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ABSTRACT According to statistics, developing countries all over the world have suffered significant non-
technical losses (NTLs) both in natural gas and electricity distribution. NTLs are thought of as energy that is
consumed but not billed e.g., theft, meter tampering, meter reversing, etc. The adaptation of smart metering
technology has enabled much of the developed world to significantly reduce their NTLs. Also, the recent
advancements in machine learning and data analytics have enabled a further reduction in these losses.
However, these solutions are not directly applicable to developing countries because of their infrastructure
and manual data collection. This paper proposes a tailored solution based on machine learning to mitigate
NTLs in developing countries. The proposed method is based on a multivariate Gaussian distribution
framework to identify fraudulent consumers. It integrates novel features like social class stratification and
the weather profile of an area. Thus, achieving a significant improvement in fraudulent consumer detection.
This study has been done on a real dataset of consumers provided by the local power distribution companies
that have been cross-validated by onsite inspection. The obtained results successfully identify fraudulent
consumers with a maximum success rate of 75%.

INDEX TERMS Artificial intelligence, data analytics, fraudulent consumer identification framework,
machine learning, multivariate gaussian distribution, non-technical losses.

I. INTRODUCTION
Non-technical losses (NTLs) are considered as the energy
that has flowed through the electricity and gas distribution
networks to the end consumer but is not billed accordingly.
These non-billing issues are usually caused by fraudulent
activities such as theft, tampering of metering equipment,
violating tariff obligations, etc. Both the developed and devel-
oping countries suffer from these NTLs. However, the reme-
dies employed by the developed countries do not apply to
developing countries due to scarce resources and cost con-
straints. One of the widely proposed solutions for NTLs
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reduction in developed countries is to upgrade the tradi-
tional grid and deploy smart meters [1]. However, due to the
fragile economies of developing countries, such an upgrade
would be a very costly endeavor. Furthermore, the devel-
oped countries are now using machine learning (ML) and
data analytics (DA) techniques to detect NTLs. However,
developing countries lack reliable systems for data collection
and verification due to a lack of adequate resources and a
transparent system [2]. Moreover, the reasons for fraud in
electricity and gas consumption in developing and developed
countries are also very different. Some prevalent reasons
leading to fraud and its types in the electricity and gas dis-
tribution networks of the developing countries are presented
in Table 1 [3], [4].
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TABLE 1. Factors leading to fraud in developing countries.

These frauds committed on the power utilities cause finan-
cial losses of billions of dollars annually, whereas several
billion dollars are spent on the detection and rectification of
those frauds. Some of these illegal activities are also a risk to
public safety (e.g. threat to life while tapping the live line) [5].
Most of the developing countries are already struggling
with their economies, under such circumstances losses of
power companies have a huge impact, particularly on circular
debt and generally on the national exchequer [6]. Generally,
the NTLs cause mammoth of financial losses all over the
world, as stated in theWorld Bank’s report ‘over 50% of theft
is in developing countries’ [7]. NTLs faced by power utility
companies of the United States were estimated between
USD 1 to 10 billion [8]. The losses incurred in lieu of NTLs
in India, Malaysia, Brazil, and the UK have amounted to
USD 9 billion, 229 million, 5 billion, and £ 173 million
annually, respectively [4], [8], [9]. While Pakistan wit-
nessed 17.5% of these losses in FY 2012-13 and 16.9% in
FY 2013-14 [10]. Similarly, theft of electricity in Turkey is
reported to be 15.8% which is more than double the median
of the OECD countries. In Spain, NTLs are estimated at
35%-45% [11]. In Canada, these losses are approximated
at 100 million Canadian dollars every year, which if not
stolen can supply electricity to 77,000 houses for a year [12].
Consequently, power utility companies lose above
USD 25 billion each year worldwide (both developing and
developed countries are included) [3]. The above NTLs are
summarized in Figure 1 concerning the GDP of each country.

FIGURE 1. Non-technical losses as percentage of GDP of 2014.

Traditionally, there have been two broad categories of
solutions to address the issue of NTLs, but each comes
with its disadvantages. The first solution relies on excessive
onsite inspections that include: door to door checking of
each consumer by the power companies’ inspection staff.
Another solution is to install the latest infrastructure that
includes enhanced metering facilities at the consumer end,

distribution line monitoring, etc. There is a third category
of solutions that have appeared with the development of
artificial intelligence (AI) and data science (DS). Indeed in
recent years, fraud detection and identification with the help
of DA andML has become the area of interest [4]. These data-
oriented solutions are further categorized into supervised and
unsupervised methods.

Numerous methods using supervised learning to detect
fraud in electrical distribution systems include support vector
machines are being used as binary classifiers and used in
hybrid models for better classification. They require large
datasets with response time ranging from months to days
achieving hit-rates around 72% [13]–[17]. Most traditional
artificial neural networks are used as a binary classifier
for fraud detection. They also require large datasets with
response time ranging from months to years [18]–[20].
Optimal path forest is being used in classification and cluster-
ing applications of fraud detection. Again, large datasets are
required for training with response time ranging frommonths
to years. Several other approaches have also been used in sim-
ilar domains such as K-nearest neighbors algorithm (K-NN)
classifiers [21], [22], condition-based rule induction meth-
ods [23], [24], and generalized additive models [25].

Whereas the unsupervised learning methods for detection
and identification of NTLs in electrical distribution networks
include: a special type of neural network known as self-
organizing map appeared in literature for detection of NTLs.
Producing visual representation of data that needed to be
evaluated by the experts [26], [27]. Multiple types of cluster-
ing algorithms are used for fraud identification that enhances
their classification and reduces false negative [22], [25], [28].
The system based on rules defined by the experts known as
expert system played a critical role in surfacing fraudulent
consumers from a pool of fraudulent and non-fraudulent con-
sumers. They are usually dependent on utility inspectors to
help accurately define rules [19]. IntermediateMonitorMeter
(IMM) was proposed to analyze the power flow to detect
the NTL with a detection accuracy of 95% [29]. Similarly,
an innovative load-flow-based method that uses data of smart
meters to determine NTLs provided promising results on
unbalanced distribution systems [30]. Lately, a cost-effective
and remote detection and identification method were pro-
posed in [31], for detecting illegal electricity consumption
while preserving the privacy of the consumers. An online
evaluation method that leads to the replacement of faulty
meters only by analyzing their power acquisition data is
presented in [32].

In recent years, considerable improvement in fraudulent
consumer detection has been reported for areas where large
sets of labeled data are available. However, areas with small
sets of unlabeled data are not much reported in the litera-
ture. Recently, an electricity theft detection (ETD) mecha-
nism based on Relational Denoising Auto-encoder (RDAE)
and Attention Guided (AG) TripleGAN is developed with
the detection rate of 0.956 which makes it more acceptable
than existing approaches [33]. A method based on Meter
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Error Estimation is presented in [34], which adopts a deci-
sion tree to classify the abnormal data and resultantly high-
lights a malfunctional meter. Two-dimensional convolutional
neural networks (CNN) and hybrid deep neural networks
were employed to detect electricity theft in the smart grid.
Huge datasets were used for learning and results were ver-
ified using the area under the curve. Fractional-order Self-
Synchronization Error- Based Fuzzy Petri Nets were used to
detect NTLs and outage scenarios. It has proved the practical-
ity of methodology with the help of simulations on the IEEE
30 bus system [35]. Clustering-based novelty detection was
employed to identify NTLs. It has achieved a true positive
rate of 63.6%, a false positive rate of 24.3%, and obtained a
0.741 area under the curve (AUC) [36]. As many develop-
ing countries do not have such large, labeled datasets, thus,
these methods cannot produce such results for their energy
distribution companies. Due to the increasing shift from
electronics meters to smart meters, there is an origination
of novel countermeasures to the problem of NTL. Recently
proposed methods include: extreme gradient boosted trees
which use labeled data from a smart meter that has out-
performed the rest of the classifiers by obtaining an AUC
of 0.91 and a precision of 21% for on-field inspections [37].
In [38], the classifiers are combined with the Levenberg-
Marquardt method to detect and identify illegal consumers in
a smart grid environment. A binary black hole algorithm has
been proposed in [39] that uses a metaheuristic optimization
technique for theft characterization to minimize commercial
losses in Brazil. A hierarchical model of smart grid networks
and data collected from smart meters has been used in a
generative model for anomaly detection in [40]. A com-
parison of 15 different ML techniques across nine types of
classifiers is presented in [41]. Moreover, a feature selection
framework is developed that highlighted fourteen features out
of seventy one having a significant role in predicting NTLs.
However, these recent ML-based solutions are not effective
in developing countries because of the following reasons:
Data collection by power utilities is extremely unreliable.
Features included in the data collection of power companies
are very limited. Power companies fear public consumers’
consumption data. Consumption data is imbibed with polit-
ical interference, bribery, social pressure, incompetence of
staff, nepotism, etc. Utility staff is involved in manipulations
of data to cover up losses. Fake reports are made to cover up
fraudulent consumers.

In Pakistan, NTLs are never studied, because power util-
ity companies lack research and development facilities and
academia lack research and development resources and to
date, there is no published evidence of research on NTLs
in electricity and gas distribution utilities in Pakistan. This
paper presents an ML-based framework to detect fraud
in electricity and gas distribution utilities specifically for
developing countries. This fraudulent consumer identifica-
tion framework (FCIF) primarily uses the consumption data
from electricity and gas distribution utilities and applies
the unsupervised multivariate gaussian classifier (MGC) to

TABLE 2. Causes of NTLs in developing countries.

separate the fraudulent consumers from non-fraudulent con-
sumers. Before applying MGC, features are tailored to truly
depict the behavior of fraudulent and non-fraudulent con-
sumers. These features incorporate the socioeconomic and
sociopolitical nature of Pakistani, Indian, and other devel-
oping societies as well as the composition of the particular
human population and, thereby, select consumers for fraud
mapping. Real data of 12752 consumers is used from the
power utilities (both electricity and natural gas utilities) of
Pakistan. This study focuses on detecting frauds, mentioned
in Table 2, at the end of each month (since the billing in
Pakistan is on monthly basis). The novelty of this research
paper can be recapitulated as follows. This study focuses
on the applicability of the solution to NTLs in the power
sector of developing countries. Presented FCIF shows several
merits. Big datasets are not needed. A novel feature that
incorporates social class stratification and weather profile is
introduced into the FCIF and it has significantly improved
the results. A system with excessive computing power and
memory is not required. As the threshold keeps moving until
the hit (success) rate remains above 30%. The fraudsters are
highlighted at the end of every month. An extensive onsite
inspection is organized to verify the results produced by the
FCIF achieving a hit rate of 75%, whereas the routine hit
rate of power utilities is less than 5%. Resultantly, saves
millions of dollars of power utility companies of Pakistan in
lieu of NTLs, maintenance cost, onsite inspection cost, and
additional monitoring staff cost, etc.

The rest of the paper is organized as follows. Section II
presents the related literature of Multivariate Gaussian Distri-
bution. FCIF model and detailed methodology are presented
and discussed in section III. The cross-validated results are
shown and discussed in Section IV. Finally, the conclusion is
given in section V.
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II. MULTIVARIATE GAUSSIAN DISTRIBUTION
This section discusses the essentials of Multivariate Normal
(or Gaussian) Distribution (MGD). Detailed literature, math-
ematics certain observations, and different propositions can
be found in [42]. The functionality of MGD is that it con-
structs a probability distribution bell-shaped curve centered
at the mean (µ). The population having large variance (σ )
and divergent behavior from the majority population lies far
away from the mean, while the population with low variance
and similar behavior to others in the population lies closer to
the mean. Thus, the population closer to the mean has higher
probabilities, whereas the population farther from mean has
lower probabilities. The lower probability population is con-
sidered as anomalous as compared to the majority population.
Additional rules can be incorporated to refine the anomalous
population.

FIGURE 2. Univariate gaussian distribution.

MGD is the multivariate generalization of the univariate
normal distribution as in Figure 2 and expressed as X ∼
N
(
µ,
∑)

and joint probability density function of X is
given as

p(X;µ,
∑

) =
e−

1
2 (X−µ)

T ∑−1(X−µ)√
(2πn)|

∑
|

(1)

Here X = x1, x2, x3 . . . xn is the n−dimensional vector
where x1, x2, x3 . . . xn are (mx 1) dimensional column vec-
tors. µ is a (1x n) dimensional vector containing mean of the
column vectors x1, x2, x3 . . . xn.

∑
is the (nx n) dimensional

covariance matrix. The exponent of e contains product of the
transpose of (X − µ), inverse of

∑
and (X − µ), its dimen-

sion is (1x n) (nx n) (nx 1) = (1x 1). Note that the term
1√

(2πn)|
∑
|
contains only constants and mainly act as a nor-

malization factor. Themost significant term of the probability
distribution function is covariance;

∑
= cov

(
xi, xj . . . xn

)
.

It results in (nx n) dimensional matrix which implies the
interdependence of features n.

A. VARIANCE-COVARIANCE MATRIX
The covariance matrix, also known as autocovariance matrix,
as, mentioned in (2).

∑
=


aii aij · · · ain
aji ajj . . . ajn
...

...
. . .

...

ani anj · · · ann

 (2)

where the main diagonal entries
(
aii, ajj . . . ann

)
illustrate

variance within the column vectors xi, xj . . . xn, whereas, non-
diagonal entries of covariance matrix express the covariance
between ith and jth feature of random vector X = xi, xj . . . xn.
If non-diagonal entries are zero, it signifies that column
vectors xi, xj . . . xn are uncorrelated and independent of each
other.

B. MAHALANOBIS DISTANCE
The expression in the exponent of e, (X − µ)T

(∑)−1
(X − µ) is known as squared Mahalanobis distance
between X and µ. This gives the n−dimensional bell-shaped
curve. In which every element of vector X is positioned,
concerning itsMahalanobis distance, frommeanµ. The high-
est probabilities are of those values of X which are placed
nearer to the multivariate mean vector µ and represents the
common pattern of major population of vector X . The values
positioned farther from multivariate mean vector µ have
lower probabilities and are thus considered inconsistent as
compared to the other population of vector X .

III. METHODOLOGY AND DISCUSSION
This section presents a detailed and sequential step to detect
fraud in electricity and natural gas consumption while sep-
arating the fraudulent consumers from non-fraudulent con-
sumers. The proposed framework to classify fraudulent
energy customers from non-fraudulent energy customers is
presented in Figure 3 and the general representation of the
system under study is shown in Figure 4.

A. DATA SETS
This study uses monthly consumption datasets for elec-
tricity and natural gas from the Lahore Electricity Supply
Company (LESCO) and Sui Northern Gas Pipelines Lim-
ited (SNGPL) from which some sample data is presented
in Figure. 8(b) and (d), respectively. The data set consists of
domestic consumers of both electricity (3255) and natural gas
(9496), containing different features as compared in Table 3.
It is pertinent to mention here that data collection of power
companies in Pakistan is not very extensive as very lim-
ited features are available for analysis. Moreover, the initial
request for labeled data was denied due to privacy concerns.
Furthermore, the utilities stated that by undertaking a large
exercises of labeling the fraudulent consumers may result
in cautious behavior of the fraudulent consumer to avoid
the process, as it happened during the inspection process.
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FIGURE 3. Fraudulent consumer identification framework.

FIGURE 4. General representation of localities in this study.

TABLE 3. Comparison of available features.

Therefore, the utility companies request the surprise visit.
This shortcoming has raised many challenges and limited our
choice to very few unsupervised classifiers for fraud detec-
tion. The real challenge which comes after data acquisition is
the cleansing of data before the extraction of features.

B. DATA CLEANSING
Real-world data contains a lot of noise which disrupts the
pattern hidden inside the data. A filter is designed to clean
the data so that meaningful fraud patterns could be mapped.
By analyzing the data with the help of experts of LESCO
and SNGPL following parameters of data cleansing filter are
selected:
• Past 24 month’s consumption data is selected. The more
we go into the past more the consumption pattern gets
noisy because either old resident shifted out or new
residents settled in the region, similarly, tariff rates were
also lower in the past.

• Consumers with zero units to be billed in a particular
month in two years are not included in the data set from
which features are extracted. Such consumers adversely
affect the average consumption pattern of the region.

• Consumers, whose meters are installed after
January 2017, are also removed from the data set of
feature extraction.

• Consumers with continuously large units to be billed
throughout the year are also removed from the data set
of feature extraction.

After applying the data cleansing filter on raw data, a rela-
tively less noisy data set is attained. Now the next challenging
stage is feature extraction.

C. FEATURE IDENTIFICATION AND SELECTION
In developing countries, like Pakistan, the data which is
available with power companies are also subjected to polit-
ical influences, peer pressures and manipulations by utility
engineers to adjust the losses in the monthly billing of con-
sumers. We are, therefore, constrained to only one feature
i.e. consumption. Other features are selected in a way that
could help us in selecting the consumption data in such a
way that could map the effective fraud pattern. The other
features are:
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·Weather profile (humidity, temperature, UV intensity).
· Social status of consumers (Elite class, middle-class,

lower-middle-class, below poverty line class).
It is found that in developing countries social class strat-

ification is very prevalent. Usually, the people living in the
same vicinity belong to the same class with few exceptions.
Therefore, using consumption data of several regions collec-
tively does not produce realistic fraud mapping. Therefore,
consumption data is divided into several regions using the
zone code of SNGPL and feeder code of LESCO, while
additional help is also sought from billing book numbers.
Another important thing that needs to be noticed is that
after the data is divided into different regions, the weather
profile also becomes constant in that region. A comparison of
weather profiles of Sheikhupura and Islamabad can be seen
in Figure 5 [43]. While the social class stratification for com-
parison of a consumer from a rich and poor neighborhoods
can be visualized in Figure 6.

FIGURE 5. Comparison of UV intensity, temperature and humidity of
(a) Islamabad and (b) Sheikhupura.

FIGURE 6. Consumption comparison of two social status consumers for
Zones (a) 6830, (b) 6834, and (c) 6931.

Furthermore, for example, if the fraud is needed to be
detected for the month of December 2018, then the data
set will be comprised of consumption data for the month of
December 2017 and December 2018 of all the consumers
in the selected locality. After applying the respective data
cleansing filter and selecting the above-mentioned features,
scatter plots of the data set of SNGPL and LESCO are visu-
alized as in Figure 7.

FIGURE 7. Scatter plot of filtered data from (a) SNGPL and (b) LESCO.

D. SELECTION OF A CLASSIFIER
Limited data with few features have limited our option to few
classifiers. For the classification of this data, MGD is used
and the following steps have led us to its selection.
· Data is unlabeled and there is no information who is the

fraudulent consumer and who is not. Hence, an unsupervised
classifier is required to isolate the fraudster.
·Data sets are small (data of conventional meters’ monthly

reading since smart meters are not available).
· Raw data is not very rich and, consequently, features are

very limited.
· A simpler classifier with a flexible threshold setting is

required so that employees of power companies could incor-
porate it into their routine work.
· In our case, MGD has produced results that are either

better or equivalent than the state-of-the-art classifiers.
MGD returns the probabilities of different consumers of

being fraudulent. Post-processing is performed on the data
after getting their probabilities of being fraudulent, which
leads to the final list of suspected customers.

E. THRESHOLD SELECTION
In Gaussian distribution curves, three-standard-deviations are
accepted norm for the threshold of anomaly detection. How-
ever, in our case, it is not acceptable. After consulting relevant
authorities of LESCO and SNGPL and depending upon the
availability of resources, the threshold was adjusted to short-
list 1 to 5 % of most suspected consumers for onsite physical
inspection.

F. FRAUDS DETECTED
Firstly, FCIF is suitable and workable for detecting following
frauds in SNGPL:
· Change of tariff (commercial use from domestic

tariff): Gas consumption of fraudsters is increased from the
regular consumption pattern of domestic consumers.
· Meter tampering: Gas consumption of the fraudster is

decreased from regular domestic consumption patterns.
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FIGURE 8. Scenario A: SNGPL Data (a) Probability distribution and (b) consumption data heat map, LESCO data (c)
Probability distribution and (d) consumption data heat map.

· By-passing meter: Gas consumption of fraudster is
decreased sharply as compared to the regular domestic
consumption.
· Illegal extension of house line: In this case, the consump-

tion of the defaulter is increased to a large extent than the
regular domestic consumer.
·Reversal of meter: In this case, the consumption is either

dramatically decreased or has an abrupt consumption pattern.
· Illegal use of compressor: In this case, the consumption

is greater than the neighboring consumers.
· Electricity generation from natural gas: In this case,

the consumption is greater than other domestic gas consumers
in the vicinity.

Secondly, FCIF is suitable and workable for detecting
following frauds in LESCO:
·Meter tampering: Electricity consumption is asymmet-

rical and is much lower than the other consumers in the
vicinity.
· By-passing meter: Electricity consumption is much

lower than that of other consumers in the vicinity.
·Reversal of meter: In this case, the consumption is either

dramatically decreased or has an abrupt consumption pattern.
· Change of tariff (commercial use from domestic tar-

iff): Consumption of fraudsters is increased from the regular
consumption pattern of domestic consumers.

· Illegal extension of house wiring: Electricity consump-
tion is glaringly high as compared to other consumers in the
vicinity.

IV. VALIDATION OF RESULTS AND DISCUSSION
To prove the authenticity and utility of the new feature
(i.e. social class stratification) and applicability of FCIF in
developing countries, the following two scenarios have been
considered, which demonstrate the improved results obtained
by using the newly designed feature.

A. SCENARIO A: WITHOUT SOCIOECONOMIC
AND WEATHER PROFILES
In scenario A, the novel feature which incorporates the
socioeconomic nature of Pakistani society and weather pro-
file is ignored. Consequently, the data of all localities get
combined into one data set and is then passed on to the FCIF.
The classifier in this scenario act as global learner classifier
where all the data is used collectively to train a general
classifier, as presented in Figure 3. The resultant probability
distribution and its heat map are shown in Figure 8. It can
be seen in the heat map that the zone with yellowish color
shows the highest density of consumers with more or less
similar consumption, hence the lowest probability of being
fraudulent. As the variance in consumption increases color
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FIGURE 9. SNGPL Data for Scenario B: Consumption data heat map of (a) locality A, (b) locality B, (c) locality C and
(d) locality D.

FIGURE 10. LESCO Data for Scenario B: Consumption data heat map of (a) locality A and (b) locality B.

converts into sky blue to blue, where blue color signifies the
highest probability of being fraudulent.

B. SCENARIO B: WITH SOCIOECONOMIC AND
WEATHER PROFILES
In scenario B, the features which employ socioeconomic and
weather profile are included and, resultantly, the SNGPL and
LESCO data set are transformed into datasets (i.e. A, B, C, D,
where the demography is consistent). Now, instead of one
general classifier we have got as much classifiers as there are
zone codes. Zone codes are very carefully labeled on to the

consumers taking into consideration the geospatial features,
as presented in Figure 3. Now, once the classifier moved from
Global to Local our classifiers get independence from the
covariate shift impact [44].

These datasets are then passed to the FCIF. The resultant
probability distribution of locality A, B, C, D are presented
in Figure 8(a) and (c), while the consumption data’s heat map
are shown in Figures 9 and 10. We can see in all the heat
maps that once the data is divided into several data sets the
pattern of consumption comes out to be different for each
locality. Resultantly, all the fraudsters are more visible and
easily detected by the FCIF.
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C. COMPARISON OF SCENARIO A AND SCENARIO B
The new feature that signifies the social class stratifica-
tion of the society and weather profile, in the develop-
ing world, plays a very significant role in improving fraud
detection results. For instance, the energy consumption of
people living in slums cannot be compared with the energy
consumption of people living in modern luxurious housing.
Almost all the papers recently published and also cited in
this paper use the aggregated data from the power companies.
The actual reason for the decrease in the detection rate in
scenario A is that when FCIF is applied on aggregated data
incorporating all neighborhoods, the anomalous consumers
get buried inside the variance of the accumulated data. For
instance, the highest consumption of a family living in slums
is lower than any of the family living in luxurious hous-
ing. Hence when combined together, the lower consumption
frauds of luxurious housing fall within the cluster of slum
consumption and, consequently, cannot be detected. Whereas
when the FCIF analyses the data after incorporating the class
stratification feature, as in scenario B, such consumers get
highlighted easily. Hence the detection rate increases as in
scenario B. The summarized results of both experiments are
presented in Table 4.

TABLE 4. Comparison of scenarios A & B.

D. ONSITE CROSS-VALIDATION
Results obtained from the proposed FCIF were sent to
the respective power utilities. The feedback from SNGPL,
the largest Natural Gas Distribution Company of Pakistan,
and LESCO, Lahore Electric Supply Company, have been
received. Cross verification of consumers, highlighted by the
framework presented in this paper, through onsite inspec-
tion by the energy company’s inspection staff reflects the
effectiveness of the proposed framework. Summarized results
are displayed in Table 4, with a comparison of other latest
techniques and their results are displayed in the Table 5,
however different methods and data sets have been used in
these algorithms.

TABLE 5. Comparison with recent NTLs detection methods.

Verified results prove that the highest hit rate is 73% in
locality D for SNGPL,whereas for LESCO it is 75%. In local-
ity D, the 2155 consumers’ consumption data is used and after
applying a threshold of 5%, 108 consumers were detected
as fraudsters. However, when onsite cross-validation was
done 73% were found real fraudsters. Similarly, for LESCO
threshold was dropped to 1% due to onsite inspection staff
constraints and hit-rate came out to be 75%.

The detailed analysis of highlighted fraudster consumers
shows that certain types of frauds (e.g. commercial use,
illegal house line extension, and meter reversing) are being
committed in the locality D, where as live line tapping, meter
tampering and multiple meters on single premises are more
common frauds in locality A of LESCO. Also it was observed
that all localities do not hold the same type of frauds. It mostly
depends on the social class stratification of a particular local-
ity which is predominant in the developing world.

V. CONCLUSION
In this paper, the fraudulent consumer identification frame-
work to mitigate non-technical losses in natural gas and
electricity distribution companies is validated. This frame-
work is presented while acknowledging the shortcomings
and limitations faced by developing countries in mitigating
frauds in energy consumption. Multivariate Gaussian dis-
tribution is employed in FCIF wherein features like social
class stratification and weather variations further facilitated
MGD in the realistic mapping of fraud. Obtained results are
validated by onsite inspection taken out by energy distribution
companies on the prediction results of FCIF. Crosschecking
results have demonstrated that the proposed framework has
a maximum hit-rate of 75%. Thus, outperformed all other
published frameworks as they have not incorporated the pecu-
liarity of developing countries.
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