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ABSTRACT The transition of the transportation sector from internal combustion engine vehicles to
battery electric vehicles (EVs) will heavily increase the energy demand on the network, causing severe
techno-economic problems. To solve these issues, advanced charging strategies were proposed to reduce
the EVs’ charging impact on the network. The problem arises when all EV-owners decide to fully charge
their EVs at night even if they might not use the total charged energy the next day. Hence, even with the
presence of advanced charging and control strategies, the problem of high penetration level of EVs might
not be completely solved without the positive participation of the EV-owners. Some questions can be asked
and need answers. Is it necessary to fully charge all EVs at night? What happens if fully charging the EVs is
delayed to the next day? To answer these questions, this paper studies the impact of charging EVs to different
State of Charge (SOC) levels on the network. Since controlling the charging of all EVs is difficult, a three-
level charging strategy is developed that suggests the SOC threshold-limit for each EV, which guarantees
the network’s operation within its maximum limits even with a 100% penetration level of EVs charging
simultaneously.

INDEX TERMS Electric vehicle, state of charge, power quality, distribution systems, charging strategy.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Climate change and global warming become the main rea-
sons to accelerate the transition from a fossil fuel-based to a
renewable energy-based world [1]. Electric Vehicles (EVs)
play the main role in this transition since the transporta-
tion sector emits almost 27% of the global CO2 worldwide,
according to IEA report released in 2020 [2]. The future of
fully battery-driven EVs is very promising since they use
100% of electricity [3], [4], and they can be charged from
renewable energy sources (RES). There is a move world-
wide to shift completely to RES [5]. The future of the RES
(such as solar, wind, geothermal or hydroelectricity) is very
prominent, although some researchers still believe in nuclear
fusion, which might pose risks for nuclear weapon prolif-
eration [6], [7]. Despite the advantages of EVs, they can
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also cause problems on the distribution network since they
consume a considerable amount of energy during a short
period of time [8]–[10]. Since most of the EVs are owned
by householders, they are mostly fully charged at homes or
in buildings at night [11], [12]. The problem arises when
all EVs fully charge at the same time, which might increase
the stress on the network and the distribution transformers.
However, is it necessary to fully charge EVs at night? Is it
possible to charge, e.g., 80% at night and continue charg-
ing the remaining 20% the next day when the car owners
arrive at their work or on their way? What happens in both
scenarios if EV owners decide to fully charge or not fully
charge their EVs at night? Is there an easy way to tell the
EV owners what the limit is to charge their EVs in a cer-
tain period of time? These questions should be addressed
since it is important to know whether fully charging a high
penetration level of EVs can affect the network or not,
even if energy management and optimization algorithms are
used.
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B. LITERATURE REVIEW
In the literature, there are many papers on the optimization
of EV charging in parking lots [13]–[16], homes [17], [18],
buildings [19], [20], and charging stations [21]–[23]. There
are four main control strategies that can be used to schedule
the charging of EVs, which are centralized, decentralized,
hierarchical, and distributed [22], [24], [25]. The first one
uses a centralized control architecture, such as a parking
lot, in which one central controller schedules the charging
of all EVs in the parking [26]. This controller has some
advantages, such as obtaining a globally optimal solution,
while the main disadvantage is that the optimization problem
becomes more complicated by the increment of plugged-in
EVs [27]. In addition, this strategy is not possible to be
implemented on the distribution network level for its com-
plexity. The second control strategy uses a decentralized
control architecture, such as at home, in which each user
(e.g., householder) schedules the charging of his EV inde-
pendently from other end-users, even neighbors on the same
distribution transformer [28]. This kind of strategy provides
local optimal solutions, while it might not be efficient on a
larger scale, such as a network. The third strategy uses a hier-
archical control architecture, which is a kind of combination
between centralized and decentralized [27], [29], [30]. There
is a central controller (e.g., distribution system operator) that
communicates with local controllers (e.g., homes) in order
to reach a globally optimal solution. This control strategy
could be considered the best for the case of a distribution
network. However, it has some drawbacks, such as the com-
plexity of the system, the high cost, and the high simulation
time. The fourth strategy uses a distributed control architec-
ture [31], [32], in which each end-user communicates with
its neighbors without the existence of a central controller as
in the multi-agent control architecture. On the other hand,
some papers, such as [33] proposed a two-step optimization
model based on an effective hybridization of centralized and
decentralized schedulingmethods tomanage a large-scale EV
fleet microgrid. In the first step, prediction-based day-ahead
optimal scheduling of EVs was used, and in the second step,
online coordination was deployed using a scoring system to
encourage drivers to follow the first step. Despite that authors
were able to reduce the simulation time by reducing the
number of decision variables, authors did not consider the
network’s constraints and maximum limits in their model.
Therefore, it was not clear how many EVs can be charged
simultaneously for specific periods and what the maximum
energy demand limit was that should not be exceeded while
charging EVs. Despite the advantages of the chosen control
strategy, the scheduling of all EVs on the network becomes a
difficult task, especially when the behavior of the end-users
is highly stochastic. Moreover, the optimization process can
diverge in case one or more constraints are violated when
scheduling the charging of EVs. Hence, controlling all EVs
on the distribution network needs a new way of thinking, and
simple algorithms are required to simplify the complexity of
charging EVs.

C. CONTRIBUTIONS
To answer the questions and find a solution to the mentioned
problem, it is important to study the impact of charging EVs
to different state of charge (SOC) levels on the network,
which is done in this paper. Briefly, the contributions of this
paper can be summarized as follows:

• To the best of the authors’ knowledge, this is the first
paper that studies the impact on the network of charging
EVs to different SOC levels. This study is important
since it shows that energy management systems might
not be enough to solve the problem on the network
under extreme conditions without the cooperation of the
end-users,

• This paper proposes a SOC threshold limit for each
charging EV on the network. The proposed limit should
not be exceeded in order to maintain a good operation
of the network while respecting its constraints and max-
imum limits,

• A simple and novel three-level control strategy algo-
rithm is proposed that suggests the SOC threshold limit
(final SOC) to the EV owners, which they have to con-
sider while charging their EVs.

II. PROBLEM FORMULATION
A. DEFINITION OF THE EXISTING PROBLEM
Nowadays, energy management is considered one of the best
methods to schedule the electrical loads at the end-users level
or even on the distribution network [34]. Energy management
uses defined optimization algorithmswith objective functions
and constraints, which are dependent on the end-users needs.
Since the end-users’ behavior is highly stochastic, sometimes
the constraints can be violated or unexpectedly changed,
which may affect the optimal solution; thus, it affects the
stability of the network.

For example, suppose that an EV-owner arrives home in
the evening and decides to fully charge his EV at night for
the next day. Since the charging process occurs at night for
a relatively long period (between 8 and 12 hours), charging
many EVs with small battery capacities (or a small differ-
ence between the initial and final SOCs) might not cause
any problem to the distribution network. Therefore, energy
management systemswork perfectly by scheduling the charg-
ing of EVs and minimizing both the charging cost and the
impact on the network. However, if the battery sizes of all
EVs are large (e.g., 100kWh), and the energy demand for
charging EVs is high (difference between the initial and
final SOCs), fully charging all EVs on the same distribution
transformer (or even on the same network) at night might
increase the peak demand drastically even if sophisticated
optimization algorithms and demand response programs are
used. Therefore, severe voltage drops and power losses might
happen, and the power demand might exceed the power
limits of the transformers and power lines, which may put
the network at risk of failure and can cause a brownout
or blackout. From this place, the problem is caused by the
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collective behavior of all end-users rather than the type of
optimization technique or demand response program (DRP)
that are used. In another meaning, EV-owners should ask
themselves if it is urgent to fully charge their EVs at night
or not. Do they accept to charge their EVs to a certain SOC
level (e.g., 80%), and continue charging the remaining SOC
in the next day at the destination or on their way? FIGURE 1
shows an example of the total power profiles on a distribution
transformer where many homes with EVs are connected.
EVs are charged to different SOC levels (40%, 60%, 80%,
and 100%) and for three different objective functions. In
FIGURE 1.a a fixed electricity cost is considered (dashed
green curve), in which the charging power of the EV is
almost constant. It can be remarked that charging all EVs
simultaneously might exceed the transformer’s nameplate
rating even for a SOC = 80%. In FIGURE 1.b, the main
objective is to minimize the power losses on the distribution
transformer, in which the charging fills the valley and flat-
ten the total power demand. Despite the effort in reducing
the peak demand compared to FIGURE 1.a, a SOC greater
than 85% can always exceed the transformer’s nameplate
rating because of the high energy demand during this period.
Moreover, it is not known whether the EV-owners really need
to fully charge their EVs at this critical period or not. In
FIGURE 1.c, a day-ahead time-varying electricity price is
applied in which EVs are mostly charged when the electricity
price is low. Consequently, peak load on the transformer
is created even when EVs are charged for a SOC of less
than 60%. This is due to the fact that EV-owners try to
benefit from the low electricity price to fully charge their
EVs even if they do not really need the additional charged
energy, which make the problems worsen on the distribu-
tion transformer and the network. It can be remarked from
FIGURE 1 that the SOC level has a high impact on the power
profile on the distribution transformer and may cause peak
demand on the network even if sophisticated optimization
algorithms and DRPs are used. Therefore, it is important
for the end-users to know exactly their energy needs and
to which SOC level they should charge their EVs in a way
to minimize the negative impact on the network. From this
place, a question arises, is it possible to determine a threshold
limit of the SOC in which EVs should not exceed during the

FIGURE 1. Example of the Impact of charging EVs to different SOC levels
on a distribution transformer under different objective functions.

charging process in order to respect the networks’ limits? This
question is answered in the next section.

B. PROPOSED ALGORITHM TO CALCULATE THE SOC
THRESHOLD LIMIT FOR EV-OWNERS
To reduce the impact of the fully charged EVs with high pen-
etration levels, we propose an algorithm that works on three
levels on the network, as presented in FIGURE 2. The main
goal of this algorithm is to calculate the SOC threshold limit
that should not be exceeded while charging all EVs on the
network. Respecting this limit guarantees the good operation
of the distribution network within its maximum limits even
with a 100% penetration level of EVs. The algorithm works
in 6 steps, as will be explained hereafter.

Step 1:
The Home Energy Management System (HEMS) predicts

the average active (PBLavgn,h ) and reactive (QBLavgn,h ) power
demand of the baseload at home h on the node n, as in
Equations (1) and (2). Where, T is the period of the study
(e.g., at night), PBLn,h,t and Q

BL
n,h,t are the active and reactive

power demand of the baseload at instant t . In this paper,
a baseload is an electrical load at home which is not consid-
ered in our optimization model. The HEMS also predicts the
average power demand of the EV (PEVavgn,h ) as in (3). Where,
PEVn,h,t is the predicted power demand of the EV at instant t ,

EEVBn,h is the EV battery capacity for the home h at node n,

SOC i
n,h and SOC

f
n,h are the initial and final SOCs of the EV.

PBLavgn,h =
1
T

∫
t∈T

PBLn,h,tdt (1)

QBLavgn,h =
1
T

∫
t∈T

QBLn,h,tdt (2)

PEVavgn,h =
1
T

∫
t∈T

PEVn,h,tdt =
EEVBn,h

(
SOC f

n,h − SOC
i
n,h

)
T

(3)

Step 2:
The Smart Distribution Transformer (SDT), the aggregator

in our case, receives PBLavgn,h , QBLavgn,h and PEVavgn,h from homes,

then, SDT calculates its average total active (PTavgn ) and reac-
tive (QTavgn ) power demands, as in Eq. (4).

PTavgn =

H∑
h=1

(
PBLavgn,h + PEVavgn,h

)
(a)

QTavgn =

H∑
h=1

(
QBLavgn,h

)
(b)

(4)

Step 3:
Each SDT sends its data PTavgn , QTavgn to the distribution

system operator (DSO), with its node number and location.
A central controller receives the data and starts to do the
power flow analysis of the network based on the received
data. Where, 1P% represents the step power in percentage
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FIGURE 2. Proposed algorithm to control the final SOC level of the end-users.

(e.g., 1P% = 1%), b is the iteration number to reach the
optimal solution (e.g., 20 iterations). Then, the central con-
troller checks the average voltages on all nodes as in Eq. (5).
If one node has an average voltage drop below or above
the recommended limits (VMin

n , and VMax
n ), the power flow

analysis is repeated with a new value of PTavgn as in Eq. (6).
Once all nodes are within the recommended voltage limits
(VMin

n ≤ V avg
n ≤ VMax

n ), the DSO sends the new value of
1P′% to all SDTs asking them to reduce their average power
demand by 1P′% (e.g., 1P′% = 7%).

VMin
n ≤ V avg

n ≤ VMax
n ∀n ∈ [1,N ] (5)

PTavgn,new value = PTavgn,old value

1− b

1P′%︷ ︸︸ ︷
1P%
100

 (6)

Step 4:
Each SDT receives the new value of 1P′% and calculates

how much power should be reduced for each home according
to Eq. (7) where PBLavgn,h and PEVavgn,h are already known values,

(e.g., PBLavgn,h = 3kW , PEVavgn,h = 5kW ,⇒ βn,h = −
3
5

7
100 +

1 − 7
100 = 0.888). The value of βn,h is in per unit and it is

sent to each home connected to the same SDT.

βn,h = −
PBLavgn,h

PEVavgn,h

1P′%
100
+ 1−

1P′%
100

(7)

Step 5:
Since only the EV is considered the main element to be

controlled at home in this paper, the average charging power
rate of the EV is determined by Eq. (8), (e.g., PEVavg

′

n,h =

0.888 · 5kW = 4.44kW ). Then, it is possible to determine
the SOC level that should be respected by the end-user to
maintain the stability on the network as in Eq. (9). However,
the end-user may not be satisfied by this new value of the

SOC (e.g., SOC f ′

n,h = 80%), since he might need to charge
his EV to a higher SOC level (e.g., SOC= 90%) for an urgent
trip. For this reason, we propose an urgency factor WEV

n,h for
urgent charging of the EV, where WEV

n,h ∈ [0, 100]. A value
WEV
n,h = 0, means that it is not urgent for the end-user to

fully charge his EV for the next day, which gives the DSO
great flexibility to control the SOC level of the end-user
in order to maintain the stability on the network. A value
WEV
n,h = 100 means that it is very urgent for the end-user

to charge his EV to the desired SOC level (e.g., 90% instead
of 80%). Therefore, the charging of his EV is of high priority,
and it becomes a little bit difficult for the DSO to control
the SOC level of this end-user. The new final SOC value is
determined in Eq. (10), considering the urgency factor set by
the end-user. If WEV

n,h = 100, SOC f ′′

n,h = SOC f
n,h which is the

SOC determined by the end-user (e.g., 90%). If WEV
n,h = 0,

SOC f ′′

n,h = SOC f ′

n,h which is the SOC determined by the DSO

(e.g., 80%). SOC f ′′

n,h is the SOC threshold limit that should
not be exceeded in order to guarantee a good operation of the
distribution network within its recommended limits.

PEVavg
′

n,h = βn,hP
EVavg
n,h (8)

SOC f ′

n,h =
PEVavg

′

n,h T

EEVBn,h

+ SOC i
n,h (9)

SOC f ′′

n,h = B>0,1,1
(
SOC f

n,h − SOC
f ′

n,h

)
·

(
SOC f

n,h − SOC
f ′

n,h

) WEV
n,h

100
+ SOC f ′

n,h (10)

B>0,1,1
(
SOC f

n,h − SOC
f ′

n,h

)
=

 1 if SOC f
n,h ≥ SOC

f ′

n,h

0 if SOC f
n,h < SOC f ′

n,h
(11)
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where, B>a,b,c(·) and B<a,b,c(·) are the Bayeh step functions
proposed in this paper and defined in Equations (12) and (13).
They are the general case of step functions in which they can
take three values (a, b, and c), where b ∈ [a, c].

B>a,b,c (x − x0) =


a if x < x0
b if x = x0
c if x > x0, where b ∈ [a, c]

(12)

B<a,b,c (x − x0) =


a if x > x0
b if x = x0
c if x < x0, where b ∈ [a, c]

(13)

What happens if all end-users decided to put the urgency
factor (WEV

n,h ) equal to 100%? It means that all of them want
to fully charge their EV urgently for the next day. Hence,
this might not solve the problem of energy congestion and
might not help the DSO to control the charging limit of
the end-users. To solve the problem, Eq. (14) is proposed
in which we intend to reduce the urgency factor WEV

n,h by
a value of 1W (e.g., 1W = 1%) in each iteration done
by the algorithm. It means that in case the stability issue
is not solved on the network with the new suggested SOC
value (SOC f ′

n,h) in Eq. (9), the DSO is obliged to reduceWEV
n,h

for all end-users by 1W and the new WEV
n,h value becomes

WEV
n,h = WEV

n,h − 1W as in Eq. (14) and (15), (e.g., WEV
n,h =

100−1 = 99%). Therefore, end-users who put their urgency
factor WEV

n,h = 100% in the first iteration, will receive a new

valueWEV
n,h = WEV

n,h −1W = 99% in the next iteration. Also,
end-users who put a WEV

n,h = 80% will receive a new value
WEV
n,h = WEV

n,h −1W = 79%, and so on so forth.

WEV
n,h = B>0,1,1

(
WEV
n,h −1W

)
·

(
WEV
n,h −1W

)
(14)

B>0,1,1
(
WEV
n,h −1W

)
=

{
1 if WEV

n,h ≥ 1W
0 if WEV

n,h < 1W
(15)

Step 6:
After determining the new SOC threshold limit (SOC f ′′

n,h)
that should be respected by the end-users, the HEMS starts
to optimize and schedule the charging of the EV consid-
ering the limits imposed by the DSO and the end-users.
In this paper, a convex optimization problem for a home
with a single EV is described in the following equations.
Where Eqs. (16) and (17) present the objective function
and Eqs. (18) to (23) represent the constraints. The main
goal of the objective function is to minimize the electricity
cost at home, considering the baseload (PBLn,h,t ) and the EV
(PEVn,h,t ). Where CV

t and CF
t are the time-varying electric-

ity price (e.g., RTP, TOU), and the fixed electricity price
(e.g., 0.7$/kWh), respectively. 1t is the step time interval
(i.e., 1t = 0.5 hours). min

(
V avg
n,in

)
represents the minimum

voltage drop on any nodes of the distribution network. VMin

is the minimum required voltage drop limit (e.g., 0.95 pu).
If min

(
V avg
n,in

)
< VMin, it means that there is at least one node

on the network in which its voltage is less than the recom-
mended limit (e.g., min

(
V avg
n,in

)
= 0.93 < 0.95). Therefore,

in this case
(
B>0,1,1

(
min(V avg

n,in)− V
Min
)
− 1

)
= −1, and the

objective function becomes OF = Min
(∑

t∈T

(
CV
t P

BL
n,h,t +

CF
t P

EV
n,h,t

)
1t
)
. In another meaning, the electricity price to

charge the EV becomes fixed, which helps the EV-owner
to reduce the charging cost of his EV and to spread the
charging for the whole period T . Hence, the stress on the
network is reduced. If min

(
V avg
n,in

)
≥ VMin, it means

that all nodes on the network have a voltage higher
than the minimum limit (e.g., min

(
V avg
n,in

)
= 0.98 ≥

0.95). Hence, there is no problem for charging EVs dur-
ing night even with high power demand. In this case(
B>0,1,1

(
min(V avg

n,in)− V
Min
)
− 1

)
= 0, and the objective

function becomesOF=Min
(∑

t∈T C
V
t (P

BL
n,h,t + P

EV
n,h,t )1t

)
.

In another meaning, the electricity price to charge the EV
becomes variable (e.g., RTP), which helps the householder
to minimize his electricity cost and to charge his car during
low electricity price while respecting the voltage limit on the
network. For both cases, the householder and the DSO are
satisfied even for a very high penetration level of EVs.

The optimization problem in this paper is linear and can
be solved with linear programming since only one EV is
considered at each home with unidirectional power flow.
However, more electrical loads can be added, and bidirec-
tional power flow can be considered, which might transform
the optimization model into a more complex problem which
might become nonlinear.

OF = Min



∑
t∈T

(
CV
t

(
PBLn,h,t + P

EV
n,h,t

)
1t
)

+

(
B>0,1,1

(
min(V avg

n,in)− V
Min
)
− 1

)
×

∑
t∈T

(
PEVn,h,t

(
CV
t − C

F
t

)
1t
)

 (16)

where,

B>0,1,1
(
min

(
V avg
n,in

)
− VMin

)
=

 1 if min
(
V avg
n,in

)
≥VMin

0 if min
(
V avg
n,in

)
<VMin

(17)

The constraints are stated in equations (18) to (23). Where
Eq. (18) represents the maximum power limit (PMaxn,h,t ) at home
including the baseload (PBLn,h,t ) and the charging rate of the
EV (PEVn,h,t ). η

c
n,h is the charging efficiency of the battery.

PMaxn,h,t is described in Eq. (19); where PMCBn,h is the main
circuit breaker capacity (e.g., 10kW); PRLn,h,t is the reference
limit calculated by the DSO or the aggregator in order to
maintain the stability on the network (e.g., PRLn,h,t = 8kW
at t = 3h, and PRLn,h,t = 9kW at t = 5h). PRLn,h,t is used to
reduce or increase the load demand at home depending on
the needs of the DSO. For example, if there is an overload
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on the SDT, the DSO may reduce PRLn,h,t in order to reduce
the load of all consumers in a certain period. However, if the
demand is low, the DSO may increase PRLn,h,t in order to
encourage the users to consumemore electricity for a specific
period of time. Eqs. (20) and (21) show the energy limit
of the battery for the minimum (SOCMin

n,h ) and maximum
(SOCMax

n,h ) SOCs, respectively. EEVBn,h is the battery capacity

(e.g., EEVBn,h = 100kWh). SOC f ′′

n,h is the SOC threshold limit
imposed by the DSO as in Eq. (10). Eq. (22) represents the
energy limit of the demand at home for a certain period
Ti ∈ T . EMinn,h,Ti and E

Max
n,h,Ti are the minimum and maximum

energy limits at home for the period Ti. Finally, Eq. (23)
presents the minimum and maximum charging and discharg-

ing limits of the EV at instant t . If min
(
V avg
n,in

)
< VMin, then

B>0,1,1
(
min(V avg

n,in)− V
Min
)
= 0, and the maximum charg-

ing limit becomes PEVn,h,t ≤ EEVBn,h

(
SOC f ′′

n,h − SOC
i
n,h

)
/T .

In another meaning, the charging power is limited in order
to reduce the impact on the network when the total load
demand is higher than the maximum capacity of the network.

If min
(
V avg
n,in

)
≥ VMin, then, B>0,1,1

(
min(V avg

n,in)− V
Min
)
=1,

and the maximum charging limit becomes PEVn,h,t ≤ PMaxChn,h,t .
In another meaning, the charging power is limited to the
maximum charging level of the EV (e.g., AC Level 2 at home
up to 19.2kW according to SAE J1772). Hence, the impact on
the network is reduced even with a very high penetration level
of EVs. The algorithm in FIGURE 2 finds the optimal value
of the charging limit in Eq. (23), which guarantees that the
voltage drops on any nodes of the network will never become
lower than the recommended limit (e.g., 0.95 p.u.).

PBLn,h,t +
PEVn,h,t
ηcn,h

≤ PMaxn,h,t (18)

PMaxn,h,t = min
(
PMCBn,h ,PRLn,h,t

)
(19)∑

t∈T

PEVn,h,t1t = EEVBn,h

(
SOC f ′′

n,h − SOC
i
n,h

)
(20)

EEVBn,h SOCMin
n,h ≤

∑
t∈T

PEVn,h,t1t ≤E
EVB
n,h SOCMax

n,h (21)

EMinn,h,Ti ≤
∑
t∈Ti

(
PBLn,h,t + P

EV
n,h,t

)
1t ≤ EMaxn,h,Ti (22)

PEVn,h,t


≤ min


PMaxChn,h,t · B

>
0,1,1

(
min

(
V avg
n,in

)
− VMin

)
+

(
1− B>0,1,1

(
min

(
V avg
n,in

)
− VMin

))
×

EEVBn,h

(
SOC f

′′

n,h−SOC
i
n,h

)
T


≥ PMinDischn,h,t

(23)

III. RESULTS AND DISCUSSION
A. ASSUMPTIONS
To answer the open question ‘‘Is it necessary to fully charge
your EV?’’ it is important to put this study in a context by
considering some assumptions as follows:

• IEEE 123 Node test feeder is considered as a case study,
as in FIGURE 3,

• The black dots in FIGURE 3 represent the nodes that
have homes with EVs,

• The initial data are presented as follows. Where, PBLavgn,h

is the average power demand at home; SOC i,avg
n,h is the

average initial state of charge of the EV before the
charging process; T is the period of charging; PMaxChn,h,t is

the maximum charging power of the EV at home; EEVavgn,h
is the average EV battery capacity; NGrid

home is the number
of homes on the distribution network;

PBLavgn,h = 1.4kW PMaxChn,h,t = 6kW

EEVavgn,h = 63kWh SOC i,avg
n,h = 0.6

Number of EVs at home = 1 NGrid
home = 2505

T = 10h

• Five different case scenarios are considered in this study:
◦ Scenario 1: Baseload at homes without EVs
◦ Scenario 2: Homes with EVs and SOC f

n,h = 0.778,

◦ Scenario 3: Homes with EVs and SOC f
n,h = 0.867,

◦ Scenario 4: Homes with EVs and SOC f
n,h = 0.955,

◦ Scenario 5: Homes with EVs and SOC f
n,h = 1.

• OpenDSS 9.1.3.3 is considered to calculate the power
flow of the IEEE 123 node test feeder network. The
used data for each case scenario are presented in Table 1.
Eq. (24) can be used for approximation purposes in order
to calculate the average power demand on each node,

PAvgNode

=


Nn,h

PBLavgn,h +
EEVavgn,h

(
SOC f

n−SOC
i,avg
n,h

)
T

 (a)

PBLavgn +
PBLavgn

PBLavgn,h

EEVavgn,h

(
SOC f

n−SOC
i,avg
n,h

)
T

(b)

(24)

• Voltage drops, and power losses, are studied for each
case,

FIGURE 3. Diagram of the IEEE 123 node test feeder.
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TABLE 1. Used data to simulate the IEEE 123 node test feeder.

• MATLAB R2018b is used for programming, optimiza-
tion, simulation, and for calling OpenDSS on an HP
ZBook 15G6 laptop, with a processor Intel R© CoreTM

i7-9850H CPU @2.6GHz, and 64GB RAM,
• The optimization model at homes in Eqs. (16) to (23) is
convex and can be solved using linear programming.

B. IMPACT OF CONSIDERING DIFFERENT FINAL SOC
LEVELS ON THE DISTRIBUTION NETWORK
To the best of the authors’ knowledge, this is the first study
that compares the impact of charging EVs to different SOC
levels on the distribution network. The importance of this
study is to show that HEMSs and DRPs may not be enough
to solve the high penetration level of EVs without the help
of the end-users. Therefore, it is important to collaborate
between the DSO and the end-users to attain a win-win
situation for both parties. The main objective of the DSO
is to minimize the operation cost of the network and reduce
the techno-economic losses, while the main objective of the
end-users is to reduce their electricity cost. In this subsection,
the impact of the five previously mentioned scenarios on the
network is studied. FIGURE 4 to FIGURE 8 present the
average voltage drops and power losses at night for different
charging scenarios.

FIGURE 4 presents the impact of homes without EVs on
the network regarding the voltage drop and power losses,
which are considered as the reference values in the simula-
tion. It can be remarked that all nodes are within the recom-
mended voltage limits (0,95 and 1.05 p.u.). The power losses
on the lines are equal to 95.3kW, and the total load on the
network is 3526.4 kW. When EVs are plugged in, the power
demand increases drastically, and the voltage profile of the
network stays within the recommended limits until a final
SOC = 0.778 as in FIGURE 5.a. In this case, the final SOC
is called the ‘‘SOC threshold limit’’ because any additional
energy demand can drop the voltage below the recommended
limit (0.95 p.u.). Once the final SOC of the EVs exceeds
the threshold limit, it can be remarked from FIGURE 6 to
FIGURE 8 that the voltage drop is worsened every time

FIGURE 4. Impact of considering Scenario 1 (Homes without EVS) on the
distribution network (IEEE 123 node test feeder).

FIGURE 5. Impact of considering Scenario 2 (Homes with EVs and
SOC f = 0.778) on the distribution network (IEEE 123 node test feeder).

FIGURE 6. Impact of considering Scenario 3 (Homes with EVs and
SOC f = 0.867) on the distribution network (IEEE 123 node test feeder).

the final SOC increases, and the number of nodes with a
voltage below the recommended limit increases too. In other
meaning, the network will not be able to support the charging
of all EVs for a SOC > 0.778. Hence, all end-users will not
be satisfied at the same time, and there is a need to find a
solution to satisfy both end-users and the DSO.
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FIGURE 7. Impact of considering Scenario 4 (Homes with EVs and
SOC f = 0.955) on the distribution network (IEEE 123 node test feeder).

FIGURE 8. Impact of considering Scenario 5 (Homes with EVs and
SOC f = 1) on the distribution network (IEEE 123 node test feeder).

FIGURE 9. Impact of charging EVs to different SOC levels on the (a) line
losses, and (b) power demand of the IEEE 123 node test feeder.

FIGURE 9 presents the impact of charging EVs to dif-
ferent SOC levels on the line losses and power demand of
the distribution network. When the energy demand increases,
the line losses, and power demand increase too.

FIGURE 10 shows the total power demand on a trans-
former for the five mentioned scenarios considering a
fixed electricity tariff (refer to FIGURE 13). It can be
remarked that by charging EVs to a SOC greater than 0.8,
the load demand starts to exceed the nameplate rating of
the transformer. In FIGURE 11, it can be remarked that
for a time-varying electricity tariff (refer to FIGURE 13),

FIGURE 10. Impact of charging EVs to different SOC levels on the
transformer using fixed electricity price.

FIGURE 11. Impact of charging EVs to different SOC levels on the
transformer using time-varying electricity price.

FIGURE 12. Average impact of charging EVs to different SOC levels on the
transformer.

householders prefer to minimize their electricity cost by
charging the EVs during low electricity prices. Hence, peak
demand can be created even for a small SOC level since all
EVs are charging at the same time. FIGURE 12 depicts the
average power demand on the transformer for each scenario,
in which it is obvious that charging EVs to a final SOC
greater than 0.8 can exceed the transformer’s capacity even if
sophisticated charging strategies and optimization techniques
are used to reduce their impact. Therefore, the solution is
to reduce the final SOC for the end-users until the average
power demand respects the network’s constraints, as will be
discussed in the next subsection.

C. IMPACT OF THE PROPOSED ALGORITHM ON THE
END-USERS AND THE DISTRIBUTION NETWORK
In the previous subsection, it was remarked that if all EVs
were charged for a final SOC > 0.778 (as in FIGURE 6
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to FIGURE 8), the voltage drop exceeds the recommended
limit, which may put the network in danger of losing
its stability. On the other hand, charging EVs to a SOC lower
than the desired one may not satisfy some EV owners. In this
subsection, we will use our proposed algorithm to solve the
problem and calculates the SOC threshold limit for each
end-user. However, to encourage EV owners to follow the
suggested SOC threshold limit (e.g., SOC = 0.7), the DSO
offers them to charge the remaining energy the next day for
a reduced tariff. Hence, the DSO is satisfied by respecting
the network’s limits and constraints, and EV owners are
also satisfied by reducing the charging cost of their EVs the
next day.

As an example, consider that the data in Table 2 are used for
simulation purposes. The first column represents the average
baseload of the nodes. There are in total 7 different types
of nodes in IEEE 123 node test feeder. The second and
third columns represent the initial and final SOC desired
by the EV owners. The fourth and fifth columns represent
the urgency factor (WEV

n,h ) and its iteration step (1W ) to
charge the EV to the desired SOC level, respectively. Finally,
the last column represents the SOC threshold limit suggested
by our algorithm in order to maintain the stability of the
network. FIGURE 14 shows the voltage drops of all nodes
on the network for the values mentioned in Table 2. It can
be observed that at iteration ‘‘0’’ (FIGURE 14.a before
implementing our algorithm), there are some nodes that have
a voltage below the recommended limit (0.95 p.u.) due to
the high energy demand used to charge EVs. The proposed
algorithm starts to find the optimal SOC threshold limit in
each iteration for all EVs in order to improve the voltage

TABLE 2. Example using our proposed algorithm.

FIGURE 13. Electricity tariff used in this paper, (a) fixed price, (b) Real
time-varying electricity price.

FIGURE 14. Improvement of the voltage drops on the distribution
network (IEEE 123 node test feeder) by using our proposed algorithm.

FIGURE 15. Convergence of the total load demand to the optimal
threshold limits on the nodes of the network using our proposed
algorithm.

FIGURE 16. Convergence of the SOC to the optimal threshold limits on
the nodes of the network using our proposed algorithm.

profile on the network. After several iterations, the voltage
profile on the network is improved as shown inFIGURE14.b
(after 11 iterations), in which the voltage limits are met
(V > VMin). FIGURE 15 and FIGURE 16 present the
variation of the total load demand on the network and the SOC
threshold limits until they totally converge in iteration 11
for each node. It is remarked that some nodes converge to
the optimal solution faster than other nodes, in which the
curve becomes flat. As an example, the total load demand
on the nodes that have a baseload equal to 75kW, converge
in the third iteration, while the nodes with a baseload equal
to 70kW converges at the 11th iteration as in FIGURE 15.
FIGURE 17 presents a comparison between the power losses
at iterations 0 (before implementing our algorithm) and 11
(after using our algorithm), in which limiting the SOC level
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FIGURE 17. Comparing the total line losses for the iteration 0 and 11
using our algorithm.

FIGURE 18. Simulation time to obtain the optimal solution using our
proposed algorithm.

of the EV owners reduces the techno-economic losses on the
network.

Finally, the simulation time (ti) is presented inFIGURE18
in which it follows almost a linear curve and can be described
by Eq. (25) where tavgDN ≈ 2.22s is the average simulation time
for the distribution network on OpenDSS for one iteration,
including plotting the results. tavghome ≈ 6.7s is the average
simulation time at home to obtain the scheduling of the EV
in MATLAB. N grid

home = 2505 is the number of homes on the
grid in our case. c is the configuration of the simulation and
described in Eq. (26). c = 0 means that all homes are simu-
lated in parallel; c = 1 means that all homes are simulated in
series, which might increase drastically the simulation time.
i is the number of iterations needed to converges to the
optimal solution. It is important to mention that the simu-
lation time depends drastically on the software, the code,
the computer, and many other factors that play a crucial role
in increasing or reducing the time.

ti = i ·
(
tavgDN + t

avg
home

(
N grid
home

)c)
(25)

c =

{
1 if homes are simulated in series
0 if homes are simulated in parallel

(26)

D. IMPACT ON THE ELECTRICITY COST
OF THE END-USERS
In this subsection, the electricity tariff in Quebec is consid-
ered, which is a flat rate with 0.08$/kWh. Two case scenarios
are studied as follows:

• Scenario 1: all EVs are fully charged at night, which
cause a problem on the network, as stated in FIGURE 8
for a SOC f = 1,

• Scenario 2: (a) Our proposed algorithm is implemented
to determine the SOC threshold limit for each EV charg-
ing at night on the network, (b) and the remaining energy
will be charged the next day at a reduced electricity price
0.05$/kWh.

FIGURE 19 shows the results of the two scenarios regard-
ing the total charging cost of EVs. Scenario 1 represents the
fully charging of all EVs on the network at night, in which
the total charging cost is about 6003$. As discussed earlier,
this scenario might be interesting for the end-users; how-
ever, it might be a problem for the DSO since it might
create a severe voltage drop below the critical limits. Hence,
scenario 2 is proposed to solve the problem. Scenario 2.a
represents the cost of charging EVs to the SOC threshold
limits calculated by our proposed algorithm and based on the
DSO requirements. The cost of charging is about 2606.7$ for
all EVs on the network. However, for the EVs that are not
fully charged due to network critical constraints and limits,
the DSO offers them to continue charging their EVs the next
day with a reduced electricity cost (e.g., 0.05$/kWh instead
of 0.08$/kWh). This offer might interest the EV owners to
participate in the program, and their total charging cost at
night and the next day will be 4729.4$, as presented in
scenario 2.b in FIGURE 19. Hence, they were able to reduce
their charging cost by 21% compared to the first scenario.

FIGURE 19. Total cost of charging EVs under different scenarios.

IV. CONCLUSION
This paper presents the impact of charging EVs to different
State of Charge (SOC) levels on the distribution network. Five
scenarios were considered and compared. The first scenario
presents homes on the network without EVs, which is taken
as a reference for comparison. The four remaining scenarios
consider charging EVs at homes during the night with dif-
ferent SOC levels, 0.778, 0.867, 0.955, and 1, respectively.
IEEE 123 node test feeder is considered as a distribution
network in this paper. The network has 2505 homes, and each
home has one EV. It was observed that if EVs are charged at a
SOC > 0.778, the voltage drops on the nodes of the network
start to exceed the recommended limits, which might trigger
the stability of the network. From this place, the question
arises if it is necessary for end-users to fully charge their
EVs at night or not. In order to satisfy both end-users and the
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distribution system operator (DSO), we propose an algorithm
that calculates the SOC threshold limits for each EV, taking
into account the constraints of the network and many other
factors such as the priorities of the EV owners and their
desired final SOC levels. Results show that our algorithm has
maintained the voltage on the nodes of the network within the
recommended limits, which will satisfy the DSO. In addition,
end-users benefit from limiting their SOC level at night by
continuing to charge their EVs the next day with a reduced
price. Hence, it becomes more attractive for EV owners to
participate in such kinds of demand response programs. Con-
sequently, a win-win situation was reached for both end-users
and the DSO. The proposed algorithm has a major benefit
for the DSO especially when the total power demand on the
network exceeds a certain threshold that might impact its
stability and reliability.

V. FUTURE DIRECTIONS AND WORK
Based on the obtained results in this paper, it can be remarked
that a high penetration level of EVs can saturate the distribu-
tion network at a certain point (as presented in FIGURE 12),
especially when all EVs try to fully charge their batteries.
Hence, the proposed algorithm suggests a SOC threshold
limit for each EV in a way that the charging of all EVs on
the network within the suggested limit will never exceed the
network’s constraints.

Despite the advancement in control strategies and opti-
mization techniques to solve the problem of high penetration
level of EVs, the distribution network is always at risk of
overload and saturation. Since EVs are considered the most
demanding electrical loads to date, it is necessary tominimize
their energy demand and increase local energy production.
Hence, the future direction in the upcoming research should
focus on the following points:

• Development of self-power EVs in which renewable
energy systems (i.e., photovoltaics) are integrated in the
EVs to supply their batteries and increase their travel
distance. In this way, EVs need less energy from the grid
since they are able to self-produce a part of their energy
needs from renewable energy sources,

• Manufacturing of higher efficient EVs with minimum
electro-mechanical losses (i.e., aerodynamics, frictions,
transmission, conversion, etc.). Minimizing the losses
will alsominimize the need for energy from the network,

• Increasing the local energy production at homes, build-
ings, parking lots, charging stations, etc., by installing
renewable energy systems such as PV,wind turbines, etc.

All the above-mentioned solutions can increase the SOC
threshold-limit and might allow EVs to fully charge even
with a 100% penetration level. From this place, the future
of EVs is very prominent and might not cause any problems
if self-powered EVs and RES are widely deployed on the
distribution systems besides advanced control strategies and
optimization techniques.
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