
Received May 9, 2021, accepted May 25, 2021, date of publication June 3, 2021, date of current version June 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085861

Generating Cryptographic S-Boxes
Using the Reinforcement Learning
GIYOON KIM1, HANGI KIM1, YEACHAN HEO 2, YONGJIN JEON 1, AND JONGSUNG KIM 1,3
1Department of Mathematics and Financial Information Security, Kookmin University, Seoul 02707, South Korea
2Gyeongsang National University High School (GNUHS), Jinju 52828, South Korea
3Department of Information Security, Cryptology and Mathematics, Kookmin University, Seoul 02707, South Korea

Corresponding author: Jongsung Kim (jskim@kookmin.ac.kr)

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2021-0-00540, Development of Fast Design and Implementation of Cryptographic Algorithms
based on GPU/ASIC).

ABSTRACT Substitution boxes (S-boxes) are essential components of many cryptographic primitives. The
Dijkstra algorithm, SAT solvers, and heuristic methods have been used to find bitsliced implementations of
S-boxes. However, it is difficult to apply these methods for 8-bit S-boxes because of their size. Therefore,
to implement these S-boxes so that the countermeasure of side-channel attack can be applied efficiently,
using structures such as Feistel, Lai-Massey, and MISTY that can be bitsliced implemented with a small
number of nonlinear operations has been widely used. Since S-boxes constructed with structures consist of
small S-boxes and have specific designs, there are limitations to their cryptographic security and efficiency.
In this paper, we propose a new method for generating S-boxes by stacking bitwise operations from the
identity function, an approach that is different from existing methods. This method can be expressed in
Markov decision process, and reinforcement learning is a suitable solver for Markov decision process. Our
goal is to train this method to an agent through reinforcement learning to generate S-boxes to which the
masking scheme, which is a countermeasure of side-channel attack, can be efficiently applied. In particular,
our method provided various S-boxes superior or comparable to existing S-boxes.We produced 8-bit S-boxes
with differential uniformity 16 (resp. 32) and linearity 128 (resp. 128), generated with nine (resp. eight)
nonlinear operations, for the first time. To our best knowledge, this is the first study to construct cryptographic
S-Box by incorporating reinforcement learning.

INDEX TERMS S-box, masking efficiency, reinforcement learning, bitsliced implementation, linearity,
differential uniformity.

I. INTRODUCTION
To apply security applications to mobile and embedded
platforms, lightweight and efficient cryptographic primitives
are required. Substitution boxes (S-boxes) are representative
nonlinear functions, giving cryptographic primitives Shan-
non’s confusion property [1]. Therefore, finding S-boxes with
sufficient security and efficiency is an important issue for the
designers of cryptographic algorithms.

Side-channel attacks, first published byKocher in 1996 [2],
can draw secret information of cryptographic algo-
rithms from side-channel leakages such as electromag-
netic emissions and power consumption. Since mathematical

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

cryptanalysis alone cannot guarantee the security of cryp-
tographic primitives against side-channel attacks, various
counter measures have been proposed. Techniques to ran-
domize the intermediate values of ciphers are widely used,
and among them, a higher-order Boolean masking technique
is the most popular approach.

The method of implementing an S-box as Table Look
Up (TLU) requires table storage space, and especially when
applying the masking scheme, even more flip-flops are
required. For this reason, in resource-constrained environ-
ments, it is common to implement the logic to build the S-box.
When applying a higher-order Boolean masking scheme to
an S-box, the number of nonlinear operations required for its
implementation greatly affects the efficiency of the scheme.
This is because, when implementing a higher-order Boolean

83092 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2441-0165
https://orcid.org/0000-0002-4049-2228
https://orcid.org/0000-0002-2608-8878
https://orcid.org/0000-0003-1118-7109

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

masking scheme, nonlinear operations have quadratic com-
plexity, O(d2), whereas linear operations have linear
complexity, O(d), where d is the number of operations used.
Since most of the nonlinear operations required to imple-
ment ciphers are used in S-box implementations [3]–[6], it is
important to find S-boxes that have sufficient cryptographic
security and can be implemented with a small number of non-
linear operations. There are limitations to the cryptographic
security provided by S-boxes depending on the number of
their nonlinear operations [7]–[9]. For this reason, studies on
secure S-boxes that can be implemented with few nonlinear
operations have been conducted [10]–[12]. We generalized
this problem to generating S-box by stacking operations, and
formulated this as Markov Decision Process (MDP). Deep
reinforcement learning can be a good solution as a solver for
MDP with high complexity and non-linearity. In this work,
we focus on methods of generating cryptographic S-boxes
with efficient side-channel masking implementations using
reinforcement learning.

A. RELATED WORK
Exhaustive search, algebraic construction, and heuristic
generation have been three popular methods of generating
S-boxes. Since an exhaustive search requires the analysis
of (2n)! S-boxes for n-bit S-boxes, it is very difficult
to find large-sized cryptographic S-boxes. Algebraic con-
struction is a widely used approach to constructing cryp-
tographically secure S-boxes [4], [13]–[18]. In particular,
there are studies to create a secure and bijective S-box
through Cubic Polynomial Mapping and Cubic Fractional
Transformation [19], [20].

Heuristic generation methods include gradient descent,
genetic algorithms, and hill-climbing [21]–[23], and the
application of these algorithms to neural networks [24].

In recent years, security has become ever more important,
even in a lightweight environment in which it is burdensome
to store S-boxes. Therefore, in the S-box design process,
the efficiency of S-box implementation must be considered.

Bitslicing is an implementation technique that can par-
allelize bitwise operations in processors. It can work with
registers larger than one bit and has proven to be very efficient
for many S-boxes [25]–[27]. In the case of bijective 4-bit
S-boxes, several studies that provide cryptanalytic results of
all 16! of them through exhaustive search [28], [29]. Using
tools such as Lighter [30], [31], one can find an efficient
bitsliced implementation for a specific 4-bit S-box. Several
lightweight block ciphers provide bitsliced implementations
with minimal use of nonlinear operations [3], [27], [32].
However, no method has been proposed to find efficient
bitsliced implementations for S-boxes with a size of more
than 5-bit [33]. Stoffelen proposed a method to obtain an
efficient S-box implementation using the SAT solver meeting
various criteria, such as the number of nonlinear operations
and the size of the gate, but is difficult to apply to large-sized
S-boxes such as 8-bit S-boxes [34].

Even if an 8-bit S-box with a desired cryptographic secu-
rity is selected, finding its efficient bitsliced implementa-
tion is challenging. Although many studies have investigated
the efficient implementations of the Advanced Encryption
Standard (AES), still more than 35 nonlinear operations are
required to implement an 8-bit S-box of AES [25], [35], [36].
Lightweight ciphers to which higher-order Boolean masking
is efficiently applied generally adopt 8-bit S-boxes that use
less than 13 nonlinear operations [5], [12]. These S-boxes
are often generated using S-box construction with structures
such as the Lai-Massey and MISTY, which use 3-, 4-, or 5-bit
S-boxes inside, for which an efficient bitsliced implementa-
tion of the generated S-box can be found.

However, the 8-bit S-box construction with structures has
limitations with respect to security and efficiency, because the
properties of the constructed 8-bit S-box are largely based
on its employed construction structures and small S-boxes.
It has been proven that the differential uniformity and lin-
earity of many of 8-bit S-boxes generated using structures
can not be optimal. For instance, the differential uniformity
and linearity of the 8-bit S-box constructed with the MISTY
structure should be 16 and 32 or more, respectively [37].
In particular, the constructionwith structures does not provide
optimal differential uniformity or linearity for given number
of nonlinear operations.

Reinforcement learning is often used in the problem of
finding a new architecture by stacking operations or layers.
Zoph et al. succeeded in searching for an efficient architec-
ture by using reinforcement learning for neural architecture
and neural optimizer search [38], [39]. Azalia et al. used
reinforcement learning for chip placement and found unique
architectures that were never discovered before [40]. These
studies are similar to our studies to generate a secure S-box
by stacking bitwised operations, and to reduce the number of
nonlinear operations in the process.

B. CONTRIBUTIONS
In this paper, we propose a new method for generating
S-boxes by stacking bitwise operations from the identity
functionwith reinforcement learning, which is the opposite of
the methods generally used to find bitsliced implementations
of specific S-boxes.

Our S-box generation method repeats an action that stacks
bitwise operations to the bitsliced implementation of the
current S-box, deriving the bitsliced implementation of next
S-box (Section II-B). Since this generation method can be
expressed as a Markov model, it can be solved using rein-
forcement learning (RL). We trained this S-box generating
procedure to the RL agents. With this approach, an S-box
and its bitsliced implementation are generated simultane-
ously. Our methodology could easily generate 4-bit S-boxes
corresponding to the state of the art. In the case of 8-bit
S-boxes, our method generates an S-box with differential
uniformity 16, but implemented with only 9 nonlinear opera-
tions, which can not be constructed in the existing structures;
for differential uniformity 16, Feistel, unbalanced MISTY

VOLUME 9, 2021 83093

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

FIGURE 1. S-box generation workflow using reinforcement learning.

(and unbalanced Bridge [41]) and Lai-Massey (and MISTY,
Bridge [41]) requires at least 10, 11 and 12 nonlinear oper-
ations, respectively. We could also generate S-boxes with
differential uniformity 32, implemented with only 8 nonlin-
ear operations. The SKINNY S-box, which is one of the
most lightweight 8-bit S-boxes proposed, is also implemented
using 8 nonlinear operations, but its differential uniformity is
64. Furthermore, 12 nonlinear operations were used to gen-
erate S-boxes having the same security properties as existing
S-boxes such as Robin [12] and LITTLUN [5].

Our contributions are as follows:

1) We introduce a new S-box generation methodology
using reinforcement learning.

2) We show that our methodology is valid by generating
S-boxes superior or comparable to the state-of-the-art
S-boxes.

3) We generate S-boxes with differential uniformity 16,
implemented with 9 nonlinear operations, which is
beyond the limit of S-box construction with structures.

4) We improve the differential uniformity over the
SKINNY S-box implemented with the same number of
nonlinear operations and the same linearity.

Fig. 1 illustrates the workflow of our S-box generation
methodology.

II. REINFORCEMENT LEARNING FOR GENERATING
S-BOXES AND THEIR BITSLICED IMPLEMENTATIONS
Reinforcement learning (RL) is a set of algorithms that solve
problems expressed in the MDP. If a current state is prob-
abilistically derived from a previous state, and the previous
state was also derived in the same manner, this stochastic
process is called a Markov chain. Such a model, in which the
current state is expressed as a result generated by an action
on the previous state, can be solved using RL.

Our S-box generation method repeatedly takes an action
that adds bitwise operations, starting from the initial
state (IS). It does not generate the bitsliced implementation

of a specific given S-box, but finds a secure S-box using
less than or equal to a set number of operations. We found
that this S-box generation method can be expressed in MDP,
and by applying RL, S-boxes with desired conditions can
be generated. We aimed to generate S-boxes that can be
implemented with minimum of nonlinear operations, while
having certain security for differential and linear cryptanaly-
sis. The main purpose of our RL agents is to generate a secure
S-box, while reducing the number of nonlinear operations.
In this section, we describe our detailed environment, reward
functions, actions and state representations for the RL agents.

A. CONSTRUCTION OF THE ENVIRONMENT
S-boxes can be expressed in Algebraic Normal Form (ANF),
so all S-boxes can be (bitsliced) implemented using only
AND, XOR, NOT, and TEMP (MOV) operations.1

Among these operations, the NOT operation has the fol-
lowing properties.

(∼ b) ∧ c = (b ∧ c)⊕ b,

(∼ b) ∧ (∼ c) = ∼ ((b ∧ c)⊕ b⊕ c).

With these properties, the NOT operation can be moved
to the outermost I/O without changing the number of non-
linear operations. Even if the outermost NOT operation is
removed, affine equivalence2 is maintained. The NOT oper-
ation does not affect the differential uniformity and linearity.
Thus, we could exclude NOT operations in our environment.
However, if NOT operation is not used, input 0 becomes
output 0, and as a result, at least one fixed point occurs with
a probability of 1. Therefore, if necessary, in order to remove
the fixed point, a NOT operation should be added on the
bitsliced implementation of the generated S-box.

1All other operations are also expressed as logical gates of AND,
XOR, and NOT. For example, OR can be created with AND and XOR
(A ∨ B =(A ∧ B) ⊕ A ⊕ B).

2The differential uniformity and linearity of an S-box do not change in
the same affine equivalence class [28], [42]. In this paper, we consider
differential uniformity and linearity as the security properties of an S-box.

83094 VOLUME 9, 2021

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

FIGURE 2. S-box generation process using RL.

We devised an environment in which an agent can stack
AND and XOR operations to generate bijective S-boxes.
Modern block ciphers proposed after DES [43] do not often
use non-bijective S-boxes, because of the decrease in entropy
and the existence of zero output difference even for a non-zero
input difference of S-boxes. We induced RL to generate
bijective S-boxes by limiting the actions that can occur in the
environment.

There are several cases in which non-bijective S-boxes
are generated. If the last operation of an S-box implemen-
tation is AND, only a non-bijective S-box can be generated.
A non-bijective S-box can be also generated whenANDoper-
ations are used consecutively, or when TEMPmemory is used
in the implementation. In our experiments, as the number
of ANDs or TEMP memories used in the implementation
increased, it became more difficult to generate a bijective
S-box. Therefore, to make all S-boxes generated using RL
bijective, we devised an environment that uses only XOR and
AND-XOR operations. The definition of XOR operation and
AND-XOR operation used in this environment are as follows.

XOR(a, b) := X [a]← X [a]⊕ X [b] a 6= b, a, b ∈ Zn
AND− XOR(a, b, c) := X [a]← X [a]⊕ (X [b] ∧ X [c])

|{a, b, c}| = 3, a, b, c ∈ Zn
X [i] : ithposition of bit tn the n-bit S-box

The RL agents can stack the AND-XOR operation or the
XOR operation as an action of every step. We represent the
state of applying the ith step to IS as Stacki. The IS is Stack0,
and the last state, Stackend , becomes an S-box when the
episode is terminated.

B. PROBLEM STATEMENT
In the environment defined in Section II-A, the RL agents
updates and generates an S-box by stacking AND-XOR or
XOR operations onto IS. When the RL agents are using
AND-XOR operations, the environment checks the cryp-
tographic properties of the S-box, and provides rewards
to the RL agents according to the reward setting of the
environment (Fig. 2).
RL problems can be formulated as MDPs, consisting

of four key elements: states, actions, state transitions,

and rewards. The meaning of each element and the explana-
tion of our case are as follows.

1) STATES
a: THE SET OF POSSIBLE OBSERVATION STATES OF THE
ENVIRONMENT
We tried cryptographically meaningful deterministic or
stochastic data as an observation state, such as the S-box
differential distribution tables (DDTs) and linear approxima-
tion tables (LATs), the target cryptographic properties of an
S-box, and the current cryptographic properties of the S-box,
but most of the combinations produced similar performance.
Therefore, we used only the S-box table as the observation
state, as it was the most effective in terms of training speed
and memory. With this observation state, the next state is
deterministically chosen by the RL agents.

2) ACTIONS
a: THE SET OF ACTIONS THAT CAN BE TAKEN BY THE
AGENTS
In our environment, the RL agents select AND-XOR or XOR,
and select the bit positions to apply. The number of cases
where 3 bits are selected to apply AND-XOR to n bits is
n×(n−1)×(n−2). Although the bits to apply AND-XOR can
be swapped, the results are same. Thus, the number of cases
has to be divided by two. The number of cases where 2 bits
are selected to apply XOR to n bits is n × (n − 1). For this
reason, the RL agents choose one of (n× (n− 1)× (n− 2))/
2 + n× (n− 1) actions at each step.

3) STATE TRANSITION PROBABILITY
a: THE PROBABILITY OF BEING UPDATED TO NEXT STATE
WHEN AN ACTION IS APPLIED TO THE CURRENT STATE
Since the state of our environment is deterministically gen-
erated, probability of transition from the current state to the
next state is 1.

4) REWARDS
a: EXPECTED REWARD FOR AN ACTION IN THE CURRENT
STATE
The environment gives a reward to the RL agents based on
the differential uniformity or linearity of the updated state,
or the number of operations used. Differential uniformity

VOLUME 9, 2021 83095

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

and linearity can be derived from the DDT and the LAT,
respectively, in the process of generating the S-box.

The DDT of n-bit S-box S (DDTS) is defined as below, for
1a, 1b ∈ Zn2,

DDTS (1a,1b) = |{x ∈ Zn2|S(x)⊕ S(x ⊕1a) = 1b}|.

The differential uniformity S is the largest value among the
entries of DDTS , excluding the value of DDTS (0, 0).
The LAT of n-bit S-box S (LATS) is defined as below;

for 3a, 3b ∈ Zn2,

LATS (3a,3b) = |{x ∈ Zn2|x ·3a = S(x) ·3b}|.

The largest value among the terms of LATS excluding the
entry (0, 0) is defined as linearity.

We experimented with various reward shapings to satisfy
the cryptographic properties and minimize the number of
nonlinear operations. We and selected three types of condi-
tions with which to train the RL agents. All reward shaping
was experimentally selected in consideration of the reward
decay 0.99 to minimize the number of AND-XORs. The three
types of rewards are as follows:

The first reward shaping below induces an increase in
cryptographic security within an episode.

reward1 =

α When using AND-XOR and

α is a positive number or zero
α − 1 When using AND-XOR and

α is a negative number
termination condition1: N steps (We set N = 500.)

Here, α= (previous differential uniformity - current differ-
ential uniformity) + (previous linearity - current linearity).
In this reward shaping, when the RL agents use the

AND-XOR operation as an action, a reward is given. The
RL agents will receive a penalty whenever cryptographic
security is decreased, i.e., α is negative. This penalty prevents
the RL agents from repeating the same action. As the termi-
nation condition in this reward, we set N = 500, which is a
moderately large number experimentally selected.

The second reward shaping induces a reduction of the
number of nonlinear operations while satisfying the specified
cryptographic properties of the S-box.

reward2 =

−0.001 When using XOR
−1.001 When using AND-XOR
−250 When reach maximum step

termination condition2: if satisfying some specific

cryptographic properties, or N steps (we set N = 250.)

In this reward shaping, RL agents can receive a reward in
various cases. The episode is terminated when some spec-
ified cryptographic properties (which will be explained in
Section III) are satisfied, or the maximum length of the
episode is reached. If the episode ends and the S-box does
not satisfy the cryptographic properties, the RL agents get a
large penalty. One of the methods used to achieve the goal

and quickly terminate the episode is to give a small penalty
for each step.When AND-XOR is used, an additional penalty
is given. With these settings, the RL agents will try to end
the episode quickly, using as few AND-XOR operations as
possible.

Our RL process using reward 1 or 2 is implemented
based on the OpenAI gym style interface as shown in the
algorithm 1 [44].

Algorithm 1 Detailed Process of reward1 or 2
Environment

1: agent← Reinforcement learning algorithm
2: ENV← S-box generation environment
3: ENV.reward_function← rewardn
4: IS← n bit identity function
5: mem=[]
6: while Evaluation do
7: ENV.reset()

/* Stack0 ← IS */
8: done← False
9: i← 0
10: while Not done do
11: act← agent.select_action(Stacki)

/* act is derived from policy */
12: Stacki+1, reward, done← Step(act)
13: mem.append(Stacki, Stacki+1, reward, done, act)
14: i+=1
15: end while
16: agent.train(mem, network, hyperparameters)
17: mem.clear()
18: sbox← generates(agent)
19: result←Measure security and efficiency (sbox)
20: if Does the result meet the criteria? then
21: break
22: end if
23: end while

The last reward shaping induces the RL agents to learn to
improve the cryptographic properties within N AND-XORs.

reward3 =

+1 When using AND-XOR
improves security

0 When using AND-XOR
maintains security

−1.1 When using AND-XOR
weakens security

−100 When reach maximum step
termination condition3:N steps or usingM AND-XORs

(In our settings, N = 100 and M ≤ 4.)

In this reward shaping, the episode is terminated when
maximum length of the episode is reached, or the maxi-
mum available AND-XORs are all used. The environment
measures the cryptographic properties of the S-box when

83096 VOLUME 9, 2021

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

AND-XOR is used, and gives a reward of +1 if the security
was improved, or a penalty of −1.1 if its security was wors-
ened. This reward shaping is intended to force the RL agents
to explore more. A detailed explanation of reward3 will be
covered in Section III-B.

C. SELECTED ALGORITHMS FOR RL
In general, for sample-efficient methods, offline learning is
effective, and for other methods, online learning is suitable.
Even if all the efficient samples that can be implemented
with a small number of nonlinear operations among S-boxes
announced so far are used, sufficient learning cannot be
achieved. In addition, while our S-box generation method is a
general methodology, most of the efficient samples published
so far are not suitable for learning because almost all of
them are biased data generated through the structure. So,
we have chosen online algorithms such as Asynchronous
PPO, Impala without replay buffer. The best results we found
is when we used Proximal Policy Optimization (PPO), Asyn-
chronous Proximal Policy Optimization (APPO), and IMPor-
tance weighted Actor-Learner Architecture (IMPALA) [45],
[46]. These three algorithms are all designed for learning in
a discrete action space.

PPO is a Policy-Based algorithm derived from Trust region
policy optimization (TRPO) [47]. It is an algorithm that takes
only the merits of TRPO and excludes the disadvantages.
Unlike TRPO, which approximates the objective function
using second-order approximation, only first-order approxi-
mation is used in PPO. Importance-Sampling, Ratio Clipping,
and KL Penalty terms are used to perform stable weight
updates, and have high convergence, but due to the nature
of the Policy-Based algorithm, it is easy to fall into local
minima.

APPO is the asynchronous version of PPO. It has advan-
tages similar to those of A3C [48] which are obtained through
an asynchronous update, and more stable and faster weight
updates are possible by reducing the Time Related Correla-
tion between samples. However, the algorithm has a disad-
vantage because it is not efficient, and it is still easy for it to
fall into local minima.

IMPALA is an algorithm that can be used off-policy
by using importance sampling in a representative form of
policy-basedRL. It is sample efficient, because ReplayBuffer
is used, and its training is also fast, because Multi-Actor and
Multi-Learner are used. Due to the parallel structure, the gra-
dient is not shared like A3C, and experiences are shared like
APE-X, so the delay for weight update is also small. Stable
update is also possible through the V-Trace formula.

III. EXPERIMENT AND RESULTS
Our experiments were conducted using the PPO, APPO, and
IMPALA learning algorithms. We used Ray [49] as a univer-
sal API for building distributed applications, and RLlib [50]
which is an open-source library for reinforcement learn-
ing, to ensure the accuracy of learning algorithms. We used
a PC with an AMD Ryzen Threadripper CPU 2990WX

Processor@ 3.00GHz, 128 GB RAM, NVIDIA GTX 1080Ti
for our experiments, and it took about one month for each
deep reinforcement learning agent to be trained. We used
a basic architecture that returns policy and value after the
fully connected layer for our RL agents’s policy and value
network (Fig. 3).

FIGURE 3. Policy and value network architecture (FC represents Fully
Connected Layer.

A. 4-BIT S-BOXES
1) reward1 EXPERIMENTS
We checked whether the task of generating the S-boxes
having optimal3 differential uniformity and linearity could
be learned by RL agents. We conducted the experiment by
setting IS as the identity function and the reward function as
reward1. It was possible to generate 4-bit S-boxes with opti-
mal differential uniformity 4 and linearity 8, even when the
actions were randomly selected. In order to clarify whether
the training was producing the desired results, we calculated
the average cryptographic properties for each episode. In this
paper, we used 64 workers per global network. A lowered
average value indicates that the proportion of S-boxes with
optimal differential uniformity and linearity among the gen-
erated S-boxes increases, and also indicates that learning is
continuously progressing. Fig. 4 shows moving average lines
of the learning results.

FIGURE 4. Results of learning with reward1.

2) reward2 EXPERIMENTS
Based on Section III-A1), we checked whether the task
of optimizing the number of AND operations to generate
S-boxes with an optimal security could be learned by RL
agents or not. We conducted the experiment by setting IS
as the identity function and the reward function as reward2.

3One of the equivalence classes named optimal was established by Lean-
der and Poschmann [42].

VOLUME 9, 2021 83097

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

Fig. 5 shows moving average lines of the number of opera-
tions for each learning episode. According to [51], the min-
imum number of nonlinear operations to implement 4-bit
S-box with optimal security is 4. Our RL agents that were
trained by PPO, APPO, or IMPALA generated S-boxes hav-
ing optimal security, implemented with 4 ANDs. Fig. 6 is one
of the S-boxes that the RL agents generated with reward2;
its C implementation is given in Appendix . The results of
these experiments demonstrate that it is possible to train the
agents to generate S-boxes by considering their cryptographic
properties and using a bitsliced implementation of S-box
via RL.

FIGURE 5. Results of learning with reward2.

FIGURE 6. S-box logic circuit implemented with 4 ANDs generated by
RL agents using reward2 (differential uniformity 4, linearity 8).

B. 8-BIT S-BOXES
1) reward1 EXPERIMENTS
Unlike 4-bit S-boxes, no efficient tool has been proposed
to produce a bitsliced implementation of 8-bit S-boxes. The
tools to find bitsliced implementation using Dijkstra’s algo-
rithm or the SAT solvers, are efficient for 4-bit S-boxes,
but they cannot be used for 8-bit S-boxes because of the
large number of possible cases. Therefore, S-box construc-
tion structures such as Feistel, Lai-Massey and MISTY are
usually used to generate 8-bit S-boxes to bitsliced implement
them [5], [37].We investigated various S-boxes with bitsliced
implementations, and we set as our goal the generation of
S-boxes with a differential uniformity 64 and a linearity
128 using 8 ANDs,4 or with a differential uniformity 16 and
a linearity 64 using 12 ANDs.5

Since 8-bit S-boxes are not easily generated if actions are
taken randomly, we checked whether the task of generating
the S-boxes with differential uniformity 16 and linearity 64 is
possible for the RL agents. We conducted the experiment by
setting IS as the identity function and the reward function

4Properties of S-box used in SKINNY [52].
5Properties of S-box used in Robin and FLY [5], [12].

as reward1. All of the agents could generate secure S-boxes
with differential uniformity 16 and linearity 64 within a short
time.

2) reward2 EXPERIMENTS
We confirmed that our RL improved the cryptographic prop-
erties of S-boxes using reward1. We then used reward2 to
reduce the number of AND-XOR operations to implement
an S-box at the same time. We conducted this experiment by
setting IS as the identity function and reward2 as the reward
function. Fig. 7 shows the moving average lines of the usage
of XORs (left) and AND-XORs (right) at the end of episode.

FIGURE 7. Results of learning with reward2.

We can observe that the RL agents keep its cryptographic
properties, but use XOR more, while reducing the use of
AND-XOR. If the S-box is generated using only linear oper-
ations, only cryptographically weak S-boxes will be gener-
ated. Therefore, it is necessary to use nonlinear operations to
achieve cryptographic security of the S-box, and the linear
operations serve an auxiliary role in maximizing the effect of
the nonlinear operation. The RL agents initially used many
ANDs, but it was trained to maximize the effect of the nonlin-
ear operations by increasing the number of XORs, and setting
them in an appropriate position. This result was obtained
because the penalty for increasing the number of nonlinear
operations was relatively large compared to the penalty for
increasing the number of linear operations. After continuous
learning, the RL agents generated S-boxes with differential
uniformity 16 and linearity 64, implemented with 12 ANDs.
Fig. 8 represents one of these S-boxes; its C implementation
is given in Appendix

However, the number of AND-XORs was not fur-
ther reduced, even with additional learning. Therefore,
we changed the environment, taking this issue into account.
We created a new environment with reward2 that is designed
to consider only one of the cryptographic properties at a
time; differential uniformity, or linearity, not both. As a result,
the RL agents generated S-boxes with a differential unifor-
mity 16, implemented with 11 ANDs. However, the linearity

83098 VOLUME 9, 2021

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

FIGURE 8. S-box logic circuit implemented with 12 ANDs generated by RL agents using reward2 (differential uniformity of 16, linearity 64).

of the S-boxes generated by the RL agents still had a limit
of 64, implemented with 12 ANDs, and 80 implemented with
11 ANDs. To further improve these results, we progressed
the learning by tuning the hyper-parameters in various ways.
However, the RL agents did not encounter any new cases dur-
ing its exploration, and thus the entropy continued to decline;
entropy generally rises when the RL agents encounters a
new case. Based on these results, we determined that tuning
of the hyperparameters alone does not allow the RL agents
to explore sufficiently. To solve this exploration problem,
we designed and applied a new environment with reward3,
as presented in Section III-B3.

3) reward3 EXPERIMENTS
In order to increase the exploration carried out by the agents,
we changed the IS of the environment from the identity
function to a variable, and defined the reward function as
reward3. This aims to improve security with M AND-XOR
operations from its current state. The RL agents is rewarded
for improving security and penalized if not.

When using reward3, the value ofM needs to be adjusted
appropriately. IfM is small, the RL agents can never improve
the security of the S-box, depending on the size of the S-box.
However, ifM is set too high, the RL agents should consider
a sparse reward. Therefore, we devised a method of changing
the IS, to address this consideration.

The environment pushes the S-box generated byworkers in
each episode into the queue. When the environment is reset,
it sets the IS to an S-box randomly popped from the queue.
These environments have multiple start points, allowing for
better exploration and leading to positive rewards even ifM is
small. Algorithm 2 shows the details of the learning process.

After sufficient training of the RL agents, S-boxes with dif-
ferential uniformity 32 and linearity 128, implemented with
8ANDswere generated.We could also generate S-boxes with
differential uniformity 16 and linearity 128, implemented
with 9 ANDs. Fig. 9 shows one of the S-boxes that the
RL agents generated with reward3; its C implementation is
given in Appendix .

Algorithm 2 Detailed Process of reward3 Environment
1: agent← Reinforcement learning algorithm
2: ENV← S-box generation environment
3: ENV.reward_function← reward3
4: N ← 100; M ← 2
5: In← n bit identity function
6: Q0← {In}
7: mem = []
8: for i ∈ 1, . . . , n do

Qi← Empty_Queue
9: end for
10: while Evaluation do
11: Qk

$
← {Q0,Q1, . . . ,Qn}

12: if Qk == Empty_Queue then
13: continue
14: end if
15: Stack0

$
← Qk ; i← 0

16: done← False
17: while Not done do
18: act← agent.select_action(Stacki)

/* act is derived from policy */
19: Stacki+1, reward, done← Step(act)
20: mem.append(Stacki, Stacki+1, reward, done, act)
21: end while
22: Qk+M .append(Stackend)
23: agent.train(mem, network, hyperparameters)
24: mem.clear()
25: sbox← generates(agent)
26: result←Measure security and efficiency (sbox)
27: if Does the result meet the criteria? then
28: break
29: end if
30: end while

However, in the case of linearity, there was still no signif-
icant improvement in performance, and it was still 64 when
implemented with 12 ANDs.

VOLUME 9, 2021 83099

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

FIGURE 9. S-box logic circuits generated by RL agents implemented with 8 ANDs using reward3 (differential uniformity 32, linearity 128,
above) and implemented with 9 ANDs using reward3 (differential uniformity 16, linearity 128, below).

a: LIMITATIONS OF THE EXISTING STRUCTURE-BASED 8-BIT
S-BOX CONSTRUCTION WITH 9 ANDs
Feistel, Lai-Massey and MISTY structures require three
small S-boxes, at least two of which are active. Accord-
ing to [37], when two S-boxes are active in each structure,
the infimum of the products of the differential uniformity
of each S-box becomes the differential uniformity of the
generated S-box. 9 ANDs can be distributed as a combination
of (3,3,3), (4,3,2), or (4,4,1) for the three small 4-bit S-
boxes. A bijective 4-bit S-box can have differential unifor-
mity 4 when 4 ANDs are used, and differential uniformity
8 when 3 ANDs are used [51]. Furthermore, based on our
exhaustive search, a bijective 4-bit S-box can have differ-
ential uniformity 8 when 2 ANDs are used, and differential
uniformity 16 when 1 AND is used. Thus, the infimum of
differential uniformity for each combination is 64. In the case
of Feistel, a non-bijective S-box can be partially used. In this
case, the infimum is 32.

If the structure used is unbalanced, one 3-bit S-box and two
5-bit S-boxes are required. In the case of the 5-bit S-boxes,
its infimum differential uniformity is 4 when 5 ANDs and is
2 when 7 ANDs are used [53]. The 3-bit S-box can be almost
perfect nonlinear (APN6), when 3 ANDs are used. Then it
is impossible to construct an 8-bit S-box with differential
uniformity 16 using 9 ANDs, if the 8-bit S-box is constructed
using one 3-bit S-box and two 5-bit S-boxes. The reason is as
follows.

i) When the 3-bit S-box is constructed with 3 ANDs,
remaining 6 ANDs can be divided into (6,0), (5,1),
(4,2), (3,3) for two 5-bit S-boxes.

ii) When the 3-bit S-box is constructed with 2 ANDs,
the remaining 7 ANDs can be divided into (7,0), (6,1),
(5,2), (4,3) for two 5-bit S-boxes.

6The differential uniformity of APN function is 2.

iii) When the 3-bit S-box is constructed with 1 AND,
the remaining 8 ANDs can be divided into (8,0), (7,1),
(6,2), (5,3), (4,4) for two 5-bit S-boxes.

iv) Andwhen the 3-bit S-box is constructedwith noANDs,
the remaining 9 ANDs can be divided into (9,0), (8,1),
(7,2), (6,3), (5,4) for two 5-bit S-boxes.

In all of these combinations, the products of differential
uniformity of two 5-bit S-boxes are each greater than 16.
In addition, even if two 5-bit S-boxes have differential uni-
formity 4 when using 5 ANDs each, differential uniformity
of constructed S-box cannot be 16 because 3-bit S-box will
have differential uniformity 8. Therefore, to construct an
8-bit S-box with differential uniformity 16 in an unbalanced
structure, at least 11 ANDs are required (3 for 3-bit S-box and
4 for 5-bit S-boxes) [11], [12].

Our S-box generation method overcomes the above lim-
itations, as we have proposed an S-box with differential
uniformity 16 that can be implemented with only 9 ANDs.

IV. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new S-box generation method by
stacking bitwise operations from the identity function, which
is a different approach from existing methods. Since our
method can be expressed as aMarkovmodel, we could utilize
reinforcement learning (RL). We trained RL agents to stack
XORs and AND-XORs, to generate secure and efficient S-
boxes. The RL agents created secure S-boxes with fewer and
fewer ANDs, as training proceeded. Finally, we succeeded
in training the RL agents to generate meaningful 4-bit and
8-bit S-boxes. Our RL agents achieved 4-bit S-boxes with
optimal security, implemented with 4 ANDs, which is proven
to be the minimum number. They also achieved 8-bit S-boxes
with differential uniformity 16 and linearity 64, implemented
with 12 ANDs. Furthermore, our RL agents generated 8-bit
S-boxes with differential uniformity 16, implemented with
only 9 ANDs, and they generated 8-bit S-boxes with the same

83100 VOLUME 9, 2021

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

linearity 128 and the same number of nonlinear operations
8 as SKINNY, while providing differentail uniformity 32 bet-
ter than that of SKINNY. Table 1 presents a comparison of
various S-boxes.

TABLE 1. Comparison of 4- and 8-bit S-boxes.

In the papers proposing SKINNY and Midori, they ensure
security against differential cryptanalysis (DC) and linear
cryptanalysis (LC) by providing the minimum number of
active S-boxes for each round. Since those figures are cal-
culated based on the linear layer and structure of each block
cipher, the figures do not change even if the S-box is replaced.
More precisely, replaced S-boxes to SKINNYmake the resis-
tance of DC and LC higher than or equal to that of the original
cipher, while requiring more nonlinear operations. As for the
Midori cipher, they also provide higher or equal resistance
of DC and LC as well as they reduce the number of required
nonlinear operations. If the S-boxes in Listings 2, 3, and 4 are
applied to SKINNY and Midori, the security against DC,
LC and the number of nonlinear operations to implement the
block cipher are as in Table 2.

TABLE 2. Changes in DC, LC security and number of nonlinear operations
when replacing SKINNY and Midori’s S-box.

In Fig. 7, we can see that the number of AND-XOR opera-
tions decreases, but the number of XOR operations increases
according to the reward shaping of the 8-bit S-box. Reducing
the number of ANDs is a very important task for efficient
side-channel countermeasures, but the increased number of
XORs increases the implementation cost in environments in

LISTING 1. 4-bit S-box (Differential uniformity 4, Linearity 8).

LISTING 2. 8-bit S-box with 9 nonlinear operations (Differential
uniformity 16, Linearity 128).

which side-channel attacks are infeasible. Therefore, it is
necessary to study reward shaping that decreases the number
of linear operations, as well as the number of nonlinear
operations. We also experimented the optimization of AND-
depth [41] (data not shown). In this environment, we gave
different rewards according to the cryptographic properties
and AND-depth at the end of the episode. We could generate
4-bit S-boxes with optimal cryptographic properties and an
AND-depth of 2, which is the best AND-depth. For 8-bit
S-boxes, we could generate S-boxes with an AND-depth of 5,

VOLUME 9, 2021 83101

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

LISTING 3. 8-bit S-box with 8 nonlinear operations (Differential
uniformity 32, Linearity 128).

differential uniformity 16 and linearity 64, while the best
AND-depth of the 8-bit S-boxes was 2 [41].

We believe that there are still various methods which could
be used to optimize our RL environment to generate better
S-boxes. We also believe that S-box generation using
RL agents can be used for the generation of S-boxes under
different conditions. In future work, the following would be
interesting research topics:

1) We used a basic network architecture. Which is the best
network model for S-box generation through reinforce-
ment learning?

2) How can we upgrade our S-box generation method to
generate bijective S-boxes while using temp memory?

3) Can RL be used to generate super S-boxes such as
16- and 32-bit S-boxes?

4) We only used a model-free algorithm. What would be
the results if a model-based algorithm is used?

LISTING 4. 8-bit S-box with 12 nonlinear operations (Differential
uniformity 16, Linearity 64).

83102 VOLUME 9, 2021

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

APPENDIX. BITSLICED IMPLEMENTATION CODES OF
NEW S-BOXES
S-boxes generated by Listings 1,2,3 and 4 all have multiple
fixed points. By adding the following operations to the end
of Listing, one can reduce the number of fixed points while
maintaining the DC and LC security.

1) Listing 1: X [0]∧ = NOT (FP:1)
2) Listing 2: X [1]∧ = NOT (FPs:0)
3) Listing 3: X [0]∧ = NOT (FPs:0)
4) Listing 4: X [3]∧ = NOT (FPs:0)

These operations of eliminating fixed points can also be
defined in a linear layer rather than a nonlinear layer.

REFERENCES
[1] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ Bell Syst.

Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.
[2] P. C. Kocher, ‘‘Timing attacks on implementations of diffie-hellman, RSA,

DSS, and other systems,’’ in Advances in Cryptology—CRYPTO (Lecture
Notes in Computer Science), vol. 1109. Springer, 1996, pp. 104–113.

[3] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
‘‘GIFT: A small present—Towards reaching the limit of lightweight
encryption,’’ in Proc. CHES, in Lecture Notes in Computer Science,
vol. 10529, W. Fischer and N. Homma, Eds. Cham, Switzerland: Springer,
2017, pp. 321–345.

[4] B. Gérard, V. Grosso, M. Naya-Plasencia, and F. Standaert, ‘‘Block ciphers
that are easier to mask: How far can we go,’’ in Proc. 15th Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES) in Lecture Notes in Com-
puter Science, vol. 8086, G. Bertoni and J. Coron, Eds. Santa Barbara, CA,
USA: Springer, Aug. 2013, 2013, pp. 383–399.

[5] P. Karpman and B. Grégoire, ‘‘The LITTLUN S-box and the fly block
cipher,’’ in Proc. Lightweight Cryptogr. Workshop, 2016, pp. 17–18.

[6] W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede,
‘‘RECTANGLE: A bit-slice lightweight block cipher suitable for multiple
platforms,’’ Sci. China Inf. Sci., vol. 58, no. 12, pp. 1–15, Dec. 2015.

[7] J. Boyar and M. G. Find, ‘‘Multiplicative complexity of vector valued
Boolean functions,’’ Theor. Comput. Sci., vol. 720, pp. 36–46, Apr. 2018.

[8] J. Boyar et al., ‘‘The relationship between multiplicative complexity and
nonlinearity,’’ in Proc. Int. Symp. Math. Found. Comput. Sci. Berlin,
Germany: Springer, 2014, pp. 130–140.

[9] J. Boyar, M. G. Find, and R. Peralta, ‘‘On various nonlinearity measures
for Boolean functions,’’ Cryptogr. Commun., vol. 8, no. 3, pp. 313–330,
Jul. 2016.

[10] J. Bahrami, V. B. Dang, A. Abdulgadir, K. N. Khasawneh, J.-P. Kaps, and
K. Gaj, ‘‘Lightweight implementation of the LowMC block cipher pro-
tected against side-channel attacks,’’ in Proc. 4th ACM Workshop Attacks
Solutions Hardw. Secur., Nov. 2020, pp. 45–56.

[11] H. Kim et al., ‘‘PIPO: A lightweight block cipher with efficient higher-
order masking software implementations,’’ in Proc. Int. Conf. Inf. Secur.
Cryptol. Cham, Switzerland: Springer, 2020, pp. 99–122.

[12] V. Grosso, G. Leurent, F. Standaert, and K. Varici, ‘‘Ls-designs: Bitslice
encryption for efficient masked software implementations,’’ in Proc. 21st
Int. Workshop, in Lecture Notes in Computer Science, vol. 8540, C. Cid
and C. Rechberger, Eds. London, U.K.: Springer, Mar. 2014 pp. 18–37.

[13] E. S. Abuelyman, A.-A. S. Alsehibani, and S. Arabia, ‘‘An optimized
implementation of the s-box using residue of prime numbers,’’ Int. J.
Comput. Sci. Netw. Secur., vol. 8, no. 4, pp. 304–309, 2008.

[14] L. Cui and Y. Cao, ‘‘A new S-box structure named affine-power-affine,’’
Int. J. Innov. Comput., Inf. Control, vol. 3, no. 3, pp. 751–759, Jun. 2007.

[15] J. Kim* and R. C.-W. Phan, ‘‘Advanced differential-style cryptanalysis of
the NSA’s skipjack block cipher,’’Cryptologia, vol. 33, no. 3, pp. 246–270,
Jul. 2009.

[16] K. Nyberg, ‘‘Differentially uniform mappings for cryptography,’’ in Proc.
Workshop Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer,
1993, pp. 55–64.

[17] M. T. Tran, D. K. Bui, and A. D. Duong, ‘‘Gray S-box for advanced
encryption standard,’’ in Proc. Int. Conf. Comput. Intell. Secur., Dec. 2008,
pp. 253–258.

[18] X. Yi, S. Xin Cheng, X. Hu You, and K. Yan Lam, ‘‘A method for
obtaining cryptographically strong 8×8 S-boxes,’’ in Proc. GLOBECOM
IEEE Global Telecommun. Conference. Conf. Rec., 1997, pp. 689–693.

[19] A. Zahid, M. Arshad, and M. Ahmad, ‘‘A novel construction of effi-
cient substitution-boxes using cubic fractional transformation,’’ Entropy,
vol. 21, no. 3, p. 245, Mar. 2019.

[20] A. Zahid and M. Arshad, ‘‘An innovative design of substitution-boxes
using cubic polynomial mapping,’’ Symmetry, vol. 11, no. 3, p. 437,
Mar. 2019.

[21] O. Kazymyrov, V. Kazymyrova, and R. Oliynykov, ‘‘A method for genera-
tion of high-nonlinear S-boxes based on gradient descent,’’ IACR Cryptol.
ePrint Arch., vol. 2013, p. 578, Jun. 2013.

[22] K. Knezevic, ‘‘Combinatorial optimization in cryptography,’’ in Proc.
40th Int. Conv. Inf. Commun. Technol., Electron. Microelectron. (MIPRO),
May 2017, pp. 1324–1330.

[23] W. Millan, ‘‘How to improve the nonlinearity of bijective s-boxes,’’ in
Proc. 3rd Australas. Conf., Inf. Secur. Privacy, (ACISP) in Lecture Notes
in Computer Science, vol. 1438, C. Boyd and E. Dawson, Eds. Brisbane,
QLD, Australia: Springer, Jul. 1998, pp. 181–192.

[24] P. Kotlarz and Z. Kotulski, ‘‘On application of neural networks for S-boxes
design,’’ in Proc. Int. Atlantic Web Intell. Conf. Adv. Web Intell. 3rd Int.
Atlantic Web Intell. Conf., (AWIC) in Lecture Notes in Computer Science,
vol. 3528, P. S. Szczepaniak, J. Kacprzyk, and A. Niewiadomski, Eds.
Lodz, Poland: Springer, Jun. 2005, pp. 243–248.

[25] M. Matsui and J. Nakajima, ‘‘On the power of bitslice implementa-
tion on intel Core2 processor,’’ in Proc. 9th Int. Workshop Cryptograph.
Hardw. Embedded Syst. in Lecture Notes in Computer Science, vol. 4727,
P. Paillier and I. Verbauwhede, Eds. Vienna, Austria: Springer, Sep. 2007,
pp. 121–134.

[26] D.A.Osvik, ‘‘Speeding up serpent,’’ inProc. 3rd Adv. Encryption Standard
Candidate Conf., New York, NY, USA: National Institute of Standards and
Technology, Apr. 2000, pp. 317–329.

[27] T. B. S. Reis, D. F. Aranha, and J. L. Hernandez, ‘‘PRESENT runs fast—
Efficient and secure implementation in software,’’ in Proc. CHES, in Lec-
ture Notes in Computer Science, vol. 10529, W. Fischer and N. Homma,
Eds. Cham, Switzerland: Springer, 2017, pp. 644–664.

[28] M. O. Saarinen, ‘‘Cryptographic analysis of all 4×4-bit S-boxes,’’ in Proc.
Int. Workshop Sel. Areas Cryptogr. in Lecture Notes in Computer Science,
vol. 7118, A. Miri and S. Vaudenay, Eds. Toronto, ON, Canada: Springer,
Aug. 2011, pp. 118–133.

[29] M. Ullrich, C. De Canniere, S. Indesteege, O. Küçük, N. Mouha, and
B. Preneel, ‘‘Finding optimal bitsliced implementations of 4× 4-bit S-
boxes,’’ in Proc. SKEW Symmetric Key Encryption Workshop, Copen-
hagen, Denmark, 2011, pp. 16–17.

[30] V. A. Dasu, A. Baksi, S. Sarkar, and A. Chattopadhyay, ‘‘LIGHTER-R:
Optimized reversible circuit implementation for SBoxes,’’ in Proc. 32nd
IEEE Int. Syst. Chip Conf. (SOCC), Sep. 2019, pp. 260–265.

[31] J. Jean, T. Peyrin, S. M. Sim, and J. Tourteaux, ‘‘Optimizing implemen-
tations of lightweight building blocks,’’ IACR Trans. Symmetric Cryptol.,
vol. 2017, no. 4, pp. 130–168, Dec. 2017.

[32] A. Baysal and S. Sahin, ‘‘Roadrunner: A small and fast bitslice block
cipher for low cost 8-bit processors,’’ in Proc. LightSec, in Lecture Notes
in Computer Science, vol. 9542, T. Güneysu, G. Leander, and A. Moradi,
Eds. Cham, Switzerland: Springer, 2015, pp. 58–76.

[33] Z. Bao, J. Guo, S. Ling, and Y. Sasaki, ‘‘Sok: Peigen—A platform for
evaluation, implementation, and generation of S-boxes,’’ IACR Cryptol.
ePrint Arch., vol. 2019, no. 1, p. 209, 2019.

[34] K. Stoffelen, ‘‘Optimizing S-box implementations for several criteria using
sat solvers,’’ in Proc. Int. Conf. Fast Softw. Encryption. Berlin, Germany:
Springer, 2016, pp. 140–160.

[35] E. Käsper and P. Schwabe, ‘‘Faster and timing-attack resistant AES-
GCM,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst. in
Lecture Notes in Computer Science, vol. 5747, C. Clavier and K. Gaj, Eds.
Lausanne, Switzerland: Springer, Sep. 2009, pp. 1–17.

[36] R. Könighofer, ‘‘A fast and cache-timing resistant implementation of
the AES,’’ in Proc. Cryptographers Track RSA Conf. Berlin, Germany:
Springer, Apr. 2008, pp. 187–202.

[37] A. Canteaut, S. Duval, and G. Leurent, ‘‘Construction of lightweight
S-boxes using feistel and MISTY structures,’’ in Proc. SAC, in Lecture
Notes in Computer Science, vol. 9566, O. Dunkelman and L. Keliher, Eds.
Cham, Switzerland: Springer, 2015, pp. 373–393.

[38] B. Zoph and Q. V. Le, ‘‘Neural architecture search with reinforce-
ment learning,’’ 2016, arXiv:1611.01578. [Online]. Available: http://arxiv.
org/abs/1611.01578

VOLUME 9, 2021 83103

G. Kim et al.: Generating Cryptographic S-Boxes Using RL

[39] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, ‘‘Neural optimizer search
with reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 459–468.

[40] A. Mirhoseini et al., ‘‘Chip placement with deep reinforcement learn-
ing,’’ 2020, arXiv:2004.10746. [Online]. Available: http://arxiv.org/
abs/2004.10746

[41] B. Bilgin, L. De Meyer, S. Duval, I. Levi, and F.-X. Standaert, ‘‘Low and
depth and efficient inverses: A guide on S-boxes for low-latencymasking,’’
IACR Trans. Symmetric Cryptol., vol. 2020, no. 1, pp. 144–184, May 2020.

[42] G. Leander and A. Poschmann, ‘‘On the classification of 4 bit S-boxes,’’ in
Proc. Int. Workshop Arithmetic Finite Fields, in Lecture Notes in Computer
Science, vol. 4547. Berlin, Germany: Springer, 2007, pp. 159–176.

[43] D. Coppersmith, ‘‘The data encryption standard (DES) and its strength
against attacks,’’ IBM J. Res. Develop., vol. 38, no. 3, pp. 243–250,
May 1994.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[45] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
‘‘IMPALA: Scalable distributed deep-RL with importance weighted
actor-learner architectures,’’ 2018, arXiv:1802.01561. [Online]. Available:
http://arxiv.org/abs/1802.01561

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[47] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust
region policy optimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[48] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[49] P.Moritz, P.Moritz, R. Nishihara, S.Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang,W. Paul,M. I. Jordan, and I. Stoica, ‘‘Ray: A distributed
framework for emerging AI applications,’’ in Proc. 13th USENIX Symp.
Operating Syst. Design Implement. (OSDI), pp. 561–577, 2018.

[50] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,
J. Gonzalez, M. Jordan, and I. Stoica, ‘‘Rllib: Abstractions for dis-
tributed reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 3053–3062.

[51] P. Zajac and M. Jókay, ‘‘Multiplicative complexity of bijective 4×4 S-
boxes,’’ Cryptogr. Commun., vol. 6, no. 3, pp. 255–277, Sep. 2014.

[52] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, ‘‘The SKINNY family of block ciphers and
its low-latency variant MANTIS,’’ in Proc. 36th Annu. Int. Cryptol. Conf.,
vol. 9815, 2016, pp. 123–153.

[53] D. Božilov, B. Bilgin, and H. A. Sahin, ‘‘A note on 5-bit quadratic permu-
tations’ classification,’’ IACR Trans. Symmetric Cryptol., vol. 2017, no. 1,
pp. 398–404, Mar. 2017.

[54] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. Robshaw, Y. Seurin, and C. Vikkelsoe, ‘‘PRESENT: An ultra-
lightweight block cipher,’’ in Cryptographic Hardware and Embedded
Systems (Lecture Notes in Computer Science), vol. 4727. Berlin, Germany:
Springer, 2007, pp. 450–466.

[55] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, ‘‘Midori: A block cipher for low energy,’’ in Proc. 21st
Int. Conf. Theory Appl. Cryptol. Inf. Secur., vol. 9453, 2015, pp. 411–436.

[56] A. Adomnicai, T. P. Berger, C. Clavier, J. Francq, P. Huynh, V. Lallemand,
K. Le Gouguec, M. Minier, L. Reynaud, and G. Thomas, ‘‘Lilliput-AE: A
new lightweight tweakable block cipher for authenticated encryption with
associated data,’’ in Submission to the NIST Lightweight Cryptography
Standardization Process. NIST, 2019.

GIYOON KIM received the B.S. degree in infor-
mation security, cryptology, andmathematics from
Kookmin University, Seoul, South Korea, in 2019,
where he is currently pursuing the joint M.S. and
Ph.D. degrees in financial information security.
His research interests include cryptographic primi-
tives, cryptanalysis, artificial intelligence, and dig-
ital forensics.

HANGI KIM received the B.S. degree in math-
ematics and the M.S. degree in financial infor-
mation security from Kookmin University, Seoul,
South Korea, in 2016 and 2018, respectively,
where he is currently pursuing the Ph.D. degree in
financial information security. His research inter-
ests include cryptographic primitives, cryptanaly-
sis, and symmetric cryptosystems.

YEACHAN HEO is currently the Leader of the
Reinforcement Learning Community. His research
interests include deep reinforcement learning,
information security, and financial optimization.

YONGJIN JEON received the B.S. degree in math-
ematics and the M.S. degree in financial infor-
mation security from Kookmin University, Seoul,
South Korea, in 2018 and 2020, respectively,
where he is currently pursuing the Ph.D. degree in
financial information security. His research inter-
ests include cryptographic primitives, cryptanaly-
sis, and symmetric cryptosystems.

JONGSUNG KIM received the B.S. and M.S.
degrees in mathematics from Korea University,
South Korea, in 2000 and 2002, respectively, and
the double Ph.D. degrees in combined differential,
linear, and related-key attacks on block ciphers and
MAC algorithms from the ESAT/COSIC Group,
Katholieke Universiteit Leuven, Belgium, and in
engineering in information security from Korea
University, in 2006 and 2007, respectively. He is
a Full Professor in cryptology and mathematics

and of financial information security with the Department of Information
Security, Kookmin University, South Korea. His research interests include
cryptanalysis, symmetric cryptosystems, and digital forensics.

83104 VOLUME 9, 2021

