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ABSTRACT The fifth-generation networks User Plane Function (UPF) provides necessary procedures
to connect end-devices and data networks. A Protocol Data Unit (PDU) session between specific user
equipment (UE) and the UPF is established before data transmission in 5G networks. The UPF software
can be packed into either a virtual machine (VM) or a container image and instantiated in service providers’
cloud infrastructure. Each UPF instance may handle several concurrent PDU sessions from various users.
Operators should control the number of UPF instances to save resource consumption in the provision of
Quality of Service (QoS). This paper presents a queueing model for a scenario where a threshold-based
algorithm controls the number of UPF instances depending on users’ traffic. We derive a method to compute
the steady-state probabilities and performance measures efficiently. We investigate the performance of the
UPF scaling algorithm in various scenarios with the assumption of specific hardware. Numerical results
show that scaling UPF instances can lead to the good utilization of the system resource.

INDEX TERMS 5G, core, PDU session, UPF, scaling, queueing analysis.

I. INTRODUCTION
The fifth-generation networks are expected to provide the ser-
vice for customers with different requirements from vertical
industries [1]–[5]. 5G core consists of multiple Service Based
Architecture (SBA) elements [1], [3]. The control plane
of 5G systems includes the Access andMobilityManagement
Function (AMF) and and the Session Management Function
(SMF) that performs authentications, mobility-related proce-
dures and UEs’ requests for the establishment of commu-
nication flows between UEs and data networks. The tasks
of the 5G data plane are carried out by 5G base stations
and the UPF, which provides necessary procedures to convey
data flows between end-devices and various data networks.
After authentication steps, a user equipment requests a PDU
sessionwith the use of the signaling protocol messages for the
data communication to a specific data network and the SMF
decides the acceptance based on the actual conditions of the
system and the QoS requirements of the PDU session. Upon
acceptance, the PDU session is tunnelled through the trans-
port network to the UPF, and the communication between the
UE and the data network can start.
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The UPF is implemented in software and can be packed
into either a VM or a container image. Service providers
launch UPF instances in their cloud infrastructure to serve
customers. In 5G networks, highly changing dynamics of
requests for PDU sessions are generated by subscriber equip-
ment. To guarantee QoS, each UPF instance should handle a
limited number of concurrent PDU sessions, therefore con-
tention for resources is expected. Operators may launch new
UPF instances when there aremore requests for PDU sessions
and terminating idle ones when few customers need PDU ses-
sions. That is, operators may apply threshold-based scaling
algorithms for managing UPF instances. Motivated by the
need for an efficient method for evaluating threshold-based
scaling solutions, we deal with a queueing model for a
threshold-based algorithm that can control the number of
UPF instances according to the need for PDU sessions. To our
best knowledge, no existing works on the queueing analysis
for the scaling of the 5G UPF have been presented so far.
The main contributions of this paper are the proposal of a
queueingmodel for a threshold-based algorithm that manages
the number of UPF instances depending on users’ traffic
and the efficient computational method of low complexity for
the steady-state probabilities and performance measures. The
complexity of our solution is linear to the size of the state
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space. Numerical results obtained by the queueing analysis
show that the threshold-based scaling algorithm can lead to
the efficient usage of the resource.

The rest of the paper is organized as follows. Related
works are reviewed in Section II. A scaling issue and a
threshold-based scheduling algorithm for the 5G user data
plane function are presented in Section III. A queueing model
is proposed in Section IV where we derive the steady-state
probabilities of the system. Numerical results are presented
in Section V. Finally, Section VI concludes our paper.

II. RELATED WORKS
Virtualization and container technology advancement in the
past decade has initiated a paradigm shift on the development,
deployment and operation (DevOps [6], [7]) of telecommuni-
cation functions and service. The provision of services based
on the DevOps concept comes with a series of decisions
related to the choice of an appropriate computing cluster
size and a scaling task that controls the number of software
instances in response to customers’ demands. The manage-
ment of computing and network resource (including scaling
measures to either add or remove resource to the existing
deployment) has been investigated in the context of cloud
computing and telecommunications as well.

A systematic review of autoscaling methods for appli-
cations in a cloud environment was summarized by
Lorido-Botran et al. [8]. Jaro et al. [9] investigated the
resource dimensioning aspects of a specific Telecommuni-
cation Application Server that was implemented as the par-
ticular set of Virtual Network Functions (VNF) to handle
several million busy hour call attempts. Tang et al. [10]
studied a traffic forecastingmethod for scalingVNF instances
running onVMs, and applied amixed-integer linear program-
ming for the placement of VNF instances. Kumar et al. [11]
considered network packet processing aspects related to the
virtualization of UPF in public clouds, and applied single
root input/output virtualization (SR-IOV), a technique for
the isolation of PCI Express cards, to speed up the packet
processing for the scaling of UPF instances. Herrera and
Moltó [12] proposed a bio-inspired algorithm based on the
analogue of cell adaptation, cell death and cell reproduction
for the container autoscaling. Their simulation results show
that their approach could limit the peak time and reduce the
response time the connection between cell-reproduction and
container orchestration platforms due to the over-provisioned
behavior.

Guo et al. [13] solved a virtual machine-to-physical
(VM-to-PM) machine assignment problem within the frame-
work of stochastic bin packing. Their proposed solution
guides the packing of VM-to-PM and the VM autoscal-
ing meanwhile automatically adapts to application resource
needs. Gandhi et al. [14] performed experiments about the
impact of horizontal and vertical VM scaling on cost, per-
formance, and provisioning times in an OpenStack envi-
ronment. The authors applied Kalman filtering to estimate
the service times and analyzed several scaling options with

FIGURE 1. The role of the 5G UPF.

different VM sizes. Taherizadeh and Stankovski in [15] car-
ried out experiments with an autoscaling method that consid-
ers the container-level monitoring and the application-level
monitoring. For the monitoring purpose, they applied the
SWITCH monitoring system from the SWITCH project
(http://www.switchproject.eu/). Wu et al. [16] presented a
design of a distributed key-value store called Anna, that has
the autoscaling capability to add and terminate service nodes
in response to load dynamics. Baresi et al. [17] applied the
control theory approach based the formulation of a nonlinear,
time-invariant dynamic system that describe the response
time as the function of the assigned cores and the request
rate. They also carried out some experiments to show the
viability of the scaling approach based on the control theory.
Zhang et al. [18] implemented their orchestration platform for
containers that host services for smart devices. They also per-
formed experiments to demonstrate the autoscaling feature
of their platform. Casalicchio [19] carried out measurements
about the scaling of Kubernetes Pods and argued that the
scaling should consider theQuality of Service aspects. Gervá-
sio et al. [20] in their hybrid autoscaling proposal, combined
a self-adaptive prediction and reactive approach for optimal
configuration of the threshold values for scaling operations.
Ullah et al. [21] presented the combination of predictive
and reactive approach where Cartesian genetic programming
based neural network is used for resource estimation and a
rule-based scaling.

From the related literature review, it is observed that scal-
ing algorithms reported in most of the literature works so far
control the number of VM, VNF, container instances with
the use of some thresholds [14]–[20]. However, to our best
knowledge, no existing work on the queueing analysis for the
scaling of 5G UPF instances based on threshold algorithms
has been presented. Our queueing model provides a quick
evaluation of scaling algorithms based on two thresholds,
which could be used to set parameters and establish bench-
marks for various scenarios.

III. SCALING ISSUE IN THE OPERATION OF 5G UPF
A. 5G UPF ENVIRONMENT
The 5G architecture consists of Radio Access Networks and
a 5G Core part (see Figure 1). User Equipment (UEs) are are
connected to a Radio Access Network (RAN) based on 5G
base stations (Next Generation NodeB gNB) [1]–[4], [22].
The transport network referred to as backhaul is responsible
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for ensuring the RAN and Core Network connectivity. There
are diverse wireless, wireline or optical solutions for the
backhaul transport network [23]. The 5G standards support
the connectivity of UE with various types (IP, Ethernet,
unstructured) of external data networks. The Third Genera-
tion Partnership Project (3GPP) designed the 5G core based
on the Service Based Architecture and the total control and
user plane separation (CUPS). That is, the 5G core consists
of the control plane and the data plane. The control plane
of 5G systems includes the Access andMobilityManagement
Function (AMF) and and the Session Management Function
(SMF) that manages the authentication of users, establishes
the data connection between UEs and data networks, and
executes necessary procedures to handle the mobility of UEs.

5G base stations and the UPF perform the tasks of the
5G data plane, that is, they provide necessary procedures to
convey data flows between end-devices and data networks.
Before the communication of a specific UE and a data net-
work, a PDU session should be started and handled by UPF.
UPF is implemented in software and can be executed inside
either a virtual machine or containers (termed as a UPF
instance). SMF is responsible for managing user sessions,
assigns a PDU session to an appropriate UPF instance. To
support themobilitymanagement of UE and hide themobility
of UE from external data networks, General Packet Radio
Service (GPRS) tunnels are established between gNB and a
specific UPF instance that handles data flows between UE
and a specific data network.

B. THRESHOLD-BASED SCALING ALGORITHM
If the traffic load increases, more UPF instances can be
started. Also, UPF idle instances can be terminated when the
traffic is low. This section presents a threshold-based scaling
algorithm that can be executed inside operations, adminis-
tration and management (OAM) to control the number of
UPF instances based on traffic. The threshold-based scaling
algorithm makes scaling decisions based on the information
about PDU sessions at SMF and UPF instances.

Since a limited resource can be allocated for one virtual
machine or container, we assume that one UPF instance can
handle a maximum of C number sessions. To manage the
resource for the Quality of Service provision, a best practice
approach for operators classifies UPF. Each group handle
PDU sessions with the same requirement. Due to the limit on
the available capacity of physical servers, the maximum num-
ber of UPF instances that can be launched is L. Also, the oper-
ator may set the minimum number (M ) of UPF instances that
should be established. Let I (t) denote the number of sessions
that are being served and J (t), (M ≤ J (t) ≤ L), be the number
of UPF instances at time instant t . The maximum number of
sessions that can be served at time t is NJ (t) = J (t)× C .

A scaling algorithm applies two thresholds (T1 and T2) to
control the number of UPF instances.

• If (I (t) = J (t) × C − T1 − 1) and J (t) < L upon a
request for a new session arrival, the request (termed the

TABLE 1. Parameters of the operation rule.

FIGURE 2. An example for the assignment of sessions to UPF instances.

scaling-out action) for a new instance is initiated. Note
that if the request is fulfilled, J (t) = J (t)+ 1.

• If the number of free slots would be equal to T2 and
J (t) ≥ M+1 upon the departure of a session, the request
is launched for the termination of an idle UPF instance.
Note that if the request (termed the scaling-in action) is
fulfilled, J (t) = J (t) − 1. It is worth emphasizing that
session migration should be performed to increase the
chance of having an idle instance.

When J (t) = jUPF instances are deployed, the scaling-out
action happens if there are I (t) = Nj − T1 − 1 PDU
sessions upon the arrival of a new session in the system.
The scaling-out action results in a situation with j + 1 UPF
instances and Nj − T1 served sessions. The scaling-in action
for a situation with j+ 1 UPF instances takes place when one
of ongoing Nj+1 − T2 + 1 PDU sessions departs. Therefore,
Nj+1 − T2 < Nj − T1 − 1 should hold to avoid the oscilla-
tion (the scaling-in/out actions may immediately follow each
other). This condition is equivalent to T2−C−T1 > 1 because
Nj+1 − Nj = C .
Figure 2 shows an example where J (t) = 3 UPF

instances are started, (instances sco.1 − sco.3) and there are
I (t) = 3× C − 2 sessions (plain circles). Instance sco.3 has
two empty slots left for arriving sessions (empty circle).

IV. ANALYTICAL MODEL
We assume that the arrival of new sessions follows the
Poisson process with rate λ and the session durations are
exponentially distributed with mean 1/µ. Then the system
is described by a two-dimensional Continuous Time Markov
Chain (CTMC), {(I (t), J (t)), t ≥ 0}. The following types
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TABLE 2. Summary of main notations.

of transitions are possible between the states of CTMC
{(I (t), J (t)), t ≥ 0}.
• State transition (i, j)⇒ (i+ 1, j+ 1) for i+ 1 = Nj−T1
and M ≤ j < L, is caused by the acceptance of a new
user session and the launch of a new UPF instance based
on the operation rule.

• State transition (i, j)⇒ (i+ 1, j) for
– either Nj − T2 + 1 < i + 1 ≤ Nj − T1 − 1 and
M < j < L,

– or 0 < i+ 1 ≤ NM − T1 − 1 and j = M ,
– or NL − T2 + 1 < i+ 1 ≤ NL and j = L

happens when there is a free slot and a new user session
arrives, and no scaling is performed.

• State transition (i, j)⇒ (i− 1, j) for
– either Nj − T2 + 1 ≤ i − 1 < Nj − T1 − 1 and
M < j < L,

– or 0 ≤ i− 1 < NM − T1 − 1 and j = M ,
– or NL − T2 + 1 ≤ i− 1 < NL and j = L

takes place when a user session departs and no scaling
is performed.

• State transition (i, j) ⇒ (i − 1, j − 1) for
i− 1 ≤ Nj − T2 andM < j ≤ L, is due to the departure
of a user session and the termination of a UPF instance
based on the operation rule.

As a consequence, the state space S of CTMC {(I (t), J (t)),
t ≥ 0} is expressed as

S = {(i,M ) : 0 ≤ i ≤ NM − T1 − 1}

∪{(i, j) : Nj − T2 + 1 ≤ i ≤ Nj − T1 − 1,M < j < L}

∪{(i,L) : NL − T2 + 1 ≤ i ≤ NL}.

The states when j UPF instances are launched are termed
as level j states. As the number of the states is NM − T1 +
(T2 − T1 − 1)(L − M − 1) + T2 = M × C + T2 − T1 +
(T2 − T1 − 1)(L − M − 1), the direct methods [24] to find
the steady state probabilities have the complexity of at most
O((M × C + T2 − T1 + (T2 − T1 − 1)(L − M − 1)3),
which is the complexity of solving a system of linear equa-
tions. In what follows, we present a derivation that leads to
a solution with the complexity of O(M × C + T2 − T1 +
(T2 − T1 − 1)(L −M − 1)).

If j, M < j < L, UPF instances are launched, due to the
operation rule there are two special states.
• State (Nj + C − T2, j) can be reached from state
(Nj + C − T2 + 1, j + 1) due to the departure of a

session and the scaling-in action performed to terminate
one UPF instance.

• State (Nj−C−T1, j) is the result of the scaling-out action
from state (Nj − C − T1 − 1, j− 1) due to the arrival of
a session.

In this paper, we distinguish two cases based on the relation
between Nj + C − T2 and Nj − C − T1. In the first case,
Nj + C − T2 ≥ Nj − C − T1 holds (i.e., T2 − T1 ≤ 2C)
The second case corresponds to T2 − T1 > 2C . The state
transition diagrams of CTMC {(I (t), J (t)), t ≥ 0} in two
cases are illustrated in Fig 3 and Fig 4, respectively.

Let us denote the steady state probabilities of CTMC
{(I (t), J (t)), t ≥ 0} as follows

pi,j = lim
t→∞

Pr(I (t) = i, J (t) = j), (i, j) ∈ S.

To determine the steady state probabilities, we apply
Proposition 1.
Proposition 1: All the probabilities (pi,j’s) can be

expressed in pNL−T2+1,L .
A proof for case T2−T1 ≤2C is presented in Section IV-A,

while a proof for case T2 − T1 > 2C is show in Appendix.

A. PROOF FOR CASE T2 − T1 ≤ 2C
In what follows we provide a proof for Proposition 1.

From Figure 3, we can observe that states can be classified
into subsets S1, S2, S3, S4, S5 and S6.
• Subset S1 = {(Nj − T2 + 1, j) : M < j ≤ L} includes
states where the scaling-in decision takes place upon the
departure of a session. The balance equation of these
states can be written as

pk,j(λ+ kµ) = pk+1,j(k + 1)µ, (k, j) ∈ S1. (1)

• Subset S2 = S−S1−S3−S4−S5−S6 consists of state
(k, j), M ≤ j < L, where only either session request or
departure happens.
The balance equation of these states can be written as

pk,j(λ+kµ) = pk−1,jλ+ pk+1,j(k + 1)µ, (k, j) ∈ S2.

(2)

• Subset S3 = {(i,L) : NL −C − T1 < i ≤ L}, consists of
state (i,L) where only either session request or departure
can happen. The balance equation of these states can be
written as

pk,jkµ = pk−1,jλ, (k, j) ∈ S3. (3)
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FIGURE 3. Case T2 − T1 ≤ 2C - State transition diagrams for levels L, j and M.

• Subset S4 = {(Nj − C − T1, j) : M < j ≤ L} includes
state (Nj−C−T1, j) that can be reached from state (Nj−
C − T1 − 1, j− 1) after the scale-out decision upon the
arrival a new session request. Note that (Nj −C − T1, j)
can be reached from either (Nj−C −T1− 1, j) or (Nj−
C − T1 + 1, j) as well. The balance equation of these
states can be written as

pk,j(λ+ kµ) = pk−1,j−1λ+ pk−1,jλ

+ pk+1,j(k + 1)µ, (k, j) ∈ S4. (4)

• Subset S5 = {(Nj − T1 − 1, j) : M ≤ j < L} consists of
state (Nj − T1 − 1, j) where the scale-out decision takes
place upon the arrival of a session request. The balance
equation of these states can be written as

pk,j(λ+ kµ) = pk−1,jλ, (k, j) ∈ S5. (5)

• Subset S6 = {(Nj + C − T2, j) : M < j ≤ L} includes
state (Nj+C−T2, j) that can be reached from state (Nj+
C −T2+ 1, j+ 1) when the scale-in decision is initiated
by the departure of a session. The balance equation of
these states can be written as

pk,j(λ+ kµ) = pk−1,jλ+ pk+1,j(k + 1)µ

+ pk+1,j+1(k + 1)µ, (k, j) ∈ S6.

(6)

1) THE STEADY STATE PROBABILITY OF STATE (∗, L)
We categorize the states when L UPF instances are launched
into two subsets: {(k,L) : NL − T2 + 1 < k ≤ NL−C − T1}
(i.e., the left-hand side of Figure 3a) and {(i,L) : NL−C −
T1 < i ≤ NL} (i.e., the right-hand side of Figure 3a).
(1) We proceed from the left-hand side to the right-hand

side of subset {(k,L) : NL − T2 + 1 < k ≤ NL−C − T1}.
From equation (1) for state (NL − T2 + 1,L), we get

pNL−T2+2,L = pNL−T2+1,L
(λ+ µ(NL − T2 + 1))

(NL − T2 + 2)µ
. (7)

If T2 − C − T1 ≥ 3, from equation (2) for state (k,L),
NL − T2 + 2 ≤ k ≤ NL−C − T1 − 1, we obtain

pk+1,L = pk,L
(λ+ kµ)
(k + 1)µ

− pk−1,L
λ

(k + 1)µ
. (8)

From equations (7) and (8), pNL−T2+k,L can be expressed
in pNL−T2+1,L for 2 ≤ k ≤ T2 − C − T1, T2 − C − T1 ≥ 3.
Note that if T2 − C − T1 = 2, pNL−T2+2,L is expressed in
pNL−T2+1,L from (7).

(2) We proceed from right-hand side to left-hand side
through balance equations of states in subset {(k,L) :
NL−C − T1 + 1 ≤ k ≤ NL}.
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FIGURE 4. Case T2 − T1 > 2C - State transition diagrams for levels L, j and M.

From equation (3) for state {(k,L) : NL−C − T1 + 1 ≤
k ≤ NL}, we attain

pk−1,L = pk,L
kµ
λ
∀ NL−C − T1 + 1 ≤ k ≤ NL . (9)

As a consequence, we get

pNL−C−T1+k,L

= pNL−C−T1,L

(
λ

µ

)k 1∏k
u=1(NL − C − T1 + u)

,

1 ≤ k ≤ C + T1, (10)

which means that pNL−C−T1+k,L is expressed in pNL−C−T1,L .
Note that pNL−C−T1,L can be expressed in pNL−T2+1,L . There-
fore, pi,L , NL − T2 + 1 < i ≤ NL , can be expressed in
pNL−T2+1,L .

2) THE STEADY STATE PROBABILITY OF STATE (∗, j),
j = L− 1, . . . ,M+ 1
We categorize the states when j UPF instances are launched
into two subsets: {(k, j) : Nj−T2+1 < k ≤ Nj−C−T1} (i.e.,
the left-hand side of Figure 3b) and {(i, j) : Nj−C−T1 < i ≤
Nj − T1 − 1} (i.e., the right-hand side of Figure 3b).

(1) We proceed from the right-hand side to the left-hand
side of subset {(i, j) : Nj − T1 − 1 < i ≤ Nj−C − T1}. From
equation (4) for state (Nj − T1, j+ 1) we get

pNj−T1−1,j = pNj−T1,j+1(λ+ (Nj − T1)µ)/λ

− pNj−T1−1,j+1 − pNj−T1+1,j+1
× (Nj − T1 + 1)µ/λ. (11)

If T2 − T1 = 2C then level j+ 2 state probabilities should
appear in the balance equation for state (Nj − T1, j + 1),
M < j < L − 1. Equation (12) is used to calculate pNj−T1−1,j
instead of equation (11) as

pNj−T1−1,j = pNj−T1,j+1(λ+ (Nj − T1)µ)/λ

− pNj−T1−1,j+1
− pNj−T1+1,j+1(Nj − T1 + 1)µ/λ

− pNj−T1+1,j+2(Nj − T1 + 1)µ/λ. (12)

From equation (5) for state (Nj − T1 − 1, j) we obtain

pNj−T1−2,j = pNj−T1−1,j
λ+ (Nj − T1 − 1)µ

λ
. (13)
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If T2 − C − T1 ≥ 3, from equation (2) for state (k,L),
Nj + C − T2 + 1 ≤ k ≤ Nj − T1 − 2, we get

pk−1,j = pk,j
(λ+ kµ)

λ
− pk+1,j

(k + 1)µ
λ

. (14)

If T2−T1 ≤ 2C−1, from equation (6) for state (Nj+C−T2, j)
we obtain

pNj+C−T2−1,j = pNj+C−T2,j
(λ+ (Nj + C − T2)µ)

λ

− pNj+C−T2+1,j
(Nj + C − T2 + 1)µ

λ

− pNj+1−T2+1,j+1
(Nj+1 − T2 + 1)µ

λ
. (15)

If T2 − T1 ≤ 2C − 2, from equation (2) for state (k, j),
Nj − C − T1 + 1 ≤ k ≤ Nj + C − T2 − 1 we obtain

pk−1,j = pk,j
λ+ kµ
λ
− pk+1,j

(k + 1)µ
λ

. (16)

From equations (11), (13), (14), (15) and (16) we conclude
that, pk,j can be expressed in pNL−T2+1,L for Nj−C − T1 ≤
k ≤ Nj − T1 − 1.

(2) We proceed from the left-hand side to the right-hand
side of subset {(i, j) : Nj−C − T1 ≤ i ≤ Nj − T2 + 1}. From
equation (1) for state (Nj − T2 + 1, j), we get

pNj−T2+2,j = pNj−T2+1,j
(λ+ µ(Nj − T2 + 1))

(Nj − T2 + 2)µ
. (17)

If T2 − C − T1 ≥ 3, from equation (2) for state (k, j) Nj −
T2 + 2 ≤ k ≤ Nj−C − T1 − 1, we obtain

pk+1,j = pk,j
(λ+ kµ)
(k + 1)µ

− pk−1,j
λ

(k + 1)µ
. (18)

Equations (17) and (18) follow that pk,j can be expressed
in pNj−T2+1,j for Nj−C − T1 ≤ i ≤ Nj − T2 + 1. Note that
pNj−C−T1,j was calculated in equation (14) and expressed in
pNL−T2+1,L . As a result, pNj−T2+k,j is expressed in pNj−T1−C,j,
so it can be expressed in pNL−T2+1,L .

3) THE STEADY STATE PROBABILITY OF STATE (∗,M)
We divide the states when M UPF instances are launched
into two subsets: {(k,M ) : 0 ≤ k ≤ N0 + C − T2} (i.e.,
the left-hand side of Figure 3c) and {(i, 0) : NM + C − T2 <
i ≤ NM − T1 − 1} (i.e., the right-hand side of Figure 3c).

(1) We proceed from the right-hand side to the left-hand
side of subset {(i,M ) : NM +C−T2+1 ≤ i ≤ NM −T1−1}.
Note that we can use equation (11) to calculate pNM−T1−1,
from equation (4) for state (NM − T1, 1). From equation (5)
for state (NM − T1 − 1,M ), we get

pNM−T1−2,M = pNM−T1−1,M (λ+ (NM − T1 − 1)µ)/λ.

(19)

If T2 −C − T1 ≥ 3, from equation (2) for state (k,M ) NM +
C − T2 + 1 ≤ k ≤ NM − T1 − 2, we get

pk−1,M = pk,M
(λ+ kµ)

λ
− pk+1,M

(k + 1)µ
λ

. (20)

(2) We proceed from the right-hand side to the left-hand
side of subset {(i,M ) : 0 ≤ i ≤ NM + C − T2 − 1}. From
equation (6) for state (NM + C − T2,M ), we obtain

pNM+C−T2−1,M = pNM+C−T2,M
(λ+ (NM + C − T2)µ)

λ

− pNM+C−T2+1,M
(NM + C − T2 + 1)µ

λ

− pNM+1−T2+1,M+1
(NM+1 − T2 + 1)µ

λ
.

(21)

From equation (2) for state (k, j), 1 ≤ k ≤ Nj+C−T2−1,
we get

pk−1,M = pk,M
λ+ kµ
λ
− pk+1,M

(k + 1)µ
λ

. (22)

Based on equations (20), (21) and (22) we conclude that
pi,M for 0 ≤ i < NM−T1−1 can be expressed in pNM−T1−1,M .
Note that pNM−T1−1,M can be expressed in pNL−T2+1,L , there-
fore pi,M can be expressed in pNL−T2+1,L .

To compute the stationary probabilities, we utilize the
normalization equation

∑
(i,j)∈S

pi,j = 1 and Proposition 1.

B. PERFORMANCE MEASURES
The performance measures can be determined as follows:
• the blocking probability of sessions equals to the steady
state probability of state (NL ,L)

PbS = pNL ,L , (23)

• the average number of UPF instances is

Vd =
∑
(i,j)∈S

j× pi,j, (24)

• the average number of busy UPF instances in the system
is

Vb =
∑
(i,j)∈S

di/Ce × pi,j, (25)

• the average number of idle instances in the system is

Vi = Vd − Vb, (26)

• the utilization is

U =
∑
(i,j)∈S

i
j× C

× pi,j. (27)

V. NUMERICAL RESULTS
For a numerical evaluation, we assume that
• UPF instances run in five physical servers [25]. Each
server has the Intel Xeon 6238R 2,2 GHz processor with
28 cores and 4× 64 GB RAM;

• each UPF session conveys video streaming data;
• six cores on each server are allocated for OS and the
container management system;

• Each UPF instance occupies one core and 2GB RAM
and serve maximum C = 8 simultaneous video streams.
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FIGURE 5. Average number of idle instances and cluster utilization.

FIGURE 6. The probability distribution of UPF instances and PDU sessions, configuration of scaling algorithm with λ/µ = 500.0, L = 110,
M = 1, C = 8, T1 = 3, T2 = 13.

FIGURE 7. The performance measures versus L and λ/µ for M = 1, C = 8, T1 = 2, T2 = 13.

Therefore, the maximum number of simultaneous video
streams is 110× 8 = 880.

To check whether the threshold-based algorithm can man-
age the resource requirement in response to the change of

traffic load, we compare two scenarios for the load (λ/µ)
below 851 (due to the maximum capacity of the servers this
is the maximum load value where the blocking probability of
arriving sessions is below 1%).
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FIGURE 8. The performance measures versus T1 and T2 for λ/µ = 500.0, L = 110, M = 1, C = 8.

FIGURE 9. The performance measures versus T1 and λ/µ for L = 110, M = 1, C = 8, T2 = 14.

• No-scaling scenario assumes that all the UPF instances
are launched. That is, 110 UPF instances are always
available. Of course, this scenario wastes the resource
when the traffic is low. Numerical results for this
scenario are computed with the use of the Erlang B
formula [26].

• Auto-scaling scenario is applied when the scaling algo-
rithm is responsible for adjusting the number of UPF
instances within the range of M to 110. Numerical
results for this scenario are computed based on the anal-
ysis presented in this paper with L = 110.

We plot the average number of idle UPF instances vs traffic
intensity (λ/µ), and the system utilization vs traffic intensity
in Figure 5. It can be observed that the auto-scaling could save
resource consumption and achieve high utilization. The aver-
age number of idle UPF instances is better on higher traffic
intensities, which results in a 20% decrease in the average
number of idle UPF instances. Similarly, the utilization is
50% for lower intensities increases to 99% for higher traffic
rates.

The auto-scaling approach automatically adjusts the num-
ber of UPF instances without any intervention and the mea-
surement of the traffic intensity. In Figure 6a the probability
mass distribution (pmf) of the number of the deployed UPF
instances and the busy UPF instances (which can be derived
based on the stationary distribution of the states, see Fig. 6b)
for λ/µ = 500., L = 110, M = 1, C = 8, T1 = 3,
T2 = 13 are illustrated. We can observe that the pmf of the
number of the deployed UPF instances is quite close to
the pmf of the number of busy UPF instances. This mean
the threshold-based scaling algorithm can keep the number
of deployed instances quite close to the number of UPF
instances necessary to serve PDU sessions.
We depict the average number of idle UPF instances vs

L and the system utilization vs L for for λ/µ = 500.,
M = 1, C = 8, T1 = 3, T2 = 13 in Figure 7. It can
be observed that the average number of idle UPF instances
(7a) and the utilization (7b) will reach constant value while
the maximum number of deployed UPF instances is higher
than 75, which means that the scaling algorithm is keeping
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the number deployed UPF instances to 75 regardless of the L
in this case.

In Figure 8, we plot the average number of idle UPF
instances and the utilization versus T1 and T2 for λ/µ =
500.0, L = 110, M = 1, C = 8, T1 = 1 and the
autoscaling. As expected, the high utilization and the low
number of average idle UPF instances come together. In the
present setting the choice of T1 = 1, T2 = 11 could achieve
the best performance, because the setting can give a chance
to fill UPF instances, so the average number of idle UPF
instances is low and high utilization is possible. Note that the
same results can be obtained for other values of λ/µ as well
(see Figure 9).

VI. CONCLUSION
We have proposed a queueing model for a threshold-based
algorithm that controls the number of User Plane Func-
tion instances in 5G systems. We have provided an effi-
cient procedure to compute the steady-state probabilities
and performance measures. Numerical results showed that
the threshold-based scheduling algorithm could automati-
cally adjust the number of UPF instances in response to the
change of traffic load, save the resource consumption and
keep the high utilization of the requested resource. In the
paper, the assumption of the Poisson arrival process is a com-
mon practice to make the queueing model mathematically
tractable. As a future work, we will consider the applica-
tion of other stochastic processes like [27]–[29] to model
non-Poisson arrivals as well.

At present, various algorithms could be considered for the
autoscaling of 5G UPF instances. The advantage of the vari-
ants of threshold-based algorithms is the simple implementa-
tion and operation. The threshold-based algorithm presented
in this paper and the efficient evaluation could be used as
a reference in benchmarking where the comparison of algo-
rithms can be performed to select an appropriate solution and
to check whether a certain configuration has enough capacity
to provide the Quality of Service for PDU sessions. Fur-
thermore, artificial intelligence-based solutions [30] could
be applied and results obtained by the efficient computation
method presented in this paper can be used in the training
phase as well.

APPENDIX
PROOF FOR CASE T2 − T1 >2 C
In what follows we provide a proof for Proposition 1 for case
T2 − T1 > 2C .

A. THE STEADY STATE PROBABILITY OF STATE (∗, L)
The states when there are L dynamic instances are categorized
into two subsets: {(k,L) : NL − T2 + 1 < k ≤ NL−C − T1}
(i.e., the left-hand side of Figure 4a) and {(i,L) : NL−C −
T1 < i ≤ NL} (i.e., the right-hand side of Figure 4a).

The state space and the state transitions on level L are
exactly the same as in the case described in IV-A1 so we use

exactly the same steps used in IV-A1 to prove that level L
state probabilities can be expressed with pNL−T2+1,L .

B. THE STEADY STATE PROBABILITY OF STATE (∗, j ),
j = L− 1, . . . ,M + 1
The states when there are j dynamic instances are categorized
into two subsets: {(k, j) : Nj−T2+1 < k ≤ Nj−C−T1} (i.e.,
the left-hand side of Figure 4b) and {(i, j) : Nj−C−T1 < i ≤
Nj − T1 − 1} (i.e., the right-hand side of Figure 4b). Note,
this case is similar to the case presented in IV-A2, the main
difference is that the position of state (Nj+C−T2, j) and the
position of state (Nj − C − T1, j) are switched.
(1) We proceed from the right-hand side to the left-hand

side of subset {(i, j) : Nj−C − T1 < i ≤ Nj − T1 − 1}. From
equation (4) for state (Nj − T1, j+ 1), we attain

pNj−T1−1,j = pNj−T1,j+1(λ+ (Nj − T1)µ)/λ

− pNj−T1−1,j+1 − pNj−T1+1,j+1
× (Nj − T1 + 1)µ/λ. (28)

From equation (5) for state (Nj − T1 − 1, j), we get

pNj−T1−2,j = pNj−T1−1,j
λ+ (Nj − T1 − 1)µ

λ
. (29)

If C ≥ 2, from equation (2) for state (k,L) Nj−C−T1+1 ≤
k ≤ Nj − T1 − 2, we obtain

pk−1,j = pk,j
(λ+ kµ)

λ
− pk+1,j

(k + 1)µ
λ

. (30)

The consequence of equations (28),(29) and (30) is that pk,j
can be expressed in pNL−T2+1,L for Nj−C − T1 ≤ k ≤
Nj − T1 − 1.
(2) We proceed from the left-hand side to the right-hand

side of subset {(i, j) : Nj − T2 + 1 ≤ i ≤ Nj−C − T1}. From
equation (1) for state (Nj − T2 + 1, j), we get

pNj−T2+2,j = pNj−T2+1,j
(λ+ µ(Nj − T2 + 1))

(Nj − T2 + 2)µ
. (31)

If C ≥ 2, from equation (2) for state (k, j) Nj−T2+2 ≤ k ≤
Nj + C − T2 − 1, we attain

pk+1,j = pk,j
(λ+ kµ)
(k + 1)µ

− pk−1,j
λ

(k + 1)µ
. (32)

If T2−T1 ≥ 2C+1, from equation (6) for state (Nj+C−T2, j),
we obtain

pNj−T2+C+1,j = pNj−T2+C,j
λ+ µ(Nj − T2 + C)
µ(Nj − T2 + C + 1)

− pNj−T2+C−1,j
λ

µ(Nj − T2 + C + 1)
− pNj+C−T2+1,j+1. (33)

If T2 − T1 ≥ 2C + 2, from equation (2) for state (k, j) Nj +
C − T2 + 1 ≤ k ≤ Nj−C − T1 − 1, we obtain

pk+1,j = pk,j
(λ+ kµ)
(k + 1)µ

− pk−1,j
λ

(k + 1)µ
. (34)
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From equations (31),(32),(33) and (34), pk,j can be expressed
in pNj−T2+1,j for Nj − T2 + 1 ≤ k ≤ Nj − C − T1. Note
that pNj−C−T1,j can be expressed in pNL−T2+1,L , so pk,j can be
expressed in pNL−T2+1,L for Nj − T2 + 1 ≤ k ≤ Nj − T1 − 1.

C. THE STEADY STATE PROBABILITY OF STATE (∗,M)
The states when there are M UPF instances are categorized
into two subsets: {(k,M ) : 0 ≤ k ≤ N0 + C − T2} (i.e.,
the left-hand side of Figure 4c) and {(i,M ) : NM +C −T2 <
i ≤ NM − T1 − 1} (i.e., the right-hand side of Figure 4c).

The state space and the state transitions on level M are
exactly the same as in the case described in IV-A3 so we use
exactly the same steps used in IV-A3 to prove that level M
state probabilities can be expressed in pNL−T2+1,L .
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