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ABSTRACT Immunization of mission-critical facilities such as hospitals and first responders against power
outages is crucial for the operators due to their significant value of the lost load, affecting citizens’ lives.
This paper proposes a novel evaluating framework which enables facility operators to efficiently size and
optimally dispatch their behind-the-meter energy storage systems (BTM-ESS) for resiliency purposes during
grid emergencies. The proposed framework, formulated as a mixed integer linear programming model,
aids facility operators to quantify the impacts of various BTM-ESSs on resilience enhancement where
the Avoided Loss of Load (ALOL) is incorporated as the resilience indicator. BTM-ESS is assumed to
be operated in both standalone and coupled with solar photovoltaic (PV) as an onside backup generation
which is a viable energy solution for more prolonged power outages. The proposed model is developed
on a probabilistic energy procurement model, aiming to minimize the facility’s total operation cost. The
uncertainty of power outages is characterized by a set of a large number of scenarios generated by the brute-
force enumeration method. Additionally, to analyze the impacts of facilities’ behaviors on the BTM-ESS
evaluation procedure, a set of 24 facilities from different end use sectors with various functionalities are
simulated by employing our in-house-developed building simulator, which is a physics-based simulation
tool. Finally, the practicality of the proposed evaluating framework is investigated through two case studies
where both short and long-duration grid outages are examined based on the historical outage data adopted
from New Jersey, USA. The simulation results reveal that a BTM-ESS with 4 hours discharge duration that
is sized at rated power equal to 50% or more of the facility’s peak load generates sufficient resilience benefits
for most of the 24 representative facilities in case of short-duration power outages.

INDEX TERMS Demand-side management, energy storage, load modeling, resilience, solar power gener-
ation, system simulation.

I. INTRODUCTION
A. BACKGROUND AND PROBLEM DESCRIPTION
Based on the current global trend, severe weather events,
which are the foremost cause of power outages in the US [1],
are increasing in frequency, duration, and severity [2], [3].
At the same time, the vulnerability of the legacy grid has
been exposed by the consequences of the recent severe
weather events, such as Hurricane Irene in 2011 [4] and
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Hurricane Sandy in 2012 [5]. The CPI-adjusted1 total cost
of weather and climate-related events that affected the US
between 2010 and 2020 has been expected to be approxi-
mately $825 billion [6]. Therefore, enhancing the system’s
resilience to ensure a certain level of service under severe
weather events, particularly for mission-critical facilities
such as hospitals and fire stations, is indispensable. Apart
from utility grid hardening and reinforcement plans, which
might be either traditional capacity expansion plans to ensure

1Consumer Price Index, which measures the average change in the prices
paid for a market basket of goods and services.

80854 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2346-1312
https://orcid.org/0000-0003-4695-6705


F. Angizeh et al.: Resilience-Oriented BTM-ESS Evaluation for Mission-Critical Facilities

system adequacy [7] or non-wires alternatives (NWA) against
traditional investments [8], critical facilities can also uti-
lize behind-the-meter (BTM) distributed energy resources
(DERs) that are configured to operate even when the utility
grid is jeopardized.

By substituting, or serving as a supplement to renewable
back-up powers, e.g., solar PV [9], BTM energy storage sys-
tem (ESS), hereinafter BTM-ESS, can be operated at critical
facilities to mitigate risks of unserved load during utility
grid outages while adding benefits of zero greenhouse gas
(GHG) emissions with virtually instant dispatch. Although
critical facilities are different in terms of functionality and
behavior, incorporating either standalone ES or solar-plus-
storage systems boosts the facility’s resilience by providing
back-up power to avoid loss of some/all parts of the criti-
cal loads. According to the findings from our recently pub-
lished technical report in [10], the costs of ESSs, which are
dropping rapidly, are not currently cost-competitive for most
applications. However, for resilience purposes, the economic
viability of ESS highly depends on the value of lost load
(VOLL)2 and duration and frequency of the grid outages,
which can justify the resilience-oriented BTM-ESS appli-
cations for mission-critical facilities. Yet the question to be
answered is, ‘‘How can different mission-critical facilities
efficiently size and optimally dispatch their BTM-ESSs to
achieve the desired resiliency goals under uncertain grid
outages?’’

B. LITERATURE REVIEW
Multiple studies have been conducted recently in the litera-
ture addressing the resilience of the utility grid, where both
traditional wires solutions and NWAs have been explored
[11]–[16]. The impacts of integrating solar PV and ESS
on energy-saving and resilience of office buildings within a
microgrid (MG) are investigated in [17] where it is demon-
strated that theMG could benefit in both cost-savings over the
20-year life cycle of the facility while increasing the amount
of time it can survive a power outage. In [18], the authors
introduce four resilience indices, including the expected num-
ber of lines on the outage, loss of load probability, expected
demand not supplied, and the difficulty level of grid recovery,
to measure the impacts of integrating MGs on the resilience
of the grid. Moreover, the application of coordinated MGs
in enhancing the system resilience is investigated in [19],
where strategic recourse-sharing through joint-scheduling of
the networked MGs is proposed.

In addressing ESS utilization in resilience applications,
Zhang et al. analyze the use of a battery ESS and feeder
automation to avoid line overloads in [20], where a multiday
high-demand scenario that leads to an outage is considered.
In [21], the authors investigate the effects of adding ESS as
one of the proposed smart grid technologies on the frequency

2Computing VOLL is a challenging task since it strongly depends on the
outage duration and frequency of occurrence, the available substitutes, and
the criticality of the consequences if an outage occurs.

of long interruptions per load in a rural LV distribution
network, where the number of long interruptions is seen
to be reduced. In addition, a multi-objective planning and
control strategy is proposed in [22], where various DERs,
including distributed generation, ESS, and demand response
(DR), are co-optimized in an MG application for resiliency
enhancement.

Apart from the resilience applications of DERs, particu-
larly ESSs, the technical literature is rich in terms of the
research efforts tapping on modeling weather-related outages
where the probabilistic methods have been mainly focused.
Panteli et al. in [23] measure weather-dependent failure
probabilities of the components expressed by the fragility
curves to develop a resilience assessment procedure based
on the severity of the extreme weather events, while in [24],
Yodo et al. present a dynamic Bayesian network approach for
the modeling and predictive resilience analysis for dynamic
engineered systems. Also, Hussain et al. in [25] employ the
probability distribution functions to estimate the resilience
load of the electric vehicles (EVs) that is further utilized to
maintain the energy level in the ESS to ensure the resilience
of EVs during power outages, while in [26], a predefined set
of 8 outage scenarios are considered with given consequences
to optimize investment decisions on mobile ESS units.

The technical literature, however, lacks a comprehensive
evaluation framework that aids mission-critical facility oper-
ators to optimize both size and dispatch of their BTM-ESSs
to achieve their resiliency goals under uncertain grid outages,
including short- and long-duration events. Additionally, con-
sidering the consumption patterns of the facilities with dif-
ferent functionalities in the performance evaluation process
of the BTM-ESS for resiliency purposes is another research
area that needs more investigation.

C. CONTRIBUTIONS AND PAPER STRUCTURE
This paper proposes a comprehensive framework that eval-
uates the performance of various BTM-ESSs for mission-
critical facilities in pursuing their resilience requirements
once power outages occur. Hence, a probabilistic energy
procurement-based model is developed where BTM-ESSs
are configured as both standalone and integrated solar-plus-
storage systems while considering the uncertainty of the
power outages. To extend the analysis and make the pro-
posed framework more robust, a set of 24 mission-critical
facilities with various functionalities from different end use
sectors, including commercial, industrial, and residential,
are simulated by employing our in-house-developed physics-
based building simulator, i.e., PBS, which is an EnergyPlus-
based tool [27] capable of fully capturing the facilities’
demand patterns. It is worth mentioning that, here in this
paper, we adopt the resilience notion as initially defined
by Carlson et al. in [28], but modify it to be fitted for the
scope of facility-level applications. Thus, resilience is defined
as the ability of a facility to anticipate, respond/adapt to,
and recover from a utility grid outage, hereinafter. Accord-
ingly, the critical facility operator first anticipates the utility
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FIGURE 1. Energy procurement-based framework for a critical facility operating a BTM solar-plus-storage
system for resilience purposes.

grid outages; then rapidly responds by switching off from
the utility grid and becoming isolated, which is relayed by
a smart controller; and lastly, optimizes the operation of
its BTM-ESS to recover some/all parts of its critical loads.
Fig. 1 illustrates the energy procurement-based framework
for a mission-critical facility utilizing a BTM solar-plus-
storage system for resilience enhancement. From the facility
operator’s perspective, the proposed evaluating framework
anticipates the expected utility grid outages of both short-
and long-duration events during the planning horizon, thence
co-optimizes the BTM solar-plus-storage system dispatches
based on the candidate ESS sizes to achieve the desired
resiliency goals. In order to characterize the uncertainty of
the utility grid outages, a scenario-based approach [29], [30],
which is detailed in section II, is employed. A set of a
large number of possible outage scenarios is then generated
by the brute-force enumeration method [31], which samples
from the probability spaces of outage-related key parameters/
features obtained from the statistical analysis of the historical
grid outage databases.

Finally, to quantify the resilience impacts of various
BTM-ESSs, we introduce the Avoided Loss of Load (ALOL),
which measures the expected energy not served under all
possible grid outage scenarios over the planning horizon as
a proxy indicating the value of resilience. Therefore, ALOL
is measured as our resilience index, hereinafter. It should
be noted that here we assume the ESS not to be used to
provide grid services such as demand response [32] and/or
load shifting and peak load shaving; thereby, the ESS capacity
is devoted to performing its emergency power obligation
during the emergency events. Depending on the operation
priorities and the level of risk that facility operators can
take,3 the BTM-ESS might also be partially operated to
perform energy arbitrage and/or provide grid services such
as frequency regulation and directly reap market benefits

3Mission-critical facility operators are highly risk-averse to avoid the
consequent huge VOLL, affecting the whole communities and people’s lives.

alongside the dedicated capacity for resilience improvements.
This way, the BTM-ESS needs to be oversized, i.e., bigger
than the size needed for emergency use, to ensure the facility’s
resilience requirements while fulfilling the other functions.
The problem of co-optimizing the dedicated capacities of the
BTM-ESS for coincidentally performing various functional-
ities is out of the scope of this paper, but it is in order as one
of our very close future works.

In summary, the core contributions of this paper can be
listed as follows:
• Developing physics-based facility models that enable
facility operators to capture various electricity consump-
tion patterns in evaluating the performance of various
BTM-ESSs in pursuing resiliency goals.

• Investigating the impacts of BTM-ESS’s characteris-
tics such as energy capacity, rated power, and round-
trip efficiency on the resilience enhancement of a set
of 24 representative mission-critical facilities to assure
resilience requirements with efficiently sized and opti-
mally dispatched BTM-ESSs.

• Exploring the outage duration impacts on the facility
operation where a large number of grid outage sce-
narios are generated for both short and long dura-
tion outages to yield efficiently sized and optimally
dispatched BTM-ESSs for sufficiently boosting the
facility’s resilience.

The remainder of this paper is organized as follows: The
proposed probabilistic energy procurement-based BTM-ESS
evaluation model is presented in section II, where the uncer-
tainty of the utility grid outage events is first character-
ized using a scenario-based approach. Section II is followed
by developing the probabilistic energy procurement-based
model and ended up with the formulation of the ALOL
as our measured resilience index. Section III represents the
case studies conducted on a set of mission-critical facili-
ties and provides the BTM-ESS evaluation results at the
end. Finally, the conclusions are drawn and discussed in
section IV.
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II. THE PROPOSED PROBABILISTIC ENERGY
PROCUREMENT-BASED BTM-ESS
EVALUATION MODEL
In this section, we present the mathematical formulation of
our proposed facility-level BTM-ESS evaluation framework,
where the impacts of ESS on the resilience of various facil-
ities are quantified by employing an appropriate resilience
index. The proposed model, which aims at determining
optimal ESS dispatch under various grid outage scenarios,
minimizes total energy procurement cost while penalizing the
facility’s load curtailments to achieve the desired resiliency
goals. We develop our evaluating framework on an energy
procurement-based model with both internal and external
resources, where the facility operator might use on-site
ESS(s) coupled with solar PV in a solar-plus-storage system
and/or the utility grid when the service is available during
normal blue-sky operation. It is worth mentioning that for the
sake of generality, we build here the model based on a solar-
plus-storage system; thereby, the standalone ESS becomes a
special case that can be simulated by a set of simplifications.
Also, the proposed model is formulated as a probabilistic
model where the utility grid outages are represented by a
finite set of scenarios that are characterized by the outage-
defining features, e.g., duration and occurrence time. The
mathematical formulation of the proposed model is elabo-
rated in the following.

A. UTILITY GRID OUTAGE CHARACTERIZATION
Let T be the planning horizon defined as T := (0,T ] and
divided to K same-length time intervals with the ith interval
to be Ti := (ti−1, ti] with the length 1t := ti − ti−1 such that
T =

⋃K
i=1 Ti. Let us also represent the occurrence time of

grid outages on this horizon by a random variable y defined
over the probability space

(
�y,Fy,Py

)
. Let�y be composed

of a finite discrete set of outage occurrence time scenarios
defined as yω′ : �y 7→ Ty and associated with a probability
πω′ := Py

(
{ω′ ∈ �y|y = yω′}

)
such that

∑
ω′∈�y

πω′ = 1,
where Ty := {t0, t1, . . . , tK−1}, and 0 ≤ yω′ < T , ∀ω′ ∈ �y
holds. Further, the outage duration is another key uncertain
feature which is represented by a random variable z defined
over the probability space (�z,Fz,Pz). Let �z be composed
of a finite discrete set of outage duration scenarios defined as
zω′′ : �z 7→ NK0 and associated with a probability πω′′ :=
Pz
(
{ω′′ ∈ �z|z = zω′′}

)
such that

∑
ω′′∈�z

πω′′ = 1, where
NK0 := {1, 2, . . . ,K0} given that K0 ≤ K , thereby, zω′′ ⊆
T , ∀ω′′ ∈ �z.

Finally, combining the two probability spaces, i.e., �y
and �z, the yielded utility grid outage scenario, which is
defined as a sequence of outage occurrence time and duration
scenarios τω and associated with a probability πω, is modeled
as:

τω := {(yω′ , zω′′) |yω′ ∈ Ty, zω′′ ∈ NK0}, (1)

πω := {πω′×πω′′ |ω
′
=1, . . . , |�y|, ω

′′
=1, . . . , |�z|} (2)

such that
∑
ω∈� πω = 1, where � is the Cartesian product

�y ×�z, and the notation |.| shows the cardinality of a set.

A large number of possible outage scenarios can then
be generated by sampling or enumeration from the yielded
probability space stemming from the utilities’ historical grid
outage databases. In the case studies presented in section
III, the brute-force enumeration method [31] is implemented
to generate a large number of possible utility grid outage
scenarios. The characterized outage scenarios are then used
to develop the proposed probabilistic energy procurement-
based model, which is elucidated next.

B. PROBABILISTIC ENERGY
PROCUREMENT-BASED MODEL
The objective function of the model, which is to minimize the
total energy procurement costs of the facility over the study
horizon T while penalizing the facility load curtailments,
is formulated as:

min
PUGωt ,P

PV ,X
ωt ,PLCωt

∑
ω∈�

πω

{∑
t∈T

{
λt

(
PUGωt −P

PV ,X
ωt

)
+νtPLCωt

}
1t
}
(3)

where PUGωt and PPV ,Xωt are purchased power from the grid and
excess power generated by solar PV and sold to the utility
in scenario ω at time t , respectively. In objective function
(3), PLCωt models the facility’s load curtailment in scenario ω
at time t , which is penalized by a sufficiently large positive
number at time t , denoted by νt ; and λt is the utility electricity
price at time t . Here we assume that the excess power gener-
ated by PV that is sold to the utility in grid-connected opera-
tion is compensated at the utility’s electricity price, which is
consistent with the current FERC Order 745 regulations [33].
Note that in the islanded operation, the excess solar PV power
is decreased by the facility’s smart controller. The objective
function (3) is subject to the energy procurement-based oper-
ational constraints (4)-(11) through which power exchanges
with the utility in grid-connected mode, and dispatches of
ESS, solar PV, and load curtailments in both grid-connected
and islanded operation modes are co-optimized.

Let us assume that the power purchased from the utility in
scenario ω at time t , i.e., PUGωt , is split into two components,
the power which supplies the demand, PUG,Dωt , and the power
which charges the ESS, PUG,Sωt . Thus, the power purchased
from the utility is modeled as:

PUGωt =

{
PUG,Dωt + PUG,Sωt ∀t ∈ T − [yω, yω+zω) , ω
0 ∀t ∈ [yω, yω + zω) , ω

(4)

Also, in the proposed model, the facility’s solar PV power
in scenario ω at time t , denoted by PPVωt , is decomposed into
three components including the power which supplies the
demand, PPV ,Dωt , the power which charges the ESS, PPV ,Sωt ,
and the excess power, PPV ,Xωt , which is either sold to the utility
during grid-connected operation or decreased by the facility’s
smart controller during the utility grid outages. This way,
the facility’s solar PV power is formulated as:

PPVωt = PPV ,Dωt + PPV ,Sωt + P
PV ,X
ωt ∀t, ω (5)

where PPV ,Xωt = 0 over t ∈ [yω, yω + zω) for all ω.
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FIGURE 2. 24-hour demand profiles of representative facilities in kW over a year with the average in black line.

Further, the facility’s generic ESS, which is coupled with
a solar PV in a solar-plus-storage system, is modeled as:

PUG,Sωt +P
PV ,S
ωt ≤ (1− βωt )P

S
∀t, ω (6)

PS,Dωt ≤ βωtP
S
∀t, ω (7)

βωt ∈ {0, 1} ∀t, ω (8)

ES ≤ ESωt ≤ E
S
∀t, ω (9)

ESωt = (1− ε)E
S
ω(t−1)

+

(
ηC
(
PUG,Sωt +P

PV ,S
ωt

)
−
PS,Dωt
ηD

)
1t ∀t, ω

(10)

where the binary variable βωt models the charge/discharge
status of ESS in scenario ω at time t with correspond-
ing charging power PUG,Sωt + PPV ,Sωt and discharging power

PS,Dωt , which are limited to the ESS rated power P
S
in (6) and

(7). Considering charge and discharge efficiencies to be ηC

and ηD, the dynamic energy balance of the ESS assuming its
self-discharge denoted by ε is formulated in (10), where the
energy capacity of ESS is bounded in (9) over T for allω. The
facility’s supply-demand balance equation is then formulated
as:

PUG,Dωt + PPV ,Dωt + PS,Dωt = Dt − PLCωt ∀t, ω. (11)

Constraint (11) ensures that the power purchased from the
utility to supply the demand, and the power generated by the
solar PV to compensate some/all parts of the demand, and

the discharged power from the ESS balance the facility’s total
demand subtracted by the load curtailments in scenario ω at
time t .

C. RESILIENCE INDEX OF A MISSION CRITICAL FACILITY
Each grid outage scenario may result in a different amount
of lost load, i.e., unserved load during an outage; thereby,
the resilience index needs to be defined as the expected
lost load stemming from the enumerated outage scenarios
throughout the planning horizon T . Therefore, we define
Avoided Loss of Load (ALOL) as the resilience indicator,
which aids facility operators in determining their efficient
sizes of optimally dispatched BTM-ESSs, which assure the
desired resiliency goals against utility outages. The ALOL,
which we consider as the facility’s resilience index here-
inafter, is modeled as:

ALOL =

(
1−

E
[
PLCω

]
D

)
× 100%

=

(
1−

∑
ω∈� πω

(∑
t∈T PLCωt 1t

)∑
t∈T Dt1t

)
×100% (12)

where PLCωt is the facility’s load curtailment in scenario ω
at time t , and Dt is the facility’s load at time t , thereby,
D :=

∑
t∈T Dt1t and PLCω :=

∑
t∈T PLCωt 1t are defined

accordingly. Note that D designates the facility’s total load
over T , and PLCω is a (|�| × 1)-dimensional vector of total
load curtailments over T for ∀ω ∈ �. Note that E [.] is the
expectation operator.

80858 VOLUME 9, 2021



F. Angizeh et al.: Resilience-Oriented BTM-ESS Evaluation for Mission-Critical Facilities

FIGURE 3. Hourly day-ahead electricity price of the utility over a year
with the average in black line.

FIGURE 4. Hourly 1-kW scaled solar power output over a year with the
average in black line simulated by Trnsys for a site located in NJ, USA.

In summary, equations (1)-(12) present our proposed prob-
abilistic energy procurement-based BTM-ESS evaluation
model for mission-critical facilities that is formulated as a
mixed-integer linear programming problem and can be solved
using commercial solvers.

III. CASE STUDY AND NUMERICAL RESULT
A. INPUT DATA AND TEST MISSION CRITICAL
FACILITY SET
In order to sufficiently explore our proposed BTM-ESS
evaluation framework, we consider various mission-critical
facilities with different functionalities and from different
end-use sectors, including commercial, industrial, and resi-
dential. The test facility set, which is illustrated in Fig. 2,
includes 24 critical facilities from both well-fitted facilities
to the state of New Jersey (NJ) climate zone and the US
Department of Energy (DOE) reference buildings [34]. Also,
we employ our in-house-developed physics-based building
simulator, i.e., PBS, which is an EnergyPlus-based tool [27],
to simulate the hourly load profile of each facility over a year.
The resulted dataset on the estimated 8,760-hour load pro-
files can be found at http://dx.doi.org/10.17632/rfnp2d3kjp.1,
which is an open-source online data repository hosted at
Mendeley Data [35]. Moreover, Figs. 3 and 4 depict the

FIGURE 5. Impact of energy capacity on avoided loss of load for
standalone ESS with rated power of 25% of peak load of each
facility–Case I.

FIGURE 6. Impact of energy capacity on avoided loss of load for
standalone ESS with rated power of 100% of peak load of each
facility–Case I.

utility’s electricity price and the one-kW scaled solar PV
output power located in NJ and simulated by Trnsys [36],
respectively.

For the generic ESS in our studies, regardless of the size
and in both standalone ES and solar-plus-storage systems,
we assume the round-trip efficiency to be 85%; self-discharge
to be 0.001%; the initial state-of-charge (SoC) to be 100%;
and the minimum and maximum SoCs to be 10% and 100%,
respectively. Also, the coupled solar PV in the case of a solar-
plus-storage system is sized to be 80% of the facility’s peak
load, which is the maximum annual load of the facility in kW.

To generate utility grid outage scenarios, including both
short- and long-duration outages, we deploy the NJ’s
2018 historical power outage data, including the occurrence
time and duration of the reported outages, to model the grid
outage scenarios [37]. From the extracted outage data, the
following characteristics are assumed.
• Mar., May, and Sept. are highly affected months.
• Short-duration outages mostly occur from 15:00 to
17:00 and last between 1 to 3 hours.

• Long-duration outages last between 1 to 7 days.
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FIGURE 7. Impact of ESS rated power on avoided loss of load in both standalone ES and solar-plus-storage systems–Case I:
(a) standalone ES with 4-hr discharge duration, (b) solar-plus-storage with 4-hr discharge duration, (c) standalone ES with 1-hr
discharge duration, (d) solar-plus-storage with 1-hr discharge duration.

FIGURE 8. Impact of ESS rated power on supplying 70% of critical load
for 6 DOE reference facilities in standalone ESS with 1-hr discharge
duration–Case I.

Therefore, we implement a brute-force enumeration
method [31] to pay heed to all possible scenarios stemming
from the characteristics mentioned above for both short-
and long-duration grid outage scenarios while satisfying the
energy procurement problem constraints for each mission-
critical facility. The two case studies and the simulation
results are expounded in the next section.

B. RESULTS AND DISCUSSIONS
Depending on the grid outage duration, two case studies,
namelyCase I andCase II, are investigated where the avoided
loss of load is calculated as a risk measure in pursuing
resiliency goals. In Case I, short-duration grid outage sce-
narios are considered, while in Case II long-duration outage
scenarios are taken into account. In addition, the standalone
ES and solar-plus-storage systems are analyzed and com-
pared in both cases to show the impacts of coupled back-
up solar PV on the evaluation of ESS for the set of facilities

FIGURE 9. Impact of ESS rated power on supplying 70% of critical load
for 6 DOE reference facilities in standalone ESS with 4-hr discharge
duration–Case I.

shown in Fig. 2. Evaluation of the ESS in both standalone
ES and solar-plus-storage systems leads us to delineate the
effectiveness of the proposed model in efficiently sizing and
optimally dispatching the ESS for resiliency purposes, which
enables the facility operators to respond to their needs under
the grid outage circumstances effectively.

The optimization models for the case studies are solved
using Gurobi 9.0 Python-API gurobipy [38] on a system with
a Core i7-8700 processor at 3.20 GHz and 64 GB of RAM.
Note that the computation time for simulating either of the
cases for each facility over a year was within 10 minutes.

1) CASE I–SHORT-DURATION GRID OUTAGE
In this case, short-duration utility outage scenarios are gen-
erated by the brute-force enumeration method enumerating
the outage durations of 1 to 3 hours, each of which starts at
15:00, 16:00, or 17:00 every day over three months of Mar.,
May, and Sept., which ends up with 3 × 3×92 equiprobable
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FIGURE 10. Impact of ESS rated power on supplying 70% of critical load
for 6 DOE reference facilities in solar-plus-storage system with 1-hr
discharge duration–Case I.

FIGURE 11. Impact of ESS rated power on supplying 70% of critical load
for 6 DOE reference facilities in solar-plus-storage system with 4-hr
discharge duration–Case I.

scenarios in total. Fig. 5 depicts the impact of ESS energy
capacity (discharge duration) on the avoided loss of load for
a standalone ESS with rated power equal to 25% of the peak
load of each facility. It can be observed that a standalone ESS
with a 4-hour discharge duration with rated power equal to
25% of the peak load suffices to avoid approximately 50% of
loss of load on average in this case study. Moreover, Fig. 5
shows that the marginal value added by increasing the dis-
charge duration tomore than 4 hours significantly diminishes.
However, the marginal value added by increasing the rated
power of ESS leads to a substantial increase in avoided loss of
load on average, which is illustrated in Fig. 6 for a standalone
ESS with rated power equal to 100% of the peak load of each
facility.

In order to analyze the impacts of BTM back-up solar PV
on the evaluation of ESS, the avoided loss of load is measured
in a solar-plus-storage system where the solar PV is sized
to be 80% of the peak load of each facility, while the rated
power of the ESS is assumed to be either 25% or 100%
of the peak load of each facility. Fig. 7 depicts the impacts

FIGURE 12. Impact of energy capacity on avoided loss of load for a
solar-plus-storage system with ESS rated power of 25% of peak load of
each facility in 7-day outage scenarios–Case II.

FIGURE 13. Impact of energy capacity on avoided loss of load for a
solar-plus-storage system with ESS rated power of 100% of peak load of
each facility in 7-day outage scenarios–Case II.

of different ESS rated power with both 1 and 4 hours of
discharge durations on the avoided loss of load for both
standalone ES and solar-plus-storage systems in Case I. As
can be seen from Fig. 7(b) and (d), solar PV alone, i.e., with
0% ESS rated power, that is sized at 80% of the facilities’
peak loads, can avoid more than 75% of the load losses on
average over the 24 critical facilities. Therefore, a small ESS
with rated power equal to 50%of the peak load of each facility
adequately supplies the loads when coupled with onsite solar
PV in Case I. However, the avoided loss of load for the
standalone ESS highly correlated with the ESS rated power
compared to the peak load of each facility.

Now, in order to demonstrate the impacts of ESS on the
resiliency of each facility in more detail, we adopt a subset
of our test 24-facility set, including the 6 DOE reference
facilities. Although the criticality level of the facility varies
based on the functionality and the operator objectives, here
we assume the resiliency goal for each facility is to cover
70% of the load, thereby, the critical load of each facility is
considered to be 70% in this case.
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FIGURE 14. Impact of grid outage duration on avoided loss of load in solar-plus-storage systems–Case II: (a) ESS rated power
of 25% with 1-hr discharge duration, (b) ESS rated power of 100% with 1-hr discharge duration, (c) ESS rated power of 25% with
4-hr discharge duration, (d) ESS rated power of 100% with 4-hr discharge duration.

FIGURE 15. Impact of ESS rated power on supplying 50% of critical load
for 6 DOE reference facilities in solar-plus-storage system with 1-hr
discharge duration–Case II.

Figs. 8 and 9 illustrate the impacts of the ESS rated power
on the avoided loss of load for each DOE reference facility
and standalone ESS with 1- and 4-hour discharge durations,
respectively. From Figs. 8 and 9, it can be seen that an ESS
with a 1-hour discharge duration requires a higher power
rated comparing with 4-hours ESS to supply 70% critical load
(60% and 50% of the peak load of each facility, respectively).
Moreover, it is observed that a 1-hour discharge duration ESS
with rated power equal to 25% of the peak load in standalone
ESS is sufficient for supplying 70% critical loads of both
Residential and Hotel facilities in case I.
Figs. 10 and 11 illustrate the impacts of the ESS rated

power on the avoided loss of load for each DOE reference
facility and solar-plus-storage systems with 1- and 4-hour
discharge durations, respectively. From Figs. 10 and 11, it can
be seen that an onsite solar PV with rated power equal to 80%
of the peak load of each DOE reference facility is sufficient
for supplying the desired 70% resiliency goal in Case I.

FIGURE 16. Impact of ESS rated power on supplying 50% of critical load
for 6 DOE reference facilities in solar-plus-storage system with 4-hr
discharge duration–Case II.

Therefore, the presented results for the standalone ESS
indicate that ESS sizing is highly case-sensitive in achieving
the desired resiliency goals, while a cost-benefit analysis
has to be conducted to compromise the present tradeoffs
appropriately.

2) CASE II–LONG-DURATION GRID OUTAGE
In this case, long-duration grid outage scenarios are generated
by the brute-force enumeration method, which enumerates
the outage durations of 1 to 7 days, each of which starts from
the beginning day of our considered three months, including
Mar., May, and Sept., which ends up in 7× 92 equiprobable
scenarios in total. Since the long-duration outage scenarios
occur in extended periods, standalone ESS as energy-finite
resources cannot provide reliable back-up power to mitigate
the risk of load loss. However, a coupled back-up solar PV
in a solar-plus-storage system can be a viable solution for the
facility operator if properly sized.
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FIGURE 17. Impact of ESS round-trip efficiency on resiliency improvement under short-duration (a,b) and long-duration (c,d)
outage scenarios: (a) standalone ES with 1-hr discharge duration and rated power of 100%, (b) standalone ES with 1-hr discharge
duration and rated power of 25%, (c) solar-plus-storage with 1-hr discharge duration and rated power of 100%, (d)
solar-plus-storage with 1-hr discharge duration and rated power of 25%.

Figs. 12 and 13 illustrate the impacts of ESS energy capac-
ity (discharge duration) on the avoided loss of load for solar-
plus-storage systems with ESS rated power equal to 25% and
100% of the peak load of each facility, respectively, where
7-day outage scenarios are taken into account. We will show
that the outage duration does not affect the facility’s resilience
with solar-plus-storage later in this section. It can be observed
that increasing ESS discharge duration from 1 to 4 hours
has a considerable impact, while the marginal value added
by increasing the discharge duration to more than 4 hours
dramatically declines. Therefore, resilience enhancement for
a facility equipped with a solar-plus-storage system is highly
correlated with the ESS discharge duration and rated power.

Fig. 14 depicts the impacts of grid outage durations
spanning from 1 to 7 days on the avoided loss of load for
solar-plus-storage systems with ESS rated power of 25% and
100% of the peak load of each facility with 1- and 4-hour
discharge durations. From Fig. 14, it can be observed that
in solar-plus-storage systems with sufficient solar irradiance,
outage duration does not have noticeable impacts on the facil-
ity’s resilience; thereby, our claim on considering a reduced
set of long-duration outage scenarios including 7-day outages
holds (see Figs. 12 and 13). Furthermore, from Fig. 14, it can
be seen that increasing the ES rated power to 100% of the
facility’s peak load increases the avoided loss of load by
approximately 10% for all outage scenarios, particularly for
4- and 7-day outages.

Similar to the Case I, in order to investigate the resilience
analysis of each facility in-depth, we adopt the set of 6 DOE
reference facilities in Case II as well. Here we assume the
resiliency goal for each reference facility is set to be 50%
of its peak load. Figs. 15 and 16 demonstrate the impacts
of the ESS rated power on the avoided loss of load for
each DOE reference facility and solar-plus-storage systems
with 1- and 4-hour discharge durations, respectively. From

Figs. 15 and 16, it can be seen that Hospital and Supermarket
can achieve the resiliency goal of supplying 70% of the loads
by an ESS with higher rated power than 75% of the facility’s
peak load and with 4-hour discharge duration, while an ESS
with 1-hour discharge duration is not able to support solar PV
in backing-up the 70% or even 50% of the load regardless of
the ESS rated power.

3) SENSITIVITY ANALYSIS ON ESS ROUND-TRIP EFFICIENCY
In this section, the impacts of ESS round-trip efficiency,
which is attributed to different ESS technologies, are quan-
tified for all facilities by measuring ALOL under various
outage scenarios. Note that the round-trip efficiencies are
assumed to be in the range of 85% to 99%, where the values
between 85% and 95% are consistent with the assumptions
made by the Massachusetts Energy Storage Initiative in [39],
while the round-trip efficiency of 99% fairly reflects the
ideal case allowing us to get the optimistic results in terms
of round-trip efficiency. Fig. 17 illustrates the impacts of
ESS round-trip efficiency on resiliency improvements under
both short- and long-duration outage scenarios. From Fig. 17,
it can be observed that the resiliency improvement under
short-duration outages is in the range of 2% to 13.0%, while
for the long-duration outages, the improvement is in the range
of 1.5% to 8%.

IV. CONCLUSION
This paper proposed an evaluating framework that aids
mission-critical facility operators to efficiently size and opti-
mally dispatch their behind-the-meter energy storage sys-
tems (BTM-ESSs) for achieving their desired resiliency
goals. A probabilistic energy procurement-based model was
developed where the brute-force enumeration method was
employed to generate a set of a large number of outage scenar-
ios to characterize the grid outage uncertainty for both short
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and long-duration outages. We also measured the Avoided
Loss of Load (ALOL) as a resilience index to quantify the
impacts of various BTM-ESSs on resilience enhancement.
To consider the impacts of the facilities’ consumption pat-
terns and behaviors on our proposed evaluation framework,
a set of 24 mission-critical facilities from different end
use sectors were simulated using our in-house-developed
physics-based building simulator, namely PBS.

The simulation results showed that in case of short-
duration outage scenarios, a standalone ESS with a 4-hour
discharge duration and a rated power equal to 50% or more of
the facility’s peak load, engenders the desired resilience ben-
efits of serving 70% of the critical loads on average for most
of the 24 representative facilities. In the presence of solar PV,
and assuming that it is appropriately sized to meet 80% of the
peak load, a small ESS within 25% of the peak load suffices
for achieving the desired resiliency goals of 80% or more.
Overall, for the 24 representativemission-critical facilities we
investigated, the solar-plus-storage system can serve all crit-
ical loads almost 100% of the time in case of short-duration
power outage scenarios. For long-duration outage scenarios,
however, standalone ESS had less value as an energy-finite
resource. Even an ESSwith a 1-hour discharge duration could
not support solar PV in backing-up the desired 50% of the
critical loads for the 6 DOE reference facilities, regardless
of the ESS rated power. The simulation results also revealed
that, among the 6 DOE reference facilities, Hospital and
Supermarket could achieve the resiliency goal of supplying
70% of the critical loads by an ESS with higher rated power
than 75% of the facility’s peak load and 4-hour discharge
duration.

Future works include co-optimizing the dedicated capaci-
ties of a BTM-ESS to simultaneously perform several func-
tionalities where proper control strategies are needed to
stack up various applications. Moreover, developing more
advanced methods and tools to accurately estimate the grid
outages and their consequences which enable more accu-
rate decision-making, as well as developing an integrated
scheduling model capable of co-optimizing the operation of
the BTM-ESS and the potential flexible loads to boost the
resilience of the facility proactively, are in order.
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