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ABSTRACT In this paper, a new two-steps design strategy is introduced for the optimal rational approxima-
tion of the fractional-order Butterworth filter. At first, the weighting factors of the summation between the
nth-order and the (n + 1)th-order Butterworth filters are optimally determined. Subsequently, this model is
employed as an initial point for another optimization routine, which minimizes the magnitude-frequency
error relative to the (n + α)th-order, where α ∈ (0, 1), Butterworth filter. The proposed approximant
demonstrates improved performance about the magnitude mean squared error compared to the state-of-
the-art design for six decades of bandwidth, but the introduced approach does not require a fractional-order
transfer function model and the approximant of the sα operator. The proposed strategy also avoids the use of
the cascading technique to yield higher-order fractional-order Butterworth filter models. The performance of
the proposed 1.5th-order Butterworth filter in follow-the-leader feedback topology is verified through SPICE
simulations and its hardware implementation based on Analog Devices AD844AN-type current feedback
operational amplifier.

INDEX TERMS Analog filter approximation, approximation method, Butterworth filter, current feedback
operational amplifier, fractional calculus, fractional-order filter, interpolation, low-pass filter, mean square
error method, optimization method.
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n Order of classical Butterworth filter
R2 Coefficient of Determination
sα Fractional-order Laplacian operator
ωmax Upper bound of bandwidth
ωmin Lower bound of bandwidth
ωC Cut-off frequency
ω Angular frequency
XP Vector of design variables
X Initial point vector
xi Coefficients of the proposed approximant

I. INTRODUCTION
In recent years, the theoretical concepts of fractional calculus
(FC) have been exploited towards developing more accurate
models of real-world systems [1]. The application of FC in
filter theory has led to the generalization of the traditional
integer-order filters to the fractional-order (FO) domain [2].
A FO filter achieves the non-integer order roll-off rate, which
is not possible using the classical filters. FO filters find
applications in biomedical signal processing (e.g., electrocar-
diogram and electroencephalograph processing), processing
of music signals, etc. [3]–[5]. The generalized first-order [6],
second-order [7], Butterworth [8], Chebyshev [9], [10],
inverse-Chebyshev [11], elliptic [12], power-law [13], and
double-exponent [14] filters have been reported in the litera-
ture. Various works have demonstrated the low-pass, high-
pass, and band-pass filter characteristics based on the FO
transfer function (FOTF) [15]–[18]. The implementation of
FOTF models can be accomplished using fractance devices
(also known as constant phase elements) [19]. The practical
realization of fractors has drawn significant attention from
researchers [3], [20]. Due to the unavailability of the frac-
tance element as a commercial product, various emulation
techniques to approximate the impedance characteristics of
the fractor have been reported [21]–[24]. The FO Laplacian
operator sα , where α ∈ (0, 1), has been approximated
using the integer-order transfer function (IOTF) based on
several approaches [25]–[29]. Rational approximations of
the FO generalized filters and systems were realized using
optimization techniques [30], [31].

The FOTF models of the fractional-order Butterworth fil-
ter (FOBF) based on the s-plane to W-plane transforma-
tion technique were reported in [32]; however, the designs
for irrational orders could not be generated. In [33], the
(1+α)-order Butterworth filter was approximated using three
FOTF models by minimizing the magnitude-frequency error
relative to a first-order low-pass Butterworth filter. Another
recent work [34] applies the Particle Swarm Optimization
(PSO) algorithm for the same purpose. Error minimization
of FOTF models concerning the second-order Butterworth
filter characteristics was reported using the Cuckoo Search
Algorithm (CSA), Interior Search Algorithm (ISA), and
speed-enhanced CSA-to-ISA [35]. High-pass and band-pass
characteristics of the FOBF were achieved using several
FOTF models reported in [36]. In [37], comparative stud-
ies were carried out for the Symbiotic Organisms Search

algorithm optimized FOTF models to approximate the char-
acteristics of the (1+α)th-order high-pass Butterworth filter.

A well-known method to transform the FOTF into an
integer-order one is through the replacement of the operator
sα with its rational approximant in the FOTF model [34],
[38]–[40]. For example, a third-order approximant was
obtained in [34] by substituting sα with the continued
fraction expansion (CFE) based biquadratic model in the
PSO-optimized FOTF. At the cost of additional hardware
overhead, the bandwidth of the resultant IOTF can be
increased by enhancing the order of the rational approx-
imation of sα . A recent work [41] reported that such an
approximant, when treated as an initial point for a classical
optimizer, that minimizes the modeling error about the ideal
FOBFmagnitude characteristic, can significantly enhance the
design bandwidth. Gravitational Search and Powell’s algo-
rithms were employed in [42] and [43], respectively, to obtain
the optimal third-order FOBF approximants. In [33], FOBF
approximants of (n + α)th-order, where n is an integer, were
obtained by cascading the (1 + α)th-order model with the
(n − 1)th-order Butterworth function. In [44], the optimal
(2+α)th-order FOBFwas designed by avoiding the cascading
method. Optimal rational approximations of the band-pass
Butterworth filter exhibiting the symmetric [45] and asym-
metric [46] FO roll-off behavior were also reported. It may be
noted that the definition of the FOBF is based on the magni-
tude function; their phase characteristic is not mathematically
defined.

In this paper, a new two-steps optimal design technique
for the rational approximation of the FOBF is introduced.
The proposed method is based on the interpolation of
nth and (n + 1)th-order Butterworth filters to model the
magnitude-frequency characteristic of the (n + α)th-order
Butterworth filter optimally. Compared to the best perform-
ing method reported in the literature (the Constrained Opti-
mization technique [41]), the proposed approach does not
require a FOTFmodel and the approximant of the sα operator.
The suggested strategy also avoids the use of the cascading
technique to yield higher-order FOBF models. The proposed
models attain improved accuracy concerning the magnitude
mean squared error (MSE) metric for six decades of band-
width (0.001–1000 rad/s) when compared to the cited litera-
ture. A comparative study of the proposed method with the
reported literature on the rational approximation of FOBFs
is presented in Table 1. Discrete components based cir-
cuit implementation using the commercially available Ana-
log Devices AD844AN-type current feedback operational
amplifier (CFOA) is demonstrated to highlight the practical
efficacy. Both SPICE simulations and experimental measure-
ments reveal good agreement with the ideal FOBFmagnitude
characteristic.

The rest of the paper is structured as follows. In Section II,
the proposed technique is introduced. MATLAB and SPICE
simulations, along with hardware experimental results, are
presented in Section III. Finally, the paper concludes in
Section IV.

81098 VOLUME 9, 2021



S. Mahata et al.: Optimal Approximation of FOBF

TABLE 1. Comparison between the rational approximation techniques for FOBF modeling. (NR: Not Reported).

II. PROPOSED TECHNIQUE
The theoretical magnitude-frequency response of a FOBF of
order (n+ α) is given by (1):

|Bn+α(jω)| =
1√

1+
(
ω
ωC

)2(n+α) , (1)

where ω is the angular frequency and ωC is the cut-off
frequency expressed in radians per second (rad/s). The
proposed design method comprises two steps, as detailed
below.

A. STEP 1: OPTIMAL DETERMINATION OF WEIGHTING
FACTORS
Consider the transfer function as defined by (2):

Hn+α(s) =
Cn+α
Bn(s)

+
Dn+α
Bn+1(s)

, (2)

where the weighting factorsCn+α andDn+α are real and posi-
tive numbers; Bn(s) and Bn+1(s) are the classical Butterworth
polynomials of order n and n+ 1, respectively.

In the first step, the optimal values of Cn+α and Dn+α
are determined for a desired order of the normalized FOBF
(ωC = 1 rad/s) by minimizing the cost function, as given
by (3):

f =
1
L

L∑
i=1

|20 log10 |B
n+α(jωi)|

−20 log10 |H
n+α(jωi,X )||2, (3)

where L denotes the total number of sampled frequency
points with logarithmic spacing in the bandwidth ω ∈

[ωmin, ωmax] rad/s; and X = [Cn+α Dn+α] is the vector of
design variables.

After the optimization procedure, Hn+α(s) may be repre-
sented as per (4):

Hn+α(s) =
u1sn+1 + u2sn + · · · + un+2

s2n+1 + un+3s2n + un+4s2n−1 + · · · + u3n+3
,

(4)

where the coefficients of Hn+α(s) are given by ui (i = 1, 2,
. . ., 3n+ 3).

B. STEP 2: OPTIMAL DETERMINATION OF COEFFICIENTS
FOR THE FOBF APPROXIMANT
The proposed FOBF approximant is modeled as per (5):

T n+α(s) =
P(s)
Q(s)

=
x1sn+1 + x2sn + · · · + xn+2

s2n+1+xn+3s2n + xn+4s2n−1 + · · · + x3n+3
, (5)

where the coefficients of T n+α(s) are denoted by xi (i = 1, 2,
. . ., 3n+ 3).
The coefficients of Hn+α(s), i.e., ui (i = 1, 2, . . ., 3n +

3), are treated as an initial point for the second minimiza-
tion routine, whose fitness function (MSE) is given by (6),
to determine the optimal values of the coefficients of T n+α(s):

MSE =
1
L

L∑
i=1

|20 log10 |B
n+α(jωi)|

−20 log10 |T
n+α(jωi,XP)||2, (6)

where XP = [x1 x2 . . . x3n+3] represents the vector of design
variables comprising the coefficients of T n+α(s).
To guarantee the generation of stable approximants,

the inequality constraints as given by (7), are incorporated
in the optimization routine:

11,12,13, · · · ,1N > 0 (N = 2n+ 1), (7)
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where,

11 = dN−1,

12 =

∣∣∣∣ dN−1 dN−3
dN dN−2

∣∣∣∣ , 13 =

∣∣∣∣∣∣
dN−1 dN−3 dN−5
dN dN−2 dN−4
0 dN−1 dN−3

∣∣∣∣∣∣ ,

. . . , 1N =

∣∣∣∣∣∣∣∣∣∣∣

dN−1 dN−3 dN−5 · · · 0
dN dN−2 dN−4 · · · 0
0 dN−1 dN−3 · · · 0
...

...
...

...
...

0 0 0 · · · d0

∣∣∣∣∣∣∣∣∣∣∣
are the Hurwitz determinants [47]; and Q(s) =

∑N
k=0 dks

k .
The pseudocode of the proposed FOBF design technique

is presented in Algorithm 1.

III. SIMULATION RESULTS, EXPERIMENTAL
VERIFICATION, AND DISCUSSIONS
The cost functions (3) and (6) are minimized using the
MATLAB programming language (software version:
MATLAB 2014a) with function fmincon (algorithm: ‘active-
set’) based on the following parameter settings: MaxFu-
nEvals= 50000,MaxIter= 5000, TolFun= 1E–10, and TolX
= 1E–10. The lower bound (Lb) for X is set as 0. The initial
point (x0) for X to minimize (3) is a randomly chosen value
(drawn from uniform distribution) between 0 and 1. Hundred
independent trial runs of the algorithm are carried out for
Step 1. The optimal value of X , which achieves the minimum
value of f, (i.e., fmin) is identified as the best solution from
Step 1. The Lb of the design variables for the optimization
procedure in Step 2 is chosen as 1E–8. The value of L is set
as 1000.

A. DESIGN OF FOBFs FOR n = 1
This section deals with the performance assessment of
the proposed technique for the design of FOBFs with
n = 1.

1) CHOICE OF THE WEIGHTING FACTORS
Two different choices for the weighting factors may be con-
sidered as follows:

Case 1: C1+α and D1+α are determined by fixing their
upper bound (Ub) as 2.

Case 2:A special case arises from the previous one when
D1+α = 1 − C1+α . For this condition, a single
variable minimization can be carried out instead of
the two-variable one for Case 1. The Ub for C1+α
is set as 1.

The optimal values of C1+α and D1+α (Case 1) with
α varying from 0.01 to 0.99 in steps of 0.01, are plotted
in Figure 1 (top left). It is found that (i) C1+α reduces from
0.9635 for α = 0.01 and monotonically decreases to 0 as
α increases; and (ii) C1+α becomes exactly 0 for α = 0.99.
In the case ofD1+α , it is found that (i) the value increases from
0.03771 at α = 0.01, crosses one at α = 0.43, yields a peak

Algorithm 1: Pseudocode of the Proposed Optimal
FOBF Modeling Technique

Inputs : n, α
Outputs: X , XP

1 begin
2 Set ωmin, ωmax, L, lower bound (Lb) for X and

XP
3 for k = 1 to 100 do
4 x0 (Initial point of X )← rand(0, 1)
5 Minimize (3)
6 Store fk and Xk

7 fmin← min{fk}
8 X ← Xk corresponding to fmin
9 Calculate ui (i = 1, 2, . . ., 3n+ 3)

10 Minimize (6) and display XP

FIGURE 1. Optimal values of C1+α and D1+α .

of 1.208 for α = 0.71–0.74, and then decreases towards 1
(precisely attaining 1.017 at α= 0.99); and (ii) unlike the plot
for C1+α , slight abruptness in the value of D1+α is noticed at
α= 0.90, 0.92, 0.93, and 0.94. The overall trend forC1+α and
D1+α concurs with the fact that for lower (higher) values of
α, the first-order (second-order) Butterworth filter responses
play a dominant role in shaping the magnitude-frequency
behavior of the FOBF.

The optimal values of C1+α (Case 2), as plotted in Figure 1
(top right), show a monotonically decreasing character with
increasing α. Comparison of C1+α obtained for Cases 1 and
2, as illustrated in Figure 1 (bottom left), reveals almost
identical curves. The coefficient of determination (R2) for
C1+α based on these two cases is 0.999949, which confirms
a close matching.

Comparisons about D1+α for the two cases are presented
in Figure 1 (bottom right). It is observed that (i) the two
plots are nearly the same up to α = 0.11; (ii) for α >

0.11, D1+α acquires a higher value for Case 1 when com-
pared to Case 2. This is possible due to the choice of the
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TABLE 2. Optimal coefficients of the proposed FOBF approximants.

higher value of Ub (= 2) for D1+α with Case 1. It may
be recalled that the roll-off rate for a 1.5th-order FOBF
(–30 dB/decade) lies exactly in-between that of the first-order
and second-order Butterworth filters. However, the values
of C1+α and D1+α for Case 2 at α = 0.5 are 0.09374 and
0.90626, respectively. These values of weighting factors
highlight that the second-order Butterworth response is more
dominant in characterizing the behavior of the 1.5th-order
model based on the optimization procedure proposed in
Step 1.

A comparison of the cost function value (f ) for Cases 1 and
2 is presented in Figure 2. It is found that both cases attain
a similar fitness for α ≤ 0.26. With a further increase
in the design order, the error achieved by Case 1 is lower
than Case 2. Thus, a better accuracy may be achieved
in Step 1 of the proposed method by allowing indepen-
dent variations of the weighting factors. It may be noted
that abruptly high value of f is observed for α = {0.90,
0.92} and α = {0.86, 0.90, 0.92, 0.95} for Cases 1 and 2,
respectively.

The MSE achieved by the proposed FOBF approximants
for α ∈ (0.01, 0.99) based on Cases 1 and 2 is com-
pared in Figure 3. It is found that a spike in the fit-
ness value is yielded at α = {0.02, 0.05, 0.06} and α =
0.05 for Cases 1 and 2, respectively. For all other orders,
the same value of MSE is achieved for both cases. It is
worth emphasizing that although Case 1 produces a better
fitness for α > 0.26 after Step 1, and hence, a better ini-
tial point, however, the final solution quality of the FOBF
approximant (obtained after Step 2) for these orders remains
the same for both cases. Therefore, Case 2 may be pre-
ferred over Case 1 since Case 2 requires only one design
variable.

For Case 1, the optimal values of [C1+α D1+α] with α =
0.2, 0.5, 0.8, and 0.86, are [ 0.4452 0.5973] , [ 0.08886 1.084] ,
[ 0.008148 1.192] , and [ 0.004407 1.155] , respectively. The
optimal values of C1+α for Case 2 with α = {0.2, 0.5, 0.8,
0.86} are {0.4474, 0.09374, 0.009298, 5.551E–17}. Since
C1+α is practically zero for Case 2 with α = 0.86, there-
fore, the corresponding initial point exhibits the behavior
of a second-order Butterworth filter. This finding explains
the appreciably large f yielded for α = 0.86 in Case 2 (see
Figure 2). The optimal values of coefficients of the proposed
FOBFs for various values of α obtained for Cases 1 and 2 are
presented in Table 2. The similarity of the model coefficients

FIGURE 2. Comparison between the fitness values (f) achieved for
Case 1 and Case 2.

FIGURE 3. Comparison between the MSE values achieved for Case 1 and
Case 2.

obtained for both cases may explain the resemblance of the
error curves presented in Figure 3.

Figures 4(a)–(d) show the magnitude-frequency plots of
the approximants obtained after Step 1 (top) and Step 2
(bottom) for α = 0.2, 0.5, 0.8, and 0.86, respectively. For all
the four considered cases, it is observed that the responses
of the initial point (top sub-plot in Figure 4) substantially
depart from the ideal behavior. These responses are based
on the transfer function (2), which is an intermediate step in
the proposed FO filter design method and is not used for the
filter circuit implementation. It is only an initial point for the
Step 2, which leads to the transfer function (5), as illustrated
by the bottom responses in Figure 4. Thus, the final design
obtained after Step 2 can approximate the ideal characteris-
tic (1) with much better accuracy. That is, the proposed FOBF
(obtained after Step 2) exhibits good agreement with the
theoretical characteristics. It may be noted from Figure 4(d)
that the magnitude plots of the initial point based on Case 1 is
closer to the ideal one in comparison to that attained for
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FIGURE 4. Magnitude-frequency comparison plots of the approximants based on Case 1 (dashed blue), Case 2 (dashed black), and the ideal FOBF (solid
red) after Step 1 (top) and Step 2 (bottom) for (a) α = 0.2, (b) α = 0.5, (c) α = 0.8, and (d) α = 0.86.

TABLE 3. Constraints incorporated with the cost function given in (6).

TABLE 4. Comparison between the designed FOBFs (n = 1) for α = 0.46 and 0.68.

Case 2. This confirms the lower value of f achieved for Case 1
(3.654 dB2) than Case 2 (11.780 dB2) at α = 0.86.

2) INCORPORATION OF ADDITIONAL CONSTRAINTS
From (1), it follows that a normalized FOBF exhibits:
(i)
∣∣Bn+α(j0)∣∣ = 1, and (ii)

∣∣Bn+α(j1)∣∣ = 1
√
2
. The strategy

proposed in Section II guarantees the generation of stable
approximants only; no specific constraints were incorporated
to satisfy the ideal magnitude responses at 0 and 1 rad/s.
In this sub-section, comparative studies are conducted by
introducing additional constraints in the proposed optimiza-
tion technique to achieve the two aforementioned character-
istics. For this purpose, Table 3 presents four design cases
based on the constraints incorporated to minimize (6), with
Step 1 modeled by D1+α = 1− C1+α .

The magnitude values of the designed (1+α)-order FOBFs
for ω = 0 rad/s based on the four cases are presented

in Figure 5. It is observed that Case 1 (top left) and Case 2
(top right) exhibit the worst response, which is expected since
no explicit constraints are incorporated to ensure that the
magnitude of the approximant at ω = 0 rad/s satisfies the
ideal value of 0 dB.

For Case 1, the largest deviation occurs for α = 0.01,
where a magnitude of –0.6055 dB at 0 rad/s is obtained. For
the same order, Case 2 yields a magnitude of 0.0034 dB.
Except for α = 0.46 and 0.68,

∣∣T 1+α(j0)
∣∣ for the designs

based on Cases 1 and 2 for all the other orders are simi-
lar (middle). For Case 3 (bottom left) and Case 4 (bottom
right), including the equality constraint x6 = x3 ensures
that

∣∣T 1+α(j0)
∣∣ ≈ 0 dB for all the considered values

of α.
The discrepancies in the magnitude at 0 rad/s of the FOBFs

based on Cases 1 and 2 at α = 0.46 and 0.68 are investigated
by tabulating the performance metrics and design variables
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FIGURE 5. Magnitude (dB) at DC (i.e., ω = 0 rad/s) for the ideal (red) and
the designed FOBFs (blue) based on Case 1 (top left), Case 2 (top right),
Case 3 (bottom left), and Case 4 (bottom right). Figure in the middle
shows the comparison plots between Case 1 (blue) and Case 2 (black)
based FOBFs.

in Table 4. It is revealed that although the values of C1+α , and
hence f, for these two orders are the same for both Cases 1 and
2, however, (i) the model coefficients are highly dissimilar,
and (ii) the two design variables for α = 0.46 and one for
α = 0.68 based on Case 2 are stuck at the lower bound,
which does not occur for Case 1. A larger value of MSE
is also yielded for Case 2 in comparison to Case 1. This
implies that to ensure the constraint

∣∣T 1+α(j1)
∣∣ = 1/

√
2 for

Case 2, the optimizer in Step 2 fails to reduce the modeling
error throughout the entire bandwidth. This is justified in Fig-
ures 6(a)–(b), which show the magnitude comparison plots of
the FOBFs based on Cases 1 and 2, for α = 0.46 and 0.68,
respectively.

Figure 7 presents the magnitude plots of the 1.68th-order
FOBF, where the lower frequency bound is 10−10 rad/s.
The magnitude response of the Case 2 based model devi-
ates from the ideal when the frequency decreases below
0.001 rad/s, with

∣∣T 1.68(j0.001)
∣∣ being –0.3644 dB, while∣∣T 1.68(j10−10)

∣∣ equals to –100.7 dB. It is noteworthy that
the magnitude response exhibits a band-pass-like behav-
ior in the range ω ∈ [10−10, 103] rad/s since x3 is
practically zero. However, for the considered bandwidth of
approximation ω ∈ [10−3, 103] rad/s, the magnitude
response of the approximant exhibits the desired low-pass
characteristic.

Figure 8 presents the magnitude at 1 rad/s for the (1 +
α)-order FOBFs based on Case 1 (top left), Case 2 (top
right), Case 3 (middle left), and Case 4 (middle right). For
Cases 2 and 4, the magnitude is nearly equal to the ideal value
of –3.01 dB. This finding demonstrates that the optimizer
can effectively satisfy the constraint

∣∣T 1+α(j1)
∣∣ = 1/

√
2

for these two cases. The responses of the designs based on
Cases 1 and 3 deviate from the theoretical one due to the
absence of such an explicit constraint. Comparison between
the magnitude values of the FOBFs at 1 rad/s for Cases 1 and
3 is presented in Figure 8 (bottom). It is found that the two

FIGURE 6. Magnitude-frequency comparison plots for the designed
FOBFs (n = 1) with (a) α = 0.46 and (b) α = 0.68.

FIGURE 7. Magnitude-frequency comparison plots for the designed FOBF
(n = 1, α = 0.68) for ω ∈ [10−10,103] rad/s.

responses are similar for all values of α, except for α = 0.05
(Case 1: –3.297 dB, Case 3: –3.103 dB), α = 0.06
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FIGURE 8. Magnitude (dB) at ω = 1 rad/s for the designed FOBFs (solid
blue) based on Case 1 (top left), Case 2 (top right), Case 3 (middle left),
Case 4 (middle right), and comparison between Case 1 (solid black) and
Case 3 (solid blue) based FOBFs (bottom). The ideal response is shown in
solid red.

(Case 1: –3.123 dB, Case 3: –3.355 dB), α = 0.07 (Case 1:
–3.141 dB, Case 3: –3.413 dB), and α = 0.90 (Case 1:
–3.125 dB, Case 3: –3.718 dB).

Figures 9(a)–(c) show the comparison of MSE for the
designed FOBFs based on Case 1 with those of Case 2,
Case 3, and Case 4, respectively. It is revealed that:
(i) Case 1 achieves the best accuracy among the four cases;
(ii) For Case 2, significantly large MSE of 0.3908 dB2,
2.645 dB2, and 2.504 dB2 are yielded for α = 0.14, 0.46,
and 0.68, respectively; (iii) The value of MSE for Case 3 is
marginally higher than Case 1, with a large spike (MSE
= 0.4448 dB2) occurring at α = 0.90. The design vari-
able vector XP for this order is [0.00203465 1.40528707
0.00000778 2.12103022 1.38670144 0.00000778]; zeros are
located at –690.6775 and –0.00000553; and poles are located
at –1.0605±0.5118i, and –0.00000561. While forcing the
model to meet the constraint

∣∣T n+α(j0)∣∣ = 1, Case 3 for α =
0.90 results in the near cancellation of a pole-zero pair located
practically at 0; and (iv) For Case 4, the values of MSE at
α = 0.07 and α = 0.10 are 0.1004 dB2 and 0.2031 dB2,
respectively, which is significantly larger compared to Case 1
(MSE= 0.0069 dB2 and 0.0139 dB2). Thus, while additional
constraints may allow the designs to meet the ideal magnitude
response at 0 and 1 rad/s, however, the trade-off lies in yield-
ing a higher modeling error over the entire bandwidth. From
the perspective of design accuracy, Case 1 may be preferred
over the other three.

3) COMPARISON WITH THE LITERATURE
Figure 10 presents the MSE comparison plots between the
proposed (1 + α)-order models with the third-order FOBFs
designed using the PSO algorithm with CFE-based sub-
stitution [34] and the Powell’s algorithm [43]. It can be
observed that both the reported designs are significantly out-
performed by the proposed method. The maximum value
of MSE (MMSE) for [34] is obtained at α = 0.76

FIGURE 9. Comparison of MSE for the (1+ α)-order FOBFs based on
Case 1 with the models designed using (a) Case 2, (b) Case 3, and
(c) Case 4.

(MMSE = 36.32 dB2); for [43], MMSE of 39.46 dB2 is
yielded at α = 0.94. In contrast, MMSE of only 0.1981 dB2

(which occurs at α = 0.56) is achieved for the proposed
method.

Comparisons of MSE for the proposed models with the
optimal (1+α)-order FOBFs reported for the same bandwidth
in [41], are presented in Figure 11. The same value of MSE
is achieved by the proposed designs for all orders, except for
α = 0.05 where the proposed (0.02907 dB2) differs from the
reported one (0.003542 dB2). The similarity in MSE between
the reported and proposed FOBFs arises due to the closeness
of their design variables. Consequently, the proposed FOBFs
achieve similar accuracy compared to the state-of-the-art
reported in [41]. This fact is highlighted by considering three
arbitrarily chosen example cases (α = 0.2, 0.5, 0.8), as shown
in Table 5.
In contrast, the large variation in XP for α = 0.05 reported

in [41] with the proposed one may be noted from Table 5.
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TABLE 5. Comparison between the design variables vector.

FIGURE 10. MSE comparison plots for the proposed (1+ α)-order
Butterworth filter with the models reported in [34] and [43].

FIGURE 11. MSE comparison plots for the proposed FOBFs (blue) with
the constrained optimization method cited in [41] (black).

FIGURE 12. Magnitude response comparison plots between the proposed
1.05th-order FOBF T 1.05(s) (solid blue), T̂ 1.05(s) (dashed blue),
the reported model [41] (solid black), and the ideal one (solid red).

However, it may be observed from Figure 12 that no notice-
able difference exists in the magnitude responses between
the proposed and reported 1.05th-order models. Moreover,
since x3 and x6 for the proposed approximant (α = 0.05) are

TABLE 6. Optimal design variables vector for 0.01 ≤ α ≤ 0.06.

FIGURE 13. Optimal values of coefficients for the proposed (1+ α)-order
FOBFs.

small (1E–8), fixing these values to 0 results in a second-order
approximant, as given by (8):

T̂ 1.05(s) =
0.7487s+ 29.9201

s2 + 32.9621s+ 29.7615
. (8)

Interestingly, the FOBF as modeled by (8) also attains
proximity to the ideal magnitude-frequency behavior of
the 1.05th-order Butterworth filter, as illustrated in Fig-
ure 12. Both the second-order and third-order proposed
approximants for α = 0.05 attains the same MSE
of 0.029068 dB2.

4) GENERALIZED EXPRESSIONS OF MODEL COEFFICIENTS
The optimal values of x1, x2, . . ., x6 for the proposed FOBFs
(Case 1) are plotted in Figure 13. A significant perturbation
exists in x2 to x6 for 0.01 ≤ α ≤ 0.06, beyond which
the values of the coefficients smoothly and monotonically
decrease. The optimal values of XP for 0.01 ≤ α ≤ 0.06
are presented in Table 6.

The optimal model coefficients xi (i = 1, 2, . . ., 6) may
be approximated using an mth-degree polynomial in α. As a
representative, fitting of the optimal coefficient x2 using an
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FIGURE 14. Comparison of optimal and 8th-degree polynomial fitted
coefficient x2 for α ∈ [0.01,0.99] (top) and α ∈ [0.06,0.99] (bottom).

FIGURE 15. Comparison of MSE between the optimal and 8th-degree
polynomial fitted coefficients of (1+ α)-order FOBFs in the range
α ∈ [0.01,0.99].

8th-degree (m = 8) polynomial in α, for 0.01 ≤ α ≤ 0.99
(top) and 0.06 ≤ α ≤ 0.99 (bottom) is shown in Figure 14.
It can be observed that choosing α = 0.06 as the starting
value results in improved fitting to the optimal x2. The norm
of residuals (0 in the ideal case) for the curve fitting of x2
with α ∈ [0.01, 0.99] and α ∈ [0.06, 0.99] is 104.49 and
0.634, respectively.

Figure 15 shows that the 8th-degree polynomial fitted coef-
ficients for 0.01 ≤ α ≤ 0.99 result in significantly large
MSE beyond α > 0.50 in comparison to the optimal one.
It is noteworthy that even for a 12th-degree polynomial fitting
for α ∈ [0.01, 0.99], the norm of residuals obtained for

FIGURE 16. Comparison of MSE between the optimal FOBF and the
model obtained as per (9) for α ∈ [0.01,0.99].

x2, x3, . . ., x6 are 99.177, 924.63, 116.82, 1053.2, and 923.95,
respectively. Thus, due to the observed perturbations, it is
difficult to obtain good accuracy based on the generalized
expressions for the coefficients starting fromα= 0.01. There-
fore, the curve fitting of the optimal coefficients needs to be
carried out in the range α ∈ [0.06, 0.99].

The norm of residuals yielded for different values of m
for α ∈ [0.06, 0.99] are presented in Table 7. It is
found that increasing m results in a smaller norm of resid-
uals for all coefficients. The generalized expressions for the
8th-degree polynomial fitted coefficients of T 1+α(s), where
α ∈ [0.06, 0.99], are presented as a matrix equation in (9),
as shown at the bottom of the page.

Figure 16 (top) shows the MSE plots for the FOBF
modeled using (9) compared to the optimal one, for
α ∈ [0.01, 0.99]. The corresponding absolute difference in
MSE obtained using the optimal (MSEOpt) and curve fitted
(MSECF) models is presented in Figure 16 (bottom). It is
revealed that: (i) the model based on (9) achieves a lower
MSE (0.003554 dB2) compared to the optimal (0.02907 dB2)
1.05th-order FOBF. After polynomial fitting, the decision
variables for the 1.05th-order approximant is yielded as XP =
[0.7215 119.1411 876.6214 142.7952 1031.5836 874.2710]
which avoids the value of 1E–8 obtained for x3 and x6 in the
optimal case, and (ii) the MSE achieved by the curve fitted
and optimal models are similar up to α ≤ 0.80.


x1
x2
x3
x4
x5
x6

=

3.4390 −18.8117 45.8370 −66.2936 63.9512 −43.4402 20.8045 −6.4848 0.9988
492.96 −2529.8 5695.9 −7535.8 6710.9 −4408.9 2225.4 −803.82 154.28
7607.6 −36774 75316 −85751 60820 −29925 12151 −4489.4 1074.1
486.81 −2426.2 5059.2 −5739.5 3881.2 −1666.9 568.62 −288.41 155.98
9481.6 −45639 92724 −103780 70826 −32184 11914 −4527.8 1231.8
6481.4 −31434 64716 −74387 53779 −27463 11734 −4468.9 1071.5

 .



α8

α7

α6

α5

α4

α3

α2

α

1


(9)
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FIGURE 17. Comparison of MSE between the proposed and reported
curve fitted (1+ α)-order FOBFs.

TABLE 7. Norm of residuals for coefficients (α ∈ [0.06, 0.99]).

In [41], generalized expressions of coefficients based
on the 12th-degree polynomial fitting for the (1 + α)
order FOBFs were reported. Figure 17 presents the MSE
(α ∈ [0.01, 0.99]) comparison plots for the proposed
curve fitted approximants with their corresponding counter-
parts cited in [41]. It may be observed that the proposed
approach can achieve superior modeling accuracy (lower
MSE) over [41] beyond α ≥ 0.61. The MMSE attained at
α = 0.97 for the reported method [41] is 2.551 dB2, while
the proposed FOBF yields only 0.140 dB2.

B. DESIGN OF FOBFs FOR n > 1
The applicability of the proposed technique towards the opti-
mal modeling of higher-order FOBFs is demonstrated in this
section. Figure 18 shows the optimal values of the design
variables obtained for FOBFs with n = 2. However, poly-
nomial curve fitting with a lower norm of residuals may not
be achieved due to the large variations throughout the design
range for the optimal coefficients (x2 to x9).
Figure 19 presents the optimal values ofC2+α (top), f (mid-

dle), andMSE (bottom) achieved for the (2+α)-order FOBFs.
It is found that (i) the profile yielded for C2+α is similar to
that obtained for C1+α; (ii) the worst value of f (14.33 dB2)
occurs at α = 0.58, although the MSE (0.01178 dB2) is
significantly small; (iii) At α = 0.89, C2+α is obtained as 0,
which implies that the resultant initial point is the transfer
function of the third-order Butterworth filter. Hence, a large
peak for f (7.273 dB2) is exhibited with the 2.89th-order
filter; however, the resultant MSE is low (0.002083 dB2); and

FIGURE 18. Optimal values of coefficients for the proposed (2+ α)-order
FOBFs.

FIGURE 19. Cn+α (top), f (middle), and MSE (bottom) plots for the
proposed FOBFs with n = 2.

(iv) three particular orders, namely α = {0.22, 0.29, 0.37},
yield an abrupt peaking in MSE as coefficient x3 attains a
value of 1E–8. However, the corresponding values of f and
MSE are {4.563, 7.134, 10.070} dB2 and {0.3966, 0.6698,
1.0180} dB2, respectively, which demonstrates a reduction by
a factor of approximately 10 in the modeling error.

Table 8 presents the values of Cn+α , f , XP, and MSE for
the proposed (2+α) and (3+α)-order FOBFs, with α = 0.2,
0.5, and 0.8. A considerable reduction in error (by more than
a factor of 100) is obtained for the considered approximants
going from Step 1 to Step 2 of the proposed optimization
procedure. The magnitude-frequency plots of the initial point
and optimal models for these test cases are illustrated in Fig-
ures 20(a)–(b) for n= 2 and n= 3, respectively. The response
of the initial point deviates from the ideal behavior; however,
the optimal approximant achieves good agreement for all
cases. Thus, the proposed technique also demonstrates an
efficient modeling performance for the design of higher-order
FOBFs.
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TABLE 8. Optimal design variables and error values for the proposed FOBFs (n = 2, 3).

FIGURE 20. Magnitude response comparison plots between the ideal (solid red), initial point (dashed black), and proposed FOBFs (solid
blue) for (a) n = 2, and (b) n = 3.

FIGURE 21. MSE comparison plots for the proposed (2+ α)-order FOBFs
with the literature.

For the Enhanced Fitness Adaptive Differential Evolu-
tion (EFADE) algorithm based FOBFs of order {2.1, 2.2,
. . . , 2.9} reported in [44], the MSE values are obtained
as {55.751, 163.348, 284.368, 372.299, 394.465, 469.482,
530.430, 654.157, 938.962} dB2. In contrast, the proposed
method achieves a significantly lower MSE of {0.081, 0.029,
0.006, 0.098, 0.123, 0.011, 0.009, 0.006, 0.001} dB2. Fig-
ure 21 shows the MSE comparison plots between the pro-
posed and Powell’s algorithm [43] based (2+α)-order FOBFs
for α varying from 0.01 to 0.99 in steps of 0.01. It is observed
that the proposed method can significantly outperform [43]
throughout the design range. The magnitude response of

FIGURE 22. Magnitude-frequency comparison plots of the proposed
2.5th-order FOBF with the literature.

the proposed 2.5th-order FOBF is compared with the recent
literature, as shown in Figure 22. The responses of the mod-
els reported in [43] and [44] appreciably deviate from the
theoretical characteristic beyond 75.31 rad/s and 12.83 rad/s,
respectively. In contrast, the proposed approximant remains
in proximity to the ideal magnitude response throughout the
bandwidth.
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FIGURE 23. CFOA-based circuit realization of the proposed (1+ α)-order Butterworth filter.

C. CIRCUIT REALIZATION
CFOAs have been employed as active elements to realize
the FO filters in several research works [48], [49]. Figure 23
shows the circuit diagram to realize the proposed (1+α)-order
Butterworth filter using the CFOAs in follow-the-leader feed-
back topology. The complexity of the proposed filter circuit
is reasonable since the (1 + α)-order FOBF is implemented
using a third-order circuit. The circuit transfer function in
voltage mode is defined according to (10):

VOUT(s)
VIN(s)

=

RG4
R1RG1C1

s2 + RG4
R2RG1RG2C1C2

s+ RG4
R3RG1RG2RG3C1C2C3

s3 + 1
RF1C1

s2 + 1
RG2RF2C1C2

s+ 1
RG2RG3RF3C1C2C3

. (10)

The circuit realization of the proposed (normalized)
1.5th-order FOBF modeled using (9), as given by (11):

T 1.5(s) =
0.0354s2 + 12.7050s+ 167.2891

s3 + 70.7800s2 + 236.1953s+ 165.1961
, (11)

is considered for demonstration purposes. The design cut-off
frequency is chosen as 1 kHz. Comparing (10) with the
frequency transformation to 1 kHz of (11), leads to 6 design
equations involving 13 unknown parameters. The resistor and
capacitor values are selected from the E–24 and E–12 stan-
dard industrial series, respectively. The following compo-
nents are initially set: RG1 = 20 k�, RG2 = 1 k�, RG3 =
1 k�, RG4 = 1 k�, RF1 = 1 k�, RF2 = 5.1 k�, and RF3 =
100 k�. The standard values for the remaining components
are derived as: R1 = 100 k�, R2 = 4.7 k�, R3 = 4.7 k�,
C1 = 2.2 nF, C2 = 10 nF, and C3 = 12 nF.

1) SPICE SIMULATION
Simulations are conducted in OrCAD PSPICE software with
the AD844A/AD IC employed as CFOA. Figure 24 shows the
magnitude response of the MATLAB and SPICE simulated

FIGURE 24. Magnitude-frequency responses of the proposed 1.5th-order
FOBF.

FOBF circuit, which demonstrates good agreement with the
ideal (given by (1), with ωC = 2000π rad/s) character-
istics throughout the design bandwidth. The magnitude of
the SPICE simulated proposed circuit implementation at
1 kHz (Mag@1kHz) is –4.009 dB, while MATLAB sim-
ulation yields –3.585 dB, as shown by the zoomed-in plot
in Figure 24. The Monte-Carlo simulations, considering 5%
and 10% tolerance values (drawn from a Gaussian distri-
bution) for the resistors and capacitors, respectively, with
fixed random number seed value 17533 were performed for
200 runs. The corresponding magnitude responses, as pre-
sented in Figure 25, further validate the closeness to the the-
oretical expectations. Various statistical indices concerning
the Mag@1kHz and the frequency (Hz) value at –3 dB mag-
nitude of the FOBF (Freq@–3dB) are also determined using
the Monte-Carlo simulations. The {minimum, maximum,
mean, standard deviation (SD)} indices for Mag@1kHz and
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TABLE 9. Monte-Carlo simulation based statistical results for the frequency (Hz) at –3 dB magnitude due to variation of RC components.

FIGURE 25. Magnitude-frequency responses of the ideal (red) and
Monte-Carlo simulated (green) 1.5th-order FOBF.

Freq@–3dB are obtained as {–6.618, –0.967, –4.070,
1.176} dB, and {520.621, 1215.417, 827.538, 134.456} Hz,
respectively. TheMonte-Carlo histograms for theMag@1kHz
and Freq@–3dB are presented as an inset in Figure 25.
Monte-Carlo simulations with fixed random number seed

value 17533 were also conducted to determine the effects
on the Freq@–3dB and Mag@1kHz due to the variation
of each of the RC components for the proposed circuit.
To demonstrate the results, Figures 26(a)-(b) present the box
plots concerning the Freq@–3dB and Mag@1kHz metrics,
respectively. In the case of Freq@–3dB, it is found that:
(i) capacitor C3 results in the largest SD (96.8547 Hz), fol-
lowed by the resistors RF2 (55.0252 Hz), RF3 (47.3132 Hz),
and RG3 (44.1603 Hz); (ii) the least values of SD are attained
by RG4 (4.048 × 10−5 Hz) and RG1 (5.646 × 10−4 Hz);
and (iii) the mean value is around 800 Hz for all the
cases, except for RF2, which yields 807.06 Hz. Table 9
presents the detailed statistical results concerning the influ-
ence of the passive components on the Freq@–3dB metric.
In the case of Mag@1kHz, it is revealed that: (i) among
all the components, C3 yields the largest SD (0.6885 dB);
(ii) among the resistors, RG1 (0.4227 dB) attains the largest
SD, followed by RG4 (0.4226 dB), R3 (0.4133 dB), RF2
(0.3897 dB), and RG3 (0.3258 dB); (iii) the smallest value
of SD is achieved by R1 (0.0004 dB); and (iv) for all the
cases, the mean value of Mag@1kHz is around –4 dB. The
statistical performance indices in this regard are presented
in Table 10.

FIGURE 26. Passive component effects on Monte-Carlo simulated
(a) frequency distribution at –3 dB, (b) magnitude distribution at 1 kHz of
the proposed 1.5th-order FOBF.

Figure 27 presents the SPICE simulated worst-case sensi-
tivity plots concerning the magnitude (top) and the absolute
relative magnitude error (ARME) (bottom) for the 1.5th-order
model. It may be observed that: (i) the magnitude response of
the proposed FOBF based on the nominal values of compo-
nents lies in-between those of the worst-case (Hi, Low) plots;
and (ii) the maximum value of ARME (MARME) for the
worst-case sensitivity performance of the proposed FOBF is
0.4738, which occurs at 9550 Hz. In contrast, an MARME
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TABLE 10. Monte-Carlo simulation based statistical results for the magnitude (dB) at 1 kHz due to variation of RC components.

FIGURE 27. Magnitude and absolute relative magnitude error plots of the
proposed 1.5th-order FOBF for the worst-case sensitivity.

FIGURE 28. Magnitude and absolute relative magnitude error plots of the
proposed 1.5th-order FOBF for the temperature sensitivity.

of 0.2424 at 13180 Hz is attained for the design based on
the nominal values of components. The R2 metric relative
to the ideal magnitude values obtained for 301 logarith-
mically spaced points for the FOBFs based on the nomi-
nal and worst-case conditions are 0.996792 and 0.927132,
respectively.

The temperature sensitivity of the proposed circuit (using
the nominal values of RC components) is investigated for
various values, such as 0◦C, 27◦C, 50◦C, and 100◦C.
In Figure 28, the SPICE simulated temperature sensitivity
plots of the magnitude (top) and ARME (bottom) for the

FIGURE 29. Photo of the experimental set-up.

1.5th-order designed FOBF are presented. It is found that
the magnitude and ARME responses of the circuit for the
four temperature conditions exhibit proximity. Comparisons
about R2 for the magnitude response of the proposed FOBF
(evaluated at 301 points with logarithmic spacing) at temper-
atures of {0◦C, 27◦C, 50◦C, 100◦C} relative to the ideal one
are obtained as {0.996934, 0.996792, 0.996667, 0.996385},
respectively.

2) EXPERIMENTAL MEASUREMENT
The photograph of the hardware set-up is presented
in Figure 29. In experiments, through hole KOA Speer Elec-
tronics MF, MFS, RK general purpose metal film resis-
tors with 5% and KEMET Goldmax 300 series multilayer
ceramic capacitors with 10% tolerance were used. The supply
voltage for Analog Devices AD844AN amplifiers was pro-
vided by the Agilent E3630A power supply. The frequency
responses of the FOBF were measured by the OMICRON
Lab Bode 100 network analyzer and displayed using the
Bode Analyzer Suite software. 301 logarithmically spaced
frequency points in the range 1 Hz to 1MHzwere considered.
The level of the testing harmonic signal was set to 0 dBm
(632.46 mVpp or 223.61 mVrms). The receiver bandwidth of
the analyzer was fixed at 1 kHz to obtain precise results. Prior
to measurements, the THRU calibration of the analyzer was
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FIGURE 30. Magnitude plot of the proposed CFOA-based 1.5th-order
FOBF.

performed to eliminate the influence of the measure-
ment setup. The magnitude response of the practical fil-
ter, as shown in Figure 30, demonstrates an excellent
agreement with the ideal one up to nearly 75 kHz. The
Mag@1kHz for the hardware measurement (–3.704 dB) con-
forms with the ideal (–3.010 dB), MATLAB (–3.585 dB),
and SPICE (–4.009 dB) simulations. R2 of 0.9947 is
achieved for the measured magnitude response data com-
pared to the theoretical one. Thus, the hardware experimental
results also validate the practical efficacy of the proposed
approach.

IV. CONCLUSION
The concept of an optimal interpolation of the magnitude
responses for the classical nth and (n + 1)th-order Butter-
worth filters is introduced to achieve the characteristics of
the (n + α)th-order Butterworth filter. In the first step of
the proposed design strategy, the optimal value of weighting
factors concerning the sum of the nth-order and the (n+ 1)th-
order Butterworth filters are determined. The model from the
first step is then treated as an initial point for a constrained
optimization routine in the second step in order to determine
the coefficients of the proposed rational approximant. In both
the design steps, the minimization of the objective function
is carried out concerning the magnitude-frequency charac-
teristics of the ideal (n + α)th-order Butterworth filter. The
proposed technique does not require (i) the fractional-order
transfer function model of the FOBF, (ii) an integer-order
approximation of the sα operator, and (iii) cascading of the
(1 + α)th-order Butterworth filter with the nth-order Butter-
worth filter to attain the characteristics of the higher-order
FOBFs. Effects due to the incorporation of various design
constraints on the modeling performance of the proposed
approximants are extensively investigated. The best accuracy
for the proposed FOBF is achieved for the case D1+α =

1 − C1+α in Step 1, with incorporation of stability con-
straints in Step 2. The generality of the suggested technique

towards the design of higher-order FOBFs is demonstrated.
The superior accuracy of the proposed FOBFs over the
state-of-the-art designs for six decades of bandwidth is
highlighted by a lower value of MSE metric. Discrete com-
ponents based implementation of the proposed FOBFs using
the CFOAs employed as an active element is presented.
SPICE simulations and experimental measurements for the
1.5th-order design confirm a good agreement with the ideal
magnitude-frequency characteristic. Future work will deal
with the on-chip CMOS implementation of the proposed
models.
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