
Received April 6, 2021, accepted May 26, 2021, date of publication June 3, 2021, date of current version June 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085752

Improving the Accuracy of Early Software Size
Estimation Using Analysis-to-Design Adjustment
Factors (ADAFs)
MARRIAM DAUD AND ALI AFZAL MALIK, (Senior Member, IEEE)
Department of Computer Science, FAST School of Computing, National University of Computer and Emerging Sciences (NUCES), Lahore 54700, Pakistan

Corresponding author: Marriam Daud (marriamdaud@gmail.com)

ABSTRACT Early software size estimation is a challenging task since limited information is available at the
time of project inception. Additional information, however, is gradually added as development progresses.
The goal of this research is to quantitatively capture the impact on early software size estimation of this
additional information introduced especially when transitioning from the analysis phase to the design phase
by comparing the analysis class diagram (ACD) and the design class diagram (DCD). We introduce a new
class of metrics called analysis-to-design adjustment factors (ADAFs) to accomplish this goal. ADAFs are
calculated for four different class diagram metrics – number of classes (NOC), number of attributes (NOA),
number of methods (NOM), and number of relationships (NOR) – used in different class diagram-based
software size estimation models. We use practical, theoretical, and empirical validation methods to evaluate
the applicability of these ADAFs. To assess the utility of these ADAFs in early software size estimation,
we compare the accuracy of existing early software size estimation models before and after the application
of ADAFs. Results indicate a marked improvement in the accuracy of these models after the application
of ADAFs. Furthermore, regression-based models employing problem domain metrics have also been built
to predict these ADAFs. All of these models are statistically significant (p-values < 0.05) with R2 values
between 0.42 and 0.88.

INDEX TERMS Analysis-to-design adjustment factors (ADAFs), class diagram, early software size
estimation, empirical validation, multiple linear regression models.

I. INTRODUCTION
Estimation of software size, development effort, and cost are
essential for project planning, which, in turn, is an impor-
tant component of software project management [1]. Soft-
ware size estimation is a crucial task as many software cost
and effort estimation models take software size, measured
in Lines of Code (LOC) [2] and/or Function Points (FPs),
[2], [3] as input. Inaccurate software size estimation (over-
estimation or underestimation), therefore, leads to incorrect
effort and cost estimation of a software project which, in turn,
may lead to project failure.

In the past, researchers have used metrics extracted from
different analysis and design models (e.g. use case diagram,
ER diagram, sequence diagram, class diagram, etc.) to pre-
dict software size [4]–[18]. This research focuses on the
use of class diagrams for this purpose, since class diagrams

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

are one of the most widely used models [19]. A class dia-
gram [20], [21] is a static class-based model that depicts the
overall structure of the software. The basic building block of
a class diagram is a class which has different attributes and
operations. Classes are connected to each other via relation-
ships e.g. association, aggregation, generalization, etc.

Initially, during the analysis phase, an analysis class dia-
gram (ACD) is created which focuses on the problem domain
only. It does not contain aspects of the solution. Later, during
the design phase, this ACD is transformed into a design
class diagram (DCD) which contains aspects of the solution
as well. The level of abstraction, therefore, reduces while
moving from ACD to DCD [21].

Figure 1 illustrates this difference by showing the analysis
and design versions of a single class named Product, which
may be a core class in domains such as ecommerce, inventory,
and point-of-sale (POS).

One can easily determine the values of metrics such as
number of attributes (NOA) and number of methods (NOM)

81986 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5087-8733
https://orcid.org/0000-0001-9987-5584


M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

FIGURE 1. Analysis and design versions of the same class (adapted
from [22]).

for both versions of this class. In the analysis version of this
Product class, NOA is 4 and NOM is 5 while, in the design
version of the same class, NOA is 6 and NOM is 17. It is
apparent from even this simple example that more detailed
information is available in the DCD as compared to the
ACD. Our research exploits this additional information and
proposes a method to quantitatively capture the impact of this
additional information by introducing a new class of metrics
called the analysis-to-design adjustment factors (ADAFs).

ADAFs are calculated for four different class diagram
metrics – number of classes (NOC), number of attributes
(NOA), number of methods (NOM), and number of relation-
ships (NOR) – used in different class diagram-based software
size estimation models. The applicability of these ADAFs is
evaluated through practical, theoretical, and empirical vali-
dation methods proposed in [23]–[25]. To assess the utility
of these ADAFs in early software size estimation, we com-
pared the accuracy of existing early software size estimation
models before and after the application of ADAFs. Results
reveal that improvement in the quality of the inputs (resulting
from the application of ADAFs) enhances the accuracy of
these early software size estimation models. We have also
built regression-based models using problem domain metrics
(which are available in the early phases) to estimate these
ADAFs. Results show that all of these models are statisti-
cally significant (p-values < 0.05) with R2 values between
0.42 and 0.88.

The rest of the paper is structured as follows. Section II
describes the metrics used in this study. Section III dis-
cusses related work and explains how our work is differ-
ent. Section IV describes our research methodology, while
evaluation and empirical validation of ADAFs is explained
in Section V. Section VI presents ADAFs prediction

models. Section VII illustrates the usage and importance
of the proposed methodology using a worked-out example.
Section VIII sheds some light on the threats to validity of this
study, while Section IX summarizes themain conclusions and
provides some directions for future work in this area.

II. PROBLEM DOMAIN METRICS
Table 1 lists the entire problem domain metrics used in this
study, along with their brief definitions. These metrics were
chosen because they are widely used for estimating software
size [4], [7]–[18], [28]. Besides this, values of these metrics
can be extracted from artifacts prepared in the early phases of
the software development life cycle (SDLC) i.e. (graphical)
use case diagram, (structured text-based) use case descrip-
tions, and ACD.

Metrics 1–11 can be easily obtained from ACD. Most
of these are simple counts while others are simple aver-
ages or sums derived from these counts. Metrics 12–17 are
related to use case diagrams and use case descriptions and
are based on the work done by Karner [7] which presented
a method to calculate the size of software in terms of use
case points (UCP). In this method, four variables – unadjusted
actor weights (UAW), unadjusted use case weights (UUCW),
technical complexity factors (TCF), and environmental com-
plexity factors (ECF) – are required to calculate UCP.Weights
of actors and use cases are based on three complexity groups
i.e. simple, average, and complex. The use case description is
utilized to count the success transactions (s_t) and alternate
transactions (a_t) of a use case. The total transactions (Ti) of
a use case i are the sum of s_ti and a_ti. UUCW is the sum
of all weighted use cases. Even though UAW, TCF, and ECF
contribute to software size, we have used only UUCW since,
according to past research by Silhavy et al. [8] it contributes
more to the size of the system.

The last two metrics (18 and 19) are obtained from the
work done by Nassif [9]. This work introduced a new method
to calculate software size from use case descriptions. This
method proposes six complexity groups (i.e. very low, low,
normal, high, very high, and extreme high) for use cases and
assigns each group a different weight. The total transactions
(Ti) of use case i are defined as the sum of s_ti and (a_ti/2)
while the total size (NassifSize) of a project is obtained
using the weighted sum of the number of use cases in each
complexity group.

III. RELATED WORK
Many researchers have tried to estimate software size by
using different metrics extracted from UML class diagrams.
One of the earliest studies on class diagram-based size
estimation was reported by Mišic’ and Tešic’ [10]. They
proposed ordinary least squares (OLS) regression-based
software size estimation models constructed using 7 C++
industrial projects and showed the importance of two class
diagram metrics (i.e. NOC and NOM) in software size esti-
mation. The relationship between the same metrics extracted
fromDCD and source codewas also explored which provided

VOLUME 9, 2021 81987



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 1. Problem domain metrics.

models with R2 values between 0.83 and 0.98. Despite these
ground-breaking results, this study had some limitations e.g.
a small dataset was used, other class diagram metrics (CDM)

contributing to software size (e.g. NOA, NOR, etc.) were
not explored, and most importantly, the models proposed
were built using design-level metrics which are not available
during the early phases of SDLC. Our research, on the other
hand, enables early software size estimation by using infor-
mation that is available in the early phases of SDLC coupled
with ADAFs.

A pilot study was conducted by Antoniol et al. [11]
using 8 C++ industrial systems to inspect the relation-
ship between Object-Oriented Function Points (OOFP) of
a system and its size in LOC. Later, Antonial et al. [12]
re-investigated the relationship between OOFP and software
size in LOC using a large dataset (29 C++ industrial sub-
systems) which was refined after identifying and controlling
the factors most affecting software size estimation. They
found that the CDM-based model was significantly better
than the OOFP-based model. Chen et al. [13] used a dataset
comprising 14 student projects to develop linear, logarithmic,
exponential, and polynomial models to estimate software size
in SLOC. Their results revealed that software size in SLOC
was well correlated with NOC and number of external use
cases.

Bianco and Lavazza [14] used 12 Java student projects
to build and compare software size estimation models based
on OOFP approach and CDM (i.e. NOA and NOM). Their
findings were similar to a previous study [12] i.e. the model
based on OOFPwas not better than the model based on CDM.
Later, Bianco and Lavazza [15] used 5 open source projects to
investigate whether correlation similar to the one for student
projects existed between: (1) LOC and CDM and (2) OOFP
and CDM. They did not find the same correlation for (1) but
results were better for (2). Our research uses their size estima-
tion model (to determine the impact of ADAFs) since it was
also developed using student projects and is based on CDM.

Tan and Zhao [16] built and validated regression-based size
estimation models using NOC (i.e. entity types), NOA, and
NOR extracted from the entity-relationship diagram of the
system. Later, Tan et al. [17] proposed amethod for early soft-
ware size estimation using a conceptual data model of infor-
mation systems. They built and validated regression-based
size estimation models based on three metrics (i.e. NOR,
NOC, and AvgNOA) and identified that these simple CDM
had good capability to predict software size. Conceptual data
models in this study, however, were mostly extracted through
reverse engineering the source codes.

Harizi [18] proposed a method for estimating software size
from its class diagram. He proposed a list of class-based
parameters along with their weights. For each class, param-
eters were counted and multiplied by their weights, and the
resulting values were summed up to get the final size of a
class. The final size of the system was calculated by adding
size of all the classes in the class diagram. In this study,
empirical validation for weight assignment criteria was not
performed, design-level metrics were used, which are not
available during the early phases of SDLC, and double count-
ing was done in terms of relationships.

81988 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

Lazic et al. [26] presented a study to compare existing
regression-based size estimation models with their proposed
models. Our research uses their size estimation model (to
determine the impact of ADAFs) since it was developed
using CDM (i.e. NOC, NOA and NOM) and software size as
SLOC. Later, Alashhb and Lazic [27] showed the usefulness
of surface response modeling analysis to identify predictors
contributing more to size estimation model accuracy.

Zhou et al. [28] compared the accuracy of class
diagram-based source code size estimation approaches.
Based on a large dataset (100 open-source Java projects), they
built size estimation models utilizing 10 CDM, 5 function
point metrics, 8 different modeling techniques and 2 trans-
formations. Their results revealed that a model built using
object-oriented project size (Oops) metric and OLS regres-
sion with a logarithmic transformation attained the highest
accuracy than other models.

Ayyildiz and Koçyigit [29]–[31] investigated the corre-
lation between the problem domain metrics and solution
domain metrics. In study [31] they used a dataset consist-
ing of 14 Java industrial systems to find the correlation
between two problem domain metrics – number of distinct
nouns (NDN) and number of distinct verbs (NDV) extracted
from the documentation of system – and two solution domain
metrics – NOC and NOM – extracted from the source code of
the system. Their results showed that problem domainmetrics
had a good ability to predict solution domain metrics and
software final size. A small dataset was used in this study and
other CDM contributing to software size (e.g. NOA, NOR,
etc.) were not explored.

Kiewkanya and Surak [32] developed an automated tool for
regression-based software size estimation of C++ projects.
They used 8 structural complexity metrics extracted from
DCD. Like some other studies mentioned earlier, the main
limitation of this study was also the use of design-level
metrics which are not available during the early phases
of SDLC.

So far, to the best of our knowledge, no work has been
done to quantitatively capture the additional information
introduced when moving from ACD to DCD using ADAFs
and to investigate its impact on class diagram-based early
software size estimation. This research attempts to fill this
gap. An additional contribution of this research lies in inves-
tigating the efficacy of problem domain metrics in predicting
ADAFs.

IV. RESEARCH METHODOLOGY
Figure 2 gives a pictorial summary of our research method-
ology which consists of the following steps:

A. STEP 1: DETERMINE SOFTWARE SIZE IN SLOC
The first step of this process is to extract software size.
Software size of Java, C++, and VB.NET projects is auto-
matically extracted using a software tool called Understand
5.1 [33]–[35]. Only non-comment and non-blank physical
source lines of code (SLOC) are considered.

B. STEP 2: EXTRACT DESIGN CLASS DIAGRAM (DCD)
The DCD is automatically extracted through reverse engi-
neering the source code of a project using Understand 5.1.

C. STEP 3: CALCULATE INPUT METRICS VALUES FROM
DCD: DM1, . . . , DM4
Values of four DCDmetrics (i.e. DM1=NOC,DM2=NOA,
DM3 = NOM, and DM4 = NOR) are obtained from the
reverse-engineered DCD obtained in step 2. Values of NOC,
NOA andNOMare automatically extracted usingUnderstand
5.1. For Java projects, values of NOR are extracted automat-
ically by using two software tools, i.e. Astah UML [36] and
SDMetrics [37]. For C++ projects, on the other hand, values
of NOR are determined manually by the first author of this
study. For industrial projects implemented in VB.NET, values
of NOR are provided by the software house (see Section V.C
below).

D. STEP 4: CALCULATE INPUT METRICS VALUES FROM
ACD: AM1, . . . , AM4
Values of the same four input metrics are extracted from the
ACD available in the SRS of the project. All of these ACD
metrics (i.e. AM1 = NOC, AM2 = NOA, AM3 = NOM,
and AM4 = NOR) are extracted manually by the first author
of this study.

E. STEP 5: CALCULATE ADAF FOR EACH INPUT METRIC:
ADAF1, . . . , ADAF4
The next step is to calculate ADAF for each input metric
as shown in (1) below. DMxi is an input metric (e.g. NOC)
extracted from the DCD of project i and AMxi is the same
metric (i.e. NOC) extracted from the ACD of project i. Values
of x range from 1 to 4 since we use only 4 input metrics (see
previous steps).

ADAFxi =
DMxi
AMxi

(1)

F. STEP 6: CALCULATE MEAN ADAF FOR EACH INPUT
METRIC: MADAF1, . . . , MADAF4
Mean ADAF (MADAF) for each input metric is calculated
using the formula given in (2) where n represents the total
number of projects.

MADAFx =
1
n

∑n

i=1
ADAFxi (2)

G. STEP 7: ADJUST EACH INPUT METRIC: MADAF1∗AM1,
. . . , MADAF4∗AM4
The extra information captured by ADAFs is now used to
adjust the values of input metrics obtained from ACD to
improve the accuracy of early size estimation. This adjust-
ment is done by multiplying each ACD input metric (e.g.
NOC) with the mean ADAF of that input metric (calculated
earlier in Step 6) to obtain the adjusted ACD metric (AAM)
as shown in (3) below.

AAMxi = MADAFx ∗ AMxi (3)

VOLUME 9, 2021 81989



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

FIGURE 2. Research methodology.

H. STEP 8: COMPARE ESTIMATION ACCURACY BEFORE
AND AFTER APPLICATION OF ADAFS
Existing class diagram-based software size estimationmodels
are used to estimate software projects’ sizes before and after
application of ADAFs. In order to ascertain the value addition
of our approach, accuracy of these models is compared before
and after application of ADAFs.

I. STEP 9: CONSTRUCT ADAFS PREDICTION MODELS
Once the utility of ADAFs has been established, prediction
models for all ADAFs (listed in Step 5) are constructed.
Values of remaining problem domain metrics (see Table 1)
are obtained manually from the ACD, use case diagram, and

use case descriptions available in the SRS of a project. These
problem domain metrics are then used as potential predictors
of ADAFs.

V. EVALUATION AND EMPIRICAL VALIDATION OF ADAFS
The framework proposed by Misra et al. [23] was used for
evaluation and validation of ADAFs because it provides a
more comprehensive criteria as compared to other frame-
works proposed in the literature. This framework consists of
the following steps:

1) Practical evaluation
2) Theoretical evaluation and establishment of measure-

ment scale

81990 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

3) Empirical validation

3.1) Preliminary empirical validation
3.2) Advanced empirical validation

4) Self-evaluation of proposed metric: discussion of pros,
cons, and future work

A. PRACTICAL EVALUATION
In this section, 5 criteria or features suggested by
Misra et al. [23], are adopted to evaluate the practical utility
of the ADAFs as mentioned below:
Objective or goal of measure The objective of ADAFs is

to improve the accuracy of early software size estimation.
Users and scope of the measure:
ADAFs can be used by project managers to estimate soft-

ware size during the analysis phase of SDLC by supplement-
ing the information available in ACD.
Identify the entities and attributes to be measured:
ADAFs can be used to estimate the size (i.e. internal

attribute) of software source code (i.e. entity).
Definition of metric and its measuringmethods/instruments:
ADAF of a metric M is defined as the ratio of the DCD

value of M and the corresponding ACD value of M. The
formula to calculate ADAFs is formally defined in section IV,
step 5. The inputs to calculate ADAFs are collected from
ACD and DCD as shown in section IV, steps 2-4. We com-
puted ACDmetrics manually andDCDmetrics using existing
automated tools. In the future, we plan to develop a tool to
automatically count the required components (i.e. ACD and
DCD metrics).
Relationship between attribute and metric:
There is an indirect relation between ADAFs and software

size. ADAFs provide extra information that is helpful in
estimating software size early in the software development
life cycle.

B. THEORETICAL EVALUATION
To perform a theoretical evaluation of ADAFs, we used
the evaluation method proposed by Misra [24] because it
was developed specifically for object-oriented metrics. The
important features (from the perspective of measurement the-
ory) suggested by this model [24] are as follows:

1) Entity: The ADAFs are measured at the class diagram
level. Therefore, the entities for ADAFs are ACD and
DCD.

2) Property: The property for ADAFs is complexity.
3) Metric definition: The metric definition and formula is

presented in section IV, step 5.
4) Attributes:

4.1) Internal attributes: The internal attributes for the ACD
are total number of classes, total number of attributes,
total number of methods, and total number of relation-
ships. Similarly, the internal attributes for the DCD are
total number of classes, total number of attributes, total
number of methods, and total number of relationships.

4.2) External attributes: The external attribute that ADAFs
address is maintainability.

It is necessary to determine the scale type – nominal, ordi-
nal, interval, ratio and absolute [2] – for a metric because it
describes the empirical properties of a metric. Consequently,
scale type tells us what kind of operations (e.g. mean, median,
etc.) can be performed on the metric. In case of ADAFs, the
scale type is ratio.

C. EMPIRICAL VALIDATION
In this section, preliminary empirical validation (employ-
ing 73 student projects) and advanced empirical validation
(employing 11 real industry projects) of ADAFs is conducted
using themodel proposed byMisra [25]. However, the second
step of advanced empirical validation (i.e. application of
ADAFs in real projects from industry, developed in different
languages and environments) is left as a task to be performed
in the future.

1) PROJECT DATASETS
For preliminary empirical validation, we collected 73 student
projects from different offerings of two undergraduate-level
courses – Object-Oriented Analysis and Design (OOAD)
and Software Engineering (SE) – taught in a renowned
private university in Lahore over a period of six years.
To minimize the impact of variations in exogenous variables,
we focused on only those projects which implemented a man-
agement information system (MIS) of some type and were
programmed using either C++ or Java. Furthermore, only
those projects were selected for which documentation and
final source code was available. Based on their interface and
execution environment, these projects were assigned to three
different categories i.e. desktop applications–GUI, desktop
applications–command line, and web applications.

We encountered a lot of difficulty in acquiring relevant data
for industrial projects since a number of software houses were
reluctant to share their systems’ documentation and artifacts
due to reasons related to confidentiality. To ensure quality,
we have collected only those industry projects for which
we can verify data. Consequently, we collected metrics from
11 projects at a renowned software house in Lahore. This soft-
ware house is a member of Pakistan Software Houses Associ-
ation for IT and ITeS (P@SHA). All of these 11 projects were
implemented in VB.NET and detailed documentation and
user manuals were available for these projects. ACDs were
created using the requirements documents of these projects.

In this study, we investigated six different datasets. Five
(Dataset #1 to Dataset #5) contained student projects,
while one (Dataset #6) contained real industry projects.
Table 2 summarizes the details of these six datasets. Dataset
#1, for instance, consists of 31 C++ GUI-based desk-
top applications, while Dataset #3 consists of 11 Java
command-line-based desktop applications.

According to Ungan et al. [38] improving the quality of
SRS decreases the gap between the estimated size and the

VOLUME 9, 2021 81991



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 2. Dataset characteristics.

TABLE 3. Pre-processing activities performed on all datasets.

TABLE 4. Mean and median ADAFs values for all datasets.

final true size of software. Therefore, some pre-processing
activities are conducted to make the information in datasets
complete, consistent, and correct. In particular, the following
pre-processing activities were performed manually:

1) If problem domain artifacts (e.g. ACD, use case dia-
gram, etc.) were missing, they were created using the
information contained in the requirements and other
artifacts available in the project’s documentation.

2) If the project’s documentation did not match its imple-
mentation (e.g. some documented use case was not
implemented), the problem domain artifacts were cor-
rected to make them consistent with the source code.

3) If there was a discrepancy between two or more prob-
lem domain artifacts, it was removed to make these
artifacts consistent with each other.

Table 3 summarizes the pre-processing activities per-
formed on all datasets. For example, in case of Dataset #1,
we performed pre-processing Activity #1 with 4 projects
for which 1 project had missing ACD and 3 projects had
missing detailed use case descriptions, while Activity #2 was
performed with 16 projects for which less or more documen-
tation was available as compared to the source code.

2) ANALYSIS OF ADAFS
Table 4 shows the mean ADAFs values for all six datasets.
These values were obtained using Steps 2–6 of our research
methodology. The value of mean, however, is affected by
outliers (i.e. very high or low values as compared to the rest
of the dataset). Therefore, median values were also calculated
for comparison. Values highlighted in this table represent

situations in which the mean values are more than 30% higher
as compared to median values.

A careful look at Table 4 reveals that in all cases except
(Dataset #4, ADAF (NOA)) and (Dataset #6, ADAF (NOR)),
ADAFs mean values are higher than their median values.
This implies that the distribution of most ADAFs is skewed
rightwards and a few outliers are present at the higher end.
Another observation is that, as compared to Java command-
line-based desktop systems (Dataset #3), Java GUI-based
desktop systems (Dataset #2) have higher values of ADAFs.
This is expected due to the presence of additional GUI-related
classes, attributes, and methods. Last, but not the least,
the value of ADAF (NOA) is much higher for Dataset #2 as
compared to Dataset #1. This is because the software tool
that we have used for counting (i.e. Understand 5.1) does not
count GUI attributes for C++ projects by default.

IBM SPSS statistical tool [39], [40] is used to draw box-
plots of ADAFs. These boxplots shown in Figure 3 were used
to identify outliers (indicated as circles and asterisks) in each
dataset. Table 5 shows the mean and median ADAFs values
for all datasets recomputed after removing these outliers.
Value highlighted in Table 5 is the only case (Dataset #5,
ADAF (NOA)) where mean value is more than 30% higher
as compared to median value.

3) EVALUATION CRITERIA
The performance metrics used in this study to measure
and compare the accuracy of existing size estimation mod-
els before and after application of ADAFs are mean mag-
nitude of relative error (MMRE) [41], percentage relative

81992 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

FIGURE 3. Identifying outliers using boxplot of ADAFs for all datasets.

error deviation Pred(x) [42] and mean absolute residual
(MAR) [43]. Both MMRE and Pred(x) are calculated using a
metric calledmagnitude of relative error (MRE). Equation (4)

shows the formula used to calculate MRE of a data point i
whereas yi denotes the actual size and ŷi denotes the pre-
dicted size. MMRE of a dataset consisting of n data points

VOLUME 9, 2021 81993



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 5. Mean and median ADAFs values for all datasets after removing the outliers.

TABLE 6. Comparison of prediction accuracy of size estimation models before and after application of ADAFs.

is obtained by taking the mean of all n MREs as shown in (5).
Pred(x) captures the proportion of predicted values that are
within x% of the actual values [44] and is calculated using (6).

MREi =

∣∣yi − ŷi∣∣
yi

(4)

MMRE =
1
n

∑n

i=1
MREi (5)

Pred (x) =
1
n

∑n

i=1

{
1 if MREi≤

x
100

0 otherwise
(6)

MAR =
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (7)

For Pred(x), the commonly used values of x are 25 and
30 [17], [28], [31]. We use both 25 and 30 as the value of x in
this study. Equation (7) shows the formula used to calculate
MAR of a dataset consisting of n data points by taking the
mean of differences in the absolute value between the actual
size yi and predicted size ŷi.
In literature, [41], [43] MMRE was indicated to be biased

towards prediction systems that underestimate. Port et al. [42]
showed that MMRE is an unreliable metric based on its
sensitivity to the presence of outliers. However, they observed
that Pred(25) is a reliable estimate of model accuracy.
Despite these limitations, MMRE is a most widely used
accuracy metric in related literature [10]–[12], [14]–[17],
[26], [28]–[31]. However, to overcome these limitations we

81994 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 7. ADAFs prediction models built using dataset #1.

TABLE 8. ADAFs prediction models built using dataset #2.

TABLE 9. ADAFs prediction models built using dataset #3.

TABLE 10. ADAFs prediction models built using dataset #4.

have also used MAR that is symmetric and unbiased towards
under or overestimation as mentioned in study [43].

4) COMPARISON OF SOFTWARE SIZE PREDICTION
ACCURACY BEFORE AND AFTER APPLYING ADAFS
Table 6 shows the comparison of prediction accuracy (before
and after applying ADAFs) of two existing size estimation
models i.e. M1 [15] and M2 [26]. This comparison of predic-
tion accuracy (using MMRE, Pred(25), Pred(30), and MAR
metrics) shows that the prediction accuracy of both models

TABLE 11. ADAFs prediction models built using dataset #5.

(i.e. M1 and M2) improves considerably after the application
of ADAFs.

A careful look at Pred(25) and Pred(30) columns
in Table 6 reveals that greater values are obtained after the
application of ADAFs. For example, model M1 (Dataset #4)
has 17% improvement in Pred(25) and 25% improvement in
Pred(30) while modelM2 (Dataset #3) has 55% improvement
in Pred(25) and 82% improvement in Pred(30). We also
observe a considerable decrease in MAR values ranging from
17% to 76% after the application of ADAFs. For example,
model M1 (Dataset #4) has 40% decrease in MAR while
M2 (Dataset #3) has 71% decrease in MAR. Model M2
(Dataset #6) has achieved the highest improvement in predic-
tion accuracy (using all performance metrics). Furthermore,
accuracy improvement occurs for all datasets implying that
our proposed approach of using ADAFs for improving the
accuracy of early size estimation is indeed promising.

D. SELF-EVALUATION OF ADAFS: DISCUSSION OF PROS,
CONS, AND FUTURE WORK
The pros of using ADAFs are as follows:

1) ADAFs quantitatively capture the extra information
introduced when transitioning from analysis phase to
design phase.

2) ADAFs can be used by project managers to estimate
software size during the upstream analysis phase of
SDLC by supplementing the information available in
ACD.

3) ADAFs are language independent, as demonstrated in
this study, through empirically validating these ADAFs
using C++, JAVA, and VB.NET projects.

The con of using ADAFs is as follows:

1) It is difficult to assign threshold values (i.e. upper and
lower boundaries) for ADAFs values.

The proposed future work for ADAFs includes the follow-
ing:

1) Replication of this study using more real projects
(i.e. data from software industry) developed in differ-
ent languages and in different environments, should
be performed for the purpose of advanced empirical
evaluation.

VOLUME 9, 2021 81995



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 12. Comparison of predictors contributing in ADAFs prediction.

TABLE 13. ADAFs prediction models built using dataset #2.

2) Threshold values for these metrics should be investi-
gated.

3) Accuracy of additional early software size estimation
models should be compared with and without using
ADAFs.

4) Tool development for calculating ADAFs automati-
cally should be considered.

5) ADAFs prediction models using industry data should
be built.

VI. ADAFS PREDICTION MODELS
We built a total of twenty prediction models (4 ADAFs x 5
datasets = 20 models) after observing the different behavior
of ADAFs in each of the five categories/datasets from
academia. The prediction models for industry dataset were
not built because use cases of projects in this dataset were
not accessible. IBM SPSS Modeler statistical tool was used
to perform the statistical analysis. Problem domain metrics
listed in Table 1 were used as potential ADAFs predictors.
We considered onlymetrics withmore than five non-zero data
points [44]. Therefore, a metric NODep (not having more
than five non-zero values for all datasets) was dropped from
all subsequent analyzes.

Stepwise multiple liner regression (MLR) was used for
model fitting. Data points with standardized residuals values
greater than 2 and less than -2 were considered outliers and
removed from the datasets.We also used Cook’s distance [45]
to identify (and, subsequently, remove) the influential outliers
from the datasets. A data point is considered an outlier if
its Cook’s distance is greater than (4/n), where n is the total
number of data points in a dataset.

The presence of multicollinearity among the predictors
was checked using the variance inflation factor (VIF) [46].

As a general rule of thumb, values of the VIF exceed-
ing 10 indicate evidence of the existence of serious
multicollinearity [17], [46]. Details of prediction models are
presented in Tables 7 - 11. All of these models are statistically
significant (p-values < 0.05) with R2 values between 0.42
and 0.88.

A. COMPARISON OF PREDICTORS CONTRIBUTING IN
ADAFS PREDICTION
Table 12 shows the comparison of predictors of models
built using different datasets. In case of GUI-based desktop
applications (Dataset #1 and Dataset #2), metrics based on
use cases, methods, relationships, and attributes contribute in
predicting the various ADAFs. Furthermore, for each dataset,
use case-based metrics contribute in predicting at least 2 out
of the 4 ADAFs.

In a DCD, getter and setter methods are usually writ-
ten for each attribute. So, intuitively, NOA should correlate
with ADAF (NOM). This intuition is corroborated for Java
datasets, but not for C++ datasets. ADAF (NOM) predictors
for Datasets 1 and 2 are very different, despite the fact that
both datasets contain GUI-based desktop applications. This
may be due to the difference in the size of the two (C++
and Java) datasets. The predictors of Dataset #3 are different
from those of the rest of the datasets. This is expected since
Dataset #3 is the only dataset that contains only command-
line applications which have lower ADAFs.

VII. WORKED-OUT EXAMPLE
This section demonstrates the practical application of our
proposed idea with the help of a completely worked-out
example. It illustrates how our ADAFs prediction models can
be used for early size estimation of software development
projects. In this example, we use the ADAFs prediction mod-
els built using Dataset #2. For convenience, these models are
reproduced in Table 13.

Suppose a software development company hires a new
project manager to manage a recently commissioned project
which involves from-scratch development of a Pharmacy
Management System (PMS). The business analyst provides
the complete documentation of PMS, including ACD, use

81996 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

TABLE 14. Values of problem domain metrics for PMS.

TABLE 15. ADAFs predictions for PMS.

TABLE 16. Estimated software size using ADAFs.

case diagram, and use case descriptions to this project man-
ager. The project manager can now easily use this early
documentation to extract the problem domain metrics for
PMS. Assume that the values of these metrics for PMS are
those shown in Table 14. These values can now be plugged
into the prediction models (see Table 13) to predict ADAFs.
Table 15 shows these ADAFs predictions for PMS.

This project manager has been able to use our models to
predict ADAFs during the early phases of software develop-
ment, as all the inputs to these models are available early in
the SDLC. Finally, the project manager can use these ADAFs
to improve the quality of inputs and, hence, the estimation
accuracy of existing size estimation models. Using Model
M2, the estimated size of PMS (after applying ADAFs) is
4,411 lines of code as shown in Table 16.

VIII. THREATS TO VALIDITY
This section discusses potential threats to the construct, inter-
nal and external validity of our study, and how the impact of
these threats was mitigated.

A. CONSTRUCT VALIDITY
The first author of this study had manually performed some
pre-processing activities to provide consistency, complete-
ness, and correctness of problem domain artifacts. To ensure
the correctness of artifacts, in case of academic datasets, these
artifacts were reviewed by a collaborator (with 5 years of
experience in object-oriented application development and
over 3 years of experience in teaching programming and
OOAD concepts). For industry dataset, however, the ACDs
were constructed by a team of 2 participants. One participant
was the first author of this study and other was working as a
software engineer in that software house. To further ensure

the correctness of these ACDs, a senior software engineer
(with over 10 years of development experience) reviewed and
validated these ACDs.

Values of independent variables in the ADAFs prediction
models were extracted manually from the (graphical) use
case diagram, (structured text-based) use case descriptions,
and ACD (see Table 1). To maintain consistency in manual
counting, values of these independent variables were counted
only by the first author of this study. To overcome possible
threats to the construct validity of dependent variables (i.e.
software size and ADAFs), a tool (i.e. Understand 5.1) was
used for automatically counting the values of these dependent
variables. This same tool has been used by previous stud-
ies [28]–[31] to collect similar metrics, making it a safe and
reliable choice.

B. INTERNAL VALIDITY
The main threat to the internal validity of this study is
related to how the software size is counted. In this study,
we counted software size as the total number of non-comment
and non-blank physical source lines of code (SLOC) of Java,
C++, and VB.NET files. This definition of software size is
consistent with the one used in a previous study [28] which
used 100 Java projects to build size estimation models.

We have currently used mean ADAF values to improve the
quality of inputs used in software size estimation models. The
use of median ADAF values may affect the results. However,
this switch is not expected to have a considerable effect on
our results, as most of the median ADAF values are close to
the mean ADAF values (see Table 5).

C. EXTERNAL VALIDITY
In this study, we have used different datasets comprising
C++, Java, and VB.NET MIS projects. These datasets have

VOLUME 9, 2021 81997



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

yielded similar results with respect to improving the accuracy
of early software size estimation. These results, however, may
not be generalizable for projects of different types, sizes,
languages and application domains. Similarly, other factors
such as developers’ experience and use of design patterns
and frameworksmay also affect ADAFs and, hence, influence
our ADAFs prediction models. Nevertheless, irrespective of
whether results vary due to these additional factors, this study
has proposed a detailed and repeatable approach for utilizing
ADAFs for improving early software size estimation.

IX. CONCLUSION AND FUTURE WORK
The presence of limited information during the early phases
of software development makes early software size estima-
tion a challenging task. The aim of this research was to
address this challenge by quantitatively capturing the impact
on early software size estimation of additional information
introduced when moving from the analysis phase to the
design phase. A new class of metrics called analysis-to-
design adjustment factors (ADAFs) was introduced for this
purpose. ADAFs were calculated for four different class dia-
gram metrics (i.e. NOC, NOA, NOM, and NOR) commonly
used in different class diagram-based software size estimation
models. These ADAFs were validated both theoretically and
empirically using 84 projects. Moreover, practical usefulness
of ADAFs is also proved by applying it to the real projects
from industry. To assess the utility of these ADAFs in early
software size estimation, we compared the accuracy of exist-
ing early software size estimation models before and after
the application of ADAFs. The results of this comparison
reveal that our proposed approach is promising, since the
accuracy of these early software size estimation models is
improved after the application of ADAFs. We also built
regression-based models using problem domain metrics to
predict ADAFs during the early phases of software devel-
opment. All of these models were statistically significant
(p-values < 0.05) with R2 values between 0.42 and 0.88.
In the future, we plan to replicate this study using industrial

projects developed in different languages and in different
environments. These projects may also be used for building
and validating domain/category-specific regression-based
early software size estimation models using ADAF-adjusted
inputs. We also plan to compare the accuracy of additional
early software size estimation models with and without using
ADAFs. Furthermore, we may also investigate the impact of
automatic source code generation tools, frameworks, design
patterns, and ready-made code from libraries on ADAFs.

ACKNOWLEDGMENT
The authors are thankful to the Editor and reviewers for their
valuable comments. They are also thankful to their collabora-
tors from the industry and the academia who provided them
with projects and who volunteered to review and verify the
datasets.

REFERENCES
[1] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk

Management: When Performance is Measured Performance Improves,
1st ed. New York, NY, USA: Auerbach, 2006.

[2] N. E. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, 3rd ed. Boca Raton, FL, USA: CRC Press, 2015.

[3] A. J. Albrecht, ‘‘Measuring application development,’’ in Proc. IBM Appl.
Dev. Jt. SHARE/GUIDE Symp., Monterey, CA, USA, 1979, pp. 83–92.

[4] R. Silhavy, P. Silhavy, and Z. Prokopova, ‘‘Using actors and use cases for
software size estimation,’’ Electronics, vol. 10, no. 5, pp. 1–20, 2021.

[5] E. Ungan, ‘‘A functional software measurement approach bridging the
gap between problem and solution domains,’’ Ph.D. dissertation, Dep. Inf.
Syst., Middle East Tech. Uni., Ankara, Turkey, 2013.

[6] E. Ungan and O. Demirörs, ‘‘A functional software measurement approach
to bridge the gap between problem and solution domains,’’ in Proc.
IWSM/Mensura, Softw. Meas. LNBIP, vol. 230, 2015, pp. 176–191.

[7] G. Karner, ‘‘Resource estimation for objectory projects,’’ Object. Syst.,
vol. 17, pp. 1–9, Sep. 1993.

[8] R. Silhavy, P. Silhavy, and Z. Prokopova, ‘‘Analysis and selection of
a regression model for the use case points method using a stepwise
approach,’’ J. Syst. Softw., vol. 125, pp. 1–14, Mar. 2017.

[9] A. B. Nassif, ‘‘Software size and effort estimation from use case diagrams
using regression and soft computing models,’’ Ph.D. dissertation, School
Grad. Postdoct. Stud., West. Univ., London, ON, Canada, 2012.

[10] V. B. Mišić and D. N. Tešić, ‘‘Estimation of effort and complexity:
An object-oriented case study,’’ J. Syst. Softw., vol. 41, no. 2, pp. 133–143,
May 1998.

[11] G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, ‘‘A function point-like
measure for object oriented software,’’ Empirical Softw. Eng., vol. 4, no. 3,
pp. 263–287, Sep. 1999.

[12] G. Antoniol, R. Fiutem, and C. Lokan, ‘‘Object-oriented function points:
An empirical validation,’’Empirical Softw. Eng., vol. 8, no. 3, pp. 225–254.
Sep. 2003.

[13] Y. Chen, B. W. Boehm, R. Madachy, and R. Valerdi, ‘‘An empirical study
of eServices product UML sizing metrics,’’ in Proc. Int. Symp. Empirical
Softw. Eng. (ISESE), Redondo Beach, CA, USA, 2004, pp. 199–206.

[14] V. Del Bianco and L. Lavazza, ‘‘An empirical assessment of function point-
like object-oriented metrics,’’ in Proc. 11th IEEE Int. Softw. Metrics Symp.
(METRICS05), Como, Italy, 2005, p. 10.

[15] V. D. Bianco and L. Lavazza, ‘‘Object-oriented model size measurement:
Experiences and a proposal for a process,’’ unpublished. [Online].
Available: https://www.academia.edu/18304046/Object_Oriented_Model_
Size_Measurement_Experiences_and_a_Proposal _for_a_Process

[16] H. B. K. Tan, ‘‘Sizing data-intensive systems from ER model,’’ IEICE
Trans. Inf. Syst., vol. E89-D, no. 4, pp. 1321–1326, Apr. 2006.

[17] H. B. K. Tan, Y. Zhao, and H. Zhang, ‘‘Conceptual data model-based
software size estimation for information systems,’’ ACMTrans. Softw. Eng.
Methodol., vol. 19, no. 2, pp. 1–37, Oct. 2009.

[18] M. Harizi, ‘‘The role of class diagram in estimating software size,’’ Int. J.
Comput. Appl., vol. 44, no. 5, pp. 31–33, Apr. 2012.

[19] M. Guo, C. Zhang, and F. Wang, ‘‘What is the further evidence about
UML?—A systematic literature review,’’ in Proc. 24th Asia–Pacific
Softw. Eng. Conf. Workshops (APSECW), Nanjing, China, Dec. 2017,
pp. 106–113.

[20] Object Management Group. About the UML Specification Version
2.5.1. Accessed: Sep. 12, 2019. [Online]. Available: https://www.
omg.org/spec/UML/About-UML/

[21] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed.
New York, NY, USA: McGraw-Hill, 2010.

[22] Creately. How to Draw Class Diagrams: Simple Class Diagram Rules
for Clear Communication. Accessed: Mar. 12, 2020. [Online]. Available:
https://creately.com/diagram-type/article/simple-guidelines-drawing-uml-
class-diagrams

[23] S. Misra, I. Akman, and R. Colomo-Palacios, ‘‘Framework for evaluation
and validation of software complexity measures,’’ IET Softw., vol. 6, no. 4,
pp. 323–334, Aug. 2012.

[24] S. Misra, ‘‘Evaluation criteria for object-oriented metrics,’’ Acta Poly.
Hung., vol. 8, no. 2, pp. 109–136, 2011.

[25] S. Misra, ‘‘An approach for empirical validation process for software
complexity measures,’’ Acta Poly. Hung., vol. 8, no. 2, pp. 141–160, 2011.

[26] L. Lazic,M. Petrovic, and P. Spalevic, ‘‘Comparative study on applicability
of four software size estimation models based on lines of code,’’ in Proc.
6th Wseas Eur. Comput. Conf. (ECC), Prague, Czech Republic, 2012,
pp. 71–80.

81998 VOLUME 9, 2021



M. Daud, A. A. Malik: Improving Accuracy of Early Software Size Estimation Using ADAFs

[27] M. I. Alashhb and L. Lazić, ‘‘A critical review of source code size esti-
mation approaches for object-oriented programming languages: A com-
parative study,’’ in Proc. INFOTEH-JAHORINA, Jahorina, Bosnia, 2016,
pp. 535–540.

[28] Y. Zhou, Y. Yang, B. Xu, H. Leung, and X. Zhou, ‘‘Source code size esti-
mation approaches for object-oriented systems from UML class diagrams:
A comparative study,’’ Inf. Softw. Technol., vol. 56, no. 2, pp. 220–237,
Feb. 2014.

[29] T. E. Ayyildiz and A. Koçyiğit, ‘‘Correlations between problem domain
and solution domain size measures for open source software,’’ in Proc.
40th EUROMICRO Conf. Softw. Eng. Adv. Appl., Verona, Italy, Aug. 2014,
pp. 81–84.

[30] T. E. Ayyildiz and A. Koçyiğit, ‘‘A case study on the utilization of problem
and solution domain measures for software size estimation,’’ in Proc.
42nd Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Limassol, Cyprus,
Aug. 2016, pp. 108–111.

[31] T. E. Ayyildiz and A. Koçyiğit, ‘‘Size and effort estimation based on
problem domain measures for object-oriented software,’’ Int. J. Softw. Eng.
Knowl. Eng., vol. 28, no. 2, pp. 219–238, Feb. 2018.

[32] M. Kiewkanya and S. Surak, ‘‘Constructing C++ software size estimation
model from class diagram,’’ in Proc. 13th Int. Joint Conf. Comput. Sci.
Softw. Eng. (JCSSE), Khon Kaen, Thailand, Jul. 2016, pp. 1–6.

[33] S. Kumar, ‘‘Analysis of software metrics and software tools,’’ Int. Educ.
Appl. Res. J., vol. 3, no. 7, pp. 86–88, Jul. 2019.

[34] E. Dias Canedo, K. Valença, and G. A. Santos, ‘‘An analysis of measure-
ment and metrics tools: A systematic literature review,’’ in Proc. 52nd
Hawaii Int. Conf. Syst. Sci., 2019, pp. 1–20.

[35] Understand. Accessed: Sep. 30, 2019. [Online]. Available: https://scitools.
com/

[36] AstahUML. Accessed: Jan. 12, 2020. [Online]. Available: https://astah.net/
products/astah-uml/

[37] SDMetrics. Accessed: Jan. 25, 2020. [Online]. Available: https://www.
sdmetrics.com/

[38] E. Ungan, S. Trudel, and A. Abran, ‘‘Analysis of the gap between initial
estimated size and final (true) size of implemented software,’’ in Proc.
IWSM/Mensura, vol. 2207, Beijing, China, 2018, pp. 123–137.

[39] IBM SPSS Software. IBM SPSS Modeler Statistical Tool. Accessed:
Nov. 15, 2019. [Online]. Available: https://www.ibm.com/analytics/spss-
statistics-software

[40] E. T. Berkman, and S. P. Reise, A Conceptual Guide to Statistics Using
SPSS. Thousand Oaks, CA, USA: Sage, 2012.

[41] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, ‘‘A simulation
study of the model evaluation criterion MMRE,’’ IEEE Trans. Softw. Eng.,
vol. 29, no. 11, pp. 985–995, Nov. 2003.

[42] D. Port and M. Korte, ‘‘Comparative studies of the model evaluation crite-
rions MMRE and pred in software cost estimation research,’’ in Proc. 2nd
ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2008,
pp. 51–60.

[43] M. Shepperd and S. MacDonell, ‘‘Evaluating prediction systems in soft-
ware project estimation,’’ Inf. Softw. Technol., vol. 54, no. 8, pp. 820–827,
Aug. 2012.

[44] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, ‘‘Exploring the
relationships between design measures and software quality in object-
oriented systems,’’ J. Syst. Softw., vol. 51, no. 3, pp. 245–273, May 2000.

[45] R. D. Cook, ‘‘Detection of influential observation in linear regression,’’
Technometrics, vol. 19, no. 1, pp. 15–18, Feb. 1977.

[46] R. M. O’brien, ‘‘A caution regarding rules of thumb for variance inflation
factors,’’ Qual. Quantity, vol. 41, no. 5, pp. 673–690, Mar. 2007.

MARRIAM DAUD received the B.S.C.S. degree
(Hons.) with double majors (software engineering
and information technology) from Forman Chris-
tian College (A Chartered University), in 2010,
the degree (magna cum laude) from FCC, in 2010,
and theM.S.C.S. degree from the National Univer-
sity of Computer and Emerging Sciences (FAST-
NUCES), in 2013, where she is currently pursuing
the Ph.D. degree. She worked as a Software Engi-
neer with WebCiters, from 2009 to 2013. From

2013 to 2015, she worked as a Lecturer with The University of Lahore
(UOL). Her research interests include software engineering, software size
estimation, and database systems. She received Gold Medal from Forman
Christian College (A Chartered University) for her B.S.C.S. degree and the
Faculty Outstanding Student Award from FCC.

ALI AFZAL MALIK (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in computer
science from the University of Southern California
(USC), Los Angeles, USA, in 2007 and 2010,
respectively. He is currently working as an Assis-
tant Professor and the Head of the Department of
Computer Science, National University of Com-
puter and Emerging Sciences (FAST-NUCES)
Lahore Campus. He has undertaken research in
software cost estimation at two of the world’s

leading research centers in software engineering, such as USC’s Center for
Systems and Software Engineering (CSSE) and Institute of Software, Chi-
nese Academy of Sciences (ISCAS). His current research work focuses on
areas, such as empirical software engineering and software cost estimation.
He received the prestigious Fulbright Scholarship for his M.S. and Ph.D.
degrees, in 2005.

VOLUME 9, 2021 81999


