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ABSTRACT The promoter is a regulatory region of the DNA typically located upstream of a gene and
plays a key role in regulating gene transcription. Accurate prediction of promoters is crucial for the analysis
of gene expression patterns and for the development and understanding of genetic regulatory networks.
Genomes of several species have been sequenced, and their gene content has been established to a large
extent. Some bioinformatics algorithms have been developed for predicting promoters with high universality
for all kinds of plants; however, few studies have been conducted to identify promoters in rice, which might
affect the practical applications. Here, we present a rice promoter prediction tool, Cr-Prom. This predictor
has been established using a series of sequence-based features and datasets extracted from the PlantProm
and RAP-DB databases. We applied a convolutional neural network (CNN)-based strategy to construct a
predictor with robust classification performance. To demonstrate our dominance, we ran experiments on a
benchmark dataset using 5-fold cross-validation and compared our results with existing techniques using four
figure ofmerits. In addition, CR-Promwas analyzed on an independent dataset. Based on the results, Cr-Prom
outperformed the existing rice-specific promoter predictors. The Cr-Prom tool can be freely accessed at:
http://nsclbio.jbnu.ac.kr/tools/Cr-Prom/

INDEX TERMS Promoters, convolutional neural network (CNN), computational biology, bioinformatics,
rice genome.

I. INTRODUCTION
Rice is a cereal crop that belongs to the Orayza genus,
representing a variety of rice, which can be divided into two
subspecies, namely indica and japonica. Rice can also be
divided into conventional and hybrid rice depending upon its
production type. Being a vital direct cash crop, rice is the
staple food for majority of the population all over the world.
From basic studies to molecular breeding, researchers have
played a significant role in boosting rice production world-
wide. Owing to the rapid development of biotechnology and
genetic engineering technology, scientists started analyzing
and collating rice genome in 1998, and by 2002, the entire
rice genome map had been interpreted. The rice genome
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is the most completely sequenced genome among higher
organisms [1]. Among the 37,500 genes identified, several
have a significant role to play in agricultural production. For
example, research on key genes can help increase the yield of
rice [2] or change the photoperiod of rice.

Transcription of protein genes and most non-coding RNA
genes, as well as that of the DNA regions with uncertain
functions, is performed in the nuclear genomes of eukary-
otic organisms by RNA polymerase II (Pol II). Transcription
controls cellular differentiation and function by initiating
expression at specific genomic locations. Changes in gene
regulation are the main driving factors for the majority of uni-
versal diversification between species [3], [4] and phenotypic
diversity within the same species [5]–[7]. Gene regulation
has been targeted by a large number of genetic, biological,
chemical, and computational studies.
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Promoters play a significant role in the regulation of gene
expression and their accurate prediction has both fundamental
and practical significance. The promoter is located essen-
tially upstream of the transcription starting point of the gene
and is not involved in the transcription itself [5]. However,
some promoters, such as tRNA promoters are located down-
stream of the transcription starting point [7], and these DNA
sequences can be transcribed [8]. The precise identification
of transcription sites is key to the successful expression of
genes. There are currently several publicly accessible collec-
tions of transcripts and promoter sequences with annotated
transcription start sites (TSS). The identification and charac-
terization of promoters and TSSs is crucial for the unraveling
of mechanisms that control the RNA Pol II transcription. This
shows the importance of proper functioning of the promoter
in the plant. In the case of rice, the proper functioning of the
promoter directly affects agricultural production.

Biological methods for the identification of promoters are
usually time-consuming and require a costly procedure to be
followed. Although, identical or similar genes exist in differ-
ent species, there are significant differences in gene expres-
sion; this phenomenon is known as biological diversity. The
first step to infer whether a gene can be expressed normally
is whether it can be transcribed normally, and promoters are
the key gene sequences that control transcription. Promoters
that show significant differences and diversity along with the
transformation of species can control the normal transcription
of genes in the coding regions of different species. Therefore,
the establishment of a novel predictor for rice promoter pre-
diction is urgently required. Considering the aforementioned
drawbacks associated with biological techniques, we believe
that employing computational techniques for the prediction
of promoters will be a better option.

In recent years machine learning and artificial intelligence
have demonstrated great success in different applications
[9]–[13]. According to previous studies, genome-wide com-
putational prediction and a two-layer predictor for identify-
ing promoters and their types using a multi-window-based
PseKNC [14] can provide us with ideas and technical guid-
ance. A tool for the prediction of plant Pol II, called the
TSSPlant, was developed [15]. A previously published plant
TATA-box NFM, which was determined using 345 promoters
from Plant Prom DB and applying an EM procedure, was
used for building the predictor for plant promoters. TSSPlant
was developed to predict the promoters of all types of plants.
Another tool, called ProRice [16], was proposed, and it used
an ensemble learning-based approach to identify promot-
ers from rice genome. The datasets employed in this study
were extracted from the PlantProm and RAP-DB databases.
ProRice achieved 92.3% accuracy, 95.2% sensitivity, 90%
specificity, and 0.857 MCC. Irrespective of these results,
the main constraint of ProRice is the extraction of local
features.

Both TSSPlant and ProRice are machine learning-based
tools that use different numbers of features; for example,
ProRice used 11 different features, whereas TSSPlant used

19 different features for model training and evaluation; how-
ever, there was considerable scope for improvement in their
prediction performances. Notably, a tool that applies neural
networks (NN) for the prediction of promoters in rice genome
has not yet been developed.

Therefore, this study aimed to develop a tool using a CNN
based approach to predict rice promoters. Accurate prediction
of rice promoters is of great significance for subsequent
studies on molecular design and breeding [17], gene expres-
sion regulation, gene transduction, modified genes [18], and
for the advancement of other microbiological sciences and
technology. We used Chou’s [19] five-step rule in our study;
several recent publications have used this rule [20]–[22]:

1) Preparing a benchmark dataset
2) Mathematically expressing the sequence
3) Constructing Classification Model
4) Model evaluation
5) Making predictor webserver publicly available
Figure 1 illustrates the graphical representation of the five

steps; the remaining text follows the research flow depicted
in the steps presented by Chou’s rule.

II. BENCHMARK DATASET
The selection of a suitable benchmark dataset is impor-
tant for the development of an efficient biological predic-
tor and enables the evaluation of the performance of the
predictive model. In this study, the promoter dataset used
was the same as that used in the development of ProRice.
The 4220 rice promoter was extracted from the PlantProm
database that contains the TSSs from a variety of plant
species. Negative promoter samples of the same size were
obtained from the rice annotation project database (RAP-DB)
(https://rapdb.dna.affrc.go.jp/download/irgsp1.html) [23].
The length of each sequence screened by the positive and
negative samples was 251bp. To ensure robustness of the pre-
dictor model, the database must be pre-processed to remove
noise [24], for which we used CD-HIT-EST [25], and set
the cut-off value of 0.8 to remove mostly similar promoter
sequences [26]. Subsequently, we joined the positive and
negative promoter sequences and randomly separated them
into training and testing sets using k-fold. From the training
split 70% is used for training the model while 30% is used for
the validation of the model. A numerical summary of the pro-
moter and non-promoter datasets for rice is listed in Table 1.
The dataset used in this study is freely available and can be
downloaded from https://github.com/Shujaatmalik/Cr-Prom.

TABLE 1. Summary of the dataset.

III. PROPOSED METHODOLOGY
A. ENCODING SCHEME
A DNA sequence is comprised of four nucleotides, namely
adenine (A), cytosine (C), guanine (G), and thymine (T).
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FIGURE 1. Illustrate the graphical representation of five steps.

A numerical representation is required to perform computa-
tional operations on DNA sequences. The one-hot encoding
scheme shows great effectiveness when applied in deep learn-
ing; a number of recent studies in the domain of computer
science [27]–[29] and bioinformatics [30]–[32] have applied
the one-hot encoding scheme. Using this method, a single
nucleotide is converted to a binary vector of four dimensions,
where one element is denoted as 1 and all the remaining
elements are represented by 0; for each nucleotide, the math-
ematical representation is as follows:

A H⇒ (1, 0, 0, 0)

C H⇒ (0, 1, 0, 0)

G H⇒ (0, 0, 1, 0)

T H⇒ (0, 0, 0, 1)

Given that the length of the promoter sequence was
251, each sample was converted into a numerical vector of
251 × 4 using one-hot encoding.

B. MODEL ARCHITECTURE
CNNs are computational models that use different layers to
assimilate features from a dataset with various degrees of
deliberation. The ongoing advancements in CNNs has made
them highly reliable, and these networks have achieved novel
results in various fields. CNNs have also achieved remarkable
results in the area ofmedical image processing [29], [33], [34]
and bioinformatics [35], [36]. However, numerous notable
examples use CNNs to build predictors that can detect the
variation occurred in genetic sequence. The foremost benefit
of a CNN is that it does not necessitate preliminary feature
extraction. A CNN-based model can directly derive features
from the input. This research, utilizes a CNN based model for
the prediction of promoters.

A crucial step in promoter detection is to find the pre-
cise positions in the promoter region where promoter ele-
ments such as the TATA-box, CAAT-box, and GC-box, are

localized [37]. Although such positional details are essen-
tial for the identification of promoters, the maximum pool-
ing layer or average pooling layer used in CNNs cause
the sequence location information to deteriorate to a cer-
tain degree [38]. We herein propose a CNN-based archi-
tecture the Cr-Prom, for the prediction of rice sequence as
a promoter or a non-promoter. Figure 2 illustrates the pro-
posed architecture of the CR-Prom, which consists of two
one-dimensional convolution layers. The encoded one-hot
sequence is transferred to the input layer of the model.

The batch-normalization and dropout layers are preceded
by the first convolution layer, and the max-pooling and
dropout layers are preceded by the second convolution layer.
The characteristics derived from the convolution layers were
flattened and utilized for classification, using the dense layer.
Hyper-parameter tuning is performed to select the optimum
parameters for convolution, pooling, dropout, and dense lay-
ers. The variety of hyperparameters used for tuning purposes
is displayed in Table 2.

TABLE 2. Hyper-parameter tuning parameters.

The first and second convolution layers use filters of sizes
16 and 32, respectively, and the kernel for both of these layers
was 5. Batch normalization was performed on the extracted
features by the first convolutional layer, while max pooling
was performed using a pool of size 2 with two strides on
the features extracted by the second convolutional layer. For
feature selection, the dropout layer discharged 25% of the
features at the end of each convolution layer. The ReLU
activation function was used in both the convolutional layers.
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FIGURE 2. Proposed CNN architecture.

Mathematically ReLU can be represented as follows:

R(x) = max(0, x) (1)

The two fully-connected layers had 16 and 1 neurons,
respectively. The ReLU was used as an activation function in
the first fully connected layer, whereas the second fully con-
nected layer used a single neuron with a sigmoid activation
function, and can be represented as

F(s) =
1

1+ exp(−s)
(2)

To avoid overfitting, we used L2 regularization in all the
convolution and dense layers. The optimizer used in this
model was the stochastic gradient descent (SGD) with a
learning rate of 0.007 and momentum of 0.96. Binary cross
entropy (BCE) was used in the loss function and can be
mathematically represented as

BCE(t, p) = −(t ∗ log(p)+ (1− t) ∗ log(1− p)) (3)

IV. RESULTS AND DISCUSSION
In this section we discussed the evaluation parameters,
achieved performance by the proposed Cr-Prom and its com-
parison with state-of-the-art methods.

A. EVALUATION PARAMETER
We used broadly applied methodological measures [14], [36],
[39]–[41] to comprehensively analyze the efficiency of the
promoter’s prediction. These include Matthew’s correlation
coefficient (MCC), accuracy (Acc), sensitivity (Sn), speci-
ficity (Sp), and ROC curve. These metrics can be mathemat-
ically expressed as follows:

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(4)

Acc =
TN + TP

TP+ TN + FP+ TN
(5)

Sp =
TN

TN + FP
(6)

Sn =
TP

TP+ FN
(7)

True positives, true negatives, false positives, and false
negatives are denoted by TP, TN, FP, and FN, respectively.
The number of correctly classified promoters is denoted by
TP while the number of correctly classified non-promoters is
denoted by TN. FN represents the number of incorrectly clas-
sified non-promoters and FP represents the number of incor-
rectly classified non-promoters. Therefore, Sn (also known
as the true positive rate) measures the percentage of correctly
classified promoters, and Sp measures the percentage of
analogously correctly identified non-promoters. The balance
quality of the positive and negative data was represented by
MCC. Moreover, to determine the overall classification per-
formance, the receiver operating characteristic (ROC) curve
is also assessed.

TABLE 3. Classification performance.

B. PERFORMANCE EVALUATION
We performed 5-fold cross validation, to assess the achieved
performance by the proposed model. Similarly, the experi-
ments were conducted using ProRice and TSSPlant, which
are state-of-the-art diagnostic and classification methods.
Table 3 demonstrates the Cr-Prom results for the prediction of
promoters and non-promoters. As can be seen, a significant
improvement was observed when compared with the results
of state-of-the-art methods.
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FIGURE 3. ROC curve.

Cr-Prom achieved a sensitivity of 98.57%, specificity
of 99.9%, accuracy of 99.1%, and an MCC of 0.9839.
All these values were greater than those of ProRice and
TSSPlant. The results therefore indicate that Cr-Prom is more
suitable for the rice-specific promoter classification problem.
A substantial 12.9% increase in the MCC value demonstrates
the reliability of the proposed methodology in identifying the
classes of the promoters and non-promoters. The ROC curve
for the estimation of the promoter and non-promoter regions
is shown in Figure 3. An AUC value closer to 1 indicates that
the ROC curve is positioned closer to the upper-left corner,
indicating a highly accurate prediction.

C. MODEL EVALUATION ON INDEPENDENT DATASET
We performed model evaluation on an independent dataset,
for which we used promoters of the plants class that
were recently updated on the database. Eukaryotic Promoter
Database (EPD) consists of the following two plant species:
Arabidopsis thaliana and Zea mays. Table 4 lists the total
number of promoters present in each class.

TABLE 4. Details for independent dataset.

TABLE 5. Evaluation on independent dataset.

The independent test dataset did not have any non-
promoters. Therefore, we only reported the values of true pos-
itives and false negatives. Table 5 presents the performance
results for Cr-Prom for both the species.

FIGURE 4. WebServer.

V. WEBSERVER
Following the procedure followed by numerous researchers,
a web server that hosts our Cr-Prom tool is publicly avail-
able to provide easy access to this tool for the research
community [28], [42]. Cr-Prom is an easy-to-use platform
for researchers and professionals in the areas of bioinfor-
matics and biology. This webserver accepts two types of
input data: direct sequence input and uploading a file that
contains the sequences which needs to be evaluated. Each
sequence containing A, C, G, and T must be 251 nt long,
with a limit of 1000 sequences available for prediction
when uploading a file.. A web-server snippet can be seen
in Figure 4. Figure 4a shows an example of inserting pre-
diction sequences, whereas Figure 4b shows the predictor’s
output. In addition, the Cr-Prom webserver is made available
at: http://nsclbio.jbnu.ac.kr/tools/Cr-Prom/

VI. CONCLUSION
We developed a sequence-based CNN method, called the
Cr-Prom, to address the major challenges encountered when
uncovering the promoters from a large number of DNA
sequences in rice generated in the postgenomic period. A suc-
cessful discrimination output between the promoter and non-
promoter DNA sequences, specifically for rice, was obtained
using the proposed method. A single encoding scheme was
used by this CNN-based tool, and the proposed architecture
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was evaluated using a publicly accessible dataset as well as
on independent dataset. Overall, the tool achieved superior
results in comparison to the existing techniques.
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