
Received May 14, 2021, accepted May 28, 2021, date of publication June 2, 2021, date of current version June 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085395

Multibyte Microarchitectural Data Sampling and
Its Application to Session Key Extraction Attacks
YOUNGJOO SHIN
School of Cybersecurity, Korea University, Seoul 02841, South Korea

e-mail: syoungjoo@korea.ac.kr

This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIT)
(No. 2020R1F1A1065539). This work was supported by an Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT) (No. 2019-0-00533, Research on CPU vulnerability detection and validation). We
received support in the form of a Korea University Grant in 2020.

ABSTRACT Microarchitectural data sampling (MDS) attacks leak secret data from the internal buffers of a
processor to the attacker during transient execution. Because of the narrow window of transient execution,
previous MDS attacks relied on repetitive sampling to obtain arbitrarily sized data from the buffer. However,
as an MDS attacker cannot control the address for data leakage, such an approach significantly degrades the
signal-to-noise ratio in the sampled data. In this paper, we propose a novel multibyte microarchitectural data
sampling technique for performing MDS attacks. The proposed technique allows several continuous bytes
to be captured in one execution without repetition of sampling. The implementation of the technique is quite
challenging, because a transient execution window is not sufficiently large to allow multibyte sampling to be
completed. We address this problem by leveraging a return stack buffer-based speculation technique, which
originally was used for variants of Spectre-type attacks. We repurpose it to enlarge the transient execution
window in our attack. Our implementations can capture data of up to 16 bytes in length in one execution
from a line-fill buffer. To validate the effectiveness of the multibyte sampling technique, we demonstrate
session key extraction attacks against secure network protocols. In particular, our objective is to extract
AES-128 and AES-256 keys from TLS and SSH applications. To recover session keys in a postprocessing
phase efficiently, we also propose a novel clustering-based search method that assembles the bytes of interest
from the noisy sampled data. The experimental results show that our technique can successfully extract
AES-128/256 session keys from victim applications with a probability of at least 98% and a reasonable
search complexity.

INDEX TERMS Microarchitectural data sampling, transient execution attack, session key extraction attack.

I. INTRODUCTION
Modern processors aggressively utilize out-of-order and
speculative execution techniques in their microarchitecture
design to maximize instruction-level parallelism (ILP). How-
ever, pursuing performance without considering security ulti-
mately leads to the occurrence of the well known transient
execution attacks, such as Meltdown [1] and Spectre [2].

Transient execution attacks exploit the vulnerability of ILP
optimization techniques to expose secret data that would
otherwise be protected from unauthorized access. Specifi-
cally, an attacker initiates transient executions, where the
protected data are illegally loaded frommemory and encoded

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Inácio .

to microarchitectural states in a cache. The data are then
delivered to the attacker through a cache covert channel.

As the execution of instructions is canceled quickly by the
processor, the timewindow of transient execution for success-
ful data leakage is extremely short. Hence, previous imple-
mentations of Meltdown- and Spectre-type attacks attempted
to leak only one byte per execution rather than capturing a full
byte of the data at time. On the basis of such byte-by-byte
leakages at continuous memory locations, the attacker can
obtain any arbitrarily sized data.

Recently, new vulnerabilities have been found on microar-
chitectural buffers inside some Intel processors [3], [4]. The
internal buffers are designed to keep data corresponding to
in-flight load and store instructions temporally. These vul-
nerabilities allow an attacker to read stale data remaining on

80806 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4831-7392
https://orcid.org/0000-0001-8221-0666

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

the internal buffer. This opens a brand new type of attacks
[5]–[9], which are referred to as microarchitectural data sam-
pling (MDS) attack.

An MDS attack is initiated with a load instruction that
causes certain faults or microcode assists. The vulnerable
processor may transiently execute subsequent instructions
with stale data which is forwarded due to lazy exception
handling. The leaked data are then recovered later through
the cache covert channel.

Although the MDS attack shares the basis of the tran-
sient execution technique with the previous Meltdown-type
attacks, the essential difference is that all the data leaked by
the MDS attack are agnostic to the memory address [5]. That
is, an MDS attacker has no control over the full memory
address at which he/she wants to leak. In-flight data sampling
without knowledge of the memory address results in data
leakage irrespective of the secret data of interest.

For this reason, the sampling of one byte of data per
execution as in the byte-by-byte approach of Meltdown-type
attacks is not effective for MDS attacks in terms of feasibility
and performance. For instance, the leakage of a secret value
with 16 bytes in length (e.g., anAES-128 key) requires at least
16 consecutive runs of the one-byte sampling technique. In
fact, orders of magnitude more runs are necessary in practice
because of the address-agnostic property of the MDS attack
itself, as well as various types of system noise, the source of
which is the non-deterministic behavior of operating systems.
When the raw data has been collected from sampling, each
byte of the secret must be distinguished from irrelevant data.
Recovering the secret by filtering out unrelated bytes is not
trivial, and may degrade the performance and feasibility of
MDS attacks, as we discuss in Section IV. Previous work
attempt to improve the one-byte sampling by proposing a
technique that samples 3-byte data at a time [5], [8]. However,
the sampling length is still not long enough to overcome this
problem.

In this paper, we address these challenging problems and
introduce more effective and practical MDS attacks. In par-
ticular, we propose a multibyte data sampling technique that
captures multiple bytes of in-flight data at each execution.
The key idea on which our approach is based is that the
sampling of continuous bytes from internal buffers in one
execution can exclude any irrelevant bytes and preserve the
order of bytes at least among the leaked data. The properties
of noise exclusion and order-preserving sampling result in
a high signal-to-noise ratio in the data. Therefore, multi-
byte data sampling improves effectiveness and practicality of
MDS attacks.

The challenging issue in the implementation of multibyte
sampling is the completion of multiple-byte encoding, which
clearly takes longer than one-byte encoding, within the nar-
row transient execution window. For this, we enlarge the
window size by leveraging a return stack buffer (RSB) based
speculation technique. This technique was originally used
for some variants of Spectre-type attacks that leverage the
RSB [10], [11]. We repurpose it to create a long delay in the

resolution of the return address. Thus, we can obtain a suf-
ficiently large transient execution window for the multibyte
encoding.

Assisted by the window enlarging technique, we imple-
mented our multibyte data sampling attack. More specifi-
cally, our implementations include MDS-64, MDS-96 and
MDS-128, which are able to leak 8, 12 and 16 bytes at
one execution, respectively. The implementations exploit the
vulnerability of the line-fill buffer (CVE-2018-12130) [3],
although our technique is not confined to this vulnerability.
We conducted experiments to evaluate the performance of
our implementations in terms of the throughput and success
rate. As aforementioned, previous work already showed that
it is possible to achieve leakage of a few bytes of data at
a time in MDS attacks. The proposed multibyte technique
significantly increases the sampling length by enlarging the
transient execution window.

To validate the effectiveness of our multibyte sampling
technique in practical applications, we demonstrate session
key extraction attacks against the Transport Layer Secu-
rity (TLS) and Secure Shell (SSH) protocols. In particular,
our objective is to extract AES-128 andAES-256 session keys
by using the multibyte sampling technique against victim
applications running these protocols. The construction of
TLS and SSH applications is based on the recent versions
of the OpenSSL and wolfSSH libraries, respectively, both of
which support AES hardware acceleration (e.g.,AES-NI).We
present an MDS attack that successfully leaks AES-128 and
AES-256 keys from those applications.

We also present our novel clustering-based search method
for recovering AES-128/256 session keys from raw data. The
proposed method allows the secret bytes to be assembled
successfully from noisy values. The use of this method in
combinationwith an exhaustive search significantly improves
the success probability of key recovery during postprocess-
ing. The experimental results show that with a probability
of at least 98% and reasonable search complexity, we can
extract AES-128/256 session keys from the raw data sampled
for 5 min in an attack against TLS and SSH applications.

To mitigate MDS attacks, including that proposed in
this paper, we present several countermeasures. Specifically,
we discuss some solutions to protect MDS attacks including
hardware-based mitigation, isolation of the leakage source,
encryption of the protected data, and attack detection in this
paper.

The remainder of this paper is organized as follows. In
Sections II and III, we provide related work and back-
ground knowledge on the proposed attacks, respectively. In
Section IV, we describe in detail the proposed technique for
multibyte MDS attacks, including motivation, implementa-
tion and evaluation. In Section V, we present session key
extraction attacks against the TLS and SSH protocols by
using the multibyte data sampling attack. In Section VI,
we present several countermeasures to the proposed attack.
Finally, we conclude this paper by summarizing our work in
Section VII.

VOLUME 9, 2021 80807

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

II. RELATED WORK
A. MICROARCHITECTURAL DATA SAMPLING ATTACKS
The security vulnerabilities in the memory subsystem of
modern processors have been exploited to implement various
MDS attacks.

RIDL [6] and ZombieLoad [5] are the first attacks that
leverage a line-fill buffer (LFB) and load ports as leakage
sources on Intel processors. They demonstrate several attacks
that leak secret data such as AES-128 keys and passwords
from victim applications.

Fallout [7] exploits a store buffer as a leakage source to
leak the data corresponding to recent writes. It demonstrates
attacks for recovering secret data such as AES-128 keys
written by kernels as well as for breaking kernel address space
layout randomization (KASLR) used in the OS.

Moghimi et al. [8] performed an in-depth analysis on
Meltdown-type attacks via a fuzzing-based approach, and
consequently discovered new variants of MDS attacks named
Medusa. Medusa allows an attacker to leak secret data from
specific implicit write-combining memory operations such
as fast string copies. As a case study, an RSA signing key
recovery is demonstrated by using the attack.

Ragab et al. [9] implemented an x86 instruction profiling
tool named CrossTalk to investigate a variety of complex
microcoded operations. As a result of the investigation, they
discovered a cross-core MDS attack that leaks secret data on
a staging buffer which is shared between all cores.

All the above attacks share the structure of one-byte data
sampling. There are already some improvements that sample
up to 3 bytes of data at a time without increasing the transient
window [5], [8]. However, they are not enough for achieving
more efficient and practical MDS attacks. Our study is aimed
to address the limitations of the previous techniques due to the
narrow window. We basically extend the sampling capacity
with the help of the multibyte data sampling technique. We
validate its feasibility by demonstrating an attack that extracts
AES-128/256 keys from practical applications.

B. OTHER MICROARCHITECTURAL ATTACKS
We also present additional microarchitectural attacks that are
related to our work.

1) MELTDOWN- AND SPECTRE-TYPE ATTACKS
According to the Canella et al.’s taxonomy [12], tran-
sient execution attacks are classified into Meltdown- and
Spectre-type attacks. Meltdown-type attacks exploit the out-
of-order execution of ILP optimization techniques in modern
processors. Transient executions of Meltdown are initiated
by raising certain exceptions. In most studies, a page fault
exception is used for delivering the attack; the fault is raised
by privilege violation [1], R/W access violations [13] and the
absence of the present bit in a page table entry [14], [15].
Some Meltdown-type attacks utilize other exceptions such as
a device-not-available exception [16] and a general protection
fault [17].

Spectre-type attacks, however, exploit a speculative execu-
tion technique. Specifically, a malicious transient execution is
initiated by inducing misspeculations on branch instructions.
Various types of prediction units are used for this attack
including the branch target buffer [2], memory order buffer
[18] and pattern history buffer [2], [13], [19]. Other vari-
ants of Spectre-type attacks make use of an RSB to create
misspeculation-based transient executions [10], [11].

2) CACHE TIMING ATTACKS
Cache contention allows cache timing channels through
which an attacker can learn secret information from victim
applications [20]. Cache timing attacks are demonstrated
on a wide variety of target applications. Most work show
their attacks against a number of cryptographic implementa-
tions; target applications include public key-based algorithms
such as RSA [21]–[24], ECDSA [25], ECDH [26], [27] and
ElGamal [28] as well as symmetric key-based algorithms
such as AES [29]–[32].

The security implication of cache timing attacks is not con-
fined to cryptographic implementations. Several work present
their attacks against various (non-cryptographic) practical
applications such as leaking sensitive data from input devices
[33], [34] and inferring information of a browsing history [35]
and firewall policies [36], [37].

Cache is not the only resource that has a timing
channel between an attacker and victim. In simultane-
ous multi-threaded (SMT) processors, various hardware
resources are shared between two logical threads, thus other
timing channels may be potentially created. Actually, recent
work presented microarchitectural attacks exploiting tim-
ing channels existing on an execution port [38], translation
look-aside buffer [39], [40], memory order buffer [41], [42]
and way predictors [43].

III. BACKGROUND
In this section, we provide background knowledge of MDS
attacks.

A. OUT-OF-ORDER AND SPECULATIVE EXECUTION
Processors maximize instruction-level parallelism by utiliz-
ing various optimization techniques. Two of the techniques
are out-of-order and speculative executions. The out-of-order
execution technique allows a micro-operation (µ-op) to be
executed as soon as its resources (e.g., source operands or
execution units) become available, regardless of the program
order. However, the retirement of µ-ops, after which the
execution result becomes visible in the architectural state
(e.g., registers or memory), is processed in the program order.
The reorder buffer (ROB) tracks in-flight µ-ops and ensures
that they are retired in order.

Speculative execution is a second optimization technique
for managing branch instructions. It enables the processor
to jump to a predicted location speculatively before the
actual destination of the branch instruction has been deter-
mined. Successful speculation would achieve a substantial

80808 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

performance gain. If the speculation fails, however, the pro-
cessor has to squash all µ-ops in the pipeline and then
restart its execution at the correct destination. The branch
prediction is conducted with the help of dedicated hardware,
such as a branch prediction unit (BPU) and branch target
buffer (BTB). The RSB is also utilized for branch instructions
such as call and ret designated for the procedure call
mechanism.

B. CACHE COVERT CHANNEL
A cache is an integrated hardware component in a processor
for providing low-latency memory access. Cache contention
between processes or threads incurs a cache covert channel,
by which information can be illegally transmitted from one
side to another.

The Flush+Reload technique [21], [34] is typically used
for the cache covert channel. In this technique, a sender and
receiver use a shared array as a transmission medium. We
refer to this array as an F+R buffer in the rest of this paper.
The F+R buffer consists of 256 elements, each of which
is at least more than 64 bytes in size. These elements are
initially evicted from the cache: the clflush instruction
in a x86 architecture can be utilized to evict specific cache
lines.

A sender who wishes to transmit a byte x (0 ≤ x ≤ 0xff) to
a receiver encodes x into the F+R buffer. That is, the sender
performs a memory access to the x-th element in the buffer to
bring it into the cache. Then, the receiver determines which
element has been accessed by the sender through timing anal-
ysis. A longer access time indicates that the element comes
from thememory, whereas a shorter access time indicates that
it comes from the cache. Thus, the receiver can decode byte
x from the F+R buffer.

C. TRANSIENT EXECUTION ATTACKS
A Transient instruction refers to an in-flight instruction
that is executed but then disappears from the ROB with-
out being retired. The execution of the transient instruc-
tion is never in fact committed. However, it may affect the
microarchitectural state of the processor, especially the cache,
which remains visible even after the transient instruction has
vanished.

Transient execution attacks exploit the out-of-order and
speculative execution techniques to realize a malicious exe-
cution of transient instructions. These instructions cause an
unauthorized memory access to protected data, leaving an
elaborate footprint on the cache according to the value of
the data. The protected data, which have been encoded in the
cache, can be delivered to an attacker through a cache covert
channel.

Based on Canella et al.’s taxonomy [12], transient exe-
cution attacks are classified into Spectre and Meltdown
types according to the type of ILP optimization tech-
nique (e.g., out-of-order or speculative execution) that is
exploited. Spectre-type attacks exploit transient execution
by creating a misspeculation on branch predictors, whereas

Meltdown-type attacks exploit the fact that, when a preceding
instruction encounters an exception, subsequent instructions
may be transiently executed out of order. In Meltdown-type
attacks, the exception is typically caused by load instructions
that would result in a page fault or microcode assist. Unlike
in Spectre-type attacks, an exception should be addressed
appropriately by handling or suppressing it during the exe-
cution of Meltdown-type attacks.

D. MICROARCHITECTURAL DATA SAMPLING
VULNERABILITIES
Modern processors are equipped with several microarchi-
tectural buffers inside their cores to serve load and store
instructions. These buffers are typically shared by logical
threads from the same or even different security domains.
Some Intel processors have security flaws in the memory
subsystem including microarchitectural buffers [3], which
lead to MDS attacks as follows.

• Microarchitectural Fill Buffer Data Sampling (MFBDS,
CVE-2018-12130): An LFB is a temporal buffer
between an L1D cache and lower memories. The LFB
handles a demand load request that missed the L1D
cache and temporally holds the requested line before
serving it to the cache. MFBDS vulnerability allows an
attacker who mounts transient execution attacks to leak
stale data on the LFB from other threads that would
otherwise be protected.

• Microarchitectural Load Port Data Sampling (MLPDS,
CVE-2018-12127): A load port is a temporal buffer that
is used when loading data into registers. This vulnerabil-
ity allows an attacker to leak stale data on the load port
by mounting transient execution attacks.

• Microarchitectural Store Buffer Data Sampling
(MSBDS, CVE-2018-12126): A store buffer temporally
holds the data of store operations and may serve subse-
quent loads if their addresses match. This vulnerability
allows an attacker to leak stale data belonging to preced-
ing store instructions.

Similarly to Meltdown-type attacks, MDS attacks exploit
load instructions causing a page fault or microcode assist. The
load keeps its executionwith the stale data which is forwarded
from one of the microarchitectural buffers mentioned above.
Subsequent transient instructions created by the faulting load
(or microcode assist) deliver the data via the cache covert
channel. Compared to the previous Meltdown-type attacks,
however, the control of the memory address for leakage is
more restrictive in MDS attacks. Therefore, MDS attacks
are more likely to suffer from noise due to the leakage of
unrelated data.

IV. MULTIBYTE MICROARCHITECTURAL DATA
SAMPLING
A. MOTIVATION AND GOALS
Prior to describing details on the proposed method,
we present motivation and our goals in this section.

VOLUME 9, 2021 80809

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 1. Leaking one byte of secret data by microarchitectural data
sampling.

1) MOTIVATION
In general, MDS attacks are conducted in three steps (Fig.1).
In the first step, a transient load of in-flight data from a
microarchitectural buffer is executed by inducing a fault or
microcode assist. In the second step, the leaked value is
encoded into an F+R buffer; the byte is translated to the
offset of the F+R buffer and the corresponding cache line
is loaded into a cache. Finally, the value is decoded by using
the Flush+Reload technique in the third step.
Note that the first and second steps in MDS attacks are

performed in the transient execution domain. As their exe-
cution is quickly canceled by the processor due to the narrow
transient window, the execution path should be minimized as
much as possible. This significantly limits the data leakage
channel’s capacity.

In fact, previousMeltdown-type attacks (e.g.,Meltdown [1]
and Foreshadow [14]) also suffered from the limited capacity
of the leakage channel. However, they could fully or partially
control the memory address of the data of interest. Therefore,
it was possible to reliably obtain all the bytes of a secret
through byte-by-byte leakage by means of iteration at con-
tinuous target addresses.

Compared to the previous Meltdown-type attacks, how-
ever, MDS attacks have less control over the address of the
secret. This limitation leads to leakage of a significant amount
of dummy data irrespective of the secret. Hence, it is chal-
lenging to recover the whole secret from sporadic in-flight
loads by iterations of sampling within the narrow transient
execution window. To achieve reliable leakage of a secret
in MDS attacks, several techniques were applied in previous
studies, as follows.

• Synchronization with victim [5]: In this technique,
the spy (i.e., the MDS attacker) invokes data sampling
only when the victim executes a specific function that
loads the data of interest (e.g., AES encryption). This
way, most unrelated dummy data can be filtered out.
Although this technique is practical in some threat mod-
els such as SGX [44], it is restrictive as tight synchro-
nization of the victim with the spy is necessary.

• Utilizing prior knowledge of the secret [6]: In this
technique, the spy filters out noise by leveraging prior
knowledge about the secret. Specifically, the spy com-
putes XOR-masking of the leaked data with previously

obtained bytes of the secret in the transient execution.
Masking with any irrelevant bytes results in misalign-
ment to an F+R buffer, and thus causes no microarchi-
tectural changes. The prior information given to the spy
includes several fixed strings in the victim’s executable
or partial bits of the secret previously obtained by other
means.

• Leaking overlapping data [5]: The spy additionally cap-
tures the existing data called a domino byte. The domino
byte contains partial bits of adjacent secret bytes with
which leaked data can be distinguished from noise. In
this technique, at least one domino byte is needed to leak
two bytes of a secret.

Although the above techniques may strengthen the sam-
pling capacity to some extent, their effectiveness is confined
to limited attack scenarios. Specifically, synchronization with
the victim is effective only under strict conditions that require
sharing of the victim’s physical memory and a deep knowl-
edge of the victim’s executable binary. For instance, in the
cross-VM attack model, the memory sharing needs dedupli-
cation support from underlying hypervisors, which is usually
disabled or no longer available in most commercial products
for security reasons. An additional technique that leverages
prior information of a secret may not be applicable to cer-
tain attack scenario such as a session key extraction attack
described in the following section. For the domino technique,
the reading of an additional domino byte to leak a two-byte
secret even consumes the narrow bandwidth of the leakage
channel, significantly degrading the attack performance.

2) OUR GOALS
Motivated by the limitations and problems of the existing
techniques, we attempt to achievemore effective and practical
microarchitectural data sampling attacks. In particular, our
goals in implementing our data sampling attack are three-
fold, as follows.

• No synchronization with victim: Our attack should effi-
ciently leak secret data from a victim without the need
for synchronization.

• No prior knowledge of the secret: Our attack should
efficiently leak secret data from a victim even if no prior
information of the secret is known.

• Improvement in the channel capacity: Our attack should
efficiently leak secret data with a higher throughput by
means of multibyte data sampling.

B. MULTIBYTE DATA SAMPLING
1) BASIC APPROACH
The key idea of achieving the above goals is to attempt to
capture all the bytes of the secret data at one run. To this end,
we devise a novel multibyte data sampling technique.

Fig.2 illustrates the manner in which our technique can
obtain multiple bytes of a secret at each execution. Multibyte
sampling is conducted in three steps in the same manner as
the original data sampling. In the first step, N-byte secret data

80810 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 2. Multibyte microarchitectural data sampling.

are transiently loaded to a register from the internal buffer.
In x86-64 architecture, the operation can load up to a 64-bit
word (i.e., N=8) to a general purpose register. In the second
step, the loaded data are encoded by using multiple F+R
buffers. Specifically, each byte of the data is encoded into the
corresponding buffer. The secret is finally recovered in the
third step by sequentially probing the F+R buffers.

2) CHALLENGING PROBLEM AND SOLUTION
The multibyte data sampling basically extends the existing
sampling technique by increasing its encoding length to mul-
tiple bytes. However, it is not trivial to increase the length
of data for encoding. As described in the previous section,
the encoding step is executed in the transient domain, which
has an extremely small time window. Because it takes longer
to encode multiple bytes of data than a single byte, the com-
pletion of this step within the narrow execution window
presents a challenge.

We solve this problem by enlarging the window size
sufficiently to achieve reliable multibyte encoding. In par-
ticular, we utilize an RSB-based speculation technique
[16], [45]–[47] for our multibyte data sampling attack.
This technique was originally used for some variants of
Spectre-type attacks that leverage the RSB. We repurpose it
to enlarge the transient execution window. RSB is a branch
prediction unit designated for a procedure mechanism in
an x86 architecture. It caches a return address for a call
instruction and then serves fast lookup to the subsequent ret
instruction for the return address. The RSB-based speculation
technique creates transient execution by modifying the return
address in the stack to another destination so that misspecu-
lation occurs. Most importantly, this technique can intention-
ally cause a delay in branching to the correct destination after
the misspeculation. It allows a sufficiently large transient
execution window for multibyte encoding to be built.

The code layout of our multibyte data sampling attack
is illustrated in Fig.3. The first step in the execution of
the code is a call instruction. It branches to the location
of a function func while simultaneously saving the return
address retaddr to the stack and to the RSB (Step (1)

FIGURE 3. Code layout of the proposed multibyte microarchitectural data
sampling attack.

in Fig.3(a)). In the location next to the call instruction,
which is located at retaddr, is the code that performs
transient loading and encoding of the secret data. The func-
tion func manipulates the return address on the stack to be
new_retaddr, which points to the location of the execu-
tion code that decodes the secret. This stack manipulation
causes a discrepancy between the content of the stack and
that of the RSB. The ret instruction speculatively branches
to retaddr by consulting the RSB, but eventually branches
again to new_retaddr (Steps (2) and (3) in Fig.3(a),
respectively).

As the transient execution of secret loading and encod-
ing remains alive until ret terminates the misspeculation,
we can increase its lifetime by delaying ret to determine
the correct destination. As shown in Fig.3(b), this delay can
be achieved by inserting a number of mul instructions to
calculate the return address. The series of muls sequentially
multiply data on %r9 with a multiplicand %rax, finally
yielding the return address to %rax as output. The data
dependency on the operands forces sequential execution of
these instructions and allows a sufficient delay in determining
the return address to be achieved.

3) IMPLEMENTATION
We now present a detailed description of our imple-
mentation for the multibyte data sampling attack. As an

VOLUME 9, 2021 80811

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 4. Implementation of a multibyte data sampling attack (N=8).

instance of the attack, the implementation attempts to leak
eight bytes of a secret at a time (i.e., N=8) by exploit-
ing the LFB microarchitectural data sampling vulnerability
(CVE-2018-12130) [5], [6].

Fig.4 shows the assembly code of the implementation.
Prior to launching the attack, the code performs several
initialization steps. First, a memory page is allocated and
mapped to two virtual addresses v and k , which are for user
space and kernel space, respectively. The code also prepares
a number of F+R buffers (i.e., eight buffers in this imple-
mentation), which are contiguously allocated in the address
space. Each F+R buffer consists of 256 entries, each of
which belongs to a different page, taking up a memory space
of 1,024 KB in total. The execution of the assembly code
begins with the initialization of several registers to specific
addresses. The registers %rbx and %rcx have addresses v
and k , respectively, and %rdi has an address of the first F+R
buffer.

Each line of the assembly code is described as follows.

• Line 1: This instruction evicts an address v referred by
%rbx from the cache so that the subsequent faulting load
(line 3) can leak stale data from the LFB.

• Line 2: This instruction initiates RSB-based speculation
by branching to a function func located in lines 14 ˜ 21.

• Lines 3 ˜ 13: These instructions belong to the transient
execution domain, which is created by speculation from
the RSB. The %rax register contains eight bytes of
stale data leaked from the LFB. The least significant
byte of %rax is encoded to the first F+R buffer, where
its base address is referred by %rdi (lines 3 ˜ 6).

The remaining bytes are then sequentially encoded to
F+R buffers in the same manner as the least significant
byte (lines 7 ˜ 13). The F+Rbuffer for a subsequent byte
is located adjacent to the previous buffer. Hence, the base
register %rdi can be adjusted by adding 0×100000 to
the base address of the previous buffer (line 8).

• Lines 14 ˜ 21: These instructions constitute the body
of the function func, where a return address on the
stack is replaced with the address of the FR_decode
function, which performs secret decoding (line 20). The
return address is calculated by repetitive multiplications
(i.e., mul instructions) using two operands %r9 and
%rax. The number of muls (i.e., MULS in line 17) is
determined according to the length (N) of the sampling
data and microarchitectural configurations of a target
processor, such as the capacity of the ROB.

Note that the length of the sampling data is not confined to
eight bytes in our implementation. The sampling length can
be increased by using multiple 64-bit loads or 128/256-bit
SIMD load operations rather than a single load (line 3 of
Fig.4). For instance, we simply have 16-byte data sampling
with two 64-bit loads. In this case, we use 16 F+R buffers for
byte encoding.

4) EVICT+SAMPLING
The above implementation exploits an LFB as a leakage
source of secret data. As the LFB holds only data that
missed an L1D cache, a victim’s data residing at L1D is
not easily obtained by our data sampling attack. Hence,
to achieve a successful attack, the implementation requires
that the target data reside at levels of memory lower
than L1D.

We introduce an Evict+Sampling technique to improve
the sampling performance of our attack implementation. In
this technique, we first evict data in the L1D cache to lower
levels of memory (Evict phase). As we have no information
about the location of victim’s data in the L1D cache, entire
lines of the cache have to be evicted in this phase. We can
easily achieve this: allocate an array in memory, which is
sufficiently larger than the cache (i.e., more than 32 KB),
and then access all the elements in the array. After eviction,
we wait for a certain amount of time, during which a victim
may perform load operations for secret data (Wait phase).
As the data have been evicted from the L1D cache, the load
misses it, which in turn causes the LFB to load the data.
Finally, we execute the multibyte sampling attack to leak the
data residing at the LFB (Sampling phase).

The Evict+Sampling technique is effective for an attacker
who has the ability to control a victim. That is, the attacker
can efficiently obtain a secret by sending a request to the
victim to perform memory loads in the Wait phase. However,
this technique is not only useful for these attackers. Without
controlling the victim, attackers can increase the chance of
leaking a secret by repeatedly executing the Evict+Sampling
during the victim’s execution.

80812 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 5. Code snippet of a victim application for experiments.

C. PERFORMANCE EVALUATION
We conducted experiments to evaluate the performance of our
multibyte data sampling attack. In this subsection, we present
the experimental results.

1) EXPERIMENTAL SETTING
For the experiments, we built three types of spy programs,
MDS-64, MDS-96 and MDS-128 which perform data sam-
pling of 8, 12 and 16 bytes per execution, respectively. The
construction of all these types is based on the implementation
described in Section IV-B.

We also built a program that acts as a victim, which simply
continues to execute memory load operations through an
infinity loop. In particular, the victim initially allocates a
64-byte buffer buff and fills the entire buffer with a 8-byte
secret string 0xdefec7e3deadbeef. Then, it repeatedly
performs memory access to buff with offsets varying by
eight bytes. It always flushes the offset prior to the access
to ensure the string is loaded from memory via the LFB. We
precisely controlled the memory loading rate of the victim
by providing a certain amount of delay in the cycles between
load operations. Fig.5 presents a code snippet of the victim
application.

The experiments were conducted on an Intel Xeon
E3-1275v6 (KabyLake) processor runningUbuntu 18.04 LTS
64-bit Linux. The spy and victim programs were run on
the same physical core but separate logical cores by CPU
pinning. While the victim programwas executed, the spy per-
formed multibyte data sampling and recorded all the obtained
values to a file for subsequent processing. We emphasize that
this experimental setting allows neither synchronization nor
sharing of prior information by the spy and the victim.

2) THROUGHPUT AND ERROR DISTRIBUTION
We conducted an experiment to measure the throughput of
each spy program for leaking secret strings from the victim.
The throughput was measured while varying the number
of mul instructions of the spy programs to determine the
number of instructions that yield the best attack performance.
The victim was configured to run with no delays in its loop
(i.e.,cycles=0 in Fig.5) to obtain the throughput in an ideal
setting. The experimental results are shown in Fig.6(a). The
term ‘Throughput’ in the figure refers to the total bytes of

secret strings successfully leaked without errors by the attack
within a second.

The results show that MDS-64, MDS-96 and MDS-128
yield the best throughput with 30, 70 and 50 mul instruc-
tions, respectively. The measurement with fewer instructions
results in lower throughput, because these instructions are
not sufficient to create a large transient execution window to
deliver the attack. On the other hand, more mul instructions
degrade the throughput for all the spy programs as well. The
degradation is in fact caused by the ROB capacity of the
processor, which limits the total number of in-flight µ-ops
of the spy program.

We also observe from the experimental results in Fig.6(a)
that attacks with sampling of more than eight bytes, e.g.,
MDS-96 and MDS-128, show a throughput of one order
of magnitude less than that of MDS-64. The fact that
MDS-64 results in better throughput than MDS-96 and
MDS-128 is somewhat straightforward because sampling a
single 64-bit word can be performed with no additional over-
head in an x86-64 architecture.

Besides such an architectural limitation, we also attribute
the poor throughput of MDS-96 and MDS-128 to high error
rates during execution of the attacks. The errors are usually
caused in the process of encoding and decoding of secret
values. For instance, to handle 16 bytes of a string takes twice
as long in MDS-128 as in MDS-64. As the cache state of
F+R buffers is fragile and prone to corruption by noise from
irrelevant system activities, it unavoidably suffers from more
errors in longer encoding/decoding stages.

Fig.6(b) shows the cumulative frequency distributions of
errors in leaked strings for all the spy programs. The error is
represented in the graph as the normalized Hamming distance
of the leaked string with respect to the secret of the victim.
The distribution was obtained with the specific number of
mul instructions that showed the best throughput for each
attack. In MDS-64, more than 75% of strings leaked from
the sampling attack contained no errors (i.e., the Hamming
distances of these strings are zero). The Hamming distance
of the remaining leaked strings was more than 0.9, which
indicates that they came from other memory load operations
irrespective of the victim’s secret string. In the cases of
MDS-96 and MDS-128, the proportions of leaked strings
that contained no errors were approximately 11% and 2%,
respectively. As described above, relatively long stages of
encoding and decoding introduce high error rates to these
attacks.

3) COMPARISON TO OTHER SAMPLING TECHNIQUES
We now compare the performance of our implementation to
other sampling methods. For this, we implemented another
spy program that performs one-byte and 3-bytes sampling as
previous work [5], [8] to leak eight bytes of the secret string
from the victim.

Furthermore, we additionally implemented these sampling
methods in a different way that they perform a bit-wise encod-
ing (i.e., single-bit transmission in [1]). Unlike a byte-wise

VOLUME 9, 2021 80813

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 6. Throughput and error distribution of the multibyte data sampling attacks.

encoding as in our technique, each bit of the leaked secret
is encoded separately to each F+R buffer in this method,
where the buffer consists of only one element. Thus, the value
of the bit can be decoded with only one memory access to
the F+R buffer (i.e., one execution of Flush+Reload mea-
surement). This way, one-byte sampling can be performed
faster as the number of memory access is reduced from
256 to 8 in the decoding stage. In contrast, however, more
accesses to F+R buffers are necessary in the encoding stage.
Specifically, the number of memory access is increased from
one to 8 in the one-byte sampling, and from 3 to 24 in the
3-bytes sampling. Therefore, these bit-wise encoding-based
sampling techniques were implemented by utilizing our win-
dow enlarging technique.

In this experiment, we used the same settings as in the pre-
vious experiment under which the spy has not been synchro-
nized with the victim and has no prior information about the
secret. Hence, we utilized only the domino-byte technique [5]
among the techniques for enhancing the sampling capacity.
The spy used a (4, 4)-domino byte to recover two bytes of the
secret; thus four bytes for the domino bytes were additionally
needed to successfully recover the entire value of the secret.

The experimental results are presented in Table 1. The
term ‘Executions/s’ refers to the number of samplings that
are executed within a second, which indicates a temporal
resolution for each sampling method. The term ‘Throughput
(Bytes/s)’ refers to the total bytes of successfully leaked
secret strings without errors within a second. All the bit-wise
encoding-based methods show higher temporal resolution

TABLE 1. Performance comparison to other sampling techniques.

than the corresponding byte-wise method owing to the fast
decoding stage. Consequently, the one-byte sampling with
bit-wise encoding yields the highest throughput among all
the methods except MDS-64, which is also higher than that
of MDS-96 and MDS-128 presented in Fig.6(a). However,
the 3-bytes sampling with bit-wise encoding shows poor
throughput compared to other methods. We attribute this to
the encoding stage with 24 memory accesses, which is too
long to be completed within a single transient window.

For MDS-64, it has the lowest temporal resolution due to
the relatively long encoding and decoding stage. Despite its
low speed, however, MDS-64 shows the highest throughput
among all the sampling methods owing to its multibyte sam-
pling capacity.

4) EXPERIMENTS UNDER THE SETTING OF PRACTICAL
APPLICATIONS
All the previous experiments were conducted under the set-
ting of an ideal victim application that provides the spy with
the best performance: every memory load of the victim is fol-
lowed by cache flushing, and the loads are repeated without
delays.

80814 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

TABLE 2. Success rate and throughput in various configurations (MDS-64).

To study the performance of multibyte sampling attacks
against more practical victim applications, we conducted an
additional experiment, in which various configurations were
applied to the victim. First, we configured the rate of memory
loads by introducing delays in the loop. As shown in Table 2,
the configurations of the loop delays varied from 104 to 108

cycles, which resulted in rates varying from 36 × 104 to
36 memory loads/s. Second, we configured the behavior of
cache flushing by adding a flag in the victim that controls
the execution of a flush operation after loading. In addition,
the spy was also configured to utilize an Evict+Sampling so
that we could examine the extent of the performance gain
obtained by using the technique.

Table 2 presents the experimental results of executing an
MDS-64 attack against the victim under various configura-
tions. The term ‘Success rate’ refers to the fraction of loads
successfully leaked to the spy among all the memory loads,
and ‘Bytes/s’ refers to the throughput of the spy.

The first combination of configurations, i.e., Victim(F) +
Spy(NE), achieves the best performance of all the combi-
nations. The first combination differs from the others in the
flushing behavior; that is, the victim executes without cache
flushing in the other combinations. Hence, we attribute the
result of the first combination to the repetitive cache flushing
performed by the victim, which is ideal and hardly expected
in practical scenario.

A comparison of the results of the second and third com-
binations shows that a significant performance improve-
ment can be achieved against a victim without flushing, i.e.,
Victim(NF), if the spy utilizes the Evict+Sampling tech-
nique. In particular, the spy that uses Evict+Sampling, i.e.,
Spy(E), achieves a performance that is very close to the
best performance in the situation where the victim executes
memory loads at a rate less than 36× 102 loads/s.
We conclude from the results that an MDS-64 attack with

the Evict+Sampling technique is effective in leaking a secret
when used against practical victim applications where the rate
of secret loading is less than thousands per second.

V. EXTRACTING SESSION KEYS OF NETWORK
PROTOCOLS
Secure network protocols such as TLS and SSH allow remote
entities (e.g., clients and servers) to communicate securely
with each other over insecure networks. After a session has
been established according to the protocol, all messages are

exchanged between entities in encrypted form with shared
session keys. As every encryption (or decryption) of mes-
sages causes session keys to be loaded from memory, secure
network protocols are subject to MDS attacks.

In order to validate the effectiveness of the multibyte data
sampling technique for practical applications, we demon-
strate a session key extraction attack against secure network
protocols. In particular, we aim to extract AES-128 and
AES-256 keys, which are used in most protocols to secure
their sessions. In this attack, we chose MDS-64 with the
Evict+Sampling technique as our primitive, because it pro-
vides a higher throughput than the other variants.

As AES-128 and AES-256 keys are two and four times
respectively larger than the length of bytes that MDS-64 can
sample at a time, the implementation of an attack on AES
sessions keys is not trivial. In this section, we present in
detail our approach for the key extraction, including the attack
model and evaluation results.

A. ATTACK MODEL
As in other microarchitectural attacks presented in the lit-
erature, in this attack we assume that both a victim and an
attacker reside in the same host sharing a physical core. The
victim exchanges encrypted messages with a remote entity
over an established session. The session is encrypted with
AES-128/256 algorithms. The attacker attempts to leak an
AES session key used in the victim’s session by exploiting
the MDS vulnerabilities of the processor. In certain protocols
such as TLS, a pair of keys are used for a session, one for
the message transmission and the other for the reception. For
brevity, we assume that the attacker is interested only in a
reception key (i.e., a decryption key), although our method
presented in the next section is not confined to a single key
extraction.

Regarding the attacker’s ability, we suppose that no
information about the victim’s application is given to the
attacker except information of the negotiated ciphersuite.
More specifically, the attacker has no prior information
of the victim, including any partial bytes of the session
key or fixed strings in the victim’s executable binary. In
addition, we suppose that no physical memory is shared
by the attacker and the victim. We emphasize that the
attacker is neither the other end of the TLS/SSH communi-
cation nor performs any steps of synchronization with the
victim.

VOLUME 9, 2021 80815

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 7. Overall process for session key extraction.

We also suppose that the attacker is able to verify whether a
leaked value is a correct session key. That is, the attacker can
test candidates of the session key by using public data (e.g.,
ciphertexts and IVs) and the information about the negotiated
ciphersuite.

B. SESSION KEY RECOVERY
AES Implementation: Before providing details of our session
key extraction attack, we briefly describe the AES implemen-
tation of secure network protocols. Recently developed ver-
sions of secure protocols, such as TLS 1.3 and SSH-2, support
AES-GCM (Galois Counter Mode) as authenticated encryp-
tion in their ciphersuite. As huge computation is necessary
in such a sophisticated algorithm, most protocol applications
take advantage of hardware acceleration such as AES-NI for
their AES implementations. AES-NI allows to process one
round of encryption with a single instruction. Each round
operation is executed with two 16-byte operands, one for the
round key and the other for the internal state.

The key scheduling algorithm expands session keys to
a number of round keys, R0,R1, . . . ,Rn, where n = 10
(n = 14) for AES-128 (AES-256). Note that R0 comes from
the session key itself: for AES-256, bothR0 andR1 come from
the session key. These initial round keys are used to mask a
plaintext block prior to subsequent round operations. All the
round keys are usually precomputed at the beginning of the
session and stored on thememory buffer.Whenever messages
are encrypted or decrypted, the round keys are loaded from
the buffer to the operands of the AES-NI instructions. All the
details including the memory address of the buffer and the
offsets of the round keys in the buffer depend on the AES
implementations.
Key Recovery Process: For the session key extraction

attack, we target the load of the initial round key (i.e., R0 for
AES-128 and both R0 and R1 for AES-256) among all the
memory loads. As the attacker has no information about the
memory location of the initial round key, his/her only option
is to capture the values at all the offsets accessible by MDS
attacks. In particular, our MDS-64 technique can control the
index offset within 64 bytes as it exploits the leakage vulner-
ability inside the LFB [5]. Hence, to cover all the accessible
values, we execute the multibyte data sampling technique
with eight different offsets at every iteration of the attack.

A session key extraction attack proceeds in two stages. In
the first stage, the attacker captures all the in-flight loads

at the LFB by using multibyte sampling while the victim
is active in communicating with a remote entity through
an encrypted session. The attacker utilizes Evict+Sampling
technique to increase chances of the session key being loaded
through LFB. All the leaked values are recorded in the storage
together with tags indicating the offsets at which the values
are leaked. Specifically, the recorded data comprise a list
of tuples (v, t), where v is an eight-byte leaked value and
t(0 ≤ t ≤ 7) is the offset of v. These tuples are then used as
raw data in the next stage where the postprocessing to recover
a session key is performed.

Fig.7 illustrates the overall key recovery process in the
postprocessing stage. The raw data obtained in the first stage
are processed by applying two approaches, exhaustive key
search and clustering analysis-based key search.

1) EXHAUSTIVE KEY SEARCH
As any address-agnostic data are collected by MDS attacks,
the raw data obtained in the first stage contain values that are
irrelevant to the secret (i.e., R0 andR1). To determine a session
key, one solution is to try exhaustively all values in the raw
data to a key verification function until the correct value is
determined to be successful in the verification.
Dictionary Generation: For the exhaustive key search,

we first construct from the raw data a dictionary consist-
ing of candidates for the session key. As a session key for
AES-128 is 16 bytes in length, two distinct values vi and
vj are selected from the raw data to construct a candidate
key: for an AES-256 session key, four values are required.
Thus, the dictionary can be generated from all possible com-
binations of distinct values in the raw data. As the search
complexity increases together with the volume of a dictio-
nary, we need to optimize the generated dictionary’s size. To
accomplish this, we exploit the tag information associated
with the value. That is, only those values having continuous
tags (i.e., offsets) are selected for building a candidate key.
By leveraging the fact that encryption keys are generally
uniformly random, the dictionary size could be further min-
imized by filtering out unrelated data with a randomness
test.
Key Verification: We verify each candidate in the dictio-

nary by using a key verification function. The verification
function is chosen according to the ciphersuite of the session.
Any publicly known data including ciphertexts and IVs are
used together with candidate keys for the verification.

80816 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

FIGURE 8. Errors in leaked values by microarchitectural data sampling
attacks.

2) CLUSTERING ANALYSIS-BASED KEY SEARCH
As MDS attacks are susceptible to system noise, the raw
data are exposed to a non-negligible amount of errors. Thus,
it does not suffice to use only the exhaustive key search
approach to successfully recover the session key from such
noisy data. Fig.8 illustrates an exemplary case where the
secret value in the memory is abc3c5ee3891f0fae.
Three attempts to capture the value were made, all of which
resulted in leakages with only one hex-digit error in each (see
P1, P2 and P3 in Fig.8). Although the correct hex-digits were
found in other leaked values, the exhaustive search method
could not recover the secret from the noisy values.

We can handle such a case by adaptively building a dic-
tionary that covers all the combinations of the hex-digits. In
the case shown in Fig.8, the hex-digits where errors occurred
are located at three positions P1, P2 and P3. We gener-
ate a dictionary from combinations of sets, SP1 = {0,b},
SP2 = {5,d,f} and SP3 = {c,9} which consist of possible
hex-digits at each position.

We denote by subgroup a set of leaked values in the raw
data that originate in the same memory location. By gener-
ating a dictionary per subgroup, we can successfully recover
the secret from noisy data.
Clustering Analysis: The problem of determining a

subgroup in the raw data in the situation where any
address-agnostic data are collected is challenging. Our
approach is to perform a clustering analysis of the raw data.
Specifically, we attempt to partition the dataset into a number
of clusters according to the Hamming distance. As a result,
each cluster corresponds to a subgroup, for which a dictionary
is generated.

Wemake use of density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm [48] for the clustering
analysis. This algorithm is suitable for our attack because it
allows clusters to be found in the noisy raw data without prior
knowledge of the number of subgroups.

C. EVALUATION
We evaluated the performance of the session key extraction
attack in terms of the success probability of key recovery and
the search complexity. In the evaluation experiment, the vic-
tim was an application running the TLS 1.3 and SSH-2 proto-
cols. We chose OpenSSL 1.0.2u [49] and wolfSSH 1.4.3 [50]
for the TLS and SSH executables, respectively, as both sup-
port AES-NI implementations. To evaluate the performance
in practical applications, we built those executables with-
out any changes such as adding artificial flush instructions.

The experimental setting was the same as that described in
Section IV-C.

The victim ran as a server while communicating with a
remote client over a session established through the protocol.
We chose AES128/256-GCM as the negotiated ciphersuites
of the TLS session. In the case of the SSH session, how-
ever, only AES128-GCM was selected as the ciphersuite
because AES256-GCM is not yet supported in wolfSSH. The
experiment was conducted with two different configurations
of the session by controlling the remote client. In the first
configuration, the client sent messages to the server for 3min-
utes at a rate of 100 msgs/s (i.e., 100 decryptions/s), and in
the second, the messages were sent for 5 minutes at a rate
of 50 msgs/s. The raw data were collected from the victim
under each configuration. To obtain averaged experimental
results, we performed a total of 100 executions of the victim
for each configuration.

After the raw data were obtained, we performed a post-
processing analysis of the data to search the session key. In
the case of a clustering-based search, the DBSCAN algo-
rithm was used with the parameters set to eps = 0.4 and
minPts = 2.
Table 3 shows the success probabilities of session key

recovery under the two different configurations. Pr[E] and
Pr[C] refer to the success probability of key recovery when
the exhaustive and the clustering-based search, respectively,
were used.When these searchmethods were applied together,
the success probability (i.e., Pr[E ∨ C]) reaches up to almost
99% for recovering AES-128 session keys on both TLS and
SSH applications. Even in the case of AES-256, the method
could successfully recover the session key with up to 98%
probability.

The clustering-based search method greatly improved
the success probability of session key recovery as shown
in Table 3. However, this may be at the cost of search com-
plexity due to the increase in the dictionary size. Table 4
presents the results of the complexity measurements of the
cluster-based method. The DBSCAN clustering analysis of
the raw data yielded hundreds of clusters, each of which
consisted of three to eight elements of the leaked values
on average. Each cluster generated a dictionary of approx-
imately from 2,000 to 7,500 candidate keys. As the ses-
sion key look-up should be performed on every cluster,
the total number of candidate keys from all the dictionar-
ies determines the overall search complexity. For AES-128,
the clustering-based method successfully found the session
key from approximately 217 ˜ 219 candidate keys in total,
whereas the AES-256 session key recovery required up to 228

˜ 237 candidate keys.

VI. COUNTERMEASURE
In this section, we present possible solutions for mitigating
MDS attacks, including those proposed in this paper.

A. HARDWARE-BASED MITIGATION
After the vulnerabilities that enable MDS attacks in Intel
processors were revealed, the processor vendor immediately

VOLUME 9, 2021 80817

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

TABLE 3. Success probability of session key recovery.

TABLE 4. Search complexity of clustering-based method.

responded by providing hardware fixes through microcode
updates on the affected processors [4]. The mitigation has
the processor clear the internal buffers, such as a load port,
store buffer and LFB before switching to different security
domains, e.g., in transitions from a privileged mode (i.e., a
kernel) to a non-privileged mode [3]. An additional hardware
fix, which flushes the L1D cache on context switching, is also
useful for preventing a new variant of the MDS attack that
exploits the LFB as a leakage source, although the fix was
originally intended to mitigate L1 Terminal Fault (L1TF)
vulnerability [51].

However, such hardware fixes fail to address all the pos-
sible cases of microarchitectural attacks [52]. In particular,
they provide no protection in the case where the threads of
both an attacker and a victim concurrently run on a physical
core, which is the case of the session key extraction attack
presented in Section V.

As hardware fixes via microcode updates do not elim-
inate the root cause of the vulnerabilities, several mitiga-
tion techniques that require redesign of CPU hardware are
proposed. With additional hardware changes, those tech-
niques fundamentally mitigate microarchitectural attacks by
isolating execution results of transient instructions until
they commit [53]–[55] or by prohibiting transient executions
within pre-defined secure domain [56].

B. ISOLATION OF LEAKAGE SOURCE
MDS vulnerabilities originate in the sharing of internal
buffers and the L1D cache by threads from different security
domains. Thus, MDS attacks can be mitigated by isolating
various leakage sources that are shared by threads. One pos-
sible solution is to deactivate simultaneous multi-threading
(SMT), also known as Intel Hyperthreading, on the affected
processors. As certain attacks such as LVI [52] are effective
even with SMT disabled, this solution must be combined with
the aforementioned hardware-based mitigations to cover all
the attack cases [5]. Although this solution may be effective
for security purposes, the system performance may be signif-
icantly affected when SMT is disabled.

An additional solution is to schedule the execution of a
thread according to its security group [3]. That is, an OS

schedules threads based on the security domain so that only
threads from the same domain are allowed to run concurrently
on the same physical core. This enables resource isolation
among different domains without the SMT being disabled,
however the OS scheduling algorithm must be modified.

C. ENCRYPTION OF PROTECTED DATA
The mitigation approaches presented above require the
patches (e.g., a microcode update and OS modification) to
be applied at a low level of the vulnerable system. This
may cause the entire system to suffer from a performance
degradation due to the security patch.

Application-level mitigation can avoid an overall perfor-
mance degradation on the underlying system. One solution is
to modify applications so that all the protected data remain
encrypted in the memory and decryption occurs only after
the data are loaded to registers. To prevent leakage of the
encryption key itself, the key is embedded in the program’s
executable binary (i.e., instructions), and is enforced to be
only loaded to specific registers when beginning the pro-
gram’s execution. Thus, MDS attacks leak only encrypted
data and the attacker obtains no information of the data unless
he/she knows the encryption key.

Palit et al. [57] realized the idea of protection by encryp-
tion. They proposed a compiler-assisted method that converts
memory objects annotated as a secret in a source code to the
objects that remain encrypted on the memory. Although their
method is intended to prevent memory disclosure attacks,
in our opinion it is also effective for mitigating MDS attacks.

D. ATTACK DETECTION
MDS attacks inherently induce an exceptionally large amount
of cache contention on the system, because they internally
make use of cache side-channel techniques to obtain the
leaked data. This characteristic of these attacks regard-
ing cache usage can be exploited to implement an intru-
sion detection system for MDS attacks. There are already
anomaly-based detection techniques for cache side-channel
attacks [20], [58]–[62]. Certain techniques are also proposed
to detect a broad range of attacks including transient execu-
tion attacks by leveraging unsupervised deep learning [63]
and ensemble learning [64]. All these techniques utilize a per-
formance monitoring counter with which modern processors
are equipped that provides a number of counters for various
CPU events, such as cache hit or miss. We can utilize these
counters to build cache-based intrusion detection systems
designated not only for MDS attacks but also for any type
of microarchitectural attack that includes cache contention.

VII. CONCLUSION
MDS vulnerabilities allow an attacker to obtain secret data on
internal buffers through a transient execution attack. In order
to leak data of arbitrary length within the buffer, previous
MDS attacks relied on repetitive sampling of a few bytes due
to the narrow transient execution window. However, as an
MDS attacker cannot fully control the memory address, such

80818 VOLUME 9, 2021

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

an approach leads to a low signal-to-noise ratio in the sampled
data, which renders postprocessing extremely challenging.

In this paper, we proposed a novel multibyte sampling
technique for MDS attacks. Using the proposed technique,
we are able to capture multiple bytes of a secret in one
execution. The implementation of multibyte sampling is not
trivial, because the encoding of several bytes within a narrow
transient execution window is a challenging problem. We
addressed this problem by enlarging the window by exploit-
ing the RSB-based speculation technique. We presented our
implementations in detail, including MDS-64, MDS-96 and
MDS-128, which respectively sample 8, 12 and 16 bytes in
one execution, as well as their performance evaluation results.

In order to validate the effectiveness of the multibyte sam-
pling technique in practice, we demonstrated AES-128 and
AES-256 session key extraction attacks against TLS and SSH
applications. To achieve more successful postprocessing of
the sampled data, we also proposed a clustering-based search
method, which allows us to efficiently recover the secret
from noisy data. In our experiments, we were able to extract
AES-128/256 session keys with a success probability of at
least 98% and reasonable postprocessing complexity.

We also presented an overview of several possible solu-
tions to mitigate the relevant vulnerabilities and prevent MDS
attacks, including the proposed technique.

REFERENCES
[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,

S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, ‘‘Melt-
down: Reading kernel memory from user space,’’ in Proc. 27th USENIX
Secur. Symp., 2018, pp. 973–990.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, ‘‘Spectre
attacks: Exploiting speculative execution,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 1–19.

[3] Intel. (2020). Deep Dive: Intel Analysis of Microarchitectural Data
Sampling. [Online]. Available: https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-analysis-microarchitectural-
data-sampling

[4] Intel. (2020). Processors Affected: Microarchitectural Data Sampling.
[Online]. Available: https://software.intel.com/security-software-
guidance/insights/processors-affected-microarchitectural-data-sampling

[5] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, ‘‘ZombieLoad: Cross-privilege-boundary data sampling,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 753–768.

[6] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, ‘‘RIDL: Rogue in-flight data load,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 88–105.

[7] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, ‘‘Fallout: Leaking data on meltdown-resistant CPUs,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 769–784.

[8] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, ‘‘Medusa: Microar-
chitectural data leakage via automated attack synthesis,’’ in Proc. 29th
USENIX Secur. Symp., 2020, pp. 1–18.

[9] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, ‘‘CrossTalk:
Speculative data leaks across cores are real,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2021, pp. 1–16.

[10] G. Maisuradze and C. Rossow, ‘‘ret2spec: Speculative execution using
return stack buffers,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 2109–2122.

[11] E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh, ‘‘Spectre
returns! Speculation attacks using the return stack buffer,’’ in Proc. 12th
USENIX Workshop Offensive Technol. (WOOT), 2018, pp. 1–12.

[12] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, ‘‘A systematic evaluation of
transient execution attacks and defenses,’’ in Proc. 28th USENIX Secur.
Symp., 2019, pp. 249–266.

[13] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
‘‘DAWG: A defense against cache timing attacks in speculative execution
processors,’’ in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), 2018, pp. 974–987.

[14] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, ‘‘FORE-
SHADOW: Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution,’’ in Proc. 27th USENIX Security Symp., 2018,
pp. 991–1008.

[15] O. Weisse, J. V. Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, ‘‘Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-
order execution,’’ Tech. Rep., 2018. [Online]. Available: https://limo.
libis.be/primo-explore/fulldisplay?docid=LIRIAS2089352&context=L&
vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US

[16] J. Stecklina and T. Prescher, ‘‘LazyFP: Leaking FPU register state using
microarchitectural side-channels,’’ 2018, arXiv:1806.07480. [Online].
Available: http://arxiv.org/abs/1806.07480

[17] Intel, ‘‘Intel analysis of speculative execution side channels,’’ Intel, Santa
Clara, CA, USA, Tech. Rep., 2018. [Online]. Available: https://newsroom.
intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-
Speculative-Execution-Side-Channels.pdf

[18] J. Horn, ‘‘Speculative execution, variant 4: Speculative store bypass,’’
Tech. Rep., 2018. [Online]. Available: https://bugs.chromium.org/p/
project-zero/issues/detail?id=15282018

[19] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, ‘‘NetSpectre: Read
arbitrary memory over network,’’ in Proc. Eur. Symp. Res. Comput. Secur.
(ESORICS), in Lecture Notes in Computer Science, 2019, pp. 279–299.

[20] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, ‘‘A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,’’ J. Cryp-
tograph. Eng., vol. 8, no. 1, pp. 1–27, Apr. 2018.

[21] Y. Yarom and K. Falkner, ‘‘FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,’’ in Proc. 23th USENIX Secur. Symp.,
2014, pp. 719–732.

[22] B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘Cache attacks
enable bulk key recovery on the cloud,’’ in Proc. Int. Conf. Cryptograph.
Hardw. Embedded Syst. (CHES), 2016, pp. 368–388.

[23] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[24] H. Kim, H. Yoon, Y. Shin, and J. Hur, ‘‘Cache side-channel attack on mail
user agent,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2020, pp. 236–238.

[25] Y. Yarom and N. Benger, ‘‘Recovering OpenSSL ECDSA nonces
using the FLUSH+RELOAD cache side-channel attack,’’ IACR Cryp-
tol. ePrint Arch., Tech. Rep. 2014/140, 2014. [Online]. Available:
https://eprint.iacr.org/2014/140

[26] Y. Shin, H. C. Kim,D.Kwon, J. H. Jeong, and J. Hur, ‘‘Unveiling hardware-
based data prefetcher, a hidden source of information leakage,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 131–145.

[27] D. Genkin, L. Valenta, and Y. Yarom, ‘‘May the fourth be with you:
Amicroarchitectural side channel attack on several real-world applications
of Curve25519,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 845–858.

[28] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Cross-VM side chan-
nels and their use to extract private keys,’’ in Proc. ACM Conf. Comput.
Commun. Secur. (CCS), 2012, pp. 305–316.

[29] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, ‘‘Wait a minute! A fast,
cross-VM attack on AES,’’ in Research in Attacks, Intrusions and Defenses
(Lecture Notes in Computer Science), vol. 8688. 2014, pp. 299–319.

[30] B. Gulmezoglu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar,
‘‘Cross-VM cache attacks on AES,’’ IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 211–222, Jul. 2016.

[31] G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘S$A: A shared cache attack
that works across cores and defies VM sandboxing—And its application
to AES,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 591–604.

[32] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
‘‘PRIME+ABORT: A timer-free high-precision L3 cache attack using
Intel TSX,’’ in Proc. 26th USENIX Secur. Symp., 2017, pp. 51–67.

VOLUME 9, 2021 80819

Y. Shin: Multibyte MDS and Its Application to Session Key Extraction Attacks

[33] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘ARMaged-
don: Cache attacks on mobile devices,’’ in Proc. 25th USENIX Secur.
Symp., 2016, pp. 549–564.

[34] D.Gruss, R. Spreitzer, and S.Mangard, ‘‘Cache template attacks: Automat-
ing attacks on inclusive last-level caches,’’ in Proc. 24th USENIX Secur.
Symp., 2015, pp. 897–912.

[35] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Cross-tenant side-
channel attacks in PaaS clouds,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2014, pp. 990–1003.

[36] Y. Shin, ‘‘Cross-VM cache timing attacks on virtualized network func-
tions,’’ IEICE Trans. Inf. Syst., vol. E102.D, no. 9, pp. 1874–1877, 2019.

[37] Y. Shin, D. Koo, and J. Hur, ‘‘Inferring firewall rules by cache side-channel
analysis in network function virtualization,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Jul. 2020, pp. 1798–1807.

[38] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri,
‘‘Port contention for fun and profit,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2019, pp. 870–887.

[39] B. Gras, H. Bos, and C. Giuffrida, ‘‘Translation leak-aside buffer: Defeat-
ing cache side-channel protections with TLB attacks,’’ in Proc. 27th
USENIX Secur. Symp., 2018, pp. 955–972.

[40] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, ‘‘TagBleed: Breaking
KASLR on the isolated kernel address space using tagged TLBs,’’ in Proc.
IEEE Eur. Symp. Secur. Privacy (EuroS P), Sep. 2020, pp. 1–13.

[41] A. Moghimi, T. Eisenbarth, and B. Sunar, ‘‘MemJam: A false depen-
dency attack against constant-time crypto implementations,’’ in Topics in
Cryptology—CT-RSA. 2018, pp. 21–44.

[42] D. Sullivan, O. Arias, T. Meade, and Y. Jin, ‘‘Microarchitectural mine-
fields: 4K-aliasing covert channel and multi-tenant detection in iaas
clouds,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–14.

[43] M. Lipp, V. Hažić, M. Schwarz, A. Perais, C. Maurice, and D. Gruss,
‘‘Take a way: Exploring the security implications of AMD’s cache way
predictors,’’ in Proc. 15th ACM Asia Conf. Comput. Commun. Secur.,
Oct. 2020, pp. 1–13.

[44] J. Van Bulck, F. Piessens, and R. Strackx, ‘‘SGX-step: A practical attack
framework for precise enclave execution control,’’ in Proc. 2nd Workshop
Syst. Softw. Trusted Execution, Oct. 2017, pp. 1–6.

[45] T. Kim and Y. Shin, ‘‘Reinforcing meltdown attack by using a return stack
buffer,’’ IEEE Access, vol. 7, pp. 186065–186077, 2019.

[46] T. Kim and Y. Shin, ‘‘High efficiency, low-noise meltdown attack by using
a return stack buffer,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Jul. 2019, pp. 688–690.

[47] H. Wong. (2018). The Microarchitecture Behind Meltdown. [Online].
Available: http://blog.stuffedcow.net/2018/05/meltdown-microarchitecture/

[48] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining, 1996, pp. 226–231.

[49] OpenSSL. (2020). OpenSSL—Cryptography and SSL/TLS Toolkit.
[Online]. Available: https://www.openssl.org/

[50] wolfSSH. (2020). WolfSSH—Lightweight SSH Library. [Online]. Avail-
able: https://www.wolfssl.com/products/wolfssh/

[51] Intel. (2018). Deep Dive: Intel Analysis of L1 Terminal Fault. [Online].
Available: https://software.intel.com/security-software-guidance/insights/
deep-dive-intel-analysis-l1-terminal-fault

[52] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, ‘‘LVI: Hijacking transient
execution through microarchitectural load value injection,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 54–72.

[53] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh, ‘‘SafeSpec: Banishing the spectre of a meltdown
with leakage-free speculation,’’ in Proc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

[54] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
‘‘InvisiSpec: Making speculative execution invisible in the cache hier-
archy,’’ in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2018, pp. 428–441.

[55] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, ‘‘Isolating
speculative data to prevent transient execution attacks,’’ IEEE Comput.
Archit. Lett., vol. 18, no. 2, pp. 178–181, Jul. 2019.

[56] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
‘‘ConTExT: A generic approach for mitigating spectre,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[57] T. Palit, F. Monrose, and M. Polychronakis, ‘‘Mitigating data leakage by
protecting memory-resident sensitive data,’’ in Proc. 35th Annu. Comput.
Secur. Appl. Conf., Dec. 2019, pp. 598–611.

[58] M. Chiappetta, E. Savas, and C. Yilmaz, ‘‘Real time detection of cache-
based side-channel attacks using hardware performance counters,’’ Appl.
Soft Comput., vol. 49, pp. 1162–1174, Dec. 2016.

[59] M. Payer, ‘‘HexPADS:A platform to detect stealth attacks,’’ inEngineering
Secure Software and Systems—ESSoS 2016 (Lecture Notes in Computer
Science), vol. 9639. 2016, pp. 138–154.

[60] T. Zhang, Y. Zhang, and R. B. Lee, ‘‘CloudRadar: A real-time side-channel
attack detection system in clouds,’’ in Research in Attacks, Intrusions, and
Defenses, vol. 9854. 2016, pp. 118–140.

[61] J. Cho, T. Kim, T. Kim, and Y. Shin, ‘‘Real-time detection on cache side
channel attacks using performance counter monitor,’’ in Proc. Int. Conf.
Inf. Commun. Technol. Converg. (ICTC), Oct. 2019, pp. 175–177.

[62] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, ‘‘Real-time detection
for cache side channel attack using performance counter monitor,’’ Appl.
Sci., vol. 10, no. 3, pp. 1–14, 2020.

[63] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, ‘‘For-
tuneTeller: Predicting microarchitectural attacks via unsupervised deep
learning,’’ 2019, arXiv:1907.03651. [Online]. Available: http://arxiv.
org/abs/1907.03651

[64] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat,
and P. Benoit, ‘‘WHISPER: A tool for run-time detection of side-channel
attacks,’’ IEEE Access, vol. 8, pp. 83871–83900, 2020.

YOUNGJOO SHIN received the B.S. degree in
computer science and engineering from Korea
University, Seoul, South Korea, in 2006, and the
M.S. and Ph.D. degrees in computer science from
KAIST, Daejeon, South Korea, in 2008 and 2014,
respectively. From 2008 to 2017, he was with the
National Security Research Institute (NSR), Dae-
jeon, as a Senior Researcher. From 2017 to 2020,
he was with Kwangwoon University, Seoul, as an
Assistant Professor. He is currently an Assistant

Professor with the School of Cybersecurity, Korea University. His research
interests include system and network security, CPU micro-architectural
security, cloud computing security, and vulnerability analysis on embedded
systems.

80820 VOLUME 9, 2021

