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ABSTRACT This paper presents a 3 in 1 standalone FPGA system which can perform color image blur
detection in parallel with compression and encryption. Both blur detection and compression are based on
the 3-level Haar wavelet transform, which is used as a common building block to save the resources. The
compression is based on performing the hard thresholding scheme followed by the Run Length Encoding
(RLE) technique. The encryption is based on the 128-bit Advanced Encryption Standard (AES), which is
considered one of the most secure algorithms. Moreover, the modified Lorenz chaotic system is combined
with the AES to perform the Cipher Block Chaining (CBC) mode. The proposed system is realized using
HDL and implemented using Xilinx on XC5VLX50T FPGA. The system has utilized only 25% of the
available slices. Furthermore, the system can achieve a throughput of 3.458 Gbps, which is suitable for
real-time applications. To validate the compression performance, the system has been tested with all the
standard 256×256 images. It is shown that depending on the amount of details in the image, the system can
achieve 30dB PSNR at compression ratios in the range of (0.08-0.38). The proposed system can be integrated
with digital cameras to process the captured images on-the-fly prior to transmission or storage. Based on the
application, the blurred images can be either marked for future enhancement or simply filtered out.

INDEX TERMS AES, blur, chaos, compression, DWT, encryption, FPGA, Haar, HDL, RLE.

I. INTRODUCTION
Nowadays, the digital images are used as a source of infor-
mation in many fields, such as the social media, education,
research, medical examinations, and surveillance systems.
Accordingly, extensive research efforts have been conducted
throughout the past years to facilitate the use of the dig-
ital images in a both efficient and secure way. The three
main research fields are: image compression, encryption, and
image processing. The image blur detection is one of the
important applications in the field of image processing, and it
will be presented along with the compression and encryption
throughout this paper.
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FIGURE 1. The general structure of the lossy image compression.

A. IMAGE COMPRESSION
The image compression is one of the most popular applica-
tions that is mainly used for saving both the storage space
and the network’s bandwidth. The general structure of the
lossy image compression is shown in Fig. 1 [1]. First, the
source encoder is used to transform the input image into a
sparse representation. The source encoder can be constructed
using a variety of transforms, such as the Discrete Wavelet
Transform (DWT), the Discrete Cosine Transform (DCT),
or the Discrete Fourier Transform (DFT) [2]. The DWT is a
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computationally efficient algorithm, and it has been adopted
in the JPEG-2000 standard [1]. Despite the efficient com-
pression ratios that can be achieved by the DWT, there are
some limitations, such as the oscillations, the shift variance,
the aliasing, and the lack of directionality [3]. The complex
wavelet transform can overcome these limitations, but at the
expense of the computational cost [3]. Moreover, the frac-
tional wavelet packet transform can be used with signals that
contain high fractional frequency components, but its com-
putational cost is also higher than the DWT [4]. Therefore,
the DWT will be more suitable for real-time applications that
require an efficient implementation area and high operating
speed.

After the source encoder, the hard thresholding is per-
formed to reduce the number of non-zero coefficients in the
transformed image. Then the quantization is used to decrease
the number of bits for each non-zero coefficient. Finally,
the entropy encoder is used to perform a lossless compres-
sion technique, such as the Huffman encoder, the arithmetic
encoder, or the Run Length Encoder (RLE). The Huffman
encoder is used in the JPEG standard and it can provide good
compression results, however the RLE is more suitable for
real-time applications [1].

B. IMAGE ENCRYPTION
In addition to the compression process, the images must be
also encrypted before sending them over insecure commu-
nication channels. Since the encryption process destroys the
correlation between the pixels, it is usually done after the
compression. A lot of encryption standards are available, and
there is always a tradeoff between the encryption strength and
the computational cost.

The Advanced Encryption Standard (AES) is an ISO/IEC
18033-3:2010 standard for symmetric block cipher. The AES
is one of the most powerful encryption standards, and it has
been used in a lot of protocols, such as the IEEE802.11
wireless Local Area Network (LAN) and the IEEE802.15.4
wireless sensor networks [5]. The AES encryption has been
frequently used in the Cipher Block Chaining (CBC) mode,
which needs a Pseudo Random Number Generator (PRNG)
to generate the Initialization Vector (IV).

The PRNGs are based on deterministic functions that are
implemented in the digital domain using the computers or the
Field Programmable Gate Arrays (FPGAs). In the previous
years, the chaos theory has played an important role in the
design of the PRNGs, image hashing [60], and modulation
schemes [61]. The Rössler [6] and Lorenz [7] are two of the
most famous chaotic systems, and they have been utilized in
a lot of encryption applications [8], [9]. However, these two
systems are based on multiplication operations that affect the
hardware performance, regarding the area and speed. Hence,
modified versions, called the modified Rössler and the mod-
ified Lorenz, were presented in [10], [11]. These modified
versions do not utilize any hardware expensive multiplier.

In [12], six different multiplier-less chaotic PRNGs were
implemented using FPGA, and their performance was

FIGURE 2. The general structure of image restoration.

compared using the NIST suite. It has been found in [12]
that the modified Lorenz can pass all the NIST tests and can
provide the best hardware performance as well. Hence, it will
be suitable for low area and high-speed applications.

Themodified Lorenzwas given by (1), where a, b, and c are
the system’s parameters while X , Y , and Z are the system’s
variables. The modified Lorenz hardware implementation
was presented in detail in [12].

Ẋ = a · (Y − X ), (1a)

Ẏ = −sgn (X) · (Z − b), (1b)

Ż = sgn (X) · X − c · Z . (1c)

C. IMAGE BLUR DETECTION
The image blur detection is one of the fundamental appli-
cations in the field of image processing, and it is usually
performed at the start of any image restoration algorithm as
shown in Fig. 2 [13]. Similar to the image compression, the
blur detection requires image transformation at the beginning.

A lot of no-reference image blur detection techniques have
been proposed in the literature [14]. The blur metrics of these
techniques are based on various approaches, such as the Haar
DWT [15], the Sobel edge detection [16]–[19], the image
power spectrum [20], [21], the DCT [22], [23], and a hybrid
of curvelet, wavelet, and cosine transforms [24]. The simplest
of these approaches is the Haar DWT [15], and it can be
implemented on the hardware level without using a lot of
resources.

Tong et al.’s [15] Haar-based blur detection algorithm
can discriminate blurred images with high accuracy. This
algorithm was tested on a database that include 2355 images,
and the reported accuracy was 98.6% [15]. Furthermore, this
algorithm can be combined with neural networks to assess
the overall image quality [25]–[27]. In [27], the output of
Tong et al.’s algorithm was considered the best performing
feature that can be used for image quality assessment using
neural networks. Also, Tong et al.’s algorithm can be used to
filter out blurred images in many applications, for example
the lifelogging wearable cameras [28].

D. THE FPGA-BASED IMPLEMENTATION
Image processing techniques in addition to the compression
and encryption are usually implemented using software solu-
tions that run on general-purpose processors. However, due
to the sequential nature of these processors, the execution
time will not be suitable for real-time applications, especially
with high resolution images. This problem can be solved
by using the Hardware (HW) solutions, such as the FPGAs,
which can perform a lot of operations in parallel. The FPGAs
are used in many applications, such as the PRNG [12],
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FIGURE 3. The general structure of the FPGA-based image processing
systems.

Neural Networks [29], encryption [30], edge detection [31],
and compression [32].

In the past decade, the FPGAs have been used in the field
of image processing due to their powerful parallel processing
capabilities [33]. They can exploit the temporal and spatial
parallelism of many image processing algorithms. The spatial
parallelism refers to the utilization of multiple copies of the
hardware to perform multiple tasks in parallel. On the other
hand, the temporal parallelism refers to the utilization of a
pipelined hardware unit that divides the processing task into
several cascaded stages.

The FPGAs can be integrated with the digital cameras as
shown in Fig. 3 [34], [35]. First, the CMOS image sensor
is used to capture the image. Next, the Analog to Digital
Converter (ADC) is used to convert the analog values of
the image’s pixels into digital values. Then the Camera Link
Interface (CLI) is used to send the digital image to the FPGA.
Finally, the FPGA is used to perform all the necessary pro-
cessing tasks on-the-fly. The word on-the-fly means as soon
as the data is received as explained in [36].

Since the FPGA’s internal memory will not be sufficient
to store the full uncompressed image, an external off-chip
memory will be utilized as shown in Fig. 3. To emphasize
this point, consider one of the most powerful FPGAs, the
Xilinx Virtex 7 XC7V2000T, which includes only 46512kb
Block Random Access-Memory (BRAM) [29]. This power-
ful FPGA can store only one 1408 × 1408 color image with
24-bits per pixel. Hence, the off-chip memory will be needed
to store high resolution images, which are in the range of tens
of Megapixels.

E. MOTIVATIONS AND OBJECTIVES
Over the past few years, the wearable lifelogging cameras
have been used in a lot of applications. They are used to track
our daily activities by automatically capturing hundreds of
images throughout the day. This vast number of images need
to be stored instantly in the cloud. Hence, the compression
and encryption must be done on-the-fly before transmitting
the images to the cloud. Also, since a lot of the captured
images may suffer from blur, most probably they will be
deleted later on by the life-loggers [28]. Instead of deleting
the blurred images at a later stage, a better option is to
filter out the images directly after they are captured by the
camera. In this way, only the unblurred images will be sent
to the cloud. Accordingly, the network’s bandwidth and the
cloud’s storage space will be saved. So, performing the blur
detection on-the-fly and in parallel with the compression and
encryption will be very beneficial to the lifelogging cameras.

There is no solution presented in the literature, software,
or hardware, that can perform the image blur detection in
parallel with compression and encryption. In most systems,
the blur detection is usually performed at a later stage after
transmitting the compressed images to the cloud [28].

Most of the recent compression-encryption systems are
implemented using software, and they suffer from long com-
putational time [37]–[44]. Therefore, they are not suitable for
real-time applications. Only few old compression-encryption
systems are implemented using FPGAs, but they do not uti-
lize a strong encryption scheme [45]–[47]. The fastest FPGA
implementation is based on the DCT compression and the
stream cipher [47]. The stream cipher is not as strong as the
block cipher technique, for example the AES-CBC.

The main contributions of this paper are based on the
following two aspects:
(1) To the best of the authors’ knowledge, this paper

presents the first HW implementation of
Tong et al. [15] Haar-based blur detection algorithm.

(2) The blur detection is integrated with image compres-
sion and encryption as a 3 in 1 parallel HW solution,
which is suitable for real-time applications. Depending
on the application, the blurred images can be either
marked for future enhancement or simply filtered out.
The compression is based on both the RLE and the
Haar DWT. The encryption is implemented using one
of the most secure algorithms: the 128-bit AES, which
is combined with the modified Lorenz chaotic PRNG
to perform the CBCmode. The proposed system can be
integrated with digital cameras to process the captured
images prior to transmission or storage. Once the N
pixels image is fully delivered to the frame buffer, the
proposed system will just read the image in only N
clock cycles, and all the tasks will be performed on-
the-fly in a pipelined manner.

The paper is organized as follows. Section I presents the
introduction. Section II presents the HW implementation of
the blur detection algorithm. Section III presents the HW
implementation of the full system. Section IV presents the
results. Section V presents the conclusion.

II. THE HW IMPLEMENTATION OF THE IMAGE BLUR
DETECTION
A. THE HAAR DWT
The 1-level 2d Haar transform is illustrated as shown in
Fig. 4(a) [48]. Every four neighboring pixels in the original
image, such as A, B, C , and D, are transformed into X ,
Y , Z , and W . X is called the average coefficient while Y ,
Z , and W are called the vertical, horizontal, and diagonal
detail coefficients, respectively. The transformed matrix will
be divided into four bands: Low-Low (LL), High-Low (HL),
Low-High (LH), and High-High (HH). The LL band will
contain the average coefficients while the other bands will
contain the detail coefficients. The 3 decomposition levels are
obtained by performing the 1-level 2d transform recursively
on the LL band as shown in Fig. 4(b).
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FIGURE 4. a) The 1-level 2d DWT, b) The 3-level 2d DWT (pyramid structure), c) The implementation of the 1-level 2d DWT using
the convolutional method, d) The HW implementation of the 1-level 2d DWT, and e) The HW implementation of the 3-level 2d
DWT.

The 1-level 2d DWT is built using the conventional convo-
lutional method, which consists of a High Pass Filter (HPF)
and a Low Pass Filter (LPF) followed by down samplers,
as shown in Fig. 4(c) [49]. The Haar transform’s LPF and
HPF are based on computing the sum and difference between
two consecutive inputs as given by [48]:

G [Z ] =
1
2

(
1+ Z−1

)
, (2a)

H [Z ] =
1
2

(
1− Z−1

)
. (2b)

The hardware implementation of the 1-level 2d Haar trans-
form is presented in Fig. 4(d). The registers are used to

provide the delay elements in (2), the hardwired shifters are
used to perform the multiplication by 1/2, and the enable
signals,E1 andE2, are used to control the down sampling. The
fractional bit that arises after the multiplication by 1/2 will be
truncated to maintain the same number of bits throughout the
design.

The 3-level 2d DWT is implemented using cascaded
1-level 2d DWT units as shown in Fig. 4(e). The enable
signals, E1 to E6, are used to control the down sampling of
the three levels. E1 is always enabled while E2, E3, E4, E5,
and E6 are enabled once every 2, 4, 8, 16, and 32 clock cycles,
respectively. To use these cascaded units properly, the image
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FIGURE 5. A demonstration of the proposed scanning technique on a
4 × 4 image, which is stored row by row as indicated by the index of each
pixel.

must be scanned in a certain order, which is different from the
conventional row by row technique.

Once the N pixel image is available in the frame buffer,
it will be scanned as shown in the example in Fig. 5. In this
example, a 4 × 4 image is stored row by row as indicated
by the memory location written in each block. The image
scanning is performed as follows. First, the image is divided
into four quadrants as depicted by the dashed squares. Then,
each quadrant is divided again into four quadrants. This pro-
cess is performed until the smallest quadrant, which contains
only 1 pixel, is reached. Finally, every four equal sized quad-
rants are scanned in this order: upper left, upper right, lower
left, then lower right. For the example in Fig. 5, the memory
addresses must be generated in this order: 0, 1, 4, 5, 2, 3, 6,
7, 8, 9, 12, 13, 10, 11, 14, 15.

Accordingly, a 4-bit counter will be used to generate the
16 different addresses, but the counter’s bits will be rear-
ranged in a different order. Suppose that the counter’s bits
are normally arranged as A3A2A1A0, then to generate the
required sequence, the bits must be reordered as A3A1A2A0.
This means that starting from the Least Significant Bit (LSB),
the even bits will be inserted before the odd bits. This concept
can be applied to any n-bit counter. The proposed scanning
technique can be applied on square images with any size
(N pixels) to perform the 3-level DWT in only N clock cycles.
For the case of non-square images, the zero-padding method
can be used to change the input image to a square.

B. THE IMAGE BLUR DETECTION
Tong et al.’s blur detection algorithm [15] is based on classi-
fying the image edges into four types: Dirac, A-step, G-step,
and Roof. The classification is based on the variation in the
pixels’ intensity as shown in Fig. 6(a) [15]. Blurred images
usually do not have Dirac or A-step edges. Instead, they have
a lot of G-step and Roof edges. Accordingly, the algorithm
can detect blurred images by identifying the type of edges in
the image.
The first step of the algorithm is to perform the 3-level

2d Haar wavelet transform. The second step is to construct
an edge map for each level using (3a) for i = 1, 2, 3.
To improve the hardware performance, the edge maps can be

FIGURE 6. a) The graphical description of different edge types. b) The
rules for discriminating the edges based on the maximum edge values at
the 3 decomposition levels.

approximated using (3b).

Emapi =
√
LH2

i + HL
2
i + HH

2
i , (3a)

Emapi ≈ |LH i
∣∣+|HL i∣∣+ |HH i|. (3b)

The third step of the algorithm is to divide the edge maps
using partitioning windows. Since the size of the edge map
is scaled down by a factor of 4 after every decomposition,
the partitioning windows must be scaled down by the same
factor. Therefore, the sizes of the partitioning windows used
for level 1, 2, and 3 are 8× 8, 4× 4, and 2× 2, respectively.
In this way, the three edge maps will have the same number
of partitions.

The fourth step is to find the maximum value, Edgejmax i,
in each partitioning window where j is the index of the
partition and i is the decomposition level. If Edgejmax1 or
Edgejmax2 or Edge

j
max3 is higher than a certain threshold (Th),

then the partition with index j will have an edge point. The
type of the edge can be identified using the rules presented
in Fig. 6(b). Furthermore, in case the edge is identified as a
G-step or Roof, but Edgemax1 is lower than Th, then it will
be considered as an unsharp edge point. The final step is to
divide the total number of Dirac and A-step edges (NDA) by
the total number of edges (Nedges). If this ratio is lower than
a very small threshold (e.g., 0.05), then the image will be
considered blurred. The blur extent is calculated by dividing
the total number of unsharp G-step and Roof edges (NBRG)
by the total number of G-step and Roof edges (NRG).

The hardware implementation of the blur detector unit is
presented in Fig. 7. The blur detector unit will receive the
detail coefficients of levels 1, 2, and 3 from the DWT unit
every 4, 16, and 64 clock cycles, respectively.

First, the sum of the absolute values of HH, HL, and LH is
computed for each level to generateEdge1,Edge2, andEdge3.
The computation of the Edge value, (|LH| + |HL| + |HH|),

is implemented using 3 cascaded adders/subtractors as
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FIGURE 7. The HW implementation of the blur detection algorithm.

(0 ± LH ± HL ± HH) where the adder/subtractor’s control
signal is driven by the sign bit of the detail coefficient.

Next, the registers connected to Edge1, Edge2, and Edge3
will be enabled only if the generated edge value is larger

than the stored value. In this way, the registers will store
the maximum value they receive. Furthermore, to allow the
registers to be updated only when the correct edge value
is generated, the comparators of levels 1, 2, and 3 will be
ANDedwith the input flagsF1,F2, andF3, which are enabled
once every 4, 16, and 64 clock cycles, respectively.

The proposed image scanning technique allows the sys-
tem to scan a new 16 × 16 block from the input image
every 256 clock cycles. Hence, the maximum values of
the current edge map partition, EdgeMax1, EdgeMax2, and
EdgeMax3, will be available in the registers at the end of
every 256 clock cycles. After finding these maximum values,
the registers will be reset using resW before proceeding to
the next partition. The edge type detector will receive the
maximum values and will update the counters according
to the rules in Fig. 6(b). Finally, two dividers are used to
compute the required ratios, one to check whether the image
is blurred or not, and the other to calculate the blur extent.
The resBD signal is used to reset the counters and the dividers
before processing a new image.

III. THE PROPOSED SYSTEM
The HW architecture of the proposed system is presented in
Fig. 8. The proposed architecture performs the color image
blur detection in parallel with the compression and encryption
in a pipelined fashion. The image is sent to the system pixel
by pixel where each color pixel RGB consists of 24 bits.

The main data path of the system is explained as follows.
First, the input color pixel is transformed from RGB into

FIGURE 8. The block diagram of the proposed system.
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FIGURE 9. The HW implementation of the sampler.

YCbCr components. Then each color component will pass
through a separate 3-level DWT unit. Next, the blur detec-
tion unit will process the detail coefficients of the Y color
component only. Finally, three compression-encryption units
are used to encode the 3 color components in parallel. Each
compression-encryption unit will use the 10 output chan-
nels of the corresponding 3-level DWT unit in a sequential
manner. Therefore, a multiplexing unit is needed to interface
the 10 output channels of the 3-level DWT unit with the
compression-encryption unit. The encrypted outputs are pro-
vided in words of 32-bits. Also, flag signals are generated to
indicate that a new encrypted data is available at the outputs.

The IV is generated from the modified Lorenz PRNG
which uses a 65-bit seed value. Themodified Lorenz is imple-
mented using the design in [12], which can past all the NIST
tests [50]. This PRNG generates 24-bits per clock cycle;
therefore, a 128-bit shift register is needed to receive the
generated bits sequentially, and then provide all the 128-bits
in parallel.

Finally, the main control unit is used to synchronize and
control all the blocks in addition to incrementing the address
generator. The address is used to read the image from the
external frame buffer. Moreover, the control unit uses other
internal signals as inputs, such as, address, F1, F2, F3, resW ,
selCOEF , FY , FCb, and FCr ; however, they are not shown in
Fig.8 just for the sake of simplicity. The control unit will be
explained in detail in a subsequent section.

A. THE SAMPLER
The sampler circuit is used to generate the enable signals of
the 3-level 2d DWT unit in addition to the flag signals of the
blur detector. The sampler circuit consists of an 8-bit counter
and a set of comparators as shown in Fig. 9. The flag signals,
F1 and F2, are the same as the sampler signals, E3 and E5,
respectively.

B. THE COLOR CONVERTER
The color converter is used to change the input RGB compo-
nents to YCbCr components where Y is the luminance while

FIGURE 10. The HW implementation of the multiplexing unit.

Cb and Cr are the chrominance. The luminance Y contains
the grayscale pixel while the chrominance Cb and Cr contain
the change in blue and red color, respectively. This conversion
improves the compression performance as will be clarified in
the results section. Also, the blur detection algorithm must be
applied on grayscale images only; therefore, obtaining the Y
component is a prerequisite for the blur detection.

The conversion is performed as shown in (4) [51]. The
conversion requires 3 multipliers and 3 adders for each
component to compute Y, Cb, and Cr in parallel. Thus, the
converter utilizes a total of nine 8-bit multipliers and nine
8-bit adders. The 8-bit multipliers will multiply the input
component (R, G, or B) with the corresponding numerator
in (4), (e.g., R× 65). Accordingly, the output of themultiplier
will have 16 bits. Only the 8 Most Significant Bits (MSBs) of
the multiplier will be taken, which is equivalent to dividing
by 256 and then truncating the fraction part. Furthermore, the
adders are connected in a tree structure to reduce the critical
path.

Y = 16+
65
256

R+
129
256

G+
25
256

B, (4a)

Cb = 128−
38
256

R−
74
256

G+
112
256

B, (4b)

Cr = 128+
112
256

R−
94
256

G−
18
256

B. (4c)

C. THE MULTIPLEXING UNIT
The MUX unit and the selector are shown in Fig. 10. This
unit consists of three cascaded 4-input multiplexers, which
are used to select between the coefficients of the 3 levels. The
select signals of the multiplexers are generated from the 2-bit
counters. The Ensel is used to enable or disable the counters.

The Modesel is used to choose the counting mode.
If Modesel is set high, the counters will operate normally
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FIGURE 11. The HW implementation of the compression-encryption unit.

from 010 to 6310. Otherwise, the selCOEF will change, such
that the last 10 coefficients will pass in this order: LH1, HL1,
HH1, LH2, HL2, HH2, LH3, HL3, HH3, LL3.

D. THE COMPRESSION-ENCRYPTION UNIT
The HW implementation of the compression-encryption unit
is presented in Fig. 11. First, Mux1 is used to perform the hard
thresholding by selecting between In and 010. The selection is
based on whether In is greater than the compression threshold
(compTH ) or not. Next, an 8-bit counter will count the number
of zero bytes that pass through MUX1. Accordingly, ZCOUNT
and the output of Mux1 will form the RLE 16-bit word. For
example, {0016, 0016, 0016, 0016, 0F16,} will be encoded as
{0416, 0F16}. The RLE word will be inserted into a 128-bit
shift register (Reg1), which is enabled using the RLEFLAG.
The main problem of the RLE can be explained using the
following example. Suppose that compTH is set to 310, and the
input sequence has 14 consecutive coefficients greater than or
equal to compTH (e.g., In= {0316, 0416, 0516 . . . 0F16, 1016}).
Accordingly, this sequence will be encoded as {0016, 0316,
0016, 0416 . . . 0016, 1016}. This implies that the 14 input bytes
will be encoded in 28 bytes, which has a negative effect on the
compression performance. To solve this problem, the In bytes
will be inserted directly into another 112-bit shift register
(Reg2), which is enabled by EnRLE .
In addition, 2 zero bytes will be concatenated with Reg2 to

complete the 128-bits and indicate that they are not run length
encoded. Accordingly, the 14 input bytes will be encoded in

16 bytes as {0316, 0416 . . . .0F16, 1016, 0016, 0016}, which
is in this case better than the RLE. After filling Reg1 and
Reg2, MUX2 will select between these 2 registers as follows.
If Reg1 is filled before Reg2, then MUX2 will select Reg2 as
explained in the previous example. Otherwise, the RLE will
be the better option, and MUX2 will select Reg1. To control
MUX2, 2 flip flops are used to hold the present state of Reg1
and Reg2 (P1,P2). The 3-bit counter is used to count the
number of RLE words that enter Reg1. Similarly, the 4-bit
counter is used to count the number of In bytes that enter
Reg2. Reg1 will be filled after receiving 8 RLE words while
Reg2 will be filled after receiving 14 In bytes. Once the
register is filled, its present state will be set to logic 1. Since
the In bytes are received every clock cycle, the AES unit will
have at least 14 clock cycles to encrypt the input block. The
AES will encrypt the 128-bit block in only 11 clock cycles as
will be explained in the next subsection. Finally, a logic unit
is used to control all the blocks. The EnRLE is used to enable
the compression-encryption unit. TheModeRLE is used as an
indicator for the last In byte. The LastBLOCK is used to start
the encryption of the last 128-bit block even if Reg1 and Reg2
are not yet filled.

E. THE AES
The HW implementation of the 128-AES-CBC is shown in
Fig. 12. All the details of the AES are available in [52].
The encryption is performed as follows. The initialization
vector (IV) will be updated and loaded into Reg1 at the start
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FIGURE 12. The HW implementation of the 128-bit AES-CBC.

of every new image. Then the data in Reg1 will be used as
a feedback and XORed with the input to perform the CBC
mode. After feeding back the content of Reg1, the AES will
start the encryption process, which consists of 11 rounds.
Each round will have a unique Round Key (Rkey), which will
be generated using the key expander.

In the proposed system, each round will be performed
in 1 clock cycle. In the first clock cycle, the Rkey will be
added to the input, and the result will be stored in Reg2.
In the next 9 clock cycles, the data stored in Reg2 will be
updated after applying a series of operations: the sub bytes
substitution using the S-box, then the shift rows, followed
by the Mix columns, and finally adding the Rkey. In the 11th

clock cycle, the Mix columns operation will be skipped, and
the final result will be stored in the output register Reg1. The
output flag FY is used to indicate that the encrypted block is
now available in Reg1. The encrypted block will be provided
through OutY in 32-bit words using a 4-input multiplexer,
which is controlled by a 2-bit counter.

As explained above, the operations performed in the initial
round is different from the middle 9 rounds and the last
round as well. Hence, multiplexers are used to select the
required operations in each round. The multiplexers will be
controlled using the LSB and the MSB of an 11-bit left
circular shift register. Initially, the shift register will be loaded
with 110; thus, the LSB will be high while the MSB will be
low. Accordingly, the data coming from the input side will
be selected and only the Add round key operation will be
performed. In the next 9 cycles, the bits will be moving in the
shift register towards the left, and both LSB and MSB will be

at logic 0. Hence, all the AES operations will be performed.
In the 11th cycle, the MSB will be high while the LSB will be
low; therefore, the Mix columns will be skipped.

The Add round key block is implemented using a
group of XOR gates. The sub bytes block is implemented
using 16 parallel S-boxes, which are implemented using Look
Up Tables (LUTs). The shift rows block is implemented using
hardwired shifters; hence, no computational resources will be
utilized. Finally, theMix columns block is implemented using
a series of XOR operations as explained in [52].

The key expander is implemented as shown in Fig. 13. The
key expansion process is performed as follows. First, the input
key will be loaded in a 128-bit register, which will provide
the Rkey. Next, the 32 LSBs of the 128-bit register will
pass through a series of operations before they are combined
back with all the 128-bits. The 32 LSBs will first undergo
a hardwired byte cyclic rotation. Then 4 parallel S-boxes
will be used to substitute the rotated bytes. Accordingly,
the 4 S-boxes will provide a total of 32 bits, only the 8 MSBs
will be XORed with the Rcon signal, and then they will be
concatenated back with the remaining 24 LSBs.

To generate the Rcon signal, first a value of 110 will be
loaded in an 8-bit register. Next, the register will be updated
by shifting the stored bits to the left and then adding the signal
con. The signal con is constructed using Rcon as follows
{0, 0, 0, Rcon(7), Rcon(7), 0, Rcon(7), Rcon(7)}.

F. THE MAIN CONTROL UNIT
The main control unit is implemented using a Finite State
Machine (FSM) as shown in Fig. 14. To simplify the state
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FIGURE 13. The HW implementation of the AES key expander. a) The Key
expander block diagram. b) The Rcon function.

diagram, the outputs written in each state are the ones that
are set to logic 1. As illustrated in Fig. 14, The FSM will

jump from the initial state, St0, to St1 in case the input start
is set to logic 1. In St1, the FSM will start to increment the
address of the frame buffer to read the image. The FSM will
spend 1 clock cycle in St1 until the first pixel is read from the
frame buffer. The next state, St2, is used to add another 1 clock
cycle delay due to the first pipeline stage in the system, see
pipeline1 in Fig. 8. In case the system is not pipelined, the
FSM will jump directly from St1 to St3.

In St3, the FSM will enable the selector and the sampler
to start the image processing. The FSM will remain in St3
for 4 clock cycles until the first set of coefficients are gener-
ated from level1 as indicated by the input flag F1.

Next, the FSM will jump to St4 to enable the RLE. Since
the coefficients of level2 are not generated yet, the FSM will
enable the RLE for 3 times every 4 clock cycles to encode
the 3 detail coefficients of level1 only. The FSM will remain
in St4 until the first set of coefficients are generated from
level2, as indicated by the input flag F2. Then the FSM will
jump to St5. Similarly, the FSM will remain in St5 until the
first set of coefficients are generated from level3, and then
will jump to St6.

In St6, the RLE will be enabled all the time to encode
the coefficients of all the 3-levels sequentially. The FSM
will remain in St6 until the image is fully read from the
frame buffer and then will jump to St7. The FSM will
wait for 1 clock cycle in St7 until the counters of the
blur detector are updated, and then will jump to St8 to
start the division process of the blur detector. Also, in St7

FIGURE 14. The FSM of the control unit. The inputs and outputs are written in blue and black colors,
respectively.
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FIGURE 15. The standard test images.

and St8, the last 10 coefficients will be multiplexed to the
compression-encryption unit in the order explained in the
previous subsection. Accordingly, the Modesel will be set to
logic 0. The FSM will remain in St8 until the last coeffi-
cient from the transformed image is encoded as indicated by
(selCOEF == 6310).
Next, the FSMwill jump to St9 or St10 according towhether

the AES units are ready to process the last block or not.
Suppose that one of the AES units has started to encrypt a
given block and there are still 2 non-zero coefficients left in
the transformed image. In this case the AES buffer will be
ready after 2 clock cycles only while the AES unit will still
need another 9 clock cycles to finish the encryption process.
Accordingly, the FSM will move to St9 and wait until all the
AES units are done. In St10, the system will encrypt the last
block in the image. St11 and St12 are delay states to ensure
that the 128-bit encrypted block is fully transferred through
the 32-bit output port of the AES unit. Finally, the FSM will
wait in St13 until a new image is received, and then will repeat
the same process again.

IV. RESULTS
The proposed system is realized using HDL and implemented
on XC5VLX50T FPGA using Xilinx. The simulation process
is performed in three steps. First, the input image is writ-
ten in a Memory Initialization File (MIF) using MATLAB.
Next, the HDL design is tested with the MIF, and then
the encrypted image is written in a text file using Xilinx
simulator. Finally, the generated text file is decrypted and
decompressed using MATLAB to verify the compression-
encryption process. The standard test images are summarized
in Fig. 15. The proposed system is evaluated using both color
and grayscale images to ensure a fair comparison with most
of the recent compression-encryption systems. In case of
grayscale images, the YCbCr conversion will be skipped.

A. THE HDL SIMULATION RESULTS
The HDL simulation results are illustrated in 3 parts. The first
part will verify the YCbCr conversion, the 3-level DWT, and

TABLE 1. The post placement and routing results.

the blur detection. The second part will verify the AES. The
last part will verify the compression scheme. The simulation
is performed on Lena 256× 256 color image.
The first part of the simulation is presented in Fig. 16. The

Y component of the color converter, which is the grayscale
image, is presented in Fig. 16(a). To see how the edge
maps are generated, the simulation will focus on a block
of 16× 16 pixels near Lena’s hat as depicted in Fig. 16(a).
This block of pixels is magnified in Fig. 16(b) just for the
sake of illustration. Figures 16(c) to 16(e) show the generated
edge maps for the 3 levels. In case the edge threshold is set
to 10, the position of the edge points will follow the edges in
Lena’s hat. The Xilinx simulation results for the edge map of
level 2 is presented in Fig. 16(f)

The second part will verify the AES using the example
in [52]. The HDL simulation results, shown in Fig. 17, match
exactly the results in [52].

The last part of the simulation, which verifies the compres-
sion operation, is shown in Fig. 18 where the compTH is set
to 310. The input sequence consists of 7 consecutive bytes
with magnitude less than or equal to the compTH followed
by the non-zero coefficient 410. Accordingly, the output RLE
word will be 070416.

B. THE HW PERFORMANCE
The proposed system is fully implemented using slice reg-
isters and LUTs. No DSP48Es or block RAMs are utilized.
The post placement and routing results are summarized in
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FIGURE 16. The HDL simulation results of the blur detector. a) The test image, b) The cropped part, c) Edge map 1, d) Edge map 2,
e) Edge map 3, and f) The output of Xilinx’s simulator for Edge map 2.

FIGURE 17. The AES HDL simulation results for the testcase in [52], which shows the encrypted words after each round.

FIGURE 18. The HDL simulation of the compression process with a threshold value equal to 3.

Table 1. The proposed system has utilized 25% of the avail-
able slices. This is a very efficient utilization relative to the

functionalities offered by the system: color image blur detec-
tion, compression, and AES-CBC encryption. Furthermore,
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TABLE 2. The device logic utilization and throughput for different FPGA-based compression-encryption systems.

the timing analysis shows that the maximum clock frequency
is 144.11 MHz. Since the system processes a 24-bit color
pixel per clock cycle, the throughput will be 3.458Gbps.
This throughput allows the system to process 1-MP image
in only 7.276ms. Therefore, the rate will be 137 Frames Per
Second (FPS) for 1-MP or 30 FPS for 4.5-MP. Accordingly,
the proposed system is well suited for real-time applications.

The HW performance of different FPGA image
compression-encryption systems are summarized in Table 2.
The proposed system is the only one capable of integrating
the blur detection with image compression-encryption. Fur-
thermore, the proposed system can process color images, and
not just grayscale images as the other systems. Moreover,
the proposed system has the highest throughput, which is
even twice as fast as a simple DCT compression and stream
cipher system [47]. Also, the throughput of the proposed
system is 62% higher than the FPGA-based system presented
in [62], which accommodates a single AES-128 core with
Keccak-f[400]. Regarding the HW implementation area, the
proposed system has the largest slice utilization. This is due to
the 128-AES-CBC, which improves the security level at the
expense of utilizing more resources. The AES-CBC is more
secure than the TEA, the stream cipher, and the AES-ECB.
Also, the implementation area has increased due to theYCbCr
conversion and the blur detection, which are not available in
the other systems.

Most of the image compression-encryption systems are
implemented using software solutions. Accordingly, the pro-
posed FPGA system is also compared with other CPU based
systems, which use new and non-standardized encryption
methods, as shown in Table 3.

Like the previous discussion, the proposed system is supe-
rior in terms of speed. Only [37] and [40] work on color
images, however their Execution Time (ET) is not suitable for
real-time applications. According to the results in Table 3, the
proposed system is 13.9 times as fast as the best CPU based
implementation [57].

Furthermore, the ET of the proposed FPGA system is
compared with the software implementation of image blur
detection. In [58], Tong et al. blur detection algorithm was
implemented on Jetson TK1 using different approaches: the
single-core Sequential approach [15], the multi-core parallel

FIGURE 19. The blur detection ET for 1024 × 1024 color images using
different implementations of Tong et. al.’s algorithm. The SW solutions
were implemented on Jetson Tk1.

approach [59], and the GPU parallel approach [58]. The com-
parison is presented in Fig. 19, which shows that the FPGA
implementation is 1.773 times as fast as the GPU-based
implementation.

C. THE BLUR DETECTION RESULTS
The blur detection feature of the proposed system is tested
on 256 × 256 images with different blur levels. The blur
threshold of the algorithm is set to 10. The input image is con-
sidered blurred if the ratio of NDA to Nedges is less than 5%,
otherwise, the image is considered unblurred. The simulation
results are shown in Fig. 20 where the images on the left are
classified by the system as unblurred while the other images
are classified as blurred. Furthermore, by examining the same
image at different blur levels, it is clear that the estimated blur
extent can be used to rank the images according to the amount
of blur.

D. THE COMPRESSION-ENCRYPTION RESULTS
The compression performance of the system is assessed by
calculating the Peak Signal-to-Noise Ratio (PSNR) versus
the Compression Ratio (CR). The CR is calculated as shown
in (5). The PSNR is calculated as shown in (6a), (6b), and (6c)
where MSE is the Mean Square Error, M × N is the dimen-
sions of the image, f1(x, y) is the plain image, and f2(x, y) is the
reconstructed image. In color images, the PSNR is calculated
for each color component, (Red, Green, and Blue), and then
the average value is calculated as shown in (6c). In lossy
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TABLE 3. The Execution Time (ET) comparison with different CPU-based image compression-encryption systems.

image compression, the PSNR is inversely proportional to the
CR. It is important to keep the PSNR above certain limit to
achieve good image quality. The reconstructed image quality
is considered good if the PSNR values are between 30dB
and 50dB. The compression is unacceptable if the PSNR is
below 20dB [37].

CR =
size of cipher image
size of plain image

(5)

MSE =
1

M × N

M∑
y=1

N∑
x=1

(f1 (x, y)− f2 (x, y))2 (6a)

PSNR = 10× log10

(
2552

MSE

)
(6b)

PSNRRGB =
PSNRRed + PSNRGreen + PSNRBlue

3
(6c)

The simulation results of the compression-encryption
process are shown in Fig. 21. The CR ratio is adjusted to
approximately 20% for the three 256 × 256 test images,
‘‘Baboon’’, ‘‘Barbara’’, and ‘‘Lena’’. The images are success-
fully ciphered by the AES as shown in the figure. Regarding
the quality of the restored images, the ‘‘Baboon’’ has the
lowest PSNR while ‘‘Lena’’ has the highest PSNR. This is
due to the amount of details in the image. Regarding the
‘‘Baboon’’ image, which has a lot of details, the compression
threshold must be set high to reach the 20%CR at the expense
of lowering the PSNR.

For further investigation, the PSNR vs the CR is evalu-
ated for all the standard test images. For each image, the
compression threshold is increased until the PSNR drops
to 30dB. Since the compression threshold is restricted to inte-
ger values, it is hard to get exactly the 30dB point. Accord-
ingly, the point closest to the 30dB will be marked for each
image.

The PSNR vs the CR for all the color and gray images are
presented in Fig. 22 and Fig. 23, respectively. Each image
is tested with two resolutions, 256 × 256 and 512 × 512 as
shown by the red and blue curves, respectively. By inspect-
ing the 30dB point for each test image, it is found that
the CR is greatly affected by the amount of details in the
image. For example, in the 256 × 256 images, the ‘‘House’’
has the best CR, which is 0.08 and 0.11 for color and
grayscale, respectively. On the other hand, the ‘‘Baboon’’ has
the worst CR, which is 0.38 and 0.75 for color and grayscale,
respectively.

Moreover, the results show that the CR is better in color
images compared to the grayscale images. This is due to the
YCbCr conversion, which puts most of the details in the Y
component as the human visual system is more sensitive to
the luminance than chrominance. By inspecting the 30dB
point in the 256 × 256 ‘‘House’’ and ‘‘Baboon’’, it is found
that the CR of the color image is better than the grayscale
image by 27% and 49%, respectively.

Furthermore, the results show that the compression per-
formance is improved at higher resolutions. For example,
by examining the 30dB point of the ‘‘Plane’’ color image,
the CR at resolution 512 × 512 is better than 256 × 256
by 43.75%.

The PSNR vs CR of the proposed system is compared
with other systems as shown in Fig. 24. The results show
that the proposed system can achieve high PSNR at low
CR. By inspecting the lowest CR in the figure, which is the
25%, it is found that the PSNR of the proposed system is
better than the other systems by more than 8%. However,
the compression scheme in [40] can provide better PSNR at
CRs higher than 50%. This is due to the truncation rounding
scheme of the YCbCr converter, which limits the maximum
PSNR of the proposed system to 33dB.

In addition to the PSNR, the Mean Structural Similar-
ity (MSSIM) index is also used to measure the similarity
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FIGURE 20. The Simulation results of the blur detection for different 256 × 256 test images. The calculated blur extent is written
for each image.

between the original and the restored images from three
aspects: brightness, contrast, and structure. The MSSIM
can be calculated using the equations presented in [38].

Table 4 compares the MSSIM of the proposed system with
one of the most recent compression-encryption systems [38]
at 25% CR.
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FIGURE 21. The simulation results for the compression encryption process.

FIGURE 22. The PSNR vs CR of the proposed system for color images. The red and blue curves represent the
256 × 256 and 512 × 512 images.

Three different 256 × 256 grayscale images are used in
table 4. The results show that the MSSIM of the proposed

work is close to the system presented in [38]. In the case of
‘‘Lena’’ and ‘‘Peppers’’, the MSSIM is 9% lower than the
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FIGURE 23. The PSNR vs CR of the proposed system for several gray images. The red and blue curves represent the 256 × 256 and 512 × 512
images, respectively.
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FIGURE 24. The compression performance comparison for different compression-encryption systems.

TABLE 4. The MSSIM index of the proposed system at 25% CR.

system in [38]. On the other hand, in the case of the ‘‘Man’’
image, the MSSIM of the proposed system is 6% higher than
the system in [38].

V. CONCLUSION
In this paper, the color image blur detection has been inte-
grated with compression and encryption as a 3 in 1 parallel
HW architecture. The 128-bit AES-CBC has been combined
with the modified Lorenz chaotic PRNG to provide a highly
secure encryption scheme. To reduce the resources, the Haar
DWT has been used as a common building block for both
blur detection and compression. Furthermore, to achieve high
speed, the entropy encoder has been implemented using the
RLE technique. The proposed system has been implemented
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on FPGA (XC5VLX50T) using only 25% of the available
slices. The system can process 4.5MP images at a rate
of 30 FPS, which is more than 100% faster than all the avail-
able FPGA-based image compression-encryption systems.
In addition, the system has been tested with all the standard
256× 256 images. It is shown that depending on the amount
of details in the image, the system can achieve 30dB PSNR at
CRs in the range of (0.08-0.38). Furthermore, it is shown that
the PSNR of the proposed system at 25% CR is higher than
most of the newly published compression-encryption systems
by more than 8%.
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