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ABSTRACT We propose a new data partitioning approach to improve the performance of heterogeneous
parallel applications in modern high-performance computing (HPC) systems. Existing approaches do not
consider an important aspect that has a critical impact on the performance of parallel applications: themethod
of assigning partitions to each processor so as to minimize the communication cost and hence minimize data
movement, which dominates energy and performance cost. Such an aspect for managing data locality is
important for a large range of applications. Therefore, to achieve efficient data partitioning, we propose a
method for distribution considering this aspect. Our algorithm seeks to minimize execution time by using two
models. The first is a fine-grained computational model of heterogeneous processors, which is sufficiently
adequate and accurate to guarantee efficient partitioning results that maximize utilization. The second is
a communication model of heterogeneous processors to minimize data motion and hide communication
overheads. The correctness of our algorithm was analyzed and validated. The complexity of our algorithm
is approximately of order O(p× log s+ p× s2), where s is problem size/steps (where steps is the step size
between data points in the computational model of each processor), and p is the number of heterogeneous
processors. The experiments were performed on AZIZ supercomputer using two types of applications: an
application with no dependency between its partitions, i.e., matrix multiplication, and another one with high
dependency between its partitions, i.e., the Jacobi method. The results show the efficiency of our algorithm
in improving performance.

INDEX TERMS Data partitioning, data distribution, heterogeneous system, performance optimization, load
balance, performance model, HPC, data locality, communication cost.

I. INTRODUCTION
Going deeper into the characteristics of modern heteroge-
neous systems [1], [2], researchers have found many factors
that contribute to making the task of applications develop-
ment to be more complicated. Some of the factors are issues
related to the integration of dissimilar processors on one chip,
such as contention for shared resources, e.g., highest-level
cache, interconnection network, limited bandwidth of the
PCI-E bus, and limited memory of accelerators [3]. All such
factors introduce new challenges to the process of designing
and optimizing parallel applications for these systems.

Indeed, in parallelization, the design of data partitioning
and distribution is one of themost time- and effort-consuming
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tasks in runtime optimization [4], [5]. Data partitioning is
an important composition unit of data access patterns and
significantly affects the performance of an application [6].
It refers to the process of partitioning the data into smaller
chunks for assignment to different memory spaces for par-
allelism or optimizing for data locality [7]. There are many
methods of data partitioning, and selection of the appropriate
scheme depends on the application’s requirements as well as
the hardware used [5].

In applications where data locality is critical for perfor-
mance, managing data locality is a fundamental aspect that
must be considered in the process of designing a partitioning
algorithm, namely the methods of allocating partitions to
each processor in order to minimize data transformation.
Minimizing data motion means minimization of execution
time and energy consumption [8], [9].
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Traditionally, data partitioning algorithms have been
designed based on a realistic performancemodel that captures
the application behavior on modern heterogeneous platforms.
The designed performance models have evolved to inte-
grate the most important features of heterogeneous systems,
e.g., heterogeneity of architectures and memory structure and
the effect of paging [10]. Using such advanced performance
models enables partitioning algorithms to find an optimal
partition size for each processor, which maximizes the per-
formance of parallel application. State-of-the-art algorithms
have shown significant performance improvements in this
regard. However, most of them do not consider the communi-
cation cost between the processing units. It is well known that
in the process of workload partitioning, calculating the com-
munication cost is a critical factor for minimizing data motion
and hence improving performance and energy consumption.

In this paper, we propose a data partitioning algorithm that
considers the two aspects of managing data locality, con-
tributing to managing locality in the memory hierarchy and
between processors by assigning consecutive suitably sized
blocks of data structure to successive processors with a mini-
mum communication cost between them. Using two models,
specifically a fine-grained computation model of heteroge-
neous processors and the communication model between the
heterogeneous processors, the algorithm works towards a
more optimal solution.

The rest of the paper is organized as follows. In Section II
we review the concept and evolution of performance mod-
els, the classical method used by partitioning algorithms
for finding the optimal distribution in heterogeneous plat-
forms. Then, in Section III, we provide an overview of the
partitioning methods classified regarding the existing state-
of-the-art algorithms. After that, we discuss the existing lim-
itations in Section IV. In Section V, we present our proposed
data partitioning algorithm, the main contribution of this
paper. In Section VI, we provide theoretical and experimental
analyses and validation of our approach. We conclude in
Section VII.

II. PERFORMANCE MODEL FOR OPTIMAL PARTITIONING
IN HETEROGENEOUS PLATFORMS
In modern HPC platforms, performance models of processors
are very common and are efficient for the optimization of
parallel applications [11]. These models enable designers
and developers to gain insight into the optimal means of
mapping their applications to parallel architectures with high
accuracy [12].

Performance-model-based data partitioning is where
offline profiling information on the performance of proces-
sors is used as an input to data partitioning algorithms to
find optimal distribution on HPC systems. In the performance
model of a processor, the speed is represented by a positive
number, and hence the performance model is called the
constant performance model (CPM) [3]. In modern HPC
platforms where the systems are highly heterogeneous, a per-
formance model where the processor speed is represented by

a function of the problem size is usually used since it is more
realistic. It combines important features of heterogeneous
systems, such as heterogeneity of architecture and memory
structure and paging effects, therefore leading to an accurate
partitioning result. The CPM could be used for medium-
sized applications running on single-core systems [13]. In this
section, we briefly review the evolution of a performance
model used by data partitioning algorithms for performance
optimization in heterogeneous HPC platforms.

We start with the CPM, which is the simplest model for
data partitioning. It uses a constant number to represent the
speed of each processor, e.g., normalized processor speed,
normalized cycle time, task computation time, and average
execution time. A number of methods [14]–[16] use this
model for partitioning and distribution across processors. The
partitioning is performed such that the volume of each par-
tition is proportional to the speed of the assigned processor.
All parallel algorithms use the CPM for their data distribution
assuming the following [11]: first, the processors speed does
not depend on the size of the problem, and second, the pro-
cessors are independent of each other, so their performance
can be measured individually.

Unfortunately, such a model does not work well with mod-
ern systems that have heterogeneous architecture unless each
partition is fit into the memory of the assigned processor [17].
Therefore, to achieve accurate partitioning and distribution
on these systems, a suitable model that can capture different
aspects of heterogeneous platforms, for example memory
heterogeneity, is required.

Lastovetsky and Reddy [18] introduced the concept of
a functional performance model (FPM) and used it as an
input to their data partitioning algorithm for a heterogeneous
network of uniprocessors. The FPM is used as a key input
for load-balance-based data partitioning algorithms. In this
model, the speed of processors depends on the problem size,
and it is represented by a continuous function versus problem
size. The problem size means ‘‘the amount of data stored and
processed by the algorithm, instead of the number of basic
computations, since the former one does influence the speed
of the processor’’ [19]. In addition to the continuity, the shape
of the speed function is assumed to have specific character-
istics. It must be monotonically decreasing or monotonically
increasing, concave, then monotonically decreasing. The per-
formance profile of applications must satisfy these conditions
so the partitioning algorithm can return the best result to
load-balance application. The continuity and the shape of
the graph guarantee that any straight line passing through
the origin will intersect the graph, and there will be only
one intersection point per line respectively. The introduced
FPM encapsulates many features of both the architecture (for
example heterogeneity of processors, memory hierarchy, and
the effect of paging) and the application.

The FPMof [19] is not accurate in a situationwhere hetero-
geneous processing elements exist together in one node, and
thus, contend for shared resources, so Z. Zhong et al. [11]
extended it to heterogeneous multicore and multi-GPU
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platforms, e.g., the hybrid node. They modeled multi-GPU
multi-core platforms as a set of abstract processing units.
Each processing elements executing the same kernel of the
application is represented as one abstract processing unit,
e.g., if CPU core (or a group of cores) executing a kernel then
it (or they) represented as one abstract processing unit. The
GPU and its host CPU core are represented as one abstract
processing unit.

Lastovetsky et al. studied the behavior of data parallel
applications in homogenous HPC [10], [20], e.g., multicore,
and in modern heterogeneous HPC systems [3]. They found
that the function shape in the performance profile violate
the assumptions of the FPM, due to complexities related
to the tight integration of asymmetry processing elements
such as contention for shared resources. Due to this devia-
tion, load-balancing algorithms based on the FPM of [18]
are not able to return an optimal solution. Accordingly,
Lastovetsky et al. proposed a new model to tackle the limita-
tion of the FPM. In [3], the authors modified the performance
model of [11] by representing the performance model of
abstract processors using a discrete function of speed versus
problem size. Their algorithm for data partitioning on hetero-
geneous platforms, which uses this new performance model,
is discussed in Section III. B.

III. DATA PARTITIONING ALGORITHMS FOR
HETEROGENEOUS SYSTEM
Data partitioning is unavoidable due to the parallelism
inherent in scientific computing platforms. There are
load-balance-based techniques and load-imbalance-based
techniques. The following section discusses each class
independently.

A. LOAD-BALANCE-BASED TECHNIQUES
On heterogeneous platforms, load-balance-based data par-
titioning algorithms usually seek to tackle the challenges
accompanying the achievement of load balance across het-
erogeneous architecture, e.g., resource contention or limited
memory of accelerators [19].

Load-balancing data partitioning in heterogeneous systems
refers to the situation where all processors incorporated in the
execution complete their work at the same time:

t1(x1) ≈ t2(x2) ≈ . . . . . . tp(xp) (1)

where ti(xi) is the execution time of processor pi, assigned
the partition size xi, i ∈ {1, 2, . . . p}, and p is the number of
heterogenous processors. Equation (1) can be expressed as:

x1
s1(x1)

≈
x2

s2(x2)
≈ . . . . . . . . . .

xp
sp(xp)

. (2)

x1 + x2 + . . . . . xp = n, where n is the total size of the
problem and si is the speed of processor pi.
The plot of this distribution, using the number of elements

and processor speed, gives a straight line passing the coor-
dinate system through its origin and intersecting the speed

functions. This line represents an optimal load-balanced solu-
tion for a specific problem size.

Lastovetsky and Reddy [19] proposed functional perfor-
mance model (FPM)-based data partitioning for applications
executing in nodes consisting of uniprocessors (single-core
CPUs). The proposed technique attempts to find an approx-
imate solution that is close enough to the exact optimal
one. Briefly, their algorithm uses two initial boundary lines,
upper line U and lower line L, of the solution space. These
lines represent an optimal distribution for the problem size:
nU < n and nL > n. The algorithm iteratively bisects the
angle between lines U and L by the line M and then decides
whether M is the new U or L line based on M’s coordinates.
This procedure continues until an approximation is achieved.

Several partitioning algorithms have been proposed to
improve the performance of matrix multiplication in het-
erogeneous clusters. Some algorithms utilize column-based
partitioning to reduce the range of possible solutions [13].
In column-based partitioning, the algorithm distributes the
partitions between p processors arranged in columns, each of
which consists of a specific number of processors. In [21],
the algorithm uses a hybrid model of the CPM and FPM to
partition the matrix. It uses the CPM to indicate the width
of each column and the FPM to indicate the partition size
for processors within each column. However, using the CPM
reduces the accuracy of the result since this model is not
suitable for partitioning in modern heterogeneous system.
The algorithm of [13] uses the FPM-based algorithm of [19]
to find the partition size, i.e., rectangle area, for each pro-
cessor. The algorithm then adopts an approach from [16] to
minimize communication volume by calculating the optimum
shape and ordering of partitions. S. Tabik et al. [5] proposed
a workload distribution approach based on a light offline
performance model.

DeFlumere et al. [22] proposed a solution for partitioning
of the matrix for executing matrix–matrix multiplication on
two heterogeneous processors that tends to minimize execu-
tion time and communication cost. They focused on the shape
of the partition to achieve this goal; hence, they adopted a
non-rectangular partitioning approach where one of the parti-
tions was a small square (in the corner of the matrix) assigned
to the slower processor, and the other large partition was
assigned to the faster processor. This approach extended to
include three processors, and its optimality was proved [22].

The partitioning algorithm of [19] was used by the authors
of [11] for load balancing the distribution across heteroge-
neous processing units in a hybrid node as well. They adopted
a different performance model to accurately measure the
performance of heterogeneous processors in the hybrid node,
as discussed in Section 2.2.

Other algorithms proposed by [23] and [24] are based
on different performance models as an input to predict the
execution of an application. Y. Ogata et al. [23] investigated
load-balancing partitioning by finding an optimal distribution
ratio between the CPU and GPUs. Their approach relies
on the performance model that captures the behavior of the
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CPU–GPU combination in terms of their contribution and
predicts the total execution time. C. Yang et al. [24] proposed
an adaptive optimization framework to find the optimal dis-
tribution between the CPU and GPU.

B. LOAD-IMBALANCE-BASED TECHNIQUES
In the load-imbalance approach, optimal partitioning and
distribution may not balance the application across available
processors [3], [10], and [20].

Khaleghzadeh et al. [3] proposed the first performance-
model-based data partitioning algorithm for heterogeneous
systems that may not load-balance an application. The fol-
lowing briefly summarizes their approach. Given a set of
p discrete speed functions of a problem size, of specific
cardinality, where p is the number of available heterogeneous
processors, the algorithm is designed to examine all com-
binations of processors and then select the distribution of
workload that leads to minimum execution time. Their algo-
rithm implements several optimizations to avoid examining
all possibilities.

IV. DISCUSSION
In this paper we discuss data partitioning algorithms in
heterogeneous systems for performance optimization: load-
balance-based partitioning and load-imbalance-based par-
titioning. The experimental results provided in previous
works show significant performance improvement. However,
the research in relation to this subject is limited, and hence it
is still an open research issue. Most of the previous works do
not address the problem of minimizing communication cost,
which is an important related concept.

Modern HPC systems have become more parallel and
heterogeneous to accommodate the growing demands of
performance and energy efficiency [25]. The programming
community is facing a great challenge in respect of how
to minimize data movement, which is the most dominant
factor in performance and energy consumption [6], [8], [26].
The obvious answer is managing data locality. This means
managing vertical locality in the memory hierarchy as well
as the horizontal locality between processors [27]. In terms of
data partitioning algorithms, for a large range of applications,
both concepts are important to find an optimal solution. In our
literature review, we found that all proposed methods focus
on finding the optimal partition size for each processor in
heterogeneous systems to avoid paging and thus contribute
to managing vertical locality. However, researchers did not
consider minimizing the communication cost between pro-
cessing units, which is critical for minimizing data motion
horizontally in the system. In [13] and [28], the partitioning
algorithms utilized a method for minimizing communication
cost, mainly to improve the performance ofmatrixmultiplica-
tion partitioning across a cluster of heterogeneous processing
units. However, these approaches are limited and designed for
a specific problem.

In this paper we propose a solution that considers the com-
munication cost. Our algorithm works based on an accurate

performancemodel of the heterogeneous system and commu-
nication model to find a more optimal solution, which may or
may not balance the application. We explain our algorithm in
detail in the following section.

V. PROPOSED RESEARCH SOLUTION
In this section, we propose a solution to tackle data parti-
tioning across heterogeneous architectures, such that overall
execution time is minimized by allocating blocks of a suitable
size to successive processors with minimum communication
cost between them. To achieve this goal the algorithm uses
two models: the performance model of each processor in the
system and the communication model between these proces-
sors. The following sections discuss our approach in detail.

A. FINE-GRAINED PERFORMANCE MODEL
The performance model (PM) of the processing elements is
an important input to our data partitioning algorithm, and its
adequateness and accuracy are important to guarantee obtain-
ing optimal results. We utilize the PM proposed by [3], with
a modification. In [3], the PM considers the configuration of
parallel applications and integrates many important features
of heterogeneous architecture. Each processing unit i.e., one
or more cores executing one computational kernel is modeled
by abstract processor, and accelerator together with its host
CPU core is considered as one abstract processing unit. The
model is characterized by the following: a) the speed of
abstract processors is represented by a discrete function of
the problem size, b) the PM is composed of a series of data
points stored in a file, c) each point is generated by timing
the execution of the application for a given problem size, and
d) the performance of processors is measured simultaneously
to consider contending for shared resources.

To ensure model adequacy and accuracy, we built it to be
fine-grained. For example, to build the performance profile
of matrix multiplication in a heterogeneous system, we mea-
sured the execution time for problem sizes x1 × n1, x2 ×
n1, . . . , n1× n1, x1× n2, x2× n2, . . . , n2× n2, . . . etc, where
xi < nj. We chose the step size between data points to be 64
(it is a selective parameter).

B. THE COMMUNICATION MODEL
In [29], the interconnected network components of the hetero-
geneous system consisting of P processors are modeled as a
completely connected virtual network, where a path between
any pair of processors pi and pj is represented by a single
link. The communicationmodel is a matrix that represents the
communication cost between any two processors using two
parameters: start-up time (latency) T ij and data transmission
rate (bandwidth) Bij . The time taken to transmit a message of
size m bytes between pi and pj can be represented by:

Cmmpi−pj = T ij +
m
Bij

(3)

T ij latency is estimated to be half of the time of a ping-pong
operation with a data of size zero.
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Bij , the bandwidth can be estimated using the ping-pong
and ring programs.

If the abstract processor represents an accelerator, then we
add additional term tAccH to Equation (3) to include the time
of transferring data between the accelerator and the host core,
when halo exchange occurs between this abstract processor
and others:

Cmmpi−pj = T ij +
m
Bij
+ tAccH (4)

We use the communication model as an input to the parti-
tioning algorithm to make it consider the communication cost
when implementing the partitioning process.

C. THE PROPOSED DATA PARTITIONING ALGORITHM
Assume we have data size n to be distributed across available
heterogeneous processors p, and time function of size m
for each processor ti(x), where i ∈ {1, 2, . . . , p} , and x ∈
{1, 2, . . . ,m}, and suppose m is equal to n for simplicity. Our
algorithm works toward finding suitable partition size d i for
each processor. It follows the fact that ‘‘During execution of
parallel application, each processor is computing, communi-
cating, or idling’’, so when our algorithm starts assigning a
data size tomore than one processor it considers the following
generalized form for describing the total execution time, t i,
of each processor:

t i = tcomp + tcomm + t idl (5)

where tcomp is the computation time of the processor, tcomm
is the communication time with another processor, and tidl
is idle time—we assume that there is no idle time, or it is
negligible.

The algorithm uses the greedy technique at some points
and works iteratively to find the suitable partition size for
each processor to minimize the total execution time. It imple-
ments 1D partitioning and can be applied to 2D and 3D data
structures since the dimensionality can be decreased to 1D.

The algorithm first indicates the processor phighest , which
is the processor with highest speed at problem size n

p .
Then, the algorithm determines whether there is a point

in the range
{
n
p ,

n
p + 1 . . . ,m

}
at which this processor or

any other processor has a faster speed. The data size at the
point where the faster processor is indicated is assigned to
the partition size of that processor. The partition is labeled
as dhighest and the processor as phighest . The algorithm then
initializes each partition d i of processor pi with data size equal
to 0, i.e., d i = 0.

The algorithm starts tuning the data size for processor
phighest . It iteratively increases dhighest by one as long as
phighest continues to represent higher performance than the
others.

It continues to increase partition size dhighest until another
processor pi with higher performance at any point x <

dhighest is found. That is, if pi is found, such that its compu-
tation time at x plus communication time with phighest is less
than the computation time of phighest at dhighest + 1, where

x + dhighest <= n, then the algorithm indicates pi to be the
second higher-performance processor, and begins tuning its
partition size d i, starting from d i = x. The metric used in this
step, which is based on Equation (5), to decide which next
processor to be assigned a partition, enables the algorithm to
find the distribution where the communication overhead is
hidden by the computations.

The algorithm continues iteratively in this way until∑p
i=1 d i = n.
The output of the algorithm is the distribution that mini-

mizes the total parallel execution time by assigning partitions
of suitable sizes to successive higher-performance processors
with lower communication cost between them. The algorithm
may load-imbalance the application.

VI. ANALYSIS OF THE ALGORITHM
A. THEORETICAL ANALYSIS
In this section we show that our algorithm usually returns
the distribution that minimizes the execution time by pre-
serving data locality, minimizing data transfer, and hiding
communication overheads. We also calculate the complexity
of our algorithm. Suppose there are P =

{
p1, p2, p3 . . . , pp

}
abstract processors and a problem of size n to be distributed
across them. The set of time functions T =

{
t1, t2, . . . , tp

}
∈

R+ represents the time functions of the processors. The car-
dinality of ti is m. For each data point in the time function,
ti(n), there is a subset

{
ti,1(x i,1), ti,2(xi,2), . . . , ti,s(n)

}
, where

xi,j ∈ Z, 0 < xi,j < n, and s is the cardinality of the subset
equal to n

64 . The number 64 is selective, and it represents the
step size between data points in the subset.

In parallel execution, if the total execution time of n is
measured by the longest elapsed time taken by one of the
processors, then what is the optimal point in the performance
models that can lead to the minimum execution time? How to
minimize data motion and overcome with the communication
overhead, and finally, how should the total shape of the
distribution look?

At load equal balance n
p distribution, the processor with

the highest performance i.e., faster processor, is assigned the
smallest possible size it can take, which makes the sum of all
chunks xhighest, sp + xi,j . . . + xp,j = n, where xi,j represent
the chunk size of pi. At this point the processor with the
highest performance phighest has the smallest execution time
thighest, sp (

n
p ) compared to the other contributing processors,

namely, thighest, sp (
n
p ) < ti, sp

(
n
p

)
. This means that the proba-

bility that the execution time of the optimal solution is less
than thighest, sp

(
n
p

)
is zero.

(If n and s are not divisible by p we consider the ceiling
value. Sometimes, it requires to adjust the results of

⌈
n
p

⌉
to

match the position s
p due to the steps considered between data

points).
From the previous, the minimum time topt.j(xopt,j) that

represents the execution time of the longest running processor
to complete the parallel execution should be the smallest point
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in the range
⋃P

i=1 {ti,j= s
p
(xi,j= s

p
), ti,j=s(xi,j=s)} under three

conditions.
First, the sum of all other chunks plus xopt,j is equal to

the total problem size, xopt,j + xi,j + . . . + xu,j = n, where
u ∈ Z , and u ≤ p. Second, topt,j

(
xopt,j

)
represents the

maximum execution time in the current distribution, that is:
ti,j
(
xi,j
)
≤ topt,j

(
xopt,j

)
. Third, the size of the other chunks

xi,j, xi+1,j, . . . , xu,j is specified based on their execution time
plus communication time with their predecessors.

These three facts guarantee that the indicated parallel exe-
cution time is not exceeded by the slower processor, and that
the communication overhead is hidden by computations.

We calculated the complexity of our algorithm. Appar-
ently, from Section V. B., Algorithm 1, and the previ-
ous analysis, the complexity sum of the main steps is
∼=O

(
P× log s+ P× s2

)
. First, chunk of size n

p is assigned
to each processor, and the processor with the highest per-
formance at that point is found. This step has a complex-
ity O(P). Finding The smallest execution time in the range⋃P

i=1 {ti,j= s
p
(xi,j= s

p
), ti,j=s(xi,j=s)} has a complexity O(P ×

log s). Then, we re-initialize workload size for each pro-
cessor except the one with highest performance. This step
has a complexity O(P). Finally, regarding tuning chunk size,
we have nested for loops inside while loop, therefore the
nested for loops has a complexity O (P× s), and the while
loop has a complexity of O(s). Accordingly, this step has a
total complexity equal to O(P× s2).

B. EXPERIMENTAL ANALYSIS
1) EXPERIMENT PLATFORM
We worked on two nodes of AZIZ supercomputer. The first
node was equipped with an NVIDIA Tesla K20 R© GPU,
and the second node was equipped with an Intel R© Xeon
Phi accelerator. The characteristics of the GPU and the CPU
of the first node are illustrated in Table 1 and Table 2,
respectively. We composed two platforms from these nodes.
Platform 1 consists of four processing units: (1) 23 cores of
CPU from the first node (called CPUK20), (2) GPU with its
host core, (3) 23 cores of CPU from the second node (called
CPUPHI), and (4) Xeon Phi accelerator with its host core.

Platform 2 consists of three processing units: (1) CPUK20,
(2) CPUPHI, and (3) Xeon Phi accelerators with its host core.

2) HETEROGENEOUS APPLICATION
We experimented with two types of applications: one with no
dependency between its partitions (i.e., matrixmultiplication)
and the other with high dependency between its partitions
(i.e., the Jacobi method). Both applications were configured
to run on previously defined platforms.

The time functions composing the performance profile
of each application were built simultaneously on the speci-
fied platform. For matrix multiplication, we worked on Plat-
form 1. We used heterogeneous matrix multiplication with

Algorithm 1 The Proposed Data Partitioning Algorithm for
More Optimal Distribution for Performance Maximization
HeterogeneousDataPartitioning(n, ProcNum, s, T, Comm)
INPUT:
n: Problem size ∈ Z > 0
ProcNum: Number of processors ∈ Z > 0
’s: is n

stepsize .
T = {T0, . . . ,TProcNum−1}: time function, where Ti =
{(xij, tij)|i∈ [0, ProcNum-1), j ∈ [0,s), xij ∈ Z > 0, tij ∈ R+

> 0}
Comm = {Comm0, . . . ,CommProcNum−1} : Communica-
tion model, where Commi = {(pid, t ij)|i ∈ [0, ProcNum-1),
j ∈ [0, ProcNum-2), pid ∈ Z > 0, tij ∈ R+ > 0}
OUTPUT:
D= {d1, . . . , du} partition sizes di for pi, where i ∈ [0, u],
u ≤ P
START
FIND THEHIGHEST PERFORMANCE PROCESSOR AT
n
p .
1. for i = 1 to ProcNum
2. di = n

p
3. HighestPoint = minP−1i=0 ti, sp (

n
p )// minimum execution

time at ( np )
4. highest = i,
5. dhighest = n

p
FIND THE SMALLEST EXECUTION TIME IN THE
RANGE { s

p , s} IN THE TIME FUNCTIONS
6. for i = 1 to ProcNum
7. for j = s

p + 1 to s
8. If tij(xij) < HighestPoint
9. HighestPoint = tij

(
xij
)

10. highest = i,
11. di = xij
RE-INITIALIZE PARTITIONS SIZES di with 0 EXCEPT
dhighest
12. for i = 0 to ProcNum-1
13. di = 0, ∀i ∈ {1, . . . , ProcNum}- highest
14. sum = dhighest
TUNING PARTITIONS SIZE UNTIL SUM BECOMES
EQUAL TO n
15. high = HighestPoint
16. while sum 6= n
17. for i = 1 to ProcNum
18. for j = 1 to s
19. if tij(xij)+ commi(highest) < high
20. di = xi,j.
21 high = tij(xij)
22. highest = i
23. else
24. dhighest = dhighest + 1
25. high = thighest,j(dhighest + 1)
26. End-while
END
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TABLE 1. Specifications of NVIDIA K20m GPU.

TABLE 2. Specifications of Intel Xeon CPU E5-2695 v2 2.40 GHz.

four high-performance kernels, each using Intel Math Kernel
Library MKL DGEMM to work on CPUs, GPU, and Xeon
Phi accelerator. As mentioned previously, we considered the
two CPUs in all platforms as two dissimilar processors.

In the performance profile, each time function con-
sists of a discrete set of fine-grained data points.
Namely, for each problem size n2, there is a subset
{x1 × n, x2 × n, . . . , n× n} , the execution time of which is
also measured. We repeated the measurements multiple times
to ensure the reliability of the results.

To prove the optimality of our partitioning results, we used
the matrix multiplication application, as there is no depen-
dency between partitioned data, to compare the results
returned by our algorithm with those of the algorithm in [3]
(the algorithm of [3] is available in [30]). We used the
fine-grained performance models as inputs to both algo-
rithms. We performed the comparison using four arbitrary
problem sizes. Figure 1 shows the partitioning results of our
algorithm, and Figure 2 shows those of the algorithm in [3].
The results returned by both algorithms are identical. The
exhaustive search adopted by the algorithm of [3] returns
an optimal solution that minimizes the total execution time
of parallel execution. This comparison proves that our algo-
rithm returns the optimal solution. Figure 3 illustrates that
the results of partitioning returned by both algorithms give
identical estimated total execution time. However, the actual
execution times of the application when distributed using the
results obtained were similar as illustrated in Figure 4 (we
executed the application multiple times with the same distri-
bution). Because of the nature of modern HPC represented
in the tight integration of its processors, the performance
profile of the application has different shapes of fluctuations.

FIGURE 1. Result of data partitioning returned by our proposed algorithm
using fine-grained performance models. The performance models were
built for heterogeneous matrix multiplication on Platform 1.

FIGURE 2. Result of data partitioning returned by algorithm of [3] using
fine-grained performance models. The performance models were built for
heterogeneous matrix multiplication on Platform1.

Each time the application is executed, the variations in these
fluctuations change within specific range. This explains the
reason behind the similarity in actual execution time even
if the estimated execution time identical or differed slightly.
Moreover, this indicates that the optimal partitioning result
for a problem size can be represented by a specific range
of partitions sizes between heterogenous processors and not
only by a single solution. Our experiment results support this
observation.

For the Jacobi method, we worked on Platform 2. We used
the benchmark in [31] with some modifications to implement
heterogeneous distribution on Platform 2. In the application,
the square matrix is sliced vertically, since the benchmark is
built with Fortran (i.e., the matrix is stored in column-major
order). In the communicationmodel, the communication time
for halo exchange between the Xeon Phi processor and other
processors includes the transfer time between the accelerator
and the host core plus the transfer time between the host core
and the target processor. Figure 5 shows a comparison of the
partitioning when the communication cost is considered and
when it is not considered. The experimental results illustrate
that the transfer time between Xeon phi accelerator and the
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FIGURE 3. Estimated execution time of heterogeneous matrix
multiplication for Platform1 using the distribution returned by our
proposed algorithm and that returned by the algorithm of [3].

FIGURE 4. Total execution time of heterogeneous matrix multiplication
for Platform1. The application is executed using the distribution returned
by our proposed algorithm and that returned by the algorithm of [3].

core host is the dominant time. This problem occurs espe-
cially for Xeon phi accelerators. GPU uses two engines for
optimizing data transfer between GPU and the host core [3].
Figure 6 shows a comparison between the execution time
when distributing based on computation and communication
models and when distributing using the computation model
only. The influence of data transfer latency between the accel-
erators and the core host when halo exchange occurs is obvi-
ous in the execution when we partition with no consideration
to the communication cost. It is increases as the data size
increases, which may lead to losing the performance benefits
of the accelerators and reducing the overall performance of
the application. Our algorithm considers the communication
cost by using the metric discussed in section V.C., which
based on Equation 5, to calculate suitable partition size for
each processor. It prevents assigning a partition to a proces-
sor whose total execution time (i.e., computation time and
communication time) exceeds the execution time of its pre-
decessors. This way it can hide the communication overheads
effectively, and hence, improve the application performance.
The percentage improvement becomes more obvious. In fact,
it increases as the data size increases.

FIGURE 5. Comparison of the distribution of the Jacobi method,
on Platform 2 when using both computation and communication models
of processing elements and when using the computation models only.

FIGURE 6. Total execution time of the Jacobi method, on Platform 2 when
our partitioning algorithm considers computation models and
communication models of processors and when it considers computation
models only.

3) FFT
The authors of [3] provide Fast Fourier Transform (FFT)
performance functions of CPU, GPU, and Xeon phi accel-
erators in [30] of the platform on which they performed
their experiments. The performance functions are coarse-
grained. We used those performance functions as inputs to
our algorithm. We utilized four arbitrary problem sizes and
compared the partitioning results of our algorithm with those
returned by the algorithm of [3]. Figures 7 and 8 illustrate
that the distribution results returned by our algorithm and
that returned by the algorithm of [3] were similar. The esti-
mated execution time of the application after partitioning is
illustrated in Figure 9. Based on our previous observations
and experiment results, we expect that when the application
is executed using the results obtained by both algorithms,
the total execution time will be similar even if the distri-
bution results were not identical. This comparison with the
exhaustive-search based algorithm of [3], which guarantees
returning the optimal solution, proves that our algorithm
also returns the optimal solution that minimizes the parallel
execution time.

4) FINE-GRAINED PERFORMANCE MODEL VS.
COARSE-GRAINED PERFORMANCE MODEL
To illustrate the importance of using fine-grained perfor-
mance model in finding the optimal partitioning results,
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FIGURE 7. Result of the data partitioning returned by our proposed
algorithm using FFT performance functions of the platform used by [3].

FIGURE 8. Result of the data partitioning returned by the algorithm of [3]
using FFT performance functions of the platform used by [3].

FIGURE 9. Estimated execution time of heterogeneous FFT for the
platform used by [3]. The estimated execution time using the distribution
returned by our proposed algorithm and that returned by the algorithm
of [3].

we compared the results obtained by our algorithm
when using fine-grained performance model and when
using coarse-grained performance model. We utilized the
coarse-grained performance profile of the matrix multipli-
cation application. The coarse-grained models are built on
Platform 1 using data sizes N 2 ranging from (64× 100)2 to
(64× 300)2.

FIGURE 10. Workload distribution (by our algorithm) of matrix
multiplication based on coarse-grained performance models. The
performance models are built on Platform1.

FIGURE 11. Comparison of the total execution time on Platform 1 when
the partitioning of matrix multiplication is done based on fine-grained
performance models versus coarse-grained performance models.

Figure 10 shows the results of distributing matrix mul-
tiplication on Platform 1 using our proposed algorithm
with the coarse-grained performance model. The results in
Figures 1 and 10 illustrate that the distribution shapes vary.
This difference can greatly affect the result of performance
optimization. Figure 11 shows the comparison between the
execution times when using the distribution obtained in
Figure 1, which is based on the fine-grained performance
model, and when using the coarse-grained performance-
models-based distribution. It illustrates that both accuracy
and adequateness of the performance models are required
to guarantee an optimal solution that effectively optimizes
performance.

VII. CONCLUSION
HPC is commonly used and widely available. It is utilized
to predict the weather and climate in environmental stud-
ies, optimize fuel efficiency (e.g., for automobiles in man-
ufacturing), and interact with robots and smartphones for
artificial intelligence applications, among other functions.
The common factor across these uses is the need for high
performance. In this paper we have discussed the concept
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of data partitioning in heterogeneous HPC platforms from
the perspective of data locality, which is an important aspect
contributing to performance optimization.

Traditionally, data partitioning algorithms are based on
an accurate performance model; we have briefly reviewed
the evolution of the performance models used by data parti-
tioning algorithms for performance optimization in modern
HPC platforms. Regarding existing studies, we discussed
approaches to find the optimal data partitioning, namely,
load-balance-based and load-imbalance-based algorithms.

Despite the existing techniques, the problem of data par-
titioning in heterogeneous HPC platforms remains an open
research issue. Most existing approaches do not consider the
communication cost between processing elements, which is
important because of its significant impact on finding the
optimal partitioning. Accordingly, we have proposed a solu-
tion that considers this important aspect of managing data
locality. Our algorithm uses two models and works toward
the optimal partitioning results. The first model is the fine-
grained performance model of each processor in the sys-
tem which is sufficiently adequate and accurate to guarantee
efficient partitioning results. The second model is the com-
munication model, which represents the communication cost
between each pair processors.

We have provided theoretical and experimental analyses
to analyze and validate our approach. The time complex-
ity of our algorithm is O

(
P× log s+ P× s2

)
, where s is

problem size
steps (where steps is the step size between data points

in the discrete time function of each processor), and P is the
number of heterogeneous processors. We experimented with
two types of applications: matrix multiplication, in which
there is no dependency between partitions, and the Jacobi
method, in which there is high dependency between parti-
tions. The results show the optimality of the results returned
by our algorithm and its efficiency in improving perfor-
mance. We have also demonstrated the importance of using
fine-grained performance model over coarse-grained perfor-
mance model in finding the distribution shape that effectively
minimizes the overall execution time of application.
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