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ABSTRACT This paper is concerned with stability problems of stochastic delay differential systems with
variable impulses due to logic choice. Firstly, a class of variable impulses due to logic choice is introduced
in this paper which is more general than the logic impulses established by (Suo and Sun, 2015) and
(Zhang et al., 2018). Then, by establishing a connection between the stochastic delay differential system
with logic impulses and a corresponding stochastic delay differential system without logic impulses, some
sufficient conditions for stability of the systems are obtained. Finally, the application in a class of linear
stochastic delay differential systems with logic impulses is discussed, and several stability criteria together

with two numerical examples are given.

INDEX TERMS Stability, stochastic, delay, logic, impulses.

I. INTRODUCTION

It’s well known that, impulses described the abrupt changes
at certain instants well and a large number of results
related to impulsive system have been published both in
theoretical research and practical applications in recent years,
see [1]-[17] and references therein. In the realistic dynamical
systems, the impulsive effects may be influenced by some
logic effects. For example, dynamic walking of biped robots
is well researched by impulsive system (see [18], [19]),
some stable characteristics of biped robots can be achieved
by imposing some logic choice on the impulses. Therefore,
an interesting recent development of the impulsive system
is the logic impulses (see [20]-[22]), that is the impulsive
effects are suffered by logic choice which was firstly estab-
lished in [20].

On the other hand, stochastic effects are commonly
encountered in realistic systems and often result in instability,
oscillations, divergence and chaos. Many significant results
for control problem of stochastic effects have been made
recently. For example, adaptive fuzzy control for stochastic
high-order nonlinear systems was considered in [23], [24],
variable impulsive control for stochastic perturbed multi-
agent systems was researched in [25], the control
design was proposed from different aspects in [26]-[28].
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Stability problems of stochastic systems have also attracted
the attention of many researchers. Various stability analysis
were made for stochastic delay differential systems (see
[29]-[32]), impulsive stochastic delay differential systems
(see [33]-[39]), and impulsive stochastic delay differ-
ential systems with markovian switching (see [40], [41]),
respectively. However, as far as the author knows, there
has been no result of stochastic delay system with logic
impulses (SDLI), and a SDLI is usually highly complicated
to qualitatively analyze due to stochastic effects, delay, logic
and impulses exist at the same time. Hence it is challenging
to analyze the properties of SDLI.

In this paper, the author aims to construct a class of linear
SDLI and study its stability problems. Stability is one of the
fundamental concepts which need to be further investigated.
However, the traditional methods, such as Ito’s formula,
to study the stability of stochastic delay differential systems
without impulses (SD) cannot be effectively used in SDLI,
since it is difficult to integrate the equation on the intervals
which contain impulses.

The main results of this paper can be concluded as follows:
(i) the author constructs a class of linear stochastic delay
differential system with variable impulses due to logic choice,
in which the logic impulses generalize the logic impulses
established in [20] and [21]; (ii) its stabilities are equiv-
alent respectively to the stabilities of a corresponding SD,
if some desired conditions are satisfied. It’s worth noting that,
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by establishing the equivalent relation between the solutions
of SDLI and SD, it is able to overcome the It0’s formula
application difficulty mentioned above that the impulses lie
in the integrating intervals; (iii) the application of theorem
results in a class of linear stochastic delay differential systems
with logic impulses is discussed. Several stability criteria
together with two numerical examples are also given.

This paper is organized as follows: in section 2, the author
briefly recalls some basic notations and construct a class
of linear stochastic delay differential system with variable
impulses due to logic choice; in section 3, several sufficient
conditions ensuring various stabilities of the SDLI and SD are
provided; in section 4, the application of theorem results in a
class of linear stochastic delay differential systems with logic
impulses is discussed and several stability criteria together
with two numerical examples are also given; in section 5,
concluding remarks are given.

Il. PRELIMINARIES

Let {2, F, {F};>0, P} be a complete probability space
with a filtration {F;};>o satisfying the usual conditions
(i.e. right continuous and Fy containing all p-null sets).
Let PC([—7, 0], R) denote the family of functions which
are real-valued absolutely continuous on [—t,0], with
the norm [l¢| = sup |¢(s)l, PCF ([-7,0,R) =

—7<s<0
{#l¢p € PC([—t,0], R) and bounded Fy-measurable, satis-
fying  sup OE||¢>||” < oo}, PC,{ZO(S) = {¢lp €
—r<s<

PC} ([-7,0l,R), and sup E|p|? <

—1<s<0
denote the expectation of stochastic process. Let w(¢) be a

one-dimensional Brownian motion defined on the probability
space. Let Ay = {8§|i = 1, 2}, where 85 is the ith column of
the identity matrix I5. Moreover, we identify logical values
with equivalent vectors as: T = 1 ~ SLF=0~ 8%.

Consider stochastic delay differential systems with
variable impulses due to logic choice as follows:

8}, where E

dy(t) =) pit)y(t — Ti(t))dt

i=1

n
+ D gyt — T(e)dwt),  t £ n M
i=1
Yt — y(tx) = P (y(tx)), t=t,k €N
with the initial condition
y1) =), tel-1,0] 2
where 0 = 1p < 1] < th < ... < tr < ... are fixed
impulsive points with lim # = oo. Fori = 1,2--- ,n,

k—o00
pi(®), qi(t) € C([0, +00), R), 7i(t) € C([0, +00), [0, 7;]),
T = supti(t), T = max 1, ¢(t) € PCI{Z ([—7, 0], R), and
>0 1<i<n 0
yi(t,j' ) — yi(ty) = D (¥(tx)) are variable impulses due to logic
choice in the following form:

Or((t)) = Uk (1), e (1) 1g1 ()
+ e t)), T 0t ) 1g2((tx))
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where I, It Jp. Jr € C(R, R) satisfies I(0) = I(0) = 0,
Jk(0) = Jk(0) = 0. g; : R — {8}, 83} is a piecewise logical
function as follows:

8, Wl =c
8, 1wl <

here, f; € C(R, R), ¢; > 0 is the threshold, fori =1, 2.

Obviously, the impulsive effect ®; is chosen from the
functions I + Ji, Ir + jk, fk + Jr and ik + jk. Furthermore,
it can be described as:

gi(w) =

& = [y, I, Ji, ellg! , e217

Remark 2.1: The logic impulses introduced in this paper
is more general than the logic impulses established in some
previous articles. (i) When f;(u) = u, the logical function
gi(u) acts as follows

2

825 |M| 2 Ci
giw) =14

2 |u| < Ci

which is established in [20].
(i) When fi(u) = u— “3bi ¢; = %% the logical function
gi(u) acts as follows

8%, otherwise
giw) =1 |

where ©2; = (a;, b;) is a set, which is established in [21].

For any ¢(¢) € PCI{ZO([—I, 0], R), we assume that system
(1) satisfies necessary conditions for global existence and
uniqueness of solution, &y satisfies ®x(y(tr)) # —y(t%),
Vk € N. Obviously, the system admits an equilibrium
solution y(rf) = 0. In the following, according to [34],
Definition 2.1 and 2.2 are given, which are necessary for the
discussion.

Definition 2.1: A function y(¢) is said to be a solution
of system (1) with the initial condition (2) if the following
conditions are satisfied:

(1) y(¢) is absolutely continuous on each interval ( #;, fx+1],
keN.

(i) For any #, (') = lim y(t) and y(t; ) = lim y(t)
1>t e

t— "
exist, y(t, ) = y(¢), k € N.

(iii) y(r) satisfies the system (1) for almost everywhere in
[0, +00)\{#x} and the impulsive conditions at each t = #,
k eN.

Definition 2.2: The zero solution of system (1) with initial
condition (2) is said to be

() p-stable, if for any ¢ > 0, there is a 6 > O such that
the initial function ¢(t) € PC I’?{)((S) implies E|y(t)|P < ¢ for
t > 0. Especially, when p = 1, it is said to be stable.

(i) asymptotically p-stable, if y(¢) is p-stable and there
exists a scalar §o > 0, such that the initial function
o) € PC,{ZO(SQ) implies lim E|y(t)| = 0. when p = 1, itis

—00
said to be asymptotically stable.
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(iii) exponentially p-stable (p > 2), if there is a pair of
positive constants A and K such that for any initial condition
(1) € PCE (-7, 01, R),

Ely®P <Kllg|Pe™, t>0.

Here A is called the exponential convergence rate.
Especially, when p = 2, it is said to be exponentially stable
in mean square.

Ill. STABILITY CRITERIA

Motivated by [6], we give the following hypothesis.

Hypothesis 3.1: Assume that the function «(¢) satisfies:

(H1) () is continuous differential on (¢, tx+1],
k=0,1,2.

(H2) () = (1 + Oy (1), k= 1,2,3.

H3) a(t) #0,Vt > 0and a(t) = 1,Vt <O.

Construct the following non-impulsive stochastic delay
differential system:

dx(t) = [@x(t) +y Mx(t — 1(t)]dt

an) S a = ()

"L a(t)git) |
" ; a(t——r,-(z))x(’ —(®))dw(t)  (3)

for ¢+ > 0, with the initial condition:

x(@) =), tel[-1,0] 4

An absolutely continuous function x(¢) is said to be a
solution of system (3) with initial condition (4), if x(¢)
satisfies (3) almost everywhere and satisfies the initial
condition (4) fort > —r.

Next, a fundamental lemma is presented, which established
the connection between the SDLI (1) with (2) and a corre-
sponding SD (3) with (4).

Lemma 3.1: Assume that Hypothesis 3.1 holds,

(1) if x(¢) is a solution of (3) with (4), then y(¢) = o YOx@)
is a solution of (1) with (2) on [—1, +00).

(ii) if y(¢) is a solution of (1) with (2), then x(¢) = a(¢)y(¢)
is a solution of (3) with (4) on [—1, +00).

Proof: First we prove (i). Let x(¢) be a possible solution
of system (3) with (4), it is easy to see that y(t) = (32103
is absolutely continuous on ( #, #%+4+1), k € N. For
any t # Iy,

dy(t) = d(a™ ' (1)x(1))
= x()d(a” (1) + o« (Od(x(1))
a(t)

=72 7 )X(t)dt
L e " a(pit) |
Ol(l)[ (1) x(1) ; mx(l — 7i(1))]dt
1o a()gi(t) |
* m[z m x(t — 7i(1)]dw(t)
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- Z a(rp—i—(?(t))x(t — 7(t))dt
i=1 !

4 |
X -y OO
= 2Py — wOM + ) a0y~ weNdwit)
i=1 p

Thus, y(t) = a~'(r)x(r) satisfies system (1) for almost
everywhere in [0, +00)\#.
According to (H2), V#; € [0, 400),k € N,

S = fim X0 36D _ 3w #0w)
O D a0 T et e (1)
= 30 + 229 i+ @)

y(ti)

From (H1), we know that «(¢) is left continuous on #,
namely a(t;, ) = a(t),k=1,2...,50

X0 _ x@) _ xw)
= lim =
) = it ot(t) a(tk_)

From (H3), y(t) = 1 - x(t) = ¢(t) on [—t, 0]. Therefore,
we arrive at a conclusion that y(r) = o~ (£)x(¢) is the solution
of (1) with initial condition (2).

Next we prove (ii). Since y(z) is a solution of (1),
x(t) = oa(t)y(t) is absolutely continuous on [0, +00)\#.
Moreover, it follows that, for every #; situated in [0, +00),

x(th) = lim a(t)y(r) = a(tOy)
t—t k
Yt ) ()
= ———————— (1) = a(i)y(t) = x(1)
¥ + D0 ¢
and
x(tg) = Tim a()y(t) = e )y()
1=

= a(t)y(te) = x(t)

which implies that x(#) = «(t)y(t) is continuous and easy
to prove absolutely continuous on [0, +00). Furthermore,
x(t) = 1-y(t) = ¢(t) on [—1, 0]. Therefore, x() = a(¢)y(t)
is the solution of (3) with the initial condition (4).

By applying Lemma 3.1, we can study the stability
problems of SDLI (1) by the property of SD (3), and some
stability criteria of the systems can be provided.

Theorem 3.1: Assume that there exists a positive constant
M such that for any ¢ > 0,

le” ') <M )

(i) If the zero solution of (3) is p-stable, then the zero
solution of (1) is also p-stable.

(i1) If the zero solution of (3) is asymptotically p-stable,
then the zero solution of (1) is also asymptotically p-stable.

(iii) If the zero solution of (3) is exponentially p-stable
(» = 2), then the zero solution of (1) is also exponen-
tially p-stable (p > 2). What’s more, they have the same
exponential convergence rate.
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Proof: We prove (i) only, (ii) and (iii) can be proved
similarly and proofs will be omitted here.
Let x(¢) and y(¢) be the possible solutions of system (3) and
(1) corresponding to the initial condition (4) and (2).
From the hypotheses, the zero solution of (3) is p-stable,
for any ¢ > 0, there is a § > 0 such that the initial condition
¢(1) € PCP, (8) implies

E|x(®)P ©
lx ()] <w-

In view of Lemma 3.1, y(t) = a~1()x(1) is the unique
solution of (1) on [—t, +00). Furthermore, it is easy to see
that,

Elyn)l = Ela”' Ox@)FP < E(la™' @) P x()P)
< EMP1x(0)IP) < MPE(|x(1)I)
< MP . €.
MP
which implies that the zero solution of (1) is also p-stable.

Similarly, the following stability analysis of SD (3) can be
deserved.

Theorem 3.2: Assume that there exists a positive constant
N such that for any ¢ > 0,

le(t)| < N (6)

(i) If the zero solution of (1) is stable, then the zero solution
of (3) is also stable.

(ii) If the zero solution of (1) is asymptotically p-stable,
then the zero solution of (3) is also asymptotically p-stable.

(iii) If the zero solution of (1) is exponentially p-stable
(» = 2), then the zero solution of (3) is also exponen-
tially p-stable (p > 2). What’s more, they have the same
exponential convergence rate.

By combining Theorem 3.1 and Theorem 3.2, the
following interesting result can be easily provided.

Theorem 3.3: Assume that inequalities (5) and (6) are
satisfied, then the zero solution of (1) is p-stable, asymptot-
ically p-stable, exponentially p-stable (p > 2) if and only if
the zero solution of (3) is p-stable, asymptotically p-stable,
exponentially p-stable (p > 2) respectively.

IV. APPLICATION TO A CLASS OF LINEAR SDLI
In [4], G. Zhang ef al. have studied the exponential stability
of the following linear impulsive delay differential equation:

) =pyt)+qyt—7), t>0,1t#kt
x(tr) — x(t,) = rx(t,), t=kt 7)
x(t) = (p(t)s re [_Tv 0)

where k = 0,1,2,...,r # —1, 7 > 0, p and g are real
constants, ¢(t) € C([—7, 0), R).

In [6], X.Liu et al. have shown the analytic and numerical
stability results of a more general linear impulsive delay
differential equation as follow:

X(t) = ay(t) + by(t — 1),
x(t) = x(ty) = rex(tp),
x(t) = o(t),

t>0,t#1
t=1t (8)
telt—r1, 1]
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wherea, b, riy € R, T > 0, ty41 —tx = t are fixed points with
11m tx = oo and ¢(¢) is a smooth function on [ty — T, fp].

Note that, the logic effects and stochastic effects were
not taken into the above literature and there are few results
of this kind of research. Based on such consideration,
by applying stability results (Theorems 3.1-3.3 ) obtained in
section 3, we discuss the stability problem of the following
linear stochastic delay differential system with variable logic
impulses:

dy(t) = (ay(t) + by(r — 7))dt

+(ary(t) + by y(t — T))dw(t), t# i
9

Yt — y(t) = dryte), =1
where a, b, a1, by € R, 1 > 0, ¢p > —1, txy1 — tx = T are

fixed points, k =0, 1, 2,...., and

i = 1%, Felg1 () + [, Aelga((te))
= [rk, P, M, Millgt g2 17

where ry, 7, Ak, Xk are real numbers, g; : R — {8;, 8%} is a
piecewise logical function as follows:

8, Wl =>c
8, Wl <

here, f; € C(R,R), ¢; > 0 is the threshold, fori = 1, 2.
Obviously, ¢y is chosen from the real numbers ri +Ax, r¢ +A s
Tt + Ar and 7 + ):k'

Remark 4.1: When a; = by = 0, ¢ = r or ¢y = 1y,
system (9) can be degraded into systems (7) or (8), then we
can draw a conclusion that system (9) is more general than
the systems in [4] and [6].

In the following discussion, we need to introduce a few
more notations (see [29]). Let C>'(R" x R, R,) denote the
family of all continuous non-negative funcitons V (x, t) which
are continuously twice differentiable in x and once in 7. Then,
for a stochastic delay differential system:

gi(w) =

dx(t) = f(x(t), x(t — 1), )dt + g(x(t), x(t — T), 1)dw(t)
ont > 0, we define LV : R" x R* x R+ — R by:
LV(x,y,t) = Vi(x, 1)+ Vi(x, t)f (x, y, 1)

1
+ Etrace (gT(x, V, )V (x, )g(x, y, t))

where
aV(x, t)
V,
(X, 1) = o7
aV(x,t aV(x,t
Vx(x,t)= (x )""7 (x ) El
0x] 0x,

V(. ) 2 Vx,t)
x,t)=\—7——"7"
" axiaxj nxn

81549



IEEE Access

C. Li: Stability of Stochastic Delay Differential Systems

A. CASE |
For the linear stochastic delay differential system with logic
impulses (9), let «(¢) as follows,

1
0<tj<t I+ ¢]

1 t<rt

a(t) =

Note that, (?) is a piecewise constant function, one can
easily check that it satisfies (H1) and (H3).

. 1 1
oz(tk)=11m+ l_[ I+¢ 1_[ 1+ ¢;

=0 0<ti<t 0<tj<ty

1 1 1
BT I e el
0<tj<t J
which implies that «(r) satisfies (H2). So, «(f) satisfies
Hypothesis 3.1, that’s clear.
Moreover, the corresponding non-impulsive stochastic
delay differential system is in the following form,

b
dx(t) = (ax(t) + T o x(t —1))dt

+ (a1x(r) + x(r —7))dw@) (10

by
1+ ¢
where t € (, tx+1], with the initial condition:
x(1) = (1),

Theorem 4.1: Assume that there exists a positive constant
M such that

M JJa+w0=<m.

tel[—r, 0]

keN
2
a b+aibl 1, b1
) — L _ Z
@ -5 -a>rs Thre

then the linear SDLI (9) is exponentlally stable in mean
square. Where wx = max{rx +Ak, r +Aks e+, T i},
o= mln{rk + My T+ hkes Tro+ Mk, T+ i)

Proof. For brevity, let x(¢) = x, x(t — t) = x;. Let x(¢)
be a possible solution of system (10), we choose V (x, 1) = x2,

then

b b
LV = 2x(ax + x7) + (a1x + —1x,)2
1+ ¢ 1+ ¢
2(b + aiby) by 5,5
= Qa+a )+ —— " + (——)x
( D T+ o T (]+¢k) :
Note that ¢ > —1, we have | + wg, 1 + 6 > 0, then
|b+aib| 2,2 by 5,
LV < 2a+a2x2+— +— X
( 0 Y (x +( ¢k) T
|b+aibi|, ,  |b+aibi] )
=Qa+aj+——— 1+
( 1 1+ ) ( 1+ ¢ (l+¢))
b+ aibil, 5 |b+aibi] b1
< 2a—|—a2+ X+ X
( ' 1+6 o 1+6 (1+9))

81550

From condition (2), we have

a? |b+ aybi] b

1
14> - )2
2 1+6 2146
[b+aibtl 1, b1
> = )
1+ o 21+ ¢
Then,
b+ a1b b+ ab b
Qa+a +| 11|)>| 11|+( L 2oy
1+ ¢ 1+ ¢ 1+ ¢

For Theorem 3.4 in [29], we can give a conclusion that,
the non-impulsive stochastic delay differential system (10) is
exponentially stable in mean square.

In the other hand, from condition (1)

ol [Ja+o0 < [0 +w) <M

keN keN

According to Theorem 3.1, the linear stochastic delay
differential system with logic impulses (9) is exponentially
stable in mean square.

Example 4.1: Consider the following linear SDLI:

dy(t) = (ay(t) + by(t — 0.1))dt
H(ary(®) + by y(t — 0.1)dw(1),
Yt — () = dry(te).

t#£0.1k (11
t=0.1k

with initial condition y() = 2,¢ € [—0.1, 0], and the logic
impulses act as follows:

) - y(tk) = ¢ry(t)

1 1 1
= y(fk)[zk, — 218100 + ¥l 3. —3rlea(v(®)

1 1 1. 7 T T
(lk)[zk Tk 3k —3—k][81 (1)), & ()]
where g; : R — {81, 8%}, i = 1,2, is a piecewise logical
function as follows:
@ = 85, |ul =05,
81 51, lul <0.5
85, |ul > 0.25,
u) =
§20) {55, u| < 0.25

here, fi(u) = u, cy = 0.5 and cy = 0.25. Then ok is
chosen from the real numbers 2k + %, zlk —_ 2k -

Furthermore, w; = 2k + 3/(7 e = gél[{ll{ o 3

|

—. Note that, there exists a positive constant M, such

that [] (1 + wx) < M. Therefore, by Theorem 4.1, system
keN
2

(11) is exponentially stable in mean square, if —%1 —a >
6 |b + aibi| + 1857 is hold, for example, a = —3, a; = 2,
b= %, b1 = —%, showed in Figure 1.
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FIGURE1. a=-3,a;=2b=11,b=-1.

B. CASE Il
For the linear stochastic delay differential system with logic
impulses (9), let «(?) as follows,

=l
a)=0+¢) * , tel tir1]

It’s easily check that «(r) satisfies (H1) and (H3).
Furthermore,

1, —1
Mm—a+mlﬁ%=L t € (tro1. 1]

a(tf) = o (g
l—)lk
_ 1 1 %)
Tt h Aty

which implies that «(z) satisfies (H2). So, «(¢) satisfies
Hypothesis 3.1, that’s clear.

The corresponding non-impulsive stochastic delay differ-
ential system is in the following form,

dx(t)
=l 1
(1 + ¢y) T+oc \ T
=[( " + a)x(H)+b (—1 n ¢k_1> x(t — 7)ldt
25|
+ [a1x(t) + by <11++—¢f:> x(t —)]ldw(@) (12)
where t € (, ty+1], with the initial condition:
X(t) = (p(t)v re [_Tv 0]

Theorem 4.2: The zero solution of linear stochastic delay
differential system with logic impulses (9) is p-stable, asymp-
totically p-stable, and exponentially p-stable if and only if
the zero solution of the non-impulsive stochastic delay differ-
ential system (12) is p-stable, asymptotically p-stable, and
exponentially p-stable respectively.

Proof: In linear stochastic delay differential system with
logic impulses (9), letw = rkrl;}\)]({rk—i—)xk, rethis Fetde, Fot

)6 = iniz{ll{rk 4+ Mes Th A+ Ay T+ Ak, T Ak
€

VOLUME 9, 2021

For t € (#, ty+1], denote t = 41 — 07 (0 <6 < 1), then

: =14 ¢r) 9 <max{— 1}
1+6°
and

T 0
10 T ={+¢) <max{lto,l}

According to Theorem 3.3, we can get a conclusion that
the zero solution of linear stochastic delay differential system
with logic impulses (9) is p-stable, asymptotically p-stable,
and exponentially p-stable if and only if the zero solution of
the non-impulsive stochastic delay differential system (12) is
p-stable, asymptotically p-stable, and exponentially p-stable,
respectively.

Theorem 4.3: Assume that

_ﬁ_a>1n(1+w) l+w
2 1+06 1+e

then the SDLI (9) is exponentially stable in mean square.
Where w = Igla}g/i{rk + Aks Tk + Ak, Tr A+ Ak, T+ Aids
€

) +|b+a1b1|

© =iniz{/l{rk + Ay T+ Ay T+ A T+ Ak)
€

Proof: For brevity, denote x = x(¢), x; = x(t — 7), and
=41

_ay (I4d T
_(x(t—r)_<1+¢k_l> s 1€ (e, kt1]

It’s easily to check that,
146 1+ow
T < < -
40 = ~ 146
Let x(¢) be a possible solution of system (12), we choose
Vix,t) = x2, then

=+l
In(1 + ¢x) ( 1+ ¢ ) g
LV = 2x[(————— + +b| —— X
[( - ) T o 7]
1+¢ I=l41
k t 2
+laxx+b | ——— X
1[ 11 1<1+¢k—1> !
= (2@ + 2a + a)x* + 2(b + arby)Kxx,
+ bR
In(1 +
< (2M + 2a + a%)x2 + b+ a1by [K(x* —i—x?)
b2K2 2
In(1 +
(2M +2a+ ai + |b+ a1by|K)x?
+(b21C2+ |b+6l1bl|IC)x
And
2 2
aj In(1 4+ w) l+w
_h T b+aib
2 47T + 1+e Hlbtabil g
In(1 +
> A+ 1K2+ b+ ayb|K
Then,

In(1 +
—(2%“5") +2a+a} + b+ aib|K)

> biK? + b+ arh|1K
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FIGURE2. a=-4,a;=1,b=—

1
3

According to Theorem 3.4 in [29], we can give a
conclusion that, the non-impulsive stochastic delay differ-
ential system (12) is exponentially stable in mean square.
Take Theorem 4.2 into account, the linear stochastic delay
differential system with logic impulses (9) is exponentially
stable in mean square.

Remark 4.2: Theorem 4.2 in [4] can be drawn from the
Theorem 4.3 above, if ry, = 1y = A = Xk =r > —1and
ay =b; =0.

Example 4.2: Consider the following linear SDLI:

dy(t) = (ay(t) + by(t — 0.5))d
+(ayy(t) + by y(t — 0.5))dw(t), t # 0.5k (13)
Y65 = () = deyae), t = 0.5k
with initial condition y() = 1,¢ € [—0.5, 0], and the logic
impulses act as follows:

&) = () = dry(te)

1 1
= y(t)l—-, —5181@(%))

4

9 3
+)’(tk)[z, z]gz(y([k))
1 193 7 T T

_ =, = 1)), t
T3 2][gl(y(k)) 8 (1))l
where g; : R — {81, 8%}, i = 1,2, is a piecewise logical
function as follows:

= y(fk)[—z1

83, |u—0.05 > 0.15,
giw) =4 |
8, lu—0.05] <0.15
and
8, |u+0.1/>02,
8, lu+0.11<02

Obviously, f1(#) = u — 0.05, H(u) = u+ 0.1, c; = 0.15,
¢ = 0.2, g1(u) and g>(u) can be expressed as

&) =

8% , otherwise,

1(w) =
8 8}, ue(—0.1,02)

81552

and

6% , otherwise,

W =151 e =030

It is easy to obtain ¢y, which is chosen from the real
numbers 1, %, 47'1 and 2. Moreover, w = 2, © = 1, that’s clear.
Then by Theorem 4.3, system (13) is exponentially stable in

2

mean squearif—%1 —a>2In3+ gb%+ %|b+a1b1| is hold,
for example, a = —4,a; = 1,b = —%, b = %, showed
in Figure 2.

V. CONCLUSION

In this paper, the stability of stochastic delay differential
systems with variable impulses due to logic choice has been
investigated. Firstly, the author has introduced a class of linear
stochastic delay differential system with variable impulses
due to logic choice, in which the logic impulses generalize the
logic impulses established in [20] and [21]. Then, by estab-
lishing the equivalent relation between the solutions of SDLI
and SD, some stability criteria for SDLI and SD have been
proposed. Finally, the author has discussed the application
in a class of linear stochastic delay differential systems with
logic impulses, including several stability criteria and two
numerical examples.
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