGURE 6. Impacts of The number of copies f.

TABLE 3. UCI data sets.

Dataset [Park [Drug [Diab [QSAR [Anuran | EMG |

Number of objects 5875 1885 1151 1055 7195 9725
Number of attributes 26 32 20 41 22 8
Number of outliers 59 19 12 11 72 98

TABLE 4. Celestial spectral data sets.

Dataset [Star [Galaxy [Qso [LTStar

Number of objects 5365 2760 7983 6553
Number of attributes 90 90 90 90
Number of outliers 54 28 80 66

o Celestial spectral datasets are provided by the China
National Astronomical Observatory [32], each of which
has a total of 90 attributes. The datasets are star spec-
tral, galaxy spectral, quasar spectral, and late-type star,
respectively. In Table 4, the characteristics of celestial
spectral datasets are summarized. Some high red-shift
quasar spectral data are added to each spectral dataset as
outliers. The number of outliers is 1% of the amount of
data, which are 54, 28, 80, and 66, respectively.

A. PERFORMANCE ANALYSIS IN UCI AND

CELESTIAL SPECTRAL DATASET

1) PERFORMANCE AFFECTING PARAMETERS

In this group of experiments, we use the UCI data set

Drug to compare the effects of number of different copies

(ie, parameter f) on the performance of the algorithm POD.

The number of copies f is set to 0, 1, 2, 5, 10, and 32,

respectively, where f = O represents the original data set DS.
Now we evaluate the impacts of the number of copies f

on POD’s outlier detecting accuracy. To discriminate true

outliers from false outliers (a.k.a., false negatives) in exper-

imental results, we employ the F1-measure method [33] to

quantify outlier detecting accuracy. Formally, F'1-measure is

VOLUME 9, 2021

1000

=30 —l=f=10 —e—f=5

——f=)] —eef=()

(b) The impact on efficiency.

denoted as follows

2XRxP
Fl-measure = ——— (6)
R+ P
where R = Tpi—Pm (i.e., Recall) is a function of correctly

classified examples (i.e., true positives) and misclassified
examples (i.e., false negatives); P = %(i.e., Precision)
is a function of true positives and examples misclassified as
positives (i.e., false positives). In this paper, TP is the number
of real outliers detected by POD (i.e., true positives); FP is
the number of normal data that are misclassified as outliers
by POD (i.e., false positives); and FN is the number of real
outliers that are not detected by POD (i.e., false negatives).
We derive (7) from (6) as

2x TP
F1-measure = @)
2xTP+FP+FN

(7) is used to evaluate POD’s accuracy.

The results plotted in Fig.6(a) indicate the effect of the dif-
ferent / of the same data set on accuracy. In general, the
accuracy improves with the increase of k for same f; the
accuracy improves with the increase of f for same k, and
the larger the f, the slower the acceleration rate of accuracy.
For example, the difference between the number of copies
of f = land f = 0 is 1, but the accuracy is doubled; the
difference between the number of copies of f = 10 and
f =32is 21, and the curve of accuracy is almost completely
coincident. The main reason is that as the number of replicas
goes up, the number of weighted kNN candidate sets of the
object grows, however the number of duplicate candidates
objects is increases, thereby the acceleration rate of accuracy
will slow down.

Fig. 6(b) shows the effect of the different f of the same
data set on efficiency. When f is the same, the larger the k,
the more the query time; when k is the same, the more
the f, the more the query time. It mainly because the f
is larger, the more weighted kNN candidate sets for each
object, and the more objects to be processed when perform-
ing weighted kNN query, accordingly the more correspond-
ing time-consuming; similarly, the larger the k, the more

81773

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

POD Epartition-based 50OMAAWD
90

70

Accuracy(%o)

A R NN

"}\\\\\\\\\\\\\\\\\\w

"\\\\\\\\\\m

30

Park Drug QSAR Anuran
UCI datasets

(a) The impact on accuracy.

| SPCD
Fipartition-based
SOMAAWD

800

600

Time(s)

400 -

200 -

T R

N\

AR R R

\\mm\l}\\\\\\\\\\\\\\\\\\\
IR

SRR

. = 74
Diab Park Drug QSAR Anuran EMG
UCI datasets

/1

(b) The impact on efficiency.

FIGURE 7. The comparison of accuracy and efficiency of three algorithms.

POD @partition-based
90 EOMAAWD SA-iForest
EMCD

70

Accuracy(%)

Ln
L=]
RN

30
Star Galaxy Qso LTStar

Celestial spectral datasets

(a) The impact on accuracy.

1200

POD [partition-based
SA-iForest

EOMAAWD
EMCD
900 r

Time(s)

300 -

Star Galaxy Qso LTStar
Celestial spectral datasets

(b) The impact on efficiency.

FIGURE 8. The comparison of accuracy and efficiency of three algorithms.

weighted kNN needs to be queried for each object, and
the more time-consuming. Referring to Fig. 6(a), in some
instances with high requirement for time efficiency, f = 10
is a good choice, and f = 32 is suitable for the instances of
very high requirement for accuracy of outlier detection.

2) PERFORMANCE COMPARISON

In this group of experiments, we use the UCI data sets
Diab, Park, Drug, and QSAR to compare the performance
differences among algorithms POD, OMAAWD [31] and
partition-based [20]. The algorithm OMAAWD uses infor-
mation entropy to distinguish the importance of different
attributes, and combines pruning techniques to query outliers.
Partition-based first employ the clustering algorithm to par-
tition the input object, and calculates the upper and lower
limits of the objects in each partition, and then adopt these
information to identify the partition most likely to contain the
TOP-n outliers, from which calculate the outliers. Fig 7(a)
demonstrates the accuracy trend of the three algorithms in
different data sets. In each data set, POD is more accurate than
the other two algorithms, and as the data dimension continues
to increase, the result of comparison is constant. The main

81774

reason is that when performs data mapping in POD, many
copies are generated through random translation. The nearest
neighbors of the objects in each copy are different. After
all the neighbors are integrated, they are filtered to ensure
more accurate kNN are found. It is possible to cut out the
real outliers and reduce the accuracy owing to OMAAWD
has to prune the data set. The TOP-n points with the largest
distance from their nearest neighbors are treated as outliers
in Partition-based algorithms, but there may be some errors
when judging objects of the same distance.

Fig. 7(b) shows the efficiency comparison of the three algo-
rithms in different data sets. POD algorithm takes less time
on the relatively low dimension datasets of Diab, Park and
Drug. But in the dataset QSAR, POD takes more time than
partition-based. The main reason is that the partition-based
complexity is O(n), which is greatly affected by n, while POD
is mainly affected by dimension d. The data set QSAR has
less data than Drug, and the dimension is higher than Drug,
so time-consuming of partition-based is on a downward and
time-consuming of POD is on the rise.

In addition, we compare algorithms’ performance among
POD, OMAAWD [31], partition-based [20], SA-iForest [34],

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

Time(*60s)
(=29

(a) POD algorithm’s running time.

== Node=3
=== Node=4

Time Ratio
PR

")

[¥]

20 40 60 80 100
d

(b) POD algorithm’s time ratio.

FIGURE 9. Impacts of the number of attributes on the performance of POD algorithm.

and MCD [35] to future analyze efficiency and accuracy of
POD algorithm in celestial spectral datasets. Fig.8 shows a
similar trend as that plotted in Fig.7. In particular, the accu-
racy of outlier detection in quasar spectral dataset is lower
than that in other celestial spectral data sets. This is because
there is a strong similarity between quasar spectral and high
red-shift quasar spectral in data characteristics, which leads to
some high red-shift quasars being wrongly judged as quasars.

B. PERFORMANCE ANALYSIS IN SYNTHETIC DATASET

1) PERFORMANCE AFFECTING DIMENSIONS

In this group of experiments, we use the data sets D1, D2, D3,
D4 and D5 to evaluate the performance of the POD algorithm,
where the number of data nodes is 3, 4 and 5, respectively.
In addition, the parameter k is set to 30, and the experimental
results are shown in Fig.9.

Fig. 9(a) reveals that the running time of POD algorithm is
increasing significantly when the dimension increases from
20 to 100. The key reason is that when the weighted kNN
query is performed by Z-order curve in the high-dimensional
data, the query time of each object will increase due to the
expansion of the dimension, and the calculation amount of the
weighted distance has a linear relationship with the dimen-
sion. Therefore the processing time increases linearly and tilt
degree is slightly higher than linear. Another phenomenon
in Fig.9(a) is that in the same dimension number, the less the
number of computing nodes, the longer the running time of
POD algorithm. If the number of objects remains the same,
the number of data blocks in the HDFS file system remains
the same. As the number of nodes increases, the number
of blocks allocated on each node decreases, and the whole
running time decreases proportionally. At the same time,
the increase of the number of computing nodes will lead
to the increase of network transmission time, which slightly
weakens the scalability of the cluster.

Fig.9(b) shows the time ratio change when the number
of nodes are set 3, 4 and 5. With the increase of dimen-
sion, the time ratio increases continuously, and the more the
number of nodes, the greater the time ratio. As a whole,

VOLUME 9, 2021

the slope angle of the curve is gradually higher than that of
the linear curve. With the increase of dimensions, the capacity
of data set is increasing, and the number of data blocks in
HDFS file system is increasing. Therefore, the shuffle cost
between map and reduce is increasing, resulting in the larger
data dimension, the larger time ratio.

2) EXTENSIBILITY

In this group of experiments, artificial data sets S1, S2,
S3, S4 and S5 are used to evaluate the scalability of POD,
in which the number of nodes is 3, 4 and 5 respectively. The
experimental results are shown in Fig. 10.

Fig.10(a) shows the effect of the amount of data on the
efficiency of POD algorithm when the number of computing
nodes is different. With the increase of the amount of data,
the algorithm costs more time. At the same time, with the
increase of the number of computing nodes, the running time
of the algorithm becomes less and the efficiency is higher.
The number of tasks in Hadoop platform is determined by
the number of data blocks allocated to computing nodes by
HDFS. A large data set results in more data objects to be
allocated to each node. The result is that each computing node
has to deal with more tasks. In addition, as the number of
objects increases, more data copies need to be built in the
first MapReduce stage. Therefore, more weighted k nearest
neighbor candidate sets are generated, which leads to the
linear growth of outlier search with the increase of data
volume. When the same amount of data remains unchanged,
the number of computing nodes decreases, makes the number
of data objects running on each computing node increase.
The larger the load, the longer the running time, that is,
the running time of the algorithm is inversely proportional
to the number of nodes.

Fig.10(b) shows the trend of time ratio when the number of
nodes is 3, 4 and 5. The larger the data is, the greater the time
ratio is. Similarly, the more the number of nodes, the greater
the time ratio. Therefore, the inclination angle of the curve is
gradually higher than that of the linear curve. The reason is
that the increase of data leads to more data blocks in HDFS
file system and more data objects allocated to each computing

81775

IEEE Access

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

=—t=—Node=3

Time(*60s)
I

un

20 40 60 80 100
Data size(*10000)

(a) POD algorithm’s running time.

—+—Node=3
12 | =—#—Node=4
Node=5

Time Ratio

20 40 60 80 100
Data size(x10000)

(b) POD algorithm’s time ratio.

FIGURE 10. The extensibility of the POD algorithm in various data size.

——S51
30 —=—53
S5

Time(*60s)
[
(=]

(]
s

6 8 10
Nodes

(a) POD algorithm’s running time.

wn

——51

S5

speedup

ra

6 8 10
Nodes

(]
da

(b) POD algorithm’s speedup.

FIGURE 11. The scalability of the POD algorithm in various data nodes.

node. After the first map stage, the shuffle operation cost
increases, which leads to the increase of the whole distributed
runtime and time ratio. At the same time, with the increase
of the number of computing nodes, the network transmis-
sion time is increased, which leads to more additional time-
consuming. Therefore, the time ratio of POD algorithm is
significantly increased.

3) SCALABILITY

In this experiment, we used artificial data sets S1, S3 and
S5 with 200000, 600000 and 1000000 objects respectively.
Each data object contains 50 attributes, and the experimen-
tal results are shown in Fig.11. Fig.11(a) shows the impact
of the number of computing nodes on mining efficiency.
The less the number of computing nodes, the more time is
consumed for a large data set. The reasons are as follows:
firstly, the calculation of outlier factor of each data object
can be parallelized; secondly, the calculation of Z-value is
not affected by the number of nodes; finally, the construction
of the corresponding weighted k nearest neighbor candidate
set is also independent of the number of nodes. Therefore,
the running time of the algorithm is linear with the number of

81776

data objects. At the same time, with the increase of computing
nodes, the amount of network transmission will increase, and
the time consumed in shuffle phase will be affected. The
parallel effect of the algorithm is weakened, so the change
tends to be slow.

Fig.11(b) shows the trend of speedup in various data sets
when the number of nodes changes. The more the number of
computing nodes, the greater the speedup; and the less the
amount of data, the greater the speedup. The overall trend
of the curve is gradually lower than that of the linear curve.
When the amount of data is small, the number of data blocks
in HDFS file system will be reduced, which will lead to less
time to query the weighted k nearest neighbors of all objects.
In addition, cluster I/ O takes a small amount of time, which
has little impact on the speedup. Therefore, the speedup ratio
is increasing. At the same time, the more the number of
cluster computing nodes, the shorter the running time of the
algorithm. Theoretically, the speedup ratio should be linear
with the number of computing nodes, but in the actual opera-
tion process, the increase of the number of computing nodes
brings the increase of network transmission, so the effect of
parallelization will gradually decrease.

VOLUME 9, 2021

Y. Ma, X. Zhao: POD: POD Using Weighted kNN

IEEE Access

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a parallel outlier detection algorithm
POD based on k nearest neighbours. The algorithm uses
information entropy to calculate each attribute weight, and
then uses Z-order curve to encode high-dimensional data
into Z-value. After getting the weighted k nearest neighbor,
POD algorithm detect outlier by using minimum distance and
average distance between each object and its weighted KNN.
In order to better adapt to the needs of massive data, the future
work is that our proposed POD algorithm is implemented in
clusters with more nodes.

REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]
[71
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

X. Yi, R. Paulet, E. Bertino, and V. Varadharajan, “Practical approximate
K nearest neighbor queries with location and query privacy,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 6, pp. 1546—1559, Jun. 2016.

D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in
spatial network databases,” in Proc. 29th VLDB Conf., San Francisco, CA,
USA, 2003, pp. 802-813.

D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated Web usage data
mining and recommendation system using K-nearest neighbor (KNN) clas-
sification method,” Appl. Comput. Informat., vol. 12, no. 1, pp. 90-108,
Jan. 2016.

L. P. Zhang, H. D. Jing, L. I. Song, and H. Y. Cui, “K nearest neighbor
query based on Voronoi diagram for obstructed spaces,” Comput. Sci.,
vol. 43, no. 5, pp. 174-178, 2016.

J. Cai, H. Wei, H. Yang, and X. Zhao, ‘A novel clustering algorithm based
on DPC and PSO,” IEEE Access, vol. 8, pp. 88200-88214, 2020.

X. Zhao, Y. Rao, J. Cai, and W. Ma, “‘Abnormal trajectory detection based
on a sparse subgraph,” IEEE Access, vol. 8, pp. 29987-30000, 2020.

N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
ACM SIGMOD Rec., vol. 24, no. 2, pp. 71-79, Jun. 1995.

Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang, and
J. Du, “Fast neighbor search by using revised K-D tree,” Inf. Sci., vol. 472,
pp. 145-162, Jan. 2019.

Y. Yang, J. Cai, H. Yang, J. Zhang, and X. Zhao, “TAD: A trajectory
clustering algorithm based on spatial-temporal density analysis,” Expert
Syst. Appl., vol. 139, Jan. 2020, Art. no. 112846.

Y. Li, J. Cai, H. Yang, J. Zhang, and X. Zhao, ‘A novel algorithm for initial
cluster center selection,” IEEE Access, vol. 7, pp. 74683-74693, 2019.

J. Roshanian, S. Yazdani, and M. Ebrahimi, “Star identification based on
euclidean distance transform, Voronoi tessellation, and K-nearest neigh-
bor classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 6,
Pp- 2940-2949, Dec. 2016.

S. Yang, Z. He, and Y.-P.-P. Chen, “Workload-based ordering of multi-
dimensional data,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 3,
pp. 831-844, Mar. 2016.

P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. 30th Annu. ACM Symp.
Theory Comput. (STOC), New York, NY, USA, Aug. 1998, pp. 604-613.

K.-I. Lin and C. Yang, “The ANN-tree: An index for efficient approximate
nearest neighbor search,” in Proc. 7th Int. Conf. Database Syst. Adv. Appl.
(DASFAA), Apr. 2001, pp. 174-181.

S. Zhang, D. Cheng, Z. Deng, M. Zong, and X. Deng, “A novel KNN
algorithm with data-driven K parameter computation,” Pattern Recognit.
Lett., vol. 109, pp. 44-54, Jul. 2018.

J. Gou, W. Qiu, Z. Yi, Y. Xu, Q. Mao, and Y. Zhan, “A local mean
representation-based K-nearest neighbor classifier,” ACM Trans. Intell.
Syst. Technol., vol. 10, no. 3, p. 1-25, 2019.

J. Gou, W. Qiu, Z. Yi, X. Shen, Y. Zhan, and W. Ou, “Locality con-
strained representation-based K-nearest neighbor classification,” Knowl.-
Based Syst., vol. 167, pp. 38-52, Mar. 2019.

R. Agrawal, “Integrated parallel K-nearest neighbor algorithm,” in Proc.
2nd Int. Conf. SCI, vol. 1, 2019, pp. 479-486.

X.Zhao, J. Zhang, X. Qin, J. Cai, and Y. Ma, “Parallel mining of contextual
outlier using sparse subspace,” Expert Syst. Appl., vol. 126, pp. 158-170,
Jul. 2019.

J. Zhang, X. Yu, Y. Xun, S. Zhang, and X. Qin, “Scalable mining of
contextual outliers using relevant subspace,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 50, no. 3, pp. 988-1002, Mar. 2020.

VOLUME 9, 2021

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining
outliers from large data sets,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data (SIGMOD), New York, NY, USA, 2000, pp. 427-438.

F. Angiulli and C. Pizzuti, “Outlier mining in large high-dimensional
data sets,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 2, pp. 203-215,
Feb. 2005.

R. Xiao, J. Su, X. Du, J. Jiang, X. Lin, and L. Lin, “SFAD: Toward
effective anomaly detection based on session feature similarity,” Knowl.-
Based Syst., vol. 165, pp. 149-156, Feb. 2019.

Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, and X. He, “Genera-
tive adversarial active learning for unsupervised outlier detection,” IEEE
Trans. Knowl. Data Eng., vol. 32, no. 8, pp. 1517-1528, Aug. 2020.

D. Chakraborty, V. Narayanan, and A. Ghosh, “Integration of deep feature
extraction and ensemble learning for outlier detection,” Pattern Recognit.,
vol. 89, pp. 161-171, May 2019.

G. Feng, Z. Li, W. Zhou, and S. Dong, “Entropy-based outlier detection
using spark,” Cluster Comput., vol. 23, no. 2, pp. 409-419, Jun. 2020.

J. Li, J. Zhang, X. Qin, and Y. Xun, “Feature grouping-based parallel
outlier mining of categorical data using spark,” Inf. Sci., vol. 504, pp. 1-19,
Dec. 2019.

X. Zhang, C. Mei, D. Chen, and J. Li, “Feature selection in mixed data:
A method using a novel fuzzy rough set-based information entropy,”
Pattern Recognit., vol. 56, pp. 1-15, Aug. 2016.

D. Liu, P. Hu, T. Li, and C. Jiang, “An approach for attribute weights acqui-
sition based on rough sets theory and information gain,” Int. J. Comput.
Intell. Syst., vol. 33, no. 10, pp. 1296-1302, 2007.

W. Jin, A. K. H. Tung, and J. Han, “Mining top-n local outliers in large
databases,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), New York, NY, USA, 2001, pp. 293-298.

S.J. Lou, J. F. Zhang, and A. Q. Liu, “A outlier mining algorithm based
on p weights,” J. Chin. Comput. Syst., vol. 35, no. 1, pp. 55-59, 2014.

Y. Ma, J.-F. Zhang, J.-H. Cai, H.-F. Yang, and X.-J. Zhao, ‘“‘Parallel
extraction and analysis of abnormal features of QSO spectra based on
sparse subspace,” Spectrosc. Spectral Anal., vol. 41, no. 4, pp. 1086-1091,
2021.

D. M. Powers, “Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation,” J. Mach. Learn. Technol.,
vol. 2, no. 1, pp. 37-63, 2011.

D. Xu, Y. Wang, Y. Meng, and Z. Zhang, “An improved data anomaly
detection method based on isolation forest,” in Proc. 10th Int. Symp.
Comput. Intell. Design (ISCID), Dec. 2017, pp. 287-291.

C. Fauconnier and G. Haesbroeck, “Outliers detection with the minimum
covariance determinant estimator in practice,” Stat. Methodol., vol. 6,
no. 4, pp. 363-379, Jul. 2009.

YANG MA received the M.S. degree in computer
science and technology from the Taiyuan Univer-
sity of Science and Technology, Taiyuan, China,
in 2009, where she is currently pursuing the Ph.D.
degree in big data and intelligent manufacturing.
Her current research interests include data mining
and artificial intelligence.

XUJUN ZHAO received the M.S. degree in com-
puter science and technology and the Ph.D. degree
from the Taiyuan University of Science and Tech-
nology (TYUST). He is currently a Professor with
the School of Computer Science and Technology,
TYUST. His research interests include data mining
and parallel computing. He is a Member of the
China Computer Federation (CCF).

81777

