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ABSTRACT Face Age Progression (FAP) refers to synthesizing face images while simulating ageing
effects, thus enabling predicting the future appearance of an individual. The generation of age-progressed
face images brings benefits for various applications, ranging from face recognition systems to forensic
investigations and digital entertainment. In particular, the recent success achieved with deep generative
networks significantly leveraged the quality of age-synthesized face images in terms of visual fidelity, ageing
accuracy and identity preservation. However, the high number of contributions in recent years requires
systematically structuring new findings and ideas to identify a common taxonomy, accelerate future research
and reduce redundancy. Therefore, we present a comparative analysis of recent deep learning based face age
progression methods for both adult and child-based face ageing, broken down into three high-level concepts:
translation-based, condition-based, and sequence-based FAP. Further, we offer a comprehensive summary
of the most common performance evaluation techniques, cross-age datasets, and open challenges to steer
future research in the right direction.

INDEX TERMS Face age progression, semantic face editing, generative adversarial networks, biometrics.

I. INTRODUCTION
Biometric recognition refers to the automated recognition of
individuals based on their biological and behavioural char-
acteristics [1] and has steadily gained popularity in recent
years. Among other applications, human forensic experts
use the human face for identifying long-missing individu-
als or fugitive criminals. Especially for automated biometric
recognition, human faces have proven to be unique, easy to
capture, and non-intrusive. Based on these benefits, various
large-scale border control projects have been initiated to work
interoperably [2], such as the European Entry/Exit-System
(EES) [3]–[5], the Schengen Information System (SIS)
[6], [7], or the Visa Information System (VIS) [8], [9]. How-
ever, the increasing demand for face recognition also raises
questions about the robustness of these systems. More pre-
cisely, the main objective of face recognition is to be robust
against ‘‘intra-subject’’ variations while, at the same time,
being sensitive to ‘‘inter-subject’’ differences. In this context,
intra-subject variations can be caused by various factors, such
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as different head poses, illumination settings, face expres-
sions (PIE factors), change of hairstyle, or face ageing.

With the emergence of deep learning based face recogni-
tion systems [10], [11], the robustness against intra-subject
variations can be improved by collecting more training data
that correctly reflects the distribution of a real-world scenario.
While the collection of face images in an unconstrained
capturing environment naturally leads to a variation of PIE
factors, it is much more challenging to collect face images of
the same person in the long term corresponding to the validity
period of an ID document. In a recent study, Chen et al. [12]
showed that face ageing has a tremendous effect on the per-
formance of a face recognition system, leading to a degraded
biometric performance of over 13%. The impact of face age-
ing has also been quantified in the recent NIST FRVT study
regarding demographic differentials, which documented that
the time elapsed between a reference image and probe image
is highly influential on face recognition false negatives [13].

Since long-term data acquisitions of the same subjects are
practically not feasible, face age progression (FAP) methods
are developed to synthesize face images with ageing effects
of older ages. In the early days, FAP methods could be
roughly categorized into physical model-based [14]–[16] or
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prototype-based [17], [18] approaches. Physical model-based
methods build complex models to simulate the biological
ageing mechanisms of the cranium, muscles, and facial
skin. Often, they are computationally intensive and rely on
long-term face sequences of the same person. On the other
hand, prototype-based methods divide faces into different
age groups, the average faces of which are then assumed to
represent the typical age patterns. Finally, the age-synthesis
can be achieved by fusing the input image with the average
face of a target age group. However, prototype-basedmethods
cannot preserve an individual’s identity, making them less
suitable for face recognition tasks.

From 2014, FAP methods based on deep generative net-
works have gained more and more attention as they signif-
icantly outperformed classical approaches in terms of visual
fidelity, ageing accuracy, and identity preservation [19]–[21].
In particular, generative adversarial networks (GANs) [22]
have achieved remarkable face ageing results. Besides gen-
erating photorealistic face images in high-resolution, GANs
are not restricted to mated samples other than physical-
model-based methods. Also, in contrast to prototype-based
FAP approaches, state-of-the-art GAN architectures have
addressed the problem of identity preservation.

Previous works by Fu et al. [23] and Ramanathan et al. [24]
provide comprehensive introductions into state-of-the-art
physical-model based and prototype-based methods. Given
the increasing number of publications related to deep FAP
and the high demand for robust face recognition systems,
the main contribution of this survey is to conceptualize recent
achievements and point out open challenges to steer future
work in the right direction.

A. PROBLEM STATEMENT AND CHALLENGES
Face age progression refers to simulating the future appear-
ance of an individual by synthesising its face image with the
ageing effects of an older age. More specifically, each FAP
method analyzed in this survey follows one of the following
prediction schemes:

• Age-translation between age groups: Face images are
divided into pre-defined age groups with similar ageing
patterns. In this scenario, FAP methods focus on the
transition between age groups by synthesizing input face
images with the typical ageing effects of another age
group [19], [21].

• Age-translation to specific ages: Instead of transitions
between discrete age groups, FAP methods from this
category synthesize input face images with ageing signs
from specific ages (in years). The problem of missing
training data samples of individual ages is solved by
interpolating between ageing effects of neighbouring
ages, which are more represented within the training
dataset [25], [26].

• Continuous age-translations: Instead of synthesiz-
ing face images with ageing patterns of pre-defined
ages or age groups, FAP methods from this category

FIGURE 1. Continuous FAP with InterFaceGAN [27]: First, an encoder
projects the original face image into the latent space of StyleGAN [29]
(marked as black points). Then, the latent code is shifted in an
age-changing direction and passed to the StyleGAN generator to
reconstruct the age-progressed face image.

simulate the natural face ageing process on a continuous
scale. [27], [28].

Figure 1 shows an example of continuous FAP with Inter-
FaceGAN [27] - without any target age passed to the
age-synthesis module. Further examples of FAP correspond-
ing to age-translations based on age groups and specific ages
are depicted in Figure 7, comparing the results of multiple
FAP methods.

Despite various real-world applications that would ben-
efit from well-performing FAP frameworks, capturing gen-
eral face ageing patterns remains challenging. In particular,
the complexity of the human face ageing process is due
to different ageing rates varying from individual to indi-
vidual, depending on genetic [30], environmental [31], and
behavioural factors [32].

On a molecular basis, chronological ageing refers to the
progressive degeneration of tissue, cells, and organs in the
human body, which occurs throughout life and tends to
be inherited [33]. The degeneration of skin tissue intensi-
fies with exposure to ultraviolet radiation (sunlight), thus
enhancing the natural chronological ageing process in local
skin areas [34]. In this context, Gasperlin and Gosenca [35]
emphasized the age-enhancing impact of oxidative stress
caused by sunlight and pointed out the importance of a bal-
anced diet to support the endogenous antioxidant system in
the human body. Further studies on cutaneous ageing have
shown the age-accelerating effects of drug abuse, such as the
regular consumption of alcohol or cigarettes [32]. According
to Loth and Iscan [30], emotional stress and chronic anxiety
lead to intense and long-enduring muscle tensions, which
increase the formation of wrinkles in various face regions.
Other factors affecting skin ageing involve diseases [36],
exposure to extreme climate conditions [33], or hormonal
changes in the body [37].

Based on the wide range of influential ageing factors,
an individual’s biological age can significantly differ from the
corresponding actual age (in years) [30]. Therefore, one of the
main challenges of predicting future appearances is to take

VOLUME 9, 2021 83377



M. Grimmer et al.: Deep FAP: Survey

into account the individual ageing rates of different subjects
instead of learning fixed ageing patterns [28].

Nevertheless, general ageing trends have been observed
by Albert et al. [38], who divided human face ageing into
two stages: The first stage describes the development from
childhood to adulthood, which is characterized by craniofa-
cial growth [39]. The second stage includes mainly textural
changes that occur during the transition from adulthood to
older ages [38]. In this context, a study by Abel et al. [40]
emphasizes the relationship between the intensity of wrinkles
and furrows with the age of an individual. Due to the differ-
ences between adult and child ageing, most research in the
field of FAP either focuses on adults or children, which is
why this survey presents state-of-the-art works separately in
Section III and IV.

B. APPLICATIONS
Nowadays, various real-world applications benefit from suc-
cessfully predicting the future appearance of individuals.
Realistic age-progressed face images can be utilised to mit-
igate age-related biases in face recognition systems. In par-
ticular, FAP facilitates creating age-balanced datasets, which
can later be used to train face recognition systems or perform
biometric performance tests on existing models.

Often, several years elapse between the initial enrolment of
a human face and the re-capturing of a probe sample for con-
ducting the face verification. In this context, typical scenarios
in which face recognition systems benefit from the robustness
against long-term age variations include law enforcement or
automatic border control. According to the Federal Bureau
of Investigation, hundreds of thousands of individuals are
reported as missing each year, including children, fugitive
criminals, or senior citizens with dementia [41]. However,
investigations can endure over many years during which the
appearances of the individuals change due to natural ageing
effects.

However, besides increasing the robustness of face recog-
nition systems, other applications for FAP involve the enter-
tainment and cosmetology sector. FAP is particularly inter-
esting in the movie post-production, where the skin texture
of actors is often retouched either digitally or physically to
manipulate the perceived age. In this context, the film indus-
try benefits from the increasing computational resources
available at lower costs and advances in developing more
efficient deep generative networks.

C. ORGANISATION OF THE SURVEY
This survey is structured as follows: Section II presents the
taxonomy of the deep learning based FAP concepts, includ-
ing a discussion about advantages and disadvantages. Next,
Section III explains the basic FAP concepts with a detailed
summary of state-of-the-art works. Section IV describes the
differences between child vs adult face ageing and presents
recent accomplishments. In Section V, the most common
performance evaluation techniques are introduced based
on our literature analysis and presented with face ageing

examples of three recently published FAP methods (see
Figure 7). Further, a crucial aspect of developing deep learn-
ing based FAP frameworks is to have a suitable dataset.
Therefore, Section VI gives an overview of publicly available
datasets most commonly used in the FAP literature. Finally,
Section VII-B presents a summary of open challenges in the
field of deep FAP.

II. DEEP FACE AGE PROGRESSION
Traditional FAP methods can be categorised into physical-
model based and prototype-based approaches. More pre-
cisely, physical-model based methods focus on parametric
models to simulate anatomical changes of the human face,
such as muscles, skin, or cranium. However, the main draw-
back of those approaches is that they are very computational
expensive since the model parameters lack generalisation
capability and thus need to be re-learned for each face. Also,
parametric models require mated samples of the same sub-
jects over long periods, thus significantly increasing the time
and costs to collect a large-scale training dataset.

On the other hand, prototype-basedmethods compute aver-
age faces (prototypes) from predefined age groups, the age-
ing patterns of which are then transferred to the younger
face image. Despite avoiding capturing a sequence of mated
samples, prototype-based age-synthesis often causes a loss of
identity with visible ghosting effects. At this point, we refer
the reader to the comprehensive survey of Fu et al. [23],
who covers physical-model based and prototype-based FAP
methods.

With the emergence of deep generative methods, research
in FAP has made remarkable progress, which essentially
eliminates the disadvantages of the traditional approaches
mentioned above. In particular, generative adversarial
networks (GANs) [22] have proven their capability to gen-
erate photo-realistic and accurate ageing effects. Further-
more, the loss function of the network can be complemented
by additional loss terms to preserve the subject’s identity,
meaning that from the synthetically aged facial image, bio-
metric features can be extracted sufficiently similar to the
features from the original image. Thus, biometric recognition
remains possible. Also, in contrast to physical-model based
approaches, the training of deep generative models does not
require the collection of mated samples across different ages.
To leverage future research, the main objective of this survey
is to summarize the fundamental concepts of deep learning
based FAP techniques, the taxonomy of which is depicted
in Figure 2 and divided into three classes: translation-based,
sequence-based, and condition-based.

Translation-based methods are developed to convert the
style of an image into the style of another set of images. For
this purpose, Zhu et al. [42] introduced Cycle-GAN, which
captures the style-based characteristics of an image collection
and translates these characteristics to another collection of
images. Cycle-GAN has been a milestone in the more general
task of image-to-image translation [43] since it does not
require paired images from both domains. Later, the same
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FIGURE 2. Taxonomy of FAP techniques.

idea has been exploited for FAP by using the architecture
of Cycle-GAN to overcome the issue of collecting mated
face images. For example, a first collection of young face
images is defined (e.g. 20-30), the style of which is then
converted to a second set of images, which only includes
older faces (e.g. 50-60). While translation-based approaches
are suitable for age translations between two age groups, their
efficiency decreases for multiple age groups since a separate
Cycle-GAN must be trained for each domain translation.

Other than translation-based FAP, sequence-based meth-
ods [20] are not designed to transform face images into
another age group directly. Instead, multiple networks are
trained separately for the translation between adjacent age
groups. Each of the trained models is then concatenated in
a recursive way to form a single FAP framework, where the
aged output of the i-th model defines the input of the (i+ 1)-
th model. This strategy is motivated by the observation that
the more time passes, the more complex face ageing effects
occur. According to Wang et al. [44], even though modern
deep learning approaches are getting more powerful, it is still
challenging to learn age group transitions in a ‘‘one-shot’’
manner. Therefore, sequence-based FAP methods seek to
progressively synthesize ageing effects by traversing through
a chain of adjacent face ageing models. However, the main
disadvantage of sequence-basedmethods is that for long-term
age translations, the whole ageing chain must be established,
including collecting training data for each age group. How-
ever, contrary to the argument of Wang et al. [44], most
recent FAP methods focus on one-shot age-synthesis while
achieving state-of-the-art performances [28], [45], [46].

Finally, condition-based FAP methods use conditional
GANs [47] to control the age-synthesis with additional age
labels. More precisely, age labels are constructed in a one-
hot-encoded manner to indicate to which age group the given
input face image will be translated. In the literature, dif-
ferent strategies have been developed to inject age labels
into the GAN framework. While some works pass the age
labels to both the generator and discriminator [19], oth-
ers only feed them to the generator [26]. Also, there are
different notions of how to include them in the network.
For example, Wang et al. [19] constructed one-hot-encoded
tensors directly concatenated with the input image. On the

FIGURE 3. Timeline of FAP works reviewed in this survey.

other hand, Yao et al. [26] designed a modulation network
that fuses the age labels with the latent vectors. However,
in summary, condition-based FAP methods share the same
concept of guiding the generator by including extra infor-
mation about the target age group. The high efficiency of
condition-based FAPmethods is a significant advantage com-
pared to translation-based approaches. The inclusion of age
labels enables to use a single conditional GAN framework for
synthesizing face images with ageing patterns of an arbitrary
age group.

Figure 3 shows the number of FAP publications cov-
ered by this survey, representing the main period between
2017 until 2020. Each year’s increasing number of publica-
tions confirms the growing demand for deep learning based
FAP solutions as indicated by the various application scenar-
ios. Especially condition-based FAP methods dominate the
recent research activity due to the high efficiency of condi-
tional GANswithout sacrificing the quality of age-progressed
images. However, there is a slight increase of alternative FAP
approaches (‘‘Other’’) that could not be assigned to one of the
three concepts presented in this survey. Those include FAP
techniques based on feature map normalization [48], [49],
ethnic-specific ageing maps [28], or latent space manipula-
tions of existing image generation frameworks [27]. Further,
the number of works dedicated to child-based FAP has grown
steadily since 2018, reflecting the necessity of future research
efforts in this field to counteract social issues, such as child
trafficking.
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FIGURE 4. Example structure of a basic translation-based FAP framework.

III. DL-BASED CONCEPTS
This section summarises the basic principles of the FAP con-
cepts following the taxonomy given in Figure 2. Additionally,
state-of-the-art FAP approaches are introduced to familiarise
the reader with the variety of ideas represented by each of
the three concept domains. Finally, Section III-D presents
alternative approaches that do not fit into one of the three
concepts.

A. TRANSLATION-BASED
Translation-based FAP methods are based on
Cycle-GANs [42], the basic idea of which Figure 4 illustrates.
The framework consists of two generators GX and GY with
two associated discriminatorsDX ,DY , where X and Y denote
face images from different age groups. While GY performs
the transition from X to Y , GX learns to translate a face back
from Y to X . Meanwhile, DX and DY are trained to discrim-
inate between real and synthesized images, forwarding their
feedback to the generators and guiding them to generate face
images indistinguishable from the other age group. To further
regularize the transitions between X and Y , Zhu et al. [42]
introduced a cycle-consistency loss, which encourages the
generators to be cycle-consistent:

x ≈ GX (GY (x)) (1)

and

y ≈ GY (GX (y)) (2)

with x ∈ X and y ∈ Y . Often, the basic structure of
Cycle-GANs is slightly modified or augmented by additional
components. For example, Zhou et al. [50] proposed a FAP

method conditioned on an individual’s profession, reflecting
the observation that the human ageing process depends on
environmental factors. Another approach has been presented
by Palsson et al. [51], who divided the faces into disjunctive
age groups, followed by training a cycle-consistent GAN for
each pair.

Pantraki and Kontropoulos [53] designed a method
motivated by the UNsupervised Image-to-Image transla-
tion (UNIT) framework introduced by Liu et al. [60].
To achieve this, similar to Palsson et al. [51], a cycle-based
GAN is trained in a pairwise manner for each age group.
However, they assume that the encoded faces across all
ages follow the same joint distribution. Therefore, all faces
are mapped into the same latent space by forcing the last
layers of the encoders and the first layers of the genera-
tors to share the same weights. In a follow-up work by
Pantraki et al. [54], the weight-sharing logic is re-designed
by dividing the encoder into three groups: while the first
layers are trained individually, the intermediate layers share
the weights with encoders from adjacent age groups. Finally,
the last layers of all encoders share the same weights to
project all face images into the same latent space.

To support the generator to pay more attention to texture
information, Wang et al. [56] utilize Cycle-GANs for the
translation into ‘‘edge maps’’, which capture the canny con-
tours and landmarks of a face image. The edge maps are
then translated to the aged face using a pre-trained edge-
to-face generator introduced by Wang et al. [61]. Despite the
progress of deep generative networks, a general issue of con-
volution operations is caused by an increasing computational
power required to synthesize images with high resolutions.

83380 VOLUME 9, 2021



M. Grimmer et al.: Deep FAP: Survey

TABLE 1. Summary of translation-based FAP methods.

FIGURE 5. Example of sequence-based FAP framework.

Therefore, Sharma et al. [58] circumvented this problem
by using a deep learning based super-resolution technique
(ESRGAN [59]) to increase the resolution of the generated
Cycle-GAN images with a scaling factor of ×4.

B. SEQUENCE-BASED
Unlike transitions between age groups in a ‘‘one-shot’’
manner, sequence-based FAP methods are designed to
establish a chain-based face ageing framework, as shown
in Figure 5. Specifically, each unit of the chain represents a
deep generative network that learns to synthesize face images
with the ageing effects of an adjacent age group. The units
can be developed as Recurrent Neural Networks (RNNs)
[20], [44] or generative probabilistic models [62] with the
advantage of ‘‘memorizing’’ earlier unit states and thus taking
into account correlations between age groups. Alternatively,
the units can be constructed as Cycle-GANs as presented by
Heljakka et al. [63].

The Recurrent Face ageing (RFA) technique by
Wang et al. [20] has been published in 2016 and first enabled
sequence-based FAP based on deep learning. The authors
divided the task into two steps: face normalisation and age
pattern learning. In this context, face normalisation refers
to creating robust face representations by neutralising facial
variations (e.g. closed eyes). First, the face images are pro-
jected into the eigenface space [66], where a separate repre-
sentation space is learned for each pair of adjacent age groups.
The input face image is then warped to its low-rank face
representation using optical flow [67], a method emphasised
by the authors to preserve facial details (e.g. wrinkles). The
optimisation of the eigenface space and the optical flow esti-
mation is conducted iteratively to minimise ghosting effects.
Finally, the low-rank face representations are passed to the
RFA framework to synthesise them with ageing effects. For
each pair of adjacent age groups, a recurrent neural network,

more precisely, a bi-layered gate recurrent unit (GRU) [64]
is trained to perform the age transition. Once the low-rank
age-progressed face image is predicted, the textures of the
nearest neighbour in the eigenface space are adapted to
transfer the fine-grained ageing details. The bi-layered GRUs
of all adjacent age groups are then concatenated to generate
age-progressed face images of a target age group recurrently
to obtain a single face ageing framework.

The same authors have introduced an extension of
RFA [44] by replacing the bi-layered GRUs with tri-layered
GRUs. This adjustment is motivated by the observation that
an additional hidden layer increases the network flexibility
and capacity, enabling to capture more complex ageing pat-
terns. Additionally, the face image normalisation procedure
is complemented by progressively decreasing the dimension-
ality of the eigenface space to neutralise facial expressions
further. However, training an RNN between two adjacent age
groups still requires collecting mated samples from both age
domains, thus significantly reducing available training data.

Another approach has been published by
Heljakka et al. [63], who reversibly use Cycle-GANs [42]
to establish a transformer chain and traverse a young face
image through subsequent age groups. Instead of using a
Cycle-GAN for every age group transition, they found that
a single model can handle the transition between multiple
age groups with a minor performance loss. In contrast to
RFA [20], age transitions based on Cycle-GANs are not
constraint on datasets with mated samples.

Recently, Huang et al. [65] highlighted the importance
of training the whole transformer chain in an ‘‘end-to-end’’
manner. Specifically, the authors argue that training each of
the FAP framework units independently causes artefacts for
age progressions over long time spans since errors accumu-
late when being passed through the network chain. Therefore,
they introduced a recursive GAN-based FAP framework that
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TABLE 2. Summary of sequence-based FAP methods.

is trained simultaneously on the whole ageing span to mini-
mize the propagated errors.

C. CONDITION-BASED
Condition-based FAP aims to guide the age-synthesis by
including a target age group as an extra condition into the
GAN framework. Typically, age groups are encoded in a
‘‘one-hot-encoded’’ manner, also defined as age labels. Age
labels can be constructed as vectors or tensors, where either
the vector dimensionality or the number of input channels
corresponds to the number of age groups. The decision of
which shape to choose depends on where the age labels are
injected into the GAN network.

Figure 6 illustrates the basic architecture of a conditional
GAN complemented with an age classification loss based on
a pre-trained age classifier that penalises large differences
between the estimated age of the generated face image to its
target age. While the age classification loss forces the net-
work to achieve ageing accuracy, themain task of the discrim-
inator is to support the generator to generate photo-realistic
face images by learning to distinguish between real and syn-
thesised images. Additionally, the pixel-wise L2 loss with
L2 = ||x − x ′||2 motivates the network to increase the sim-
ilarity between the original image x and the age-synthesized
image x ′. Note that condition-based FAP methods do not
require mated samples since the generator learns to generalise
ageing patterns of older age groups automatically during the
training phase [19].

In Figure 6, the age label is constructed as a
4-channelled tensor and directly concatenated to the input
image. Since only the second channel of the age label is filled
with ‘‘ones’’, the generator is guided to synthesize the given
face image with the ageing patterns of the second age group.
However, the question of where to include the age labels into
the network remains open: While some authors pass them to
both the discriminator and generator [68], others limit the
additional information feed to the generator [69]. Further,
some works directly concatenate the age labels with the
input image [19], whereas others inject them to intermediate
network layers [45].

In 2017, Zhang et al. [21] were among the first to
include additional age labels into the network architecture.
The authors introduced a Conditional Adversarial Autoen-
coder (CAAE) network, assuming that all face images lie
on a high-dimensional manifold. For this purpose, an input
face image is first mapped to the latent space with a convolu-
tional encoder. Once the images are projected into the latent
space, the encoded samples are shifted into the direction

of age changing by manipulating the age label. Afterwards,
a decoder network is used to reconstruct the input image with
ageing effects.

Despite the capability of CAAE to generate face images
with accurate ageing effects, the personality often gets
lost by traversing the encoded sample in the latent space.
This problem has motivated several follow-up works to
address the issue of identity preservation. For example,
Antipov et al. [70] trained an encoder to project faces into
the latent space of an age-conditioned GAN by minimizing
the euclidean distance between the embeddings of a face
recognition model [10]. With this idea, the path was paved
for multiple contributions [19], [71], [72], augmenting the
ordinary discriminator loss LD with additional loss compo-
nents, such as an identity-preservation (LID) and age classi-
fication based (LAge) loss. The main motivation behind this
idea is to force the generator to output aged-progressed face
images that, on the one hand, belong to the target age group,
and on the other hand, represent the same subject. Finally,
the overall loss function is a linear combination of LD, LID
and LAge, where the coefficients are adjusted to keep the
balance between visual fidelity, ageing accuracy, and identity
preservation.

To construct LID, Yang et al. [72] utilized a pre-trained
deep face descriptor [11] to extract identity-based feature
vectors from both young face images and the generated older
versions. The Euclidean distance is then used to measure
the difference between the corresponding identity-related fea-
ture vectors, thus penalizing the network for large identity
gaps. Similarly, LAge is designed to prevent the generated
face from deviating from the target age by including an age
classifier that penalizes the difference between the age of
the synthesized face image and the target age. Following this
principle, Wang et al. [19] introduced an Identity Preserving
GAN (IPCGAN), which both integrates an identity-preserving
component [73], [74], such as a pre-trained CNN [75] that
serves as an age estimator.

Synthesizing face images with ageing patterns is a
non-linear transformation that includes global effects (e.g.
skin deformations) and local effects, such as intensifying
wrinkles and furrows. This phenomenon has been observed
by Li et al. [79], who proposed a global and consistent GAN
that divides the generator into a global and three local net-
works.While the global network synthesizes the whole image
to capture coarse-grained ageing effects (e.g. head defor-
mations), the three local networks operate on small image
patches to focus on more fine-grained ageing patterns (e.g.
local furrows). The same authors [86] could further improve
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FIGURE 6. Example of condition-based FAP framework.

their ageing results by transforming the face images into
the frequency domain, using a wavelet packet transforma-
tion. Another GAN-based framework has been introduced by
Liu et al. [45], who also operate within the frequency domain
to extract textual features at multiple scales more effective.
Instead of only conditioning the GAN with target age labels,
they further include facial attributes, such as ethnicity and
gender, which helps to preserve these characteristics.

Most FAP methods are based on learning how to traverse
between different age groups. However, each age group must
have sufficient representative data to enable the GAN frame-
work to learn the individual age patterns. The shorter the time
intervals are chosen, the less training data represent each age
group. This data scarcity makes short-term FAP a challenging
task recently addressed by Sun et al. [69], who presented an
ordinal ranking adversarial network. In addition to deciding
whether an input image is real or not, three discriminators
are further trained to output binary ranking vectors, which
are used to calculate a rank estimation loss, which ensures
that the generated face images are translated to the target age
group.

Zhu et al. [98] introduced an attention-based GAN
framework motivated by the findings of [43], who state
that the utilization of a pixel-wise loss results in blur-
ring or ghosting effects. These artefacts are avoided by
training a generator to output an attention mask and a
colour mask: While the attention mask learns to mark the
image areas relevant to the age synthesis, the colour mask
learns how to modify those regions. Following this strat-
egy, both background area and personal identity are well
preserved.

Most contributions made for FAP are limited to synthesize
face images with low resolutions since processing larger
images require adequate computational resources. Recently,

this issue has been tackled by Yao et al. [26], who designed
a GAN-based architecture able to synthesize high-definition
face images (1024 × 1024 pixels). In contrast to most pre-
vious works, no age labels are fed into the discriminator,
which reduces its task to discriminate whether an image is
photo-realistic or not. Further, the authors used a feature
modulation layer, which connects the latent vectors with
source and target age labels by applying a fully connected
neural network. To obtain the source age labels, they utilize
a pre-trained CNN [52] for age classification. The same age
classifier is finally reused to penalize age differences between
the generated face images and the target ages, forcing the
network to achieve ageing accuracy.

A typical disadvantage of splitting age into discrete bins is
emphasized by Fang et al. [46], who highlighted the impor-
tance of taking into account the correlation between adjacent
age groups. To capture these inter-correlations, they propose
a triple translation loss, which forces the generator to gener-
ate age-progressed face images stemming from different age
groups simultaneously.

Most state-of-the-art FAP methods focus on either
short-term or adult to elderly face ageing, dominated by
texture changes (e.g. wrinkles and furrows). However,
it becomes more challenging once FAP is conducted as lifes-
pan ageing since the generative network must learn more
complex ageing patterns. In this context, Or-El et al. [25] pro-
posed a lifespan FAPmethod based on amulti-domain image-
to-image conditional GAN framework. Instead of defining
equidistant age groups, they designed them to represent life
phases, where the most significant changes to the facial bio-
metric characteristic occur: 0-2, 3-6, 7-9, 15-19, 30-39, and
50-69. The network structure includes both an identity-based
encoder and a mapping network, which is constructed
to project age vectors into a latent space optimized for
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TABLE 3. Summary of condition-based FAP methods.

continuous age transformations. Finally, a decoder combines
age encodings and identity features with the modulated con-
volutions introduced by Karras et al. [103].

D. OTHER
This section summarizes FAP methods that could not be
assigned to the categories defined in Section II (i.e. condition-
based, translation-based, sequence-based). In this context,
Shen et al. [27] introduced InterFaceGAN, which is designed
to manipulate facial attributes of a given face image. Instead
of proposing a new FAP architecture, InterFaceGAN oper-
ates in the latent space of an existing face image generation
model, such as StyleGAN [29]. More precisely, InterFace-
GAN exploits the well-structured latent space by finding
linear boundaries that divide the latent space into two sub-
spaces in terms of a binary semantic (e.g. ‘‘younger than
50 years’’ vs ‘‘older than 50 years’’). Finally, an individ-
ual’s age is manipulated continuously by shifting a latent
vector into the perpendicular direction of the boundary.
However, the further the latent vector is moved into one
direction, the more the identity of the original data subject
changes.

One of the main challenges associated with predicting the
future appearance of an individual is to take into account
both personalized ageing factors and common ageing trends.
To address this issue, He et al. [104] proposed a GAN-based
FAP architecture (S2GAN) that learns to extract personal-
ized ageing patterns for each individual. Given the person-
alized features, the age-synthesis is conducted in the encoded
domain to synthesize the features with common ageing trends
of different age groups. Finally, the resulting features are
passed to a decoder to reconstruct the age-progressed face
images. Unlike conditional GANs, S2GAN simultaneously
learns ageing trends for each pre-defined age group during the
network training, thus eliminating the need for age labels in
the testing phase. Further, continuous face ageing is achieved
by interpolating between age-progressed features stemming
from adjacent age groups.

The lack of available face images belonging to extreme
age groups (e.g. 0-5 or 90-100) motivated Georgopou-
los et al. [48] to present a style-based FAP method: Instead
of conditioning the generative adversarial network with age
labels, the style of a target face image is transferred via
Style Transfer [91] for transferring ageing effects to the input
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TABLE 4. Summary of uncategorized FAP methods.

face image. Specifically, the layers of the discriminator and
decoder are constructed identical but in reverse order. In order
to achieve the age-synthesis, a target face image is passed to
the discriminator, where the statistics (column-wisemean and
standard deviation) of each feature map is forwarded to the
corresponding layer of the decoder in order to transfer the
style via Adaptive Instance Normalization (AdaIN) [91].

The main problem associated with AdaIN operations
is emphasised by Shi et al. [49], who state that local
age-relevant face regions are smoothed out caused by the
equal normalisation of convolution feature maps. To address
this issue, the authors proposed a Conditioned-Attention
Normalised GAN framework. More precisely, the AdaIN
operations are replaced by Conditional-Attention Normaliza-
tion (CAN) layers, which control the age transition between
different age groups with learned attention maps. The main
advantage of including CAN-layers is to focus more on local
face regions relevant to the age synthesis. Further, the authors
utilise a Contribution-Aware Age Classifier, which measures
the contribution of the elements of the discriminator’s feature
vectors to the age classification, yielding a more fine-grained
age assessment.

Recently, Despois et al. [28] presented a novel approach for
high-resolution FAP on a continuous age scale. The authors
argue that smooth face age translations cannot be achieved
with domain transitions between discrete age groups because
of the individual nature of face ageing due to data sub-
ject specific factors, such as genetic, ethnicity, or lifestyle.
Therefore, Despois et al. [28] utilized ethnic-specific skin
atlases [105]–[109] each of which captures clinical age-signs
of a specific face region expressed as a numerical score.
Instead of conditioning the GAN framework with ‘‘one-
hot-encoded’’ age vectors, the authors introduced ageing
maps that summarize information from 15 age-relevant
face zones. The authors collected a private database
of 6,000 high-resolution (3000 × 3000) face images labelled
based on the ethnic-specific age atlases.

IV. CHILD VS ADULT FACE AGEING
As described in Section II, human face ageing can be divided
into two stages: While craniofacial growth occurs from child-
hood to adulthood, the remaining ageing process is dominated
by texture changes. Consequently, most FAP methods focus
either on facial ageing of children [115]–[117] or adults [19],
[45], [70] in order to reduce the complexity of patterns a
deep generative network must learn. However, the amount of

research spent on child face ageing is still limited compared
to research conducted for adults. This research gap exists
because children are either not included in common cross-age
datasets (MORPH-II, CACD) or extremely underrepresented
(UTKFace, FG-NET). The under-representativeness of chil-
dren in cross-age datasets is associated with collecting face
images from social media or web search engines, where
adults are naturally more represented.

The first step towards overcoming the lack of available
child face images has been made by Chandaliya et al. [110],
who collected a private dataset (Children Longitudinal Face
(CLF)) that consists of 8,581 face images of Indian chil-
dren and covers an age span from 2-20. Based on CLF,
the authors re-trained an already existing FAP method
(CAAE [21]) and compared the age-synthesis results to the
performance of the original CAAE model. Although the
performance could be slightly improved, the identity loss
caused by the CAAE remained the main drawback. There-
fore, the same authors augmented the architecture of CAAE
in a follow-up work [112] with a perceptual loss based on
VGG-19 [118]. More precisely, a perceptual loss measures
the difference between high-level semantic features extracted
with a well-trained image classification network, thus mini-
mizing the spatial differences between input and synthesized
face. Motivated by this work, Xiao and Zhao [117] further
developed the CAAE architecture by including gender labels
in addition to age labels. This strategy is based on the observa-
tion that the distinction betweenmale and female toddlers can
be challenging during early childhood, which causes gender
inconsistencies after the age synthesis. Therefore, both age
labels and gender labels are concatenated with the latent face
representation to support the encoder to better cluster the
faces according to these facial attributes.

Following the idea of IPCGAN [19], Chandaliya et al. [115]
adopted the same architecture but with a multi-scale discrim-
inator structure. Additionally, the VGG19-based perceptual
loss is complemented with an age-based loss constructed with
LightCNN [119], penalizing large age gaps between the age
of the synthesized face and the target age.

Recently, Dhar et al. [120] found that age-related infor-
mation is highly coupled with identity-salient features in the
latent space of a well-trained face recognition model [121].
The entanglement of these attributes has been exploited by
Deb et al. [113], who trained an autoencoder that operates
directly within the latent space of a pre-trained face recogni-
tion model, such as CosNet [114]. Given that the latent space
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TABLE 5. Summary of child-based FAP methods.

is well structured in terms of facial attributes, age manipu-
lations can be achieved by traversing the latent vector into
the corresponding age direction. In summary, the proposed
face ageing module significantly improved rank-1 identi-
fication rates due to its direct link to the underlying face
recognition model. Following the same idea, Deb et al. [116]
further developed a decoder that is trained to reconstruct face
images from the deep features obtained by the face ageing
module.

V. PERFORMANCE EVALUATION
FAP refers to the task of synthesizing face images with ageing
patterns of older faces to simulate the future appearance of
a data subject. However, the question of how to assess the
performance of FAP methods, such that multiple works can
be compared objectively, remains open. In general, the main
objective of FAP can be summarized as that all of the fol-
lowing three objectives must be achieved simultaneously:
visual fidelity, ageing accuracy, and identity preservation.
There is no standardized way for evaluating the performance
of FAP methods according to these criteria. Therefore, this
section summarizes the most commonly used evaluation
techniques identified in the works examined as part of this
survey.
• The visual fidelity of a synthesized face image is typ-
ically evaluated in terms of human perception. More
precisely, the ageing results of a handful of represen-
tative face images are compared to previous state-of-
the-art FAP methods. The primary motivation behind
this manual assessment is to exploit the well evolved
human visual system of the brain, which is effective in
recognizing artefacts caused by the generator. However,
recent FAP methods include additional metrics to sup-
port a quantitative analysis of the visual fidelity, such
as the Frèchet Inception Distance (FID) [122]. More
precisely, the FID assesses the fidelity of the generated
face image to its source image by measuring the dif-
ferences in the density of two distributions based on
the high-dimensional features extracted with an Incep-
tionV3 [118] classifier, as given in equation 3:

FID = |µ− µw|2 + tr(6 +6w − 2(66w)
1
2 ) (3)

whereµ andµw denote themean of the InceptionV3 fea-
tures extracted from both real and generated images.

Further, 6 and 6w refer to the covariance matrices
of the extracted features and tr() describes the trace
matrix operation (sum of elements on the matrix main
diagonal).

• Ageing accuracy refers to whether a synthesised face
image belongs to the target age group. To achieve this,
two quantitative evaluation techniques are frequently
observed: age estimators [45], [46], [88] or user stud-
ies [19]–[21]. Specifically, pre-trained Convolutional
Neural Networks (CNNs) [52] are utilised to estimate
the age of a given face image in years. Alternatively, user
studies are conducted where human experts estimate
ages from both synthetic and real faces. Once the esti-
mated ages are available, the mean values can be used
to analyse whether they are within the target age span.
Further, histograms can be utilised to compare the age
distributions of different age groups for both synthesised
vs ground-truth face images [45].

• Finally, besides generating realistic face images of the
target age group, the last objective is to also preserve the
identity of the data subject. Again, this can be evaluated
with three techniques: automatic face verification [45],
[72], [96], automatic face identification [115], [116],
or user studies [19]–[21]. Face verification describes
one-to-one comparisons in order to verify whether two
face images stem from the same individual. More pre-
cisely, the comparison score (CS) between two face
images is determined by measuring the distance or sim-
ilarity between their face embeddings extracted with
a pre-trained face recognition model, such as Arc-
Face [123]. On the other hand, face identification refers
to one-to-many comparisons, where the CS of a bio-
metric probe to all references contained in a database
is measured. Typically, the result is a ranked list of CSs,
with the first entry representing the biometric reference
that is most similar to the biometric probe (rank-1).
In the literature, especially child-based FAP methods
report rank-1 identification rates since they are best
suited to reflect future application scenarios, where face
images of missing children are compared to large-scale
databases. According to Chandaliya et al. [115], Arc-
Face [123] and FaceNet [10] are particularly suited
for evaluating face identification metrics. Finally,
user studies are also employed for measuring the
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capability to preserve identities. For a given face image
that belongs to age group 0 (AG0), the age-synthesised
faces are generated for the predefined age groups (e.g.
AG1, AG2), which are used to create pairs: (AG0, AG1),
(AG0, AG2), (AG1, AG2). Additionally, the pairings
are supplemented with random impostor comparisons of
non-mated face image pairs. Finally, the paired images
are handed to the participants, who decide whether the
images are mated or non-mated presentations.

• An Attribute Consistency analysis is conducted by a
small number of authors [26], [45], the idea of which is
to check whether facial attributes change after the age
synthesis. In particular, attribute inconsistency can be
caused by an unbalanced dataset. For example, if a FAP
model is applied to a female face after training it only on
male faces, the likelihood of a gender switch after the age
synthesis increases significantly. Therefore, measuring
the attribute consistency enables to view the robustness
of the FAP model against various types of biases. In this
context, DeepFace [124] provides a tool for predict-
ing facial attributes, such as the ethnicity or emotion
of an individual. Also, measuring the consistency of
non-facial related quality aspects, such as the degree of
blurriness induced by the proposed FAP method, offers
an interesting evaluation criterion.

In addition to the above described evaluation techniques,
Figure 7 provides an impression on the results of three
recently published FAP methods with publicly available
implementations [25], [26], [102]. Following the evaluation
techniques presented in this section, all images are annotated
with FIDs and CSs. Note that all FIDs and CSs are computed
based on the original image, preprocessed with the pipeline
given by the authors, and the corresponding age-progressed
image.

The qualitative analysis of the age-synthesized images
reveals some interesting characteristics unique to each of the
tested FAP methods. In particular, the proposed FAP method
by Alaluf et al. [102] demonstrates the high photo-realism
(1024 × 1024) of the generated images by exploiting the
remarkable face image generation capability of the Style-
GAN2 generator [103]. However, the low CSs indicate that
the identity after the age-synthesis deviates from the identity
of the original individual. This identity loss is a typical effect
of projecting real face images into the latent space of Style-
GAN2, which does not represent the full range of possible
real-world identities.

On the other hand, the high-resolution (1024 × 1024)
age-progressed images by Yao et al. [26] appear less realistic
due to unnatural ageing effects caused by the generator (see
Figure 7 - (f)). This observation emphasizes the importance of
assessing the generation quality from a human perspective as
a complement for quantitative metrics since the human brain
is well-suited to detect disturbing factors in human faces.

Other than the previous FAP approaches, the method
by Or-El et al. [25] operates in a lower resolution

of 256 × 256 pixels. The face images are preprocessed by
replacing the noisy background with a plain grey colour to
support the generator to focus on the age-synthesis of the face
region only. Note that the grey discolouration of the beard
and the main hair is more pronounced compared to the other
approaches, especially regarding the male individuals.

VI. DATASETS
Since it is well known that the performance of deep neu-
ral networks scales with the amount of available training
data, this section presents public datasets commonly used
in the FAP literature. As depicted in Table 6, the Cross-Age
Celebrity Dataset (CACD), as well as the Academic MORPH
Database (MORPH-II) have been chosen by researchersmost
frequently. The celebrity images in CACD have been crawled
from the internet, therefore representing an unconstrained
capturing environment with a high variation in terms of PIE
factors. However, the associated age labels are only estima-
tions since they were obtained by subtracting the publication
year from the birth year. On the other hand, the images in
MORPH-II were captured in a controlled scenario, including
near-frontal faces with neutral expressions, uniform illumina-
tion, and simple backgrounds. Other thanwith CACD, the age
labels given by MORPH-II were annotated accurately, which
prevents learning distorted age patterns. In practice, many
authors exploited the advantages of both CACD (uncon-
strained) and MORPH-II (constrained) by selecting images
from both datasets.

In general, we identified two main problems with existing
datasets during our analysis:

• Age Bias: Although many datasets cover wide age
spans, the number of young adults between 20-40 is
typically over-represented. Simultaneously, there is a
significant lack of face images from toddlers, chil-
dren, and older people, which leads to deep neural
networks being biased towards specific age groups.
To represent each age group with the same number
of samples, many authors collected images from vari-
ous public datasets. Alternatively, Yao et al. [26] fol-
lowed the idea of generating synthetic face images
with StyleGAN [29] to augment and balance their
dataset.

• Ethnicity Bias: As described in the comprehensive
study of Drozdowski et al. [137], deep neural networks
are prone to bias effects caused by non-uniform distri-
butions of demographic factors. For example, datasets
are typically over-represented by ethnic groups most
common in the country where the images were acquired.
This problem has been addressed by Karras et al. [29]
who introduced the Flickr-Faces-HQ Dataset (FFHQ),
which covers facial images with a wide variety of eth-
nic groups. Since the default version of FFHQ is not
annotated with labels, an extensionwas published byOr-
Él et al. [25], who supplemented the dataset with various
labels.
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FIGURE 7. FAP examples with following columns: Source images (first), Yao et al. [26] (second),
Or-El et al. [25] (third), Alaluf et al. [102] (fourth). The age-progressed images are annotated with: Target age,
estimated age [125], Frèchet-Inception Distance (FID), and comparison score (CS) measured as Cosine
Similarity between face embeddings extracted with ArcFace [123].

VII. OPEN CHALLENGES AND FUTURE WORK
Despite the many milestones achieved with deep generative
networks, there are still open challenges to be addressed by

future works. Therefore, the following subsections describe
several promising research directions categorized as either
data- or concept-based.
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TABLE 6. Summary of publicly available cross-age datasets.

A. DATA-BASED CHALLENGES
The performance of deep neural networks is directly corre-
lated with the quality and number of data samples available
for training. Therefore, the development of task-specific
cross-age datasets remains a crucial pre-condition to
enable deep generative models to learn relevant ageing
patterns.
• One major challenge is to collect face images from
age groups that are typically underrepresented in exist-
ing public datasets, such as young children and elderly
individuals. For example, most current child-based FAP
methods are based on private datasets (see Table 5),
which limits the reproducibility and comparability to
other works. Therefore, the establishment of new public
datasets focused on underrepresented age groups accel-
erates new research and improves existing FAP methods
by enabling them to learn patterns from the whole life-
time age span.

• Since the human face ageing process also depends on
external aspects, such as lifestyle, nutrition, or working
conditions [138], the collection of face images labelled
with these factors allows for conducting interesting
experiments to establish a further understanding of the
relationship between the human face ageing process and
external factors.

• Modern FAP methods focus more and more on syn-
thesizing images with higher resolutions. However,
the most popular cross-age datasets (CACD [126],
and MORPH-II [127]) only include images with a
resolution of up to 400 × 480 pixels. Although
FFHQ [29] contains 70,000 images with a resolution
of 1024 × 1024, the collection of more data will
leverage the generation capability of deep generative
networks.

B. CONCEPTUAL CHALLENGES
Recently, the increasing attention for deep FAP led to
many interesting new concepts, paving the way for future
research.
• FAP is often treated as a domain translation problem,
where a given input face is synthesized with ageing
patterns of another age group. However, age groups are
often defined as intervals with more than ten years,
which means that transitions from one age group to
another cause significant age gaps. Therefore, a few
recent FAP approaches switch from discrete age group
transitions to age progressions on year-accurate [26] or
continuous scales [28], representing a promising future
research direction.

• With the introduction of FFHQ [29], it is becomingmore
interesting to synthesize high-resolution face images
with ageing effects. The higher the quality of the face
images, the more fine-grained ageing patterns can be
learned by the parameters of a deep generative network.
However, the processing of large images requires exten-
sive computational resources, thus demanding more
cost-efficient GAN architectures.

• The application of FAP in large-scale projects, such
as the Entry/Exit-System [3], requires an unbiased
age-synthesis in terms of different ethnicities. However,
according to our study, most works attribute a sub-
ordinate role to the model’s bias, which can lead to
changes in the ethnicity after the age-synthesis (compare
Figure 7 - (c) vs (h)). Therefore, a comprehensive com-
parison of state-of-the-art FAPmethods concerning their
biases towards different facial attributes is considered
beneficial and should be addressed by future works.
Besides including an age estimator to achieve ageing
accuracy, the loss function of a GAN architecture can
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be complemented by other facial attribute estimators
as well in order to prevent inconsistencies caused by
unbalanced datasets.

• An interesting approach has been presented by
Despois et al. [28]: Instead of synthesizing face images
with general ageing patterns, each face image is divided
into distinct zones, the age of which is assessed individ-
ually with a numerical score and passed to the GAN net-
work in the form of ‘‘ageing maps’’. With this approach,
the authors take into account that human face ageing
rates typically differ between individuals, an observation
that future works should take into account.

• Our literature survey has shown that most FAP contribu-
tions focus on adult face ageing (88%) while only a few
works are dedicated to child face ageing. In contrast to
adult face ageing, where the facial changes are mainly
texture-based (e.g. wrinkles and furrows), the craniofa-
cial deformations occurring while growing up are much
more challenging to simulate, thus offering great poten-
tial for future research.

• Motivated by the remarkable face image generation
capabilities of StyleGAN [29], the lack of available
child or elderly-based face images can be compensated
by synthesizing ageing patterns of a single reference
image via Style Transfer [91]. The works of Georgopou-
los et al. [48] and Shi et al. [49] demonstrate the effec-
tiveness of FAP based on (attention-based) instance nor-
malization, thus inspiring further work in this direction.

VIII. SUMMARY
In this survey, a comprehensive analysis of deep face age pro-
gression literature has been conducted. As the high number
of recent publications indicates, FAP is still an active and
emerging field of research relevant for various applications,
such as the European Entry-Exit System. In this context,
the growing attention for FAP methods can be explained
by the remarkable progress achieved with deep generative
networks, which enable the generation of photo-realistic
ageing effects. The Conceptualisation of the methods anal-
ysed as part of this survey has resulted in three categories:
translation-based, sequence-based, and condition-based.
Translation-based approaches are based on the principle of
Cycle-GAN [42] and focus on the translation between two
age domains. On the other hand, sequence-based techniques
create chain-like FAP frameworks to progressively synthesise
face images with ageing effects, where the output of the
i − th unit defines the input of the (i + 1) − th unit. Finally,
condition-based FAP methods inject target age labels as
additional information into the network to control the age
synthesis. Comparing the number of contributions associated
with each concept reveals that the majority can be classified
as condition-based, which is due to its high efficiency using
a single generator capable of synthesising face images with
ageing patterns of an arbitrary age group.

As outlined in Section VII-B, open challenges in the
field of deep FAP are either considered data-based or

concept-based. In particular, the collection of face images
stemming from underrepresented age groups (elderly and
children) will be beneficial for a vast number of GAN-based
models, the performance of which scales with the number
of training images. Further, the annotation of face images
with additional information (e.g. profession or nutrition type)
helps to establish FAP methods that are tailored to the spe-
cific conditions of an individual. Finally, from the conceptual
point of view, future efforts are recommended to be directed
towards continuous age progressions [25], while taking into
account the individual ageing rates among different individ-
uals [28]. Additionally, Section III-D shed light on alterna-
tive FAP approaches that are either based on manipulating
the latent representations of a pre-trained GAN-model [27]
or treating the age-synthesis as a style transfer problem
[48], [49], thus bypassing the lack of training data from
underrepresented age groups.
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