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ABSTRACT Quality control is an area of utmost importance for fabric production companies. By not
detecting the defects present in the fabrics, companies are at risk of losing money and reputation with a
damaged product. In a traditional system, an inspection accuracy of 60-75% is observed. In order to reduce
these costs, a fast and automatic defect detection system, which can be complemented with the operator
decision, is proposed in this paper. To perform the task of defect detection, a custom Convolutional Neural
Network (CNN) was used in this work. To obtain a well-generalized system, in the training process, more
than 50 defect types were used. Additionally, as an undetected defect (False Negative - FN) usually has a
higher cost to the company than a non-defective fabric being classified as a defective one (false positive),
FN reduction methods were used in the proposed system. In testing, when the system was in automatic
mode, an average accuracy of 75% was attained; however, if the FN reduction method was applied, with
intervention of the operator, an average of 95% accuracy can be achieved. These results demonstrate the
ability of the system to detect many different types of defects with good accuracy whilst being faster and

computationally simple.

INDEX TERMS CNN, deep learning, fabric defect detection, false negative reduction.

I. INTRODUCTION

Fabric defect detection is a quality control process that has
to ensure the identification of defects present in the textile
fabric. These defects can reduce the textile fabric price as
much as 45% to 65% [1]. A traditional inspection system is
composed of manual workers/operators. Their job is to detect
the defects while the fabric is being moved by a machine.
Traditionally, this motorized machines unroll the fabric rolls,
so that the fabric is stretched and presented to the worker
without folds and thickness differences. As this process relies
on human visual ability and concentration, this task can be
very tedious and time-consuming, which can lead to fatigue
and consequently human error. Therefore, traditional systems
can only achieve a 60% to 75% accuracy, even though they
have very slow speed compared to production rate. As a
result, automatic visual inspection systems to ensure the
high quality of products in production lines are in increasing
demand.
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The main advantages of the automatic defect detection
systems, compared to human inspection, are high efficiency,
reliability and consistency [2]. Nickoloy and Schmalfub [3]
have shown that the investment in automated fabric inspec-
tion systems is economically attractive when reduction in per-
sonnel cost and associated benefits are considered. Although
automated visual inspection systems have many advantages,
there are still some obstacles to overcome. The large num-
ber of features, interclass similarity and intraclass diver-
sity of fabric defects form major obstacles to perform this
task [4].

To overcome the mentioned difficulties, a fast fabric defect
detection system that was trained in more than 50 defect
types, which was not observed in literature, is proposed in
this paper. This system, presented in Figure 1, is an auto-
matic system, which can be complemented with the opera-
tor decision. In this work, three main contributions can be
highlighted:

1) A new Convolutional Neural Network (CNN) defect

detection system, which can be operator-assisted,
is proposed;
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FIGURE 1. Fabric defect detection system operation flowchart.

2) As the images classified as no-defect by the system are
not reviewed by the operator, two False Negative (FN)
reduction methods were studied;

3) In order to solve the problem of underrepresented
defect types on existing datasets, a new and more

general dataset was created.
The CNN architecture was created from scratch, with

Convolutional, Max-pooling, ReLU and Dense layers.
No pretrained networks or weights were used. In order to
obtain the best architecture/configuration various training and
tests were performed with the chosen datasets. The selected
datasets were collected from various sources, in order to
compare and test this model against existing works. Layer
feature visualization and exhaustive testing on four different
datasets, also constitute contributions that are not usually seen
in similar works. The proposed system presents high accuracy
and lower execution time, in comparison with related works.
The interaction between the system and the operator, com-
plemented by the use of FN reduction methods, constitutes a
novel approach to this problem.

Further structure of this paper is the following. Section II
provides a review of several fabric defect detection
approaches observed in literature, whereas section III iden-
tifies the datasets used in this paper. Section IV describes the
novel fabric defect detection system as well as the false nega-
tive reduction methods that were explored. Section V presents
and discusses the experimental results. Finally, section VI
provides some conclusions and future improvements to this
system.

Il. RELATED WORK

This section provides a literature review of some fabric defect
detection techniques. These techniques can be divided into
the following categories: statistical, spectral, model-based
and learning.
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A. STATISTICAL APPROACHES

Statistical approaches mainly include autocorrelation func-
tion, eigenfilters, histogram, Gray Level Co-occurrence
Matrix (GLCM), Local Binary Patterns (LBP), mathematical
morphology and fractal dimension. These methods study the
statistical properties of the relationships between the gray
levels of an image. The statistical properties of the defective
fabric stand out from the defect-free regions that remain
statistically constant throughout a significant portion of the
inspection images [4]. Most of these methods require prior
knowledge of the defect-free characteristics when they are
used single-handed and are only effective in a few types of
defects. Wood [5] used autocorrelation function to describe
and analyze the symmetry of carpet fabric patterns. Unser
and Ade [6] used eigenfilters information for defect detection
in textured materials, obtaining good results and low rate of
false alarms. Monadjemi [7], [8] proposed the application
of structurally matched eigenfilters generated by rotation,
negation and mirroring for texture defect detection. In 2010,
Thilepa [9] used histogram equalization with noise filtering
and thresholding to detect fabric defect and 85% accuracy
was attained.

Haralick et al. [10] defined 14 different characteristics
extracted from the GLCM to analyze texture features and
tested the system in various known textures like wood pat-
terns. Rosler [11] used these characteristics to develop a
defect detection system that obtained 95% accuracy in some
defect types. In2011, Ben Salem and Nasri [12] combined the
GLCM characteristics with a Support Vector Machine (SVM)
to classify different defect types and an average accuracy
of 80% was obtained.

Tajeripour et al. [13] used LBP to extract the characteris-
tics of defect-free fabric samples, comparing them with the
test samples and then find the defective ones. Ben Salem
and Nasri [12] combined this technique with an SVM to
classify defective samples and obtained an average of 86,7%
accuracy. In 2001, Kwak et al. [14] used morphologic oper-
ations and thresholding, combined with a decision tree,
to detect and classify the defects, obtaining 91,25% accuracy.
Mak et al. [15], [16] created morphological filters to detect
fabric defects and achieved 96,7% accuracy. Conci and
Proenca [17] suggested an inspection system based on the
variation of fractal dimension to detect the fabric defects.
The authors found this approach very simple but also experi-
mentally limited, with poor defect localization accuracy and
high false alarm, resulting in 96% detection but only on eight
defect types.

B. SPECTRAL APPROACHES

Many of the statistical approaches discussed break down
when used on fabric defects that present very smooth
transitions. Therefore, other more robust and efficient meth-
ods have been created. Spectral methods analyze the tex-
tured images in the spatial frequency domain and require a
high degree of periodicity. These methods include variants
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of Fourier transform, Gabor filters and wavelet transform.
Hoffer et al. [18] used the optical Fourier transform com-
bined with a neural network to detect defects in cloth fabric.
Tsai and Hsieh [19] tested a combination of a discrete Fourier
transform and Hough transform to enhance the defective
region of the image. Bovik et al. [20] used Gabor filters to
classify different types of defective pattern fabrics that had
been previously studied. Sari-Sarraf and Goddard [21] devel-
oped a low cost and easy to implement inspection system
based on wavelet transform, that obtained 89% accuracy and
a2.5% false alarm rate. Dorrity and Vachtsevanos [22] built a
defect detection system that combined wavelet transform and
fuzzy analysis. Yildiz and Buldu [23] achieved 95% classi-
fication accuracy combining wavelet transform and principal
component analysis with the help of thermal imaging.

C. MODEL-BASED APPROACHES

The textures present in an image can be defined by predeter-
mined parameters that constitute an aleatory or deterministic
model. Although these methods are very complex and com-
putationally expensive, they may be adequate for images with
non-uniform patterns. Autoregressive model and Gaussian
Markov random field are some of the methods that constitute
this type of approaches. These models can sometimes become
very complex and computationally expensive. McCormick
and Jayaramamurthy [24] used autoregressive models do syn-
thesize different fabric textures and compare them to pre-
defined textures. Cohen et al. [25] modeled the defect-free
fabric with a Gaussian Markov random field model and com-
pared it to the test image fabrics to detect the fabric defects.

D. LEARNING APPROACHES
The latest technological developments in processing power
and volume of data facilitate the adoption of learning
approaches. These methods try to find patterns in the
extracted characteristics of the fabric image and therefore
can be used standalone or as a complement to other methods
like LBP [26] and GLCM [27]. SVMs [28], Feed-forward
Networks (FENs) [29], [30] and CNNs [31]-[33] are some
of the methods included in this type of approaches. In 2011,
Ghosh [34] developed an SVM-based inspection system,
to detect three different types of fabric defects. Kumar [35]
used principal component analysis to reduce the dimension
of the characteristics vector, complemented with a two-layer
FFN, and obtained a robust low-cost defect detection system.
Mei et al. [36] proposed an unsupervised learning-based
automated approach by using a multi-scale convolutional
denoising auto-encoder network and Gaussian pyramid to
detect and segment fabric defects. Their overall inspec-
tion accuracy reached over 80.0% on all datasets. In 2019,
Ouyang et al. [37], used a CNN to detect defects in a dataset
created by the authors and a 98.82% accuracy was attained.
Although the mentioned methods may present high accu-
racy rates in defect detection, some are computationally
inefficient. Moreover, their accuracy may not be very high
when many fabric defect types are considered. It is important

81938

to note that these methods were used with different pur-
poses (defect detection, defect segmentation, and defect clas-
sification); however, in this work we are just focused on
defect detection. Even though learning approach-based sys-
tems provide high-level information and are considered state-
of-the-art, they also have some limitations. These methods
have a black-box character, and require high computational
resources and large training sets to obtain accurate models.
Additionally, although the defect classification as False Pos-
itive (FP) or FN has different consequences on the company
production, with impact on the production speed and product
quality, most defect detection systems do not consider this
problem.

Ill. DATA GATHERING

For this work, four different datasets were used. In addition
to the three existing datasets (TILDA, MVTec and Stains
dataset) and to have a more general dataset that could bet-
ter represent the many different defect types observed in a
production environment, a new dataset was created (Fabric-
Net-Dataset). The Fabric-Net-Dataset was divided into three
parts that were used in train, validation and test phases. The
other three datasets were only used in the test phase. It is
important to note that all the images correspond to pattern
less fabric and were resized to 150 x 150 dimension (using
the "inter_area" interpolation function), in order to shorten
the execution times and thus make the network even faster.
Several tests were performed to find an image size and the
input size of the proposed CNN (see subsection IV-C) that
would obtain the best balance between the amount of image
information and the model’s effectiveness. In the case of
TILDA and MVTec datasets only a portion of the images
were randomly selected for the testing phase, in order to
produce balanced datasets for this binary defect detection
problem, required to ensure the correctness of the defined
metrics results (accuracy, recall, sensitivity and others).

TILDA (FD-TL) is a dataset developed by the group
“Texture Analysis of the DFG’s” [38]. This dataset is divided
into 8 different fabric types, each one containing seven defect
classes, making a total of 3200 images. Since some defect
types are not related to the fabric structure, three of the defect
types were not considered.

MVTec Anomaly Detection Dataset (FD-MV) was created
by the MVTec company [39] and contains many different
object classes from different industries. For this work, only
the “carpet” class was used. Given the different nature of
carpet fabric structure in comparison with other textiles, this
dataset can demonstrate the robustness and generalization of
the fabric defect detection system created.

The Fabric Stains Dataset (FD-ST) was created by the
Intellisense lab of Moratuwa University, Sri Lanka [40]. This
dataset contains images of two different fabric types with
stain defects.

Fabric-Net-Dataset (FD-NT) was created with images
from two different sources, namely the fabric defect images
from Cotton Incorporated [41] and other fabric images found
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TABLE 1. Used datasets, in a total of 1394 image samples.

Dataset No. of images
FD-TL 28.70%
FD-MV 12.76%
FD-ST 9.76%
FD-NT (train) 36.58%
FD-NT (validation)  7.32%
FD-NT (test) 4.88%
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FIGURE 2. Fabric defect detection system block diagram.

on the web. The dataset from Cotton Incorporated contains
194 images with more than 50 different defect types which
allows for a broader representation of fabric defect classes.
To complement and increase the number of examples in this
dataset, other images were extracted from the Web.
Summary: In total, there are 1394 images in the sum of
the four datasets. Each dataset is balanced between the two
classes and the weight of each one is represented in Table 1.

IV. PROPOSED SYSTEM

The proposed system is divided into several processes,
as presented in Figure 2. Firstly, the image acquisition sys-
tem captures the fabric image, which is then pre-processed,
with histogram equalization, to enhance the defective region.
Then, image analysis is performed to detect the fabric defect.
A customized CNN architecture was used for the defect
detection process, in order to create a robust and computation-
ally effective defect detection system. If this system detects
a possible defect in the fabric roll, the system’s activity is
stopped, and the nearby operator is informed. After that the
operator confirms or reverses the system evaluation and gives
the authorization for the system to proceed the operation and
continue to the next fabric image. Furthermore, the defect
type, location and other characteristics can be documented
for later research. In the following subsections, the system
processes as well as the CNN architecture and false negative
reduction methods are described.

A. IMAGE ACQUISITION

In order to have a fast RGB (Red, Green, Blue) image
acquisition system with low noise and high resolution
images, a series of line scan CMOS (Complementary
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FIGURE 3. Structure of the visual inspection system.
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FIGURE 4. Pre-processing Fabric-Net-Dataset example: a) original image;
b) grayscale transformation; c) histogram equalization.

Metal-Oxide-Semiconductor) sensors cameras can be used.
These cameras capture less blurry images and have more
speed and range of motion then other scan cameras [42].
To capture the entire width of the inspected fabric with good
resolution, this system uses a row of line cameras, jointly with
the lighting system, while the fabric roll is unwinded by a
machine, as illustrated in Figure 3.

B. PRE-PROCESSING

In addition to image resizing, described in section III,
grayscale transformation and histogram equalization were
performed in order to increase the contrasts between the
objects present in the images. This can emphasize the dif-
ferences between the uniform fabric structure and the defect
region as shown in Figure 4.

C. CNN ARCHITECTURE

This section provides the configuration of the custom CNN
architecture used in this defect detection system. As this
system must be able to fast process the images from several
cameras, to allow the roll to be inspected as quickly as pos-
sible, a simpler architecture was used instead of other more
complex state-of-the-art deep learning models. To further
improve system speed, in this stage, only defect detection
is performed, leaving defect classification for a later stage.
Figure 5 shows an overview of the CNN layers and its dimen-
sions. This architecture, is composed of four convolutional
and max-pool layers, followed by two fully-connected layers.
ReLU was used for all the activations. Table 2 contains all
the layers and its hyperparameters, where F is the number of
feature maps, K corresponds to the kernel size and S is the
stride parameter. As mentioned, this CNN was trained and
validated on Fabric-Net-Dataset. Each layer activations were
also visualized in order to confirm that the network could
recognize the fabric defect features (see subsection V-C).
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FIGURE 5. The proposed custom CNN layers dimension.

TABLE 2. The proposed custom CNN architecture hyperparameters.

Layer Output Hyperparameters
INPUT 150x150x1

CONV_1 150x150x64  F=64; K=5x5; S=1;
MAX-POOL_1  75x75x64 pool=2x2; S=2;
CONV_2 75x75x64 F=64; K=5x5; S=1;
MAX-POOL_2  38x38x64 pool=2x2; S=2;
CONV_3 38x38x128 F=128; K=3x3; S=1;
MAX-POOL_3 13x13x128 pool=2x2; S=3;
CONV_4 13x13x128 F=128; K=3x3; S=1;
MAX-POOL_4  5x5x128 pool=2x2; S=3;
Flatten 3200

FC-1 256 Neurons=256

FC-2 128 Neurons=128

optm=ADAM

CNN OUTPUT 1 .
loss=binary_crossentropy

D. FALSE NEGATIVE REDUCTION

The lesser the number of FN and FP examples, the better
the system performance. Even though in most literature work
both are treated equally, usually, one of them has a higher
cost. As in this system specifically, the FN cost will be higher
than FP because all the FN examples will not be reviewed
by the operator. Taking this into account, two FN reduction
methods were studied and later evaluated. Both methods
modify the standard classification threshold value. It is also
important to note that there is always a trade-off between FN
and FP, so reducing one will ultimately increase the other.
As the percentage of FP examples will also be reviewed by
the operator, increasing the number of FP will also increase
the operators working time. Thus, in the end other variables
like fabric cost and operator salary rate, must be considered.
This improvement can offer flexibility to the system and can
be used as a system variable that can be adjusted depending
on the environment.

The Classification Threshold Reduction (CTR) method
uses a lower value for the threshold to reduce the exam-
ples classified as defect-free by the detection system. This
is because, if the detection system is well trained, most of
the FN examples will be positioned close to the standard
threshold value, therefore reducing the number of FN.

The Rejection Region (RR) method uses two different
threshold values, therefore creating a rejection region. Every
example classified as defect inside this region will be later
reviewed by the operator. The second threshold allows the
number of examples that must be reviewed by the operator to
be decreased. However, with this method some FP examples
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won’t be reviewed by the operator, therefore decreasing the
system accuracy.

V. EXPERIMENTS

A. IMPLEMENTATION PLATFORM

The models were implemented using Tensorflow [43] and
Keras API [44] and trained on a laptop with NVIDIA GeForce
GTX 1650 Max-Q, 16GB RAM and Intel Core i7-9750H.
This vindicates that the system proposed is simple and cheap
to implement on a real-world environment.

B. EVALUATION METRICS
The method proposed in this work was evaluated and com-
pared against state-of-the-art using standard metrics based on
confusion matrix results. These metrics can be defined as:

o Accuracy (eq. 1);

o Recall (eq. 2);

« Precision (eq. 3);

o AUC - Area Under Curve;

o F2-score (eq. 4);

« Mathews Correlation Coeficient (MCC - eq. 5).

TP+TN
Accuracy = (1)
TP+TN+FN+FP
TP
Recall = ——— 2
TP+FN
. TP
Precision = ————— 3)
TP+FP
recall x precision
F2- = (1442 , with g =2
score = ((1+5 )(,32 X precision)+recall) with
4)
TP x TN — FP x FN
MCC =
/(TP+FP)(TP+FN)(TN +FP)(IN +FN)
Q)
C. RESULTS

1) CNN DETECTS THE DEFECTIVE FEATURES

In order to confirm that our CNN can in fact identify the fabric
defect features present in an image, the neurons activations
in each layer were visualized. This method allows to verify
if the network is well trained and behaves accordingly to the
expected outcome. It can also show the characteristics behind
false positive and false negative cases which can be used as a
debug tool for these models. The following is an example of
application of this method that distinguishes a well-classified
defect example (see Figure 6) from a poorly classified one
(see Figure 7). The heat maps represent the activation levels
of some feature maps (not all) in each CNN layer. The more
yellow it gets on the defective regions the greater it is the
defect probability in that area. Comparing the two results,
in the well-classified example (Figure 6) the CNN can better
identify the defective features of both top and bottom defec-
tive regions throughout the convolutional layers, so the color
difference between those regions and the rest of the image
is very high. As a result, in the last layer the two defective
regions are isolated and segmented from the rest of the image.
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FIGURE 6. Visualization of the layers activation for a well-classified fabric
defect sample image.
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FIGURE 7. Visualization of the layers activation for a poorly classified
fabric defect sample image.

This leads the network to correctly classify this example as a
defective fabric with very high confidence (value = 0.9999).
In contrast, in the second example (Figure 7), the CNN cannot
clearly identify the defective features, even in the second
layer. So, in the last layer the defective features are not well
defined, and this leads the network to classify it as a FN
(value = 0.1928).

2) CNN SURPASSES STATE-OF-THE-ART MODELS

As mentioned in subsection IV-C, a customized CNN was
used to perform the task of defect detection. The training
of both the CNN and state-of-the-art algorithms were per-
formed using the FD-NT dataset together with data aug-
mentation transformations to increase accuracy and reduce
overfitting. They were then tested on four different test
datasets. The state-of-the-art deep learning models were
loaded with pretrained weights from ImageNet and the two
final fully-connected layers were substituted by two 256 neu-
ron layers. Only these two final layers were fine-tuned using
FD-NT dataset. Then the whole architecture was trained with
a smaller learning rate to fine-tune the networks. In Tables 3, 4
the performance of the proposed CNN is compared to the
state-of-the-art fabric defect detection algorithms, in which
GLCM and LBP methods were selected to perform feature
extraction, SVMs and FFNs were used as classifiers. The
results in Tables 3, 4 show that the proposed CNN out-
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TABLE 3. Accuracy, loss, recall and precision of the proposed model and
state-of-the-art defect detection techniques in different datasets with the
respective average (between 0 and 1).

Accuracy

Maodel FD-NT FD-TL FD-MV FD-ST Average
Proposed 0.8824 0.7450 0.7584 0.6324 0.7545
LBP+5VM 0.6912 0.5450 1.0000 0.4779 0.6785
GLCM+5VM 0.8529 0.6000 0.51659 0.6357 0.6524
LBP+FFN 0.6912 0.5525 1.0000 0.4706 0.6786
GLCM+FFN 0.7059 0.5000 0.2022 0.3824 0.4476

Loss

Model FD-NT FD-TL FD-MV FD-5T Average
Proposed 0.3375 0.7167 0.5243 1.0006 0.6448
LBP+SVM
GLCM+SVM
LBP+FFN 1.0354 1.9577 0.0074 2.1801 1.2961
GLCM+FFN 0.5507 0.9479 1.5294 1.3261 1.0985

Recall

Model FD-NT FD-TL FD-MV FD-5T Average
Proposed 0.9706 0.6200 0.9775 0.9706 0.8847
LBP+5VM 0.6765 0.4450 1.0000 0.5735 0.6738
GLCM+5VM 0.8529 0.4100 1.0000 0.8382 0.7753
LBP+FFN 0.7055 0.6050 1.0000 0.6025 0.7285
GLCM+FFN 0.6765 0.5000 0.4045 0.3529 0.4835

Precision

Maodel FD-NT FD-TL FD-MV FD-ST Average
Proposed 0.8250 0.8267 0.6797 0.5789 0.7276
LBP+SVM 0.6570 0.5563 1.0000 0.4815 0.6837
GLCM+SVM 0.8529 0.6613 0.5086 0.6000 0.6557
LBP+FFN 0.6857 0.5475 1.0000 0.4767 0.6775
GLCM+FFN 0.7188 0.5000 0.2880 0.3750 0.4704

TABLE 4. AUC, FN, f2-score and MCC of the proposed model and
state-of-the-art defect detection techniques in different datasets with the
respective average (between 0 and 1).

AUC

Maodel FD-NT FD-TL FD-NW FD-5T Average
Proposed 0.9191 0.8157 0.8557 0.7058 0.8271
LBP+5VM
GLCM+5VM
LBP+FFN 0.7058 0.5645 1.0000 0.4225 0.6743
GLCM+FFN 0.7651 0.6425 0.0110 0.3409 0.4400

FN

Model FD-NT FD-TL FD-MV FD-5T Average
Proposed 1 76 2 2 20.25
LBP+5VM 11 111 0 29 37.75
GLCM+5VM 5 118 0 11 33.5
LBP+FFN 10 79 0 27 29
GLCM+FFN 11 100 53 44 52

F2-5core

Model FD-NT FD-TL FD-MV FD-S5T Average
Proposed 0.9375 0.6526 0.8988 0.8549 0.8360
LBP+5VM 0.6805 0.4635 1.0000 0.5524 0.6741
GLCM+5VIV 0.8525 0.4437 0.8380 0.7766 0.7278
LBP+FFN 0.7018 0.5526 1.0000 0.5726 0.7167
GLCM+FFN 0.6845 0.5000 0.3742 0.3571 0.4730

Mathews Correlation Coeficient

Model FD-NT FD-TL FD-MV FD-5T Average
Proposed 0.7769 0.5061 0.5750 0.3594 0.5543
LBP+SVM 0.3825 0.091% 1.0000 -0.0449 0.3574
GLCM+5VM 0.7059 0.2162 0.1309 0.3044 0.3394
LBP+FFN 0.3825 0.1056 1.0000 -0.0610 0.3568
GLCM+FFN 0.41325 0.0000 -0.6512 -0.2357 -0.1186

performs the others defect detection algorithms across all
test metrics. For example, the proposed CNN achieves an
average accuracy of 0.7545 (see last column of Table 3),
which is 0.07 more in average accuracy compared to the sec-
ond best performing algorithm, and obtains less false nega-
tives (an average of 20.25, as presented in Table 4). Some of
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TABLE 5. Accuracy, loss, recall and precision of the proposed model and
state-of-the-art deep learning architectures in different datasets with the
respective average (between 0 and 1).

TABLE 6. AUC, FN, f2-score and MCC of the proposed model and
state-of-the-art deep learning architectures in different datasets with the
respective average (between 0 and 1).

the algorithms are not even very robust. For example, the two
LBP algorithms have a perfect classification in the FD-MV
dataset, but in the FD-ST dataset they cannot distinguish
the differences between a defect and non-defective example.
This is shown by the Mathews Correlation Coefficient metric,
which says that if a value is close to zero, the system is
almost arandom classifier. In Tables 5, 6 the proposed CNN is
compared to the deep learning state-of-the-art architectures.
VGG16, InceptionV3, Xception and MobileNetV2 were the
ones used for comparison. The results in Tables 5, 6 show
that the proposed CNN outperforms other deep learning
architectures in almost all test metrics except precision and
FN. From all the deep learning architectures, the simpler
one (MobileNetV?2) is the one that comes closer in terms of
average accuracy (0.7424 in comparison with the 0.7545 of
the proposed CNN). Finally, the defect detection execution
time of a sample image, for each of the studied models,
is presented in Table 7, which shows the good performance
of the proposed model.

3) FALSE NEGATIVE REDUCTION METHODS IMPROVE
SYSTEMS PERFORMANCE

As previously mentioned, two false negative reduction meth-
ods were studied, namely CTR and RR. Both methods are
based on classification threshold value modification. The
FD-NT dataset (validation part) was used to obtain the best
threshold value for both studies. After obtaining the threshold
values, both methods were tested on the test datasets and the
results are presented in Tables 8, 9. It is important to note
that these results consider the operator analysis. This means
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Accuracy AUC

Model FD-NT FD-TL FD-MV FD-ST Average Maodel FD-NT FD-TL FD-MV FD-ST Average
Proposed 0.8824 0.7450 0.7584 0.6324 0.7545 Proposed 0.9191 0.8157 0.8597 0.7058 0.8271
VGG16 0.8529 0.7300 0.5337 0.6691 0.6964 VGG16 0.9040 0.7492 0.6511 0.6530 0.7478
InceptionV3 0.8088 0.6300 0.6517 0.6985 0.6973 InceptionVa 0.9217 0.7933 0.7157 0.7980 0.7948
Xeeption 0.8382 0.5425 0.7528 0.6471 0.6952 Xception 0.9079 0.7902 0.7674 0.6756 0.8038
MobileNetv2 | 0.8235 0.7925 0.6404 0.7132 0.7424 MobileNetv2 0.9061 0.8804 0.4977 0.7388 0.7536

Loss FN

Model ED-NT FD-TL ED-MV ED-ST Average Model FD-NT FD-TL FD-MV FD-ST Average
Proposed 0.3375 0.7167 0.5243 1.0006 0.6448 Proposed 1 76 2 2 20.25
VGG16 0.4352 1.2383 2.8711 1.0478 1.3981 VGG16 3 62 0 11 13.5
InceptionV3 0.4509 1.9270 2.6300 1.0756 1.5209 InceptionV3 7 141 2 15 42.25
Xception 0.4444 2.3983 1.5487 1.2664 1.4145 Aception i 173 1 22 52
MobileNetv2 |  0.4359 0.4460 1.0297 0.6990 0.6527 MobileNetv2 6 45 2 13 18

Recall F2-5core

Model FD-NT FD-TL FD-MV FD-ST Average Model BN} ED-TI™ |G FD-5T Average
Proposed 0.9706 | 0.6200 | 0.9775 | 0.9706 0.8847 Proposed 0.5375 0.6526 | 0.8988 0.8545 LRI
VGG 0.8529 0.6900 1.0000 0.8382 0.8453 VGG16 0.8529 0.7012 0.8428 0.7851 0.7955
InceptionV3 0.7941 0.2950 0.9775 07206 0.6963 InceptionV3 0.7988 0.3406 0.8648 0.7143 0.6796
Xception 0.8235 0.1050 09858 6765 0.6452 Xception 0.8284 0.1273 0.5035 0.6686 0.6319
MobileNetva | 0.8235 09750 0.9775 0.7208 0.8202 MobileNetv2 0.8235 0.7805 0.8614 0.7185 0.7960

Precision Mathews Correlation Coeficient

Model FD-NT F-TL | FD-MV_| FDST Average Model kDN FOTL =M RS EVEIFEE
Proposed 0.8250 0.8267 0.6797 0.5739 0.7276 Proposed 0.7769 0.5061 0.5750 0.3594 0.5543
VGG16 0.8529 07500 0514 0.6262 06867 VGG15 0.7059 0.4615 0.1868 0.3594 0.4284
Inceptionvd | 0.8182 0.8939 | 0.5918 | 0.6901 0.7485 ;(";;p?';nnw g':;;: g'iggé g':ggg g'igii g'i‘;;‘i
Xception 0.8485 0.8400 0.6718 0.6389 0.7498 - : : : : .
MobileNetvz | 08235 0.8031 0.5839 07101 0 7302 MobileNetv2 0.6471 0.5854 0.3803 0.4265 0.5098

TABLE 7. Defect detection execution time of each model for one sample
image.

Model Time (ms)
LBP+SVM 7.24
GCLM+SVM 9.53
LBP+FFN 7.23
GLCM+FFN 9.52
VGG16 27.719
InceptionV3 30.90
Xception 15.68
MobileNetV2 13.78
Proposed 5.69

that in theory every example reviewed by the operator is
correctly classified. This is because in this system, unlike
the traditional system, the operator is reviewing the detected
defect while the system is stationary, and he knows the
location of that defect. The results from Tables 8, 9 show
that the CTR method is the most effective one, as it was
expected, because of the greater cooperation from the oper-
ator. In comparison, the RR method obtains less accuracy
given the decreased number of examples reviewed by the
operator. Nevertheless, there is a sharp decrease in the oper-
ator’s work, which in the case of inspecting cheaper fab-
ric might be a better solution. This approach allows the
operator to focus only on a smaller and important portion
of the inspected fabric. Overall, from a total of 782 test
examples, when CTR is applied, the system achieves an
average of 95% accuracy with the operator intervention in just
42% of the inspected fabric. When RR is applied, with only
30% of operator’s intervention, an average accuracy of 80%
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TABLE 8. Number of TP, TN, FP, FN and examples reviewed by the
operator for false negative reduction methods in different datasets with
the respective average.

TP
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 33 124 87 66 77.5
CTR 33 141 28 66 822
RR 33 141 28 66 822
TN
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 34 200 a9 63 97.75
CTR 34 200 a9 63 97.75
RR 30 183 57 27 74.25
FP
Method FD-NT FD-TL FD-MV FD-5T Average
Standart o o o o 0
CTR o o o 1] 0
RR 4 17 32 41 23.5
FN
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 1 76 2 2 20.25
CTR 1 59 1 2 15.75
RR 1 59 1 2 15.75
Examples Reviewed by the Operator
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 33 124 a7 66 77.5
CTR 33 141 a8 66 a2
RR 29 124 56 25 58.5

TABLE 9. Accuracy, recall, precision, f2-score and MCC of the system with
false negative reduction methods in different datasets with the respective
average (between 0 and 1).

Accuracy
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 0.9853 0.8100 0.9883 0.9853 0.9423
CTR 0.9853 0.8525 0.9944 0.9853 0.9544
RR 0.9265 0.8100 0.8146 0.6838 0.8087
Recall
Method FD-NT FD-TL FD-MV FD-ST Average
Standart 0.9706 0.6200 0.9775 0.9706 0.8347
CTR 0.9706 0.7050 0.98288 0.9706 0.9087
RR 0.9706 0.7050 0.9888 0.9706 0.9087
Precision
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 1.0000 1.0000 1.0000 1.0000 1.0000
CTR 1.0000 1.0000 1.0000 1.0000 1.0000
RR 0.8919 0.8924 0.7333 0.6168 0.7836
F2-5core
Method FD-NT FD-TL FD-MV FD-5T Average
Standart 0.9763 0.6710 0.9819 0.9763 0.9014
CTR 0.9763 0.7492 0.9910 0.9763 0.9232
RR 0.9538 0.7358 0.9244 0.8707 0.8712
Mathews Correlation Coeficient
Method FD-NT FD-TL FD-MV FD-ST Average
Standart 0.9710 0.6703 0.9778 0.9710 0.8975
CTR 0.9710 0.7378 0.9888 0.9710 0.9172
RR 0.8563 0.6341 0.6712 0.4488 0.6526

can be attained. However, considering that in a production
environment the number of defects is much lower than the
number of defect-free regions, the percentage of examples
reviewed by the operator will be much lower. In some fabric
rolls there may not even exist defects. In this case only FP
cases will be reviewed by the operator and given the low
FP rate this can lead to no intervention from the operator at
all. Therefore, the time spent by the operator in this system
will always be much shorter than in a traditional inspection
system.
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D. DISCUSSION

The state-of-the-art study compares the proposed model with
four different fabric defect detection approaches and four
different deep learning architectures. The comparisons pre-
sented in Tables 3, 4, 5 and 6 show that the proposed CNN
model not only outperforms human inspection performance,
but it is also able to generalize better and outperform all other
tested approaches. Even though for specific datasets, mainly
in the FD-MV dataset, the proposed method does not always
have the best results, in the average of all datasets (with a wide
variety of defects) it reaches the best results. Furthermore,
the proposed approach is also much faster in comparison
with other deep learning approaches (Table 7), due to its
simple architecture. The results also show that some of these
algorithms cannot generalize very well, for example the LBP
approach obtains perfect accuracy in FD-MV dataset even
though it cannot distinguish between the two classes in the
FD-ST dataset. Even though the deep learning state-of-the-art
models were built with transfer learning from ImageNet, it is
possible to assume that with more training examples a better
performance would be obtained. So, as this problem does not
have a lot of prepared data, the proposed CNN is simpler and
can outperform even the less complex MobileNetV2.

VI. CONCLUSION AND FUTURE WORK
Overall this system shows the potential of operator-assisted
systems, which may be easier to implement, low-cost and
better to tackle realistic scenarios. In this work, a new
CNN-based fabric defect detection system, suited for a realis-
tic scenario, was proposed. The CNN method provides a good
feature detection, as it can be confirmed in Section V-C. This
system has the possibility of being operator-assisted whom
may confirm or reverse the system evaluation when a possible
defect is detected. This increases the system accuracy by
reducing the number of FP examples. Therefore, two FN
reduction methods were studied. To obtain a reliable dataset
that could represent most of the fabric defect types found in
the literature, a new dataset was created. In total four different
datasets were used to train and test the proposed methods.
An average of 75% accuracy was observed in the test datasets
when the system was in automatic mode. Therefore, this
system outperforms human inspection systems even in auto-
matic mode. When the false negative reduction method was
applied, together with the operator intervention, an average
of 95% accuracy was attained in the same datasets. These
promising results show that the proposed system achieves
better performance when compared to traditional systems
and others found in literature, in addition to being much
faster, cheaper and easier to maintain. Plus, the time spent
by the operator in this system will always be much shorter
than in a traditional inspection system. Furthermore, this
thorough study using four different datasets, with distinct
characteristics, is uncommon in known literature and shows
the generalization capacity of this model.

As future work, it would be of interest to develop a larger
dataset, with more real-world examples that would allow to
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train and implement a more complex defect detection system.
A larger dataset would allow the use of more complex models,
such as Long Short-Term Memory (LSTM) and Transformer
networks. To improve the FN reduction functionality, more
robust methods that can be executed during training, such as
a custom loss function, could be tested. As a final objective,
the developed system should be implemented in a real-world
environment, to test and compare it to a traditional inspection
system.
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