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ABSTRACT In this work we implement a COVID-19 infection detection system based on chest X-ray
images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided
diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully
analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through
the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising
Softmax scores,Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability
of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty
distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously
used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a
significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained
with the use of the Monte Carlo dropout method.

INDEX TERMS Uncertainty estimation, Coronavirus, Covid-19, chest x-ray, computer aided diagnosis,
semi-supervised deep learning, MixMatch.

I. INTRODUCTION
The COVID-19 pandemic is putting significant pressure on
governmental health systems, as the number of cases grows
exponentially [1]. Furthermore, the availability of medical
staff is lowered as they also get infected by the virus, reducing
the overall capacity of hospitals and clinics [1]. The accurate
and widespread detection of infected subjects is of great
importance to control the growth of the disease [2]. The usage
of medical imaging can be an alternative tool when other
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methods like Real-time Reverse Transcription Polymerase
Chain Reaction (RT-PCR) testing become more expensive as
less resources are available to supply the growing demand [3].
The usage of computed tomography and X-ray based tests for
COVID-19 detection has been studied in [4]–[6], reporting
mixed sensitivity and accuracy in the case of X-ray imaging
based solutions. However, the usage of X-ray images is
ubiquitous, as this technology is usually cheaper and more
widely available [7].

X-ray chest imaging is in general more widely accessible
when compared to computed tomography imaging [7].
Furthermore, the low availability of medical staff to sample
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and analyze the medical images can increase the costs
of this alternative solution, especially in low resource
environments [8]. For example, in India, with a population of
around 1.44 billion, approximately one radiologist for every
100,000 people is currently available [8]. This increases the
need of X-ray based COVID-19 computer aided diagnosis
tools.

The application of deep learning based models to estimate
the prevalence of COVID-19 from X-ray images has recently
been explored, with different deep learning architectures
reporting high test accuracy [9], [10]. Given the lack of
high quality labeled data, semi-supervised methods have
also been implemented to perform COVID-19 detection,
making use of cheaper unlabelled data to improve themodel’s
accuracy [11], [12].

Along with high model accuracy, Artificial Intelligence
(AI) based solutions should also provide explainable deci-
sions to increase reliability, especially in the medical
domain [13], [14]. Model uncertainty estimation is a common
approach to increase model interpretability and safety in
use [13], [15]. The estimation of model uncertainty allows
the user to interpret how sure or confident is the model for
a specific prediction. In the context of COVID-19 detection
using X-ray images, an estimation with high uncertainty
should justify further tests to be done in the subject. This
enforces safety upon the usage of a computer aided diagnosis
system, as low-confidence predictions are quantitatively
estimated by the system itself.

In this work we focus in the measurement and improve-
ment of uncertainty estimations for a deep learning model
designed to identify COVID-19 infection usingX-ray images.
We aim to improve uncertainty estimations by using unla-
belled data. Using unlabelled data is an useful approach when
using datasets with a low number of high quality labelled
data. This is a frequent setting during the onset of a pandemic.
Moreover, for a statistically significant comparison of the
tested uncertainty estimation methods, we propose a novel
density function based divergence approach.

II. STATE OF THE ART
A. PREDICTIVE UNCERTAINTY ESTIMATION
Predictive uncertainty estimation (or simply referred as
uncertainty estimation in this work) for machine learning
models has been widely studied in the literature [16].
In general, uncertainty sources can be categorized in aleatoric
and epistemic. Aleatoric uncertainty refers to the uncertainty
inherent in the measurements [17]. In conditional distribution
terms, it refers to the distribution of the target variables
with a given set of measured features. Aleatoric uncertainty
cannot be reduced by taking a larger sample of features within
the same distribution [17]. Epistemic uncertainty refers to
the model’s parameters uncertainty caused by the limited
sample size used to build the model (or lack of knowledge
of the feature space) [17]. Therefore, epistemic uncertainty
can be diminished by sampling a larger dataset, specially

collecting data in the sparser regions [17]. In the context of
Semi-supervised Deep Learning (SSDL), epistemic uncer-
tainty can be considered to be more important, as labeled data
are usually very scarce when SSDL is used. Unlabelled data
might lower epistemic uncertainty, usually less effectively as
target information is missing [17].

In this work we analyze simple and straightforward
uncertainty estimation methods. The tested methods were
selected based on their post-hoc capacity, i.e. their ability to
leave the original deep learning architecture intact and not
require any re-training of the model.

The Softmax function, typically used as an activation
function in the output layer of a neural network, is among
the basic methods for uncertainty estimation. Assume a
multi-class discrimination problem in i = 1, . . . ,C
classes [18]. Take the array of model outputs yj = fθ (xj) with
network weights θ for a given input xj. The Softmax function
approximates a density function p as follows:

pi =
exp

(
yi,j
)∑

k exp
(
yk,j
) (1)

Therefore, the output of the Softmax function for a specific
output unit i can be interpreted as a proxy for model
confidence for class i, given a specific input observation xj.
Either the highest pi for the estimated class or the entropy
over p can be used for uncertainty estimation. However,
authors in [19] highlight how neural networks are typically
overconfident in their predictions, leading to poor uncertainty
estimations.

To address this, authors in [20] propose to post-process the
Softmax’s confidence outputs, by implementing an additional
temperature parameter T in the Softmax function:

pi =
exp

(
yi,j/T

)∑
k exp

(
yk,j/T

) . (2)

To find the optimum T leading to better uncertainty
estimates, the authors propose to minimize the negative log
likelihood, encouraging the model to assign high confidence
to correct classes only (ignoring incorrect classes). This
means that an additional optimization step is needed.

Authors in [19] propose an alternative approach to avoid
the Softmax based uncertainty estimates, known as Monte
Carlo Dropout (MCD). In their method forward passes
through M perturbed models yj,m = fθ′m

(
xj
)
with perturbed

weights θ ′m are performed. This way, epistemic uncertainty
is modeled with a distribution of the model’s weights [21].
The approach estimates the dispersion σmodel

(
xj
)
of M

evaluations of the perturbed model, for the same input
observation xj:

σ 2
model

(
xj
)
=

1
M

M∑
m=1

K∑
k=1

(
ym,j,k − ȳj,k

)2
. (3)

The calculation of the dispersion or the distribution of the
outputs can be summed for all the output units k = 1, . . . ,K ,
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or only the unit with the highest output can be taken into
account.

Another recent method in [22] relying on the feature
representations of the training data, was proposed for
uncertainty estimation and Out of Distribution (OOD)
data detection. This method is known as Deterministic
Uncertainty Quantification (DUQ). For a set of feature
centroids E = {e1, . . . , eC } calculated using the training
data, uncertainty is calculated using the distance from each
centroid to the input observation xj, with a radial basis kernel
Ki:

Ki
(
fθ
(
xj
)
, ei
)
= exp

(
−

∥∥Wifθ
(
xj
)
− ei

∥∥2
2

2σ 2

)
(4)

where Wi stands for a weight matrix, tuned to encourage
feature insensitivity per class, thereby minimizing feature
collapse [22]. The uncertainty is then estimated as the
maximum class centroid distance in the feature space:

argmax
i

Ki
(
fθ
(
xj
)
, ei
)
. (5)

The authors of the DUQ method claim that their approach
measures both the epistemic and aleatoric uncertainty.
Epistemic uncertainty is modeled through the construction of
the feature centroids and the kernel Ki, which can improve as
more data is available. The measurement of the centroids also
includes aleatoric uncertainty [22].

Other popular uncertainty approaches include deep ensem-
bles [23] and interval networks [24]. These methods require
additional training steps, increasing complexity, and are often
impractical when no access to the original training data set is
possible.

B. UNCERTAINTY ESTIMATION FOR RELIABLE MEDICAL
IMAGING ANALYSIS AND COVID-19 DETECTION
Uncertainty estimation has been implemented in the literature
to increase the reliability of medical imaging analysis
systems. For example, in [25] uncertainty estimation is
implemented for a diabetic retinopathy diagnosing system.
A MCD based approach for uncertainty estimation was
implemented. The systemwas evaluated using rejection plots,
which calculate the average accuracy for the data rejected
by using different uncertainty thresholds. Furthermore,
the reliability was evaluated by measuring the impact of
referring samples to further manual inspection during clinical
usage.

In [26], a Bayesian deep learning approach was imple-
mented to segment retinal optical coherence tomographies.
The Bayesian model is able to estimate an uncertainty map,
used to post-process the segmentation. Neither a comparison
to other uncertainty methods nor the usage of uncertainty
metrics was performed in the study.

As for COVID-19 detection, a system with uncertainty
assessment was proposed in [27]. By providing practitioners
with a confidence factor of the prediction, the overall
reliability of the system is said to be improved. A high

correlation between the prediction accuracy of the model and
the level of uncertainty was reported in [27]. The data set used
for positive COVID-19 cases uses the repository of [28], and
normal X-ray readings were collected from [29].

Perhaps the most similar previous method to our proposed
approach is the pre-published work of [30]. The authors
write on the importance of measuring model uncertainty
for COVID-19 detection from chest X-ray images. They
compared three popular uncertainty estimation approaches,
namely ensemble networks, Monte Carlo dropout and a
combination of both approaches. An objective uncertainty
estimation metric is also proposed, as the authors found a
lack of metrics to compare uncertainty estimation methods.
We agree on this gap in the literature, however we think
that the metric should allow to compare not only different
uncertainty estimation methods, but also several uncertainty
estimations with different deep learning architectures, lead-
ing to different accuracy measurements, with statistical
significance. Reference [30] proposed a confusion matrix
approach which does not hold statistical meaning by itself.
Therefore, in our work, we propose an alternative metric
to compare different uncertainty estimation methods and
assess the impact of semi-supervised learning on uncertainty
estimation.

C. SEMI-SUPERVISED LEARNING WITH MixMatch
In this work, we explore the recent and successful SSDL
method referred to as MixMatch [31]. It creates a set
of pseudo-labels, and also implements an unsupervised
regularization term. The consistency loss implemented uses
the pseudo-labels for the unlabelled dataset Xu to train the
model. To calculate the pseudo-labels, the average model
output of a perturbed input xj is used:

ŷj =
1
K

K∑
η=1

fw
(
9η

(
xj
))
. (6)

where K is the number of perturbations (like image flipping)
9η done. A value of K = 2 is recommended by the authors.
According to authors, the estimated pseudo-labels ŷj might
present high entropy, increasing low confidence estimations.
To address this, the output array ŷ is sharpened with a
temperature coefficient ρ (with ρ = 0.25 recommended by
the authors):

ỹi =
ŷ1/ρi∑
j ŷ

1/ρ
j

. (7)

The set S̃u =
(
Xu, Ỹ

)
corresponds to the data with the

sharpened pseudo labels, where Ỹ =
{̃
y1, ỹ2, . . . , ỹnu

}
Authors in [31] highlight how data augmentation is

important to improve the SSDL performance. Therefore the
authors proposed the MixUp approach [32], which consists
on augmenting data using both labelled and unlabelled
observations:

(
S ′l , S̃

′
u
)
= 9MixUp

(
Sl, S̃u, α

)
, where Sl =

(Xl,Yl) stands for the labelled data with a sample size
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of nl . The MixUp algorithm generates new observations
combining the unlabelled (with its pseudo labels) and labelled
data through a linear interpolation. Specifically, for two
labelled and/or pseudo labelled data pairs (xa, ya) and
(xb, yb), the MixUp approach creates a new observation and
its label

(
x′ = λ′xa +

(
1− λ′

)
xb, y′ = λ′ya +

(
1− λ′

)
yb
)

using a linear interpolation. The parameterα controls the Beta
distribution where the MixUp coefficient is sampled from
λ ∼ Beta (α, α). A value of α = 0.75 is recommended by the
authors [31]. This results in the augmented data sets

(
S ′l , S̃

′
u
)
,

used by the MixMatch algorithm to train a model as specified
in the training function TMixMatch:

fθ = TMixMatch (Sl,Xu, γ ) = argmin
w

L (S,w) (8)

L (S, θ) =
∑

(xi,yi)∈S
′
l

Ll
(
θ , xi, yi

)
+ γ r(τ )

∑
(
xj ,̃yj

)
∈S̃ ′u

Lu
(
θ , xj, ỹj

)
(9)

In [31] the supervised loss term was implemented with a
cross-entropy loss; Ll

(
w, xi, yi

)
= δcross-entropy

(
yi, fw (xi)

)
.

Regarding the unlabelled loss term, an Euclidean distance
was implemented Lu

(
w, xj, ỹj

)
=

∥∥̃yj − fw (xj)∥∥. Authors
in [31], modelled the coefficient r(τ ) as a ramp-up function
that increases its value as the epochs τ increase. In our
implementation, r(τ ) was set to τ/3000. The γ factor is used
as a regularization coefficient. It regulates the influence of
unlabelled data. It is important to remark how unlabelled
data also affects the labelled data term Ll , as unlabelled data
is used to augment data observations by using the MixUp
approach for the labelled term as well.

D. SEMI AND SELF SUPERVISED LEARNING FOR
IMPROVING UNCERTAINTY ESTIMATION
Recently, in [33] the authors analyze the use of unlabelled
data to improve a model’s calibration (defined by the
authors as the correlation between accuracy and uncer-
tainty). A regularization based approach was implemented,
improving the calibration of the model for structured data.
Moreover, in [34], authors explore the improvement of
uncertainty estimations using self-supervised learning. Some
popular semi-supervised approaches like MixMatch [31] use
concepts implemented in self-supervised learning, namely
consistency regularization. The results presented in [33]
reveal the advantage of using unlabelled data for uncertainty
estimation. Semi-supervised learning has recently been
proven to enhance adversarial robustness, as argued in [35].
Moreover, in [36], the impact of MixUp data augmentation
on the model uncertainty estimation (also known as model
calibration) is assessed. Authors used the Softmax function to
estimate the model’s uncertainty, yielding better calibrations
through the usage of MixUp. MixUp is also used in the
MixMatch model [31].

E. COMPARING MODEL UNCERTAINTY RELIABILITY
To compare uncertainty reliability across different uncer-
tainty estimation techniques, different approaches have been
developed in the literature. Uncertainty reliability is related
to the calibration error [37]. For a classification problem in
a given data set D, intuitively, the calibration error refers
to the difference between the total estimated probability
(confidence) p̂ for the observations of label y and the real
proportion of the estimation of a label y, given in p.

Reliability histograms [38] are proposed to build a
histogram, with bins defined for different uncertainty ranges.
A reliability histogram plots the normalized confidence
against the accuracy for each bin. Defining Bm as the set of
indices of observations whose uncertainty prediction belongs
to the interval Im =

(
m−1
M , mM

]
, the sample mean accuracy

for the bin Bm is given by:

acc (Bm) =
1
|Bm|

∑
i∈Bm

1
(
ŷi = yi

)
, (10)

where ŷi corresponds to the model estimation for the
observation i with label yi. Similarly the average uncertainty
for a bin Bm for an uncertainty density function p̂ is given by:

unc (Bm) =
1
|Bm|

∑
i∈Bm

p̂i. (11)

An uncertainty estimator is considered better as the
relationship of unc and acc reaches the identity and thus
becomes less spiky. The Expected Calibration Error (ECE)
measures this gap in one scalar, taking the average difference
between the sample accuracy and confidence mean:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|. (12)

In [37] different downsides of the ECE are noted. One such
downside is the sparseness that is frequently yielded by the
computed confidence histogram. This is referred in [37] as the
problem of fixed calibration ranges. Frequently used Softmax
based uncertainty estimations are overconfident, making
higher bins more populated. This makes the estimates of less
populated bins potentially inaccurate. Other improvements
added to the ECE include the root mean squared calibration
error [39] and the static and adaptive calibration error [37].

However, an important downside of using the ECE is the
assumption that it makes about the uncertainty measurement
as a normalized measure between 0 and 1. Different
approaches for uncertainty estimation as MCD and DUQ
yield unbounded values (outside from the 0 to 1 interval),
making the use of the ECE inappropriate. For instance in [26],
MCD has been implemented for uncertainty estimation,
with no normalized values reported. For instance, comparing
uncertainty estimations of [25], [26] to the ones yielded
in [40], is difficult as different uncertainty measures yield
different uncertainty value ranges for different data sets.
Using the ECE is only possible when a bounded uncertainty
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estimator such as the Softmax function is used (where its
values are bounded from 0 to 1). This makes the comparison
of uncertainty estimation approaches difficult as they can be
normalized using the sampled values for the data set tested,
but this leads to a data set bias.

However, a bigger issuewhen using ameasure like the ECE
is the limited statistical interpretation. The ECE relies on the
sample mean per bin acc, which ignores the distribution of
the data and information from other statistical measurements
like the variance.

As an alternative, rejection-classification plots were used
in [22]. Rejection-classification plots use as x-axis the
proportion of data rejected based on the uncertainty score.
The y-axis represents the level of accuracy. Similar to the
rejection-classification plots, the accuracy vs. confidence
curveswere used in [23] to compare different uncertainty esti-
mators graphically. For a quantitative comparison, the area
under the curve of this plot can be used. However, such
value is also unbounded and holds no statistical significance.
For either the rejection plots or the ECE based metrics,
a comparison problem arises when the compared curves
present different accuracy levels. As the number of wrong
estimations fluctuates for each model, the average accuracy
per bin also changes, making it harder to compare the
uncertainty estimation quality. This situation is faced in this
work, where we compare the impact of a supervised to a
semi-supervised model, which changes the model’s accuracy.

Other common metrics to measure the error of a model
have also been used for out of distribution data detection
through uncertainty methods. In [41] for instance, the area
under the precision-recall curve and the error rate have
both been used for out of distribution detection to compare
uncertainty estimation methods. However, the metric is
also not statistically relevant as no distribution informa-
tion is used to compare the evaluated methods. Using
the outlined context, this work comprises the following
contributions:
• We explore the impact of semi-supervised deep learning
in the reliability of the uncertainty estimations for
COVID-19 detection, using a common deep learning
architecture.

• We evaluate and compare qualitatively as well as
quantitatively the performance of three different uncer-
tainty estimation techniques for both the supervised and
semi-supervised models.

• We propose the use of the Jensen-Shannon diver-
gence [42] as a probability density based metric to
compare the performance of uncertainty estimation
techniques.

We show that our proposed method is simple to implement
and that it is often effective. The method takes advantage
of unlabelled data to improve uncertainty estimations for
COVID-19 detection using digital chest X-ray images.
Unlabelled data is generally widely available, and in the
context of a virus out-break, easier to obtain, when compared
to labelled data.

III. PROPOSED METHOD
In this work, we propose the use of unlabelled data through
MixMatch (as depicted in equations 8 and 9), to improve
uncertainty estimation.We test the impact of using unlabelled
data in three uncertainty estimation methods:
• Softmax as described in Equation 1, using the max-
imum Softmax value for the output layer. Therefore,
the Softmax uncertainty estimation corresponds to
ui = argmax

i
pi.

• MCD as depicted in Equation 3, using the standard
deviation of the distribution from the evaluation of the
model with dropout for the same input observation
xj [19], making ui = σmodel

(
xj
)
.

• DUQ as introduced in Equation 4. We used a generic
weight matrix Wi = 1 for all classes i = 1, . . . ,C ,
implementing an Euclidean distance for the radial basis
kernel Ki. The uncertainty estimation for this approach
is implemented as

ui = argmax
i

Ki
(
fθ
(
xj
)
, ei
)
, (13)

for an input observation xj.
In this work we also propose the comparison of the

evaluated methods for uncertainty estimation, using the
Jensen-Shannon divergence between the distribution of
the uncertainty estimations for the correct and incorrect
estimations. More specifically, take a model uncertainty
estimation uj for an input observation xj. For a given data set
S, we group the uncertainties of the wrong estimations for
the trained model, semi or supervised, as wrong or correct
according to the labels in the test partition of the labelled
dataset Sl = (Xl,Yl). This results in a set of uncertainties
for the wrong estimations Uwrong =

{
u1, . . . , unwrong

}
and

correct estimations Ucorrect =
{
u1, . . . , unincorrect

}
, used to

calculate the corresponding normalized histograms pucorrect
and puincorrect . We implement the Jensen-Shannon divergence
DJS

(
pucorrect , puincorrect

)
to measure the divergence between the

two non-parametric approximations of the density functions
pucorrect and puincorrect . Figure 1 summarizes the implemented
pipeline in this work.

IV. EXPERIMENTS
A. DATASET
The COVID-19+ data sample was downloaded from the
publicly available github repository of Cohen [28]. The
observations were gathered from journals such as radiopae-
dia.org and the Italian Society of Medical and Interventional
Radiology. In this work we used only images labelled with
COVID-19+, discarding images labelled as Middle East
Respiratory Syndrome (MERS), Acute Respiratory Distress
Syndrome (ARDS) and Severe Acute Respiratory Syndrome
(SARS). After applying this filtering, 99 observations of front
chest X-rays were selected. The images were stored with
resolutions ranging from 400×400 up to 2500×2500 pixels.
Together with the COVID-19− observations we sampled

a 5856 observations containing pneumonia and no lung
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FIGURE 1. Description of the implemented work-flow: Training of the semi-supervised model MixMatch (MM) and the supervised
model (Sup.). Calculation of the predictive uncertainties using the Softmax activation function, MonteCarlo Dropout (MCD) and
Deterministic Uncertainty Quantification (DUQ). We propose to compare the distribution of the predictive uncertainties for correct
(C) and Incorrect (I) estimations, using the Jensen-Shannon distance (JS).

pathology’s as defined by [29]. The data set is composed
of 4273 observations of viral and bacterial pneumonia and
1583 normal observations (with no lung pathology). We used
the observations with no findings, for the COVID-19− class.
The negative COVID-19 cases gathered in this dataset have
been used in recent research related to COVID-19 detection
using deep learning [43]–[45]. The images were stored with
a resolution of 1300× 600 pixels.
We created a balanced base-line data set of 99 COVID-19+

observations and also 99 observations for COVID-19− cases,
using the aforementioned data sets. Figure 2 shows a sample
of the images used.

Both supervised and semi-supervised models were trained
with nl = 20, 30, 60, 70, 100 labelled observations, to study
the impact of different labelled data sample sizes. We splitted
the data set of 198 observations with 70% (138 observations)
of the data for training and the remaining 30% (60 observa-
tions) for testing. The labelled observations were taken from
the training dataset, and as for the SSDL model, we used
the remaining as unlabelled data, always keeping the number
of labels balanced. We chose to use the unlabelled data as a
partition of the original labelled dataset, to avoid distribution
mismatch related issues as suggested in [46]. This is out of
the scope in this work, however testing unlabelled datasets
from other sources with possibly more observations, is left
for future work.

B. NEURAL NETWORK ARCHITECTURES AND METRICS
In this work we used a WideResNet model as a super-
vised model for binary classification (COVID-19+ and

FIGURE 2. Left column, positive COVID-19 X-ray observations, right
column, three negative COVID-19 observations. All of them were taken
from the dataset used in this work.

COVID-19− discrimination), with transfer learning from the
ImageNet dataset. For the supervisedmodel we used the cross
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TABLE 1. F1 score and accuracy statistics for batches tested with different number of labels nl .

TABLE 2. Softmax results for the semi-supervised and supervised models with different numbers of labels nl . Higher values indicate higher model
confidence. The higher the better for correct estimations, and the lower the better for incorrect estimations.

entropy as loss function. The semi-supervised MixMatch
framework implemented also used the WideResNet model
with a K = 2 transformations, a sharpening coefficient ρ =
0.25, a MixUp parameter α = 0.75, as recommended in [31],
and a γ = 200 for the unsupervised coefficient, as advised
in [11]. For both the supervised and semi-supervised
model we used a learning rate of 0.00002 and a batch
size of 10 observations, with 50 epochs per run. As a
preprocessing stage, we implemented a standardization of
the training dataset. All images were resized to 150 × 150
pixels. The model was implemented with the FastAI library,
and optimized with the 1-cycle policy [47].

We evaluated the Softmax, MCD and DUQ uncertainty
methods in the semi and supervised models to collect for
each one of them a set of uncertaintiesUS,UMCD, andUDUQ,
respectively. As for the parameters of the tested uncertainty
methods, for the MCD, we used M = 100 evaluations
with the default dropout of WideResNet. Regarding the DUQ
method, we used an Euclidian based kernel K for all the
classes.

We first report the model’s F1 score, to compare the accu-
racy gained when using SSDL, and use it as a reference for
the uncertainty results analysis. This is depicted in Table 1.
We also report the ρlu and δρ (this last one for the SSDL
model), as advised in [11] for assessing the accuracy gain for
SSDL frameworks.

Secondly, we report the sample mean and standard devi-
ation for the correct and incorrect estimations. We perform
this comparison for all three tested uncertainty estimation
methods (Softmax, MCD and DUQ). We also measure the
Jensen-Shannon divergence between the distributions of the
uncertainties puincorrect and pucorrect , for the incorrect and correct

estimations, respectively. Uncertainty for wrong and right
estimations is expected to be higher and lower respectively.
The reported descriptive statistics correspond to the results
of 10 runs with 10 different test and training data partitions.
The results yielded for the described experiment are displayed
in tables 2, 3 and 7.

Finally, as a complementary qualitative test, we calculated
the rejection-classification plots described in [22]. The
average accuracy was calculated for each uncertainty bin.
In general, for rejection plots, the less spiky and closer to an
identity function, the better for an uncertainty estimator. Such
plots are displayed in Table 9 for the three tested uncertainty
estimators.

V. RESULTS
The F1-score and accuracy of the models trained with less
than 70 labels reported a significant performance gain when
using the tested SSDL model. The F1-score gain goes from
around 0.18 with 20 labels to almost 0.01 when using
60 labels. With 70 labels, the sample mean accuracy and
F1-score gets marginally better for the supervised model,
making the impact of SSDL negligible. We also report the
1ρ to measure the accuracy gain under the specific SSDL
data setting. The yielded results allow to evaluate uncertainty
estimation performance under the setting of substantial (nl =
20, 30), marginal (nl = 60) and negative (nl = 70, 100)
accuracy and F1-score gains when using MixMatch.

Taking the accuracy gains into account for different
number of labels nl used for training we proceed to analyze
the uncertainty estimation reliability by using the proposed
Jensen-Shannon divergence between the uncertainty distribu-
tion of correct and wrong estimations.
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TABLE 3. MCD results for the semi-supervised and supervised models with different numbers of labels nl . Lower values indicate higher model
confidence. The lower the better for correct estimations, and the higher the better for incorrect estimations.

TABLE 4. DUQ uncertainty distributions for correct (blue dashed line) and
incorrect estimations (orange dashed with ‘x’ line) using nl = 30,70
labels (from left to right). From top to bottom, the first row corresponds
to the supervised model and the second row, to the SSDL model results.

For the Softmax function, the wrong-correct uncertainty
distribution distances are depicted in Table 2. In this table,
a significant Jensen-Shannon divergence gain is yieldedwhen
nl = 20 and nl = 30, with gains ranging from 0.32 to
0.2. However, when nl = 60 and nl = 70 the Jensen-
Shannon (JS) divergence gets smaller between the supervised
and SSDL model, with only 0.04 of difference. For nl =
100, the supervised model gets a much higher JS divergence,
suggesting a high correlation between the accuracy/f1-score
gain and uncertainty reliability gain by using SSDL for the
softmax uncertainty based approach. Table 6 shows how the
distributions of the softmax uncertainties for the wrong and
correct distributions are significantly different for both the
SSDL and supervised models, however, the JS divergence
makes easier to spot the difference between the distributions
quantitatively.

As for the MCD for uncertainty estimation, a similar
behavior can be observed, with decreasing uncertainty
reliability gains when the number of labels go from nl = 20
and nl = 100 when using the SSDL model. Similarly, for
nl = 20 up to nl = 70 labels, the reliability of the SSDL
model uncertainty estimations outperform the supervised
model by a larger margin. MCD obtains lower reliability
gains for the SSDL model when compared to the Softmax

TABLE 5. MCD uncertainty distributions for correct (blue dashed line)
and incorrect (orange dashed with ‘x’ line) estimations using nl = 30,70,
from left to right. From top to bottom, the supervised and the
semi-supervised deep learning models results.

TABLE 6. Softmax confidence distributions for correct (blue dashed line)
and incorrect (orange dashed with ‘x’ line) estimations using nl = 30,70,
from left to right. From top to bottom, the supervised and the
semi-supervised deep learning models results.

approach, for the lowest number of labels nl = 20 and
nl = 30 tested. Also for the SSDL model, when the number
of labels increases from nl = 60, the reliability of the
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TABLE 7. DUQ results for the semi-supervised and supervised models with different numbers of labels nl . Lower values indicate higher model
confidence. The lower the better for correct estimations, and the higher the better for incorrect estimations.

TABLE 8. Summary of the Jensen-Shannon divergence gains (uncertainty distributions divergence for the correct and incorrect estimations), for each
tested uncertainty estimation method, using semi-supervised learning.

MCD approach is better when compared to the softmax
method. The uncertainty distribution plots for the correct
and wrong estimations depicted in Table 5 show important
differences between such distributions, but the improvement
between the SSDL and supervised models is hard to discern
visually.

Regarding the results for the DUQ uncertainty estimation
method, the overall JS divergences are significantly lower
than the MCD and softmax approaches. This suggests
that both methods significantly outperform DUQ as an
uncertainty estimation method. The plots in Table 4 quali-
tatively complement the small difference between the DUQ
uncertainty distributions of correct and wrong estimations.
However, similar to the softmax andMCDmethods, the usage
of SSDLmakes a positive impact when nl is between nl = 20
up to nl = 60.

A summary of the results is presented in Table 8. The use
of the Jensen-Shannon divergence between the uncertainty
distributions of the correct and wrong estimations allowed
us to perform such analysis. We can see how the highest
relative uncertainty estimation improvements are yielded
when the models are trained with fewer labels. In such case,
the gains range from 81 to 142 percent, for all the tested
uncertainty estimation methods. In general, as the number
of labels increases, the reliability gain of the uncertainty
estimations using SSDL tend to decrease. This correlates
well with the average accuracy gains using SSDL depicted
in Table 1.
This tendency is more visible for the MCD and Softmax

methods. The DUQ method is very unstable, as its capability
for uncertainty estimation is more limited when compared
to the first two methods, with lower JS divergences for
all the tested configurations as seen in Table 7. Marginal
uncertainty estimation improvements were obtained for the
DUQ method, as seen in Table 8.

Finally, Table 9 shows the rejection plots for the tested
uncertainty estimation methods, with different numbers of
labels nl . In most cases the plots are rather similar, and also
reveal a very high dispersion of the results for each bin,
depicted by the blue (supervised model) and the orange areas
(SSDL model). Such high dispersion suggests a possible
statistically irrelevant comparison of results. Most of the
plotted curves show higher accuracies per bin for the SSDL
model, which corresponds to the results yielded in Table 1
where for most tested configurations the SSDL model
outperforms the supervised one. This makes the comparison
of the rejection plots between the supervised and the SSDL
model harder.

VI. LIMITATIONS OF THE STUDY
This work used a limited sample of COVID-19 positive
observations coming from a very different distribution when
compared to the source of COVID-19 negative observations
sampled from [29]. This causes a bias in the population
of patients sampled for COVID-19 positive and negative
cases related to age and ethnicity, as the data sources for
both cases are completely different. The low availability of
public repositories of COVID-19 chest X-rays with reliable
labels at the time of writing poses a limitation to this
work. Therefore, an additional validation of the proposed
method in this work with other datasets with higher quality
(with less age and ethnicity biases) is necessary. We plan
to do this in the future. This work focused on measuring
the impact of semi-supervised learning on uncertainty
estimations for COVID-19 detection, and evidenced how
predictive uncertainty estimations improve asmodel accuracy
improves. However, the quality of the predictive uncertainty
estimations can be improved through model calibration
methods. Furthermore, other uncertainty estimation methods
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TABLE 9. Rejection plots for the three tested uncertainty approaches. The first row correspond to the DUQ estimations, the second one to the MCD
uncertainties and the last one to the Softmax confidence scores. From left to right, models with different number of labels nl . Orange and ‘x’ lines
correspond to the semi-supervised model and the dashed and blue lines correspond to the supervised model.

can be included in the comparison.We plan to test uncertainty
estimation improvements in future work.

VII. CONCLUSION
In this work we have tested the impact of using unlabelled
data to improve the reliability of uncertainty estimations
through the implementation of the SSDL algorithm known as
MixMatch. We tested three different uncertainty estimation
methods (softmax, MCD and DUQ). The yielded descriptive
statistics suggest an important reliability improvement of
the uncertainty estimations when using SSDL for all the
three uncertainty estimation methods. With low number of
labels, the JS divergence is boosted by up to 142%, as seen
in Table 8.

To ease the comparison of the tested uncertainty tech-
niques, we proposed the use of the JS divergence, comparing
the distributions of the wrong and correct estimations. The
test is statistically relevant as it takes into account the
whole results distribution, and it is easy to interpret, with
values ranging from 0 to 1 (the higher the values the
better). The use of the JS divergence index to compare the
uncertainty estimations proved to be simple to analyze, with
easy to map correspondence with the distribution plots. Its
use is recommended when comparing different uncertainty
methods under different models which cause fluctuations in
the model accuracy.

When comparing the three tested uncertainty estimation
methods, the MCD and the softmax techniques performed
better than the DUQ approach. The comparison between
the MCD and the softmax methods is rather mixed, with
MCD performing better when nl is higher. Results with
the DUQ method yielded a significantly worse performance
for uncertainty estimation. We speculate that this is due to
the high similarity between the images of the two classes.
This makes the averaged observations in the feature space
similar for both classes and the comparison of new unseen
observations less sensitive. In terms of the uncertainty source,
the MCD approach seemed to be more sensitive to epistemic
uncertainty, than the DUQ method. Epistemic uncertainty
can be considered to be very high in models trained with
very few labels, as the feature space sample is very limited.
MCD takes into account the epistemic uncertainty of both the
feature extractor and the top model (fully connected network
acting as classifier), unlike DUQ which only uses the feature
extractor, and can be considered the only channel for the
epistemic uncertainty for this method.

As future work, we plan to explore more recent uncer-
tainty estimation approaches which have been originally
designed for distribution mismatch measurement [48], [49].
Interchangeably, the quality of the unlabelled dataset and its
impact in the model’s accuracy and uncertainty estimations
is also worth to explore. For this end, dataset quality metrics
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can be implemented [50]. Furthermore, we plan to explore the
impact of unlabelled data in other engineering requirements
of deep learning models such as model robustness. Little
research has been done about the actual impact of semi
or self supervised learning in important model properties
such as robustness in practical applications like medical
imaging analysis. For instance, we plan to further evaluate the
improvement of model uncertainty reliability and robustness
for COVID-19 detection using computed tomography as
an alternative imaging technology which is also interesting
to explore. The use of modern semi- and self-supervised
techniques can do more than just improving the model
accuracy under restricted number of labels. Therefore its
impact should be studied in depth. In general, we highlight the
need for evaluating other important model properties such as
robustness and uncertainty reliability, specially for sensitive
applications like medical imaging analysis.
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