
Received April 14, 2021, accepted May 16, 2021, date of publication May 31, 2021, date of current version July 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085142

Enhanced Off-Policy Reinforcement Learning
With Focused Experience Replay
SEUNG-HYUN KONG 1,2, (Senior Member, IEEE), I. MADE ASWIN NAHRENDRA 2,
AND DONG-HEE PAEK 1
1The Cho Chun Shik Graduate School of Green Transportation, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2The Robotics Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea

Corresponding author: Seung-Hyun Kong (skong@kaist.ac.kr)

This work was supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by
the Ministry of Science and ICT (MSIT) of Korea Government, Development of Artificial Intelligence Technology that Continuously
Improves Itself as the Situation Changes in the Real World, under Grant 2020-0-00440.

This work did not involve human subject or animals in its research.

ABSTRACT Utilizing the collected experience tuples in the replay buffer (RB) is the primary way
of exploiting the experiences in the off-policy reinforcement learning (RL) algorithms, and, therefore,
the sampling scheme for the experience tuples in the RB can be critical for experience utilization. In this
paper, it is found that a widely used sampling scheme in the off-policy RL suffers from inefficiency due
to the inadequate uneven sampling of experience tuples from the RB. In fact, the conventional uniform
sampling of the experience tuples in the RB causes a severely unbalanced experience utilization, since
experiences stored earlier in the RB is sampled with much higher frequency especially in the early stage of
learning. We mitigate this fundamental problem by employing a half-normal sampling probability window
that allocates a higher sampling probability to newer experiences in the RB. In addition, we propose general
and local size adjustment schemes that determine the standard deviation of the half-normal sampling window
to enhance the learning speed and performance and to mitigate the temporary performance degradation
during training, respectively. For performance demonstration, we apply the proposed sampling technique
to the state-of-the-art off-policy RL algorithms and test for various RL benchmark tasks such as MuJoCo
gym and CARLA simulator. As a result, the proposed technique shows considerable learning speed and
final performance improvement, especially on the tasks with large state and action space. Furthermore,
the proposed sampling technique increases the stability of the considered RL algorithms, verified with less
variance of the performance results across different random seeds of network initialization.

INDEX TERMS Reinforcement learning, off-policy, actor-critic, experience replay, replay buffer.

I. INTRODUCTION
In the off-policy reinforcement learning (RL), an agent is
trained in a two-step process, exploration step and learning
step, where the agent collects and stores experiences through
interacting with the environment and then updates the agent’s
policy using the samples of the stored experiences, respec-
tively. In recent years, various off-policy RL algorithms have
been successfully applied and have shown significant perfor-
mance improvements in the challenging tasks from classic
Atari games and Go, [1]–[5] to robotics control environments
such as MuJoCo [6]–[13] and real-world implementation of

The associate editor coordinating the review of this manuscript and

approving it for publication was Noel Crespi .

robotic control [9]. However, there still exist two conventional
challenges in the off-policy RL; exploration of large state
space and efficient utilization of the stored experiences [14],
[15]. The exploration focuses on how to make an RL agent
encounter new and diverse experiences, and the experience
utilization addresses on how to make an RL agent obtain the
full knowledge by learning from the stored experiences.

The two-step process has been realized with the replay
buffer (RB); in the exploration step, the RB is filled in
with experience tuples, and the stored experience tuples are
sampled and utilized in the learning step. This sequential
process is called experience replay (ER) [16], which has been
widely used for the off-policy RL algorithms with buffer
size large enough to store various experience samples over

93152

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 9, 2021

https://orcid.org/0000-0002-4753-1998
https://orcid.org/0000-0001-9515-7059
https://orcid.org/0000-0003-0008-3726
https://orcid.org/0000-0003-2962-192X

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

a wide enough interval. However, the application of ER for
off-policy RL still suffers from sampling inefficiency [14],
[17]; while an agent needs to sample useful experience
tuples in the RB at all times for optimal policy develop-
ment, the sampling could be inefficient when the agent uses
the conventional sampling techniques, for example, uniform
sampling, especially in the early stage of learning when RB
is being filled. In fact, applying uniform sampling results
in a relatively high sampling frequency of experience tuples
stored early in the RB, because the earlier experience tuples
will be included in the sampling window a lot more times
than the later experience tuples [18], [19]. Even if the earlier
experience tuples are discarded when the RB is full and
new experience tuples are collected, this severely unbalanced
sampling frequency can be a critical problem when the size
of RB is large enough as required for many complex RL
problems. And, most importantly, the problem is critical as
the policy development by the RL agent starts to show a rapid
speed-up well before the RB is fully filled.

Recent RL algorithms still need huge number of expe-
riences to develop an optimal policy to solve a real-world
problem [6]–[9], [14], [20]. In practice, older experiences
often originate from unsuccessful episodes, whereas recent
experiences are often from successful episodes and thus have
more useful information. For instance, unsuccessful episodes
in the initial stage mostly contain environment steps with
inappropriate action choices [21] that do not provide useful
information. However, an RL agent should not aggressively
utilize newer experiences and ignore the older ones, which
causes the agent’s failure to generalize the knowledge and
to experience a catastrophic forgetting [22]. This leads to
the stability-plasticity dilemma, in the continual learning
domain, about how a learning agent could quickly learn new
knowledge while preserving old knowledge [23], [24]. And
this explains that RB of a large enough size is necessary for
many RL problems.

In this paper, we propose Focused Experience Replay
(FER), an experience sampling technique to mitigate the
severely unbalanced sampling frequency in the off-policy RL
and, thus, to enable faster and stable action policy develop-
ment. In the proposed technique, we utilize a half-normal
sampling probability window, with a linearly increasing stan-
dard deviation of the half-normal sampling probability dis-
tribution, so that the sampling concentrates more on recent
experiences than old ones. In addition, we propose a locally
adaptive standard deviation scaling technique to adpatively
determine the half-normal sampling probability distribution
to prevent the policy from becoming too deterministic pre-
maturely. We demonstrate that the state-of-the-art off-policy
RL algorithms, such as Soft Actor-Critic (SAC) [8], [9],
Twin Delayed Deep Deterministic (TD3) [7], and Deep
Deterministic Policy Gradient (DDPG) [6], are significantly
enhanced with the proposed FER in terms of the learning
speed (increased up to 2.5 times), which verifies that the
proposed FER is a highly efficient RB sampling technique.
In addition, the algorithms with the proposed FER show a

noticeable improvement on the final learning performance
in some complicated MuJoCo locomotion tasks and CARLA
simulator for autonomous driving. The main contribution of
this work can be summarized as follows.

1) We provide, to the best of our knowledge, the first
investigation on the severely unbalanced overall sam-
pling frequency problem in ER for off-policy RL algo-
rithms. We support our findings with theoretical and
empirical proofs that testify the unbalanced overall
sampling frequency in the conventional sampling tech-
niques for ER.

2) We propose an experience sampling technique that
mitigates the unbalanced overall sampling frequency
problem in ER. The proposed technique, FER, utilizes
a half-normal sampling probability window to focus
the experience sampling on newer experiences more to
enable evenly distributed overall sampling frequency
for all samples.

3) We provide an ablation study to show how the proposed
technique can be improved by adjusting the critical
hyperparameters. The ablation study consists of a the-
oretical view of the equations related to the hyperpa-
rameters, empirical proof in simulations, and sugges-
tions on future directions for improving the proposed
technique.

The organization of this paper is as follows. In Section II,
we compare the proposed technique with PER and other
sampling techniques in ER for off-policy RL algorithms.
In Section III, we provide the problem formulation of general
off-policy RL and introduce state-of-the-art off-policy RL
algorithms that is used throughout this paper. Section IV
provides a detailed description of the proposed tech-
nique addressing the unbalanced sampling problem in
ER. We demonstrate the performance enhancement when
the proposed technique is applied to the state-of-the-art
off-policy RL algorithms in comparison to vanilla ver-
sion and PER-enhanced of those off-policy RL algorithms,
in Section V. And finally, we draw a conclusion and pro-
vide potential future works of the proposed technique in
Section VI.

II. RELATED WORKS
Experience replay (ER) is important for the implementation
of the off-policy RL algorithms [23]. The core function of ER
includes storing experience tuples, each of which is a set of
explored state, action, reward, and the next state, into a large
RB and sampling experience tuples from the RB to build a
learning data batch.

A breakthrough sampling technique, known as Prioritized
Experience Replay (PER) [17], ranks experiences in the
RB based on their temporal difference (TD) error that is
used to quantify the innovation of the experience compared
to the others [14]. Then, PER allocates sampling priority
to the experiences with higher TD errors. PER also uti-
lizes weighted importance sampling [25] for annealing the

VOLUME 9, 2021 93153

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

bias induced when experiences with the high TD errors are
sampled.

In general, PER improves learning speed and final per-
formance of the off-policy RL algorithms solving problems
of discrete states and controls such as Atari games [1], and
shows better performance than the state-of-the-art DQN and
DDQN algorithms [3]. In [26], PER is applied to continuous
control domain by using PER with deep deterministic policy
gradient (DDPG) [6] and shows significant increase in the
learning speed on continuous inverted pendulum simulation.
However, we observe that, similar to the conventional uni-
form sampling technique, PER also suffers from severely
unbalanced overall sampling frequency for experience tuples
in the RB, especially when the RB is being filled in the early
stage of learning.

The proposed technique differs from PER in that it is not
aggressively learning from experiences with large TD errors,
but it is allocating uniform overall sampling frequency to old
and new experiences in the long run. Therefore, the proposed
technique can generalize the learned knowledge by exploting
old knowledge and new knowledge in a balanced way.

Recently, there have been studies in the literature that
improve or supplement the performance of off-policy learn-
ing algorithms with techniques related to experience replay.
Hindsight Experience Replay (HER) [27] aims to learn a pol-
icy in environments of sparse rewards by collecting experi-
ence tuples for sub-goals that are designated by the developer.
Combined Experience Replay (CER) [28] observes that a
large RB size can degrade the performance, and prevents the
degradation by sampling the most recently stored experience
tuple at all times. Distributed Prioritized Experience Replay
(DPER) [29] shows an improved performance by employing
multi-thread (actors) to collect experience tuples and store
in a single common RB that is sampled uniformly to train
a single learner. Experience Replay Optimization (ERO) [30]
proposes an additional experience tuple sampling network of
a huge number of weights (e.g., at least 4 × 109) and shows
a slight improvement in some continuous control tasks with
deep deterministic policy gradient (DDPG) [6].

The proposed technique, FER, differs from most recent
studies in multiple ways; FER is a computationally light but
efficient sampling technique that does not require additional
network and aims to the environments of continuous rewards.
FER could be used with off-policy RL algorithms, for
instance, deep deterministic policy gradient (DDPG) [6], twin
delayed DDPG (TD3) [7], and soft actor-critic (SAC) [8], [9].

III. OFF-POLICY REINFORCEMENT LEARNING
In this section, we define the notations used throughout the
paper. And we introduce off-policy RL algorithms, such
as DDPG, SAC, and TD3, which can utilize the proposed
technique, FER.

In this paper, the concept of actor-critic is used, where
an actor’s policy π (aaat |ssst) is optimized by maximizing the
critic’s state-action value Q(ssst ,aaat), for state ssst and action aaat
at the time step t . The actor’s policy πφ(aaat |ssst) and critic’s

state-action value Qθ (ssst ,aaat) are realized using neural net-
works with parameters φ and θ , respectively.When the policy
is stochastic, the output of the policy are Gaussian distribu-
tion parameters of the action distribution. These outputs are
denoted asµµµaaa,t ,σσσaaa,t for mean and standard deviation, respec-
tively. In addition, φ̄ and θ̄ are used to indicate the parameter
of the target networks for the actor and the critic, respectively.
And r(ssst ,aaat) indicates the reward from the environment.
The experience tuples,

{
ssst ,aaat , r(ssst ,aaat), ssst+1,µµµaaa,t ,σσσaaa,t

}
are

stored into the experience replay buffer, D.

A. DEEP DETERMINISTIC POLICY GRADIENT
The deep deterministic policy gradient (DDPG) [6] is an
extension of deep Q-network (DQN) to the continuous space.
The DDPG algorithm is based on actor critic, learning a
deterministic policy. The critic network of DDPG is trained
using the cost function

JQ(θ) = E(ssst ,aaat)∼D

[
1
2
(Qθ (ssst ,aaat)− y)2

]
, (1)

where (ssst ,aaat)∼D indicates that the state and action are sam-
pled from the replay buffer,D. And y is the target state-action
value defined as

y = r(ssst ,aaat)+ γQθ (ssst , ãaat), (2)

with γ is the discount factor for future rewards and ãaat is the
action at ssst with an exploration noise εt , formulated as

ãaat = πφ̄(ssst)+ εt . (3)

The policy is updated using policy gradient defined as

∇φJπ (φ) = ∇aaatQθ1 (ssst ,aaat)|aaat=πφ (ssst)∇φπφ(ssst), (4)

where ∇bA is the gradient of A with respect to b.

B. TWIN DELAYED DEEP DETERMINISTIC POLICY
GRADIENT
The twin delayed deep deterministic policy gradient
(TD3) [7] builds on the deep deterministic policy gradi-
ent (DDPG) and added an additional critic, Qθ2 as a twin of
the first critic, Qθ1 . In addition, TD3 delays the update of the
actor’s policy and the critic’s state-action value to stabilize the
learning. Each critic network is trained using the cost function

JQ(θi) = E(ssst ,aaat)∼D

[
1
2

(
Qθi (ssst ,aaat)− y

)2]
, (5)

where i is the index of the critic that is being updated and y is
the target state-action value defined as

y = r(ssst ,aaat)+ γ min
i=1,2

Qθ̄i (ssst , ãaat). (6)

and ãaat is the action at ssst with a standard-normal noise εt ,
formulated as

ãaat = πφ̄(ssst)+ εt . (7)

The policy is updated using policy gradient defined as

∇φJπ (φ) = ∇aaatQθ1 (ssst ,aaat)|aaat=πφ (ssst)∇φπφ(ssst), (8)

93154 VOLUME 9, 2021

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

where ∇bA is the gradient of A with respect to b. In the
deterministic policy gradient update, only the gradient of
Qθ1 is used to update the policy to make the policy learn-
ing more stable. When training the Q networks, using the
smaller Q-value helps reducing overestimation. However,
when training the policy, alternating between Qθ1 and Qθ2
may lead to unstable learning.

C. SOFT ACTOR-CRITIC
The soft actor-critic algorithm [8], [9] addresses the RL prob-
lem using entropy maximization and soft Q-function, where
the soft Q-function is trained to minimize the soft Bellman
residual by using a cost function. The cost function JQ(θ) is
the expectation of mean squared error between the Q value of
a state-action pair sampled from the RB, i.e., Qθ (ssst ,aaat), and
the target Q value

JQ(θ) = E(ssst ,aaat)∼D

[
1
2

(
Qθ (ssst ,aaat)−

(
r(ssst ,aaat)

+γE(ssst+1)∼p [V (ssst+1)]
))2]

, (9)

where V (.) is the soft state-value function, Ea∼A[b] is the
expectation of b by taking argument a following the distribu-
tion A. D denotes the replay buffer which stores experience
tuples {ssst ,aaat , ssst+1, r(ssst ,aaat), µt , σt }, where µµµaaa,t and σσσaaa,t are
the mean and standard deviation of the the policy distribution
given ssst . The target Q value is the summation of current
reward with the expected soft state-value in the next state
ssst+1 discounted by factor γ , given ssst+1 sampled from the state
transition probability p.
In the initial version of SAC in [8], a separate neural

network is used to parameterize the soft state-value func-
tion V (·). Later, it is found that the network for V (·) is
not necessary [9], and it can be expressed directly with the
combination of target state-action value network and policy
network as

V (ssst+1) = Qθ̄ (ssst+1aaat+1)− α log
(
πφ (aaat+1|ssst+1)

)
, (10)

where 0 < α < 1 is the entropy temperature to weight the
importance of entropy maximization. The resulting objective
function for the optimization of the policy network is defined
as

Jπ (φ) = Essst∼D,εt∼N
[
logπφ(fφ(εt ; ssst)|ssst)

−Qθ (ssst , fφ(εt ; ssst))
]
, (11)

where fφ(εt ; ssst) is the reparameterization of the action aaat with
noise εt in the state ssst , and the noise εt is sampled from the
standard normal distribution N .

IV. FOCUSED EXPERIENCE REPLAY
A. OVERALL SAMPLING FREQUENCY OF CONVENTIONAL
TECHNIQUES
When an RL agent interacts with the environment, a new
experience is collected and stored into the RB, and some of

the experience tuples in the RB are sampled. The uniform
sampling technique samples the experience tuples with uni-
form probability as shown in Figure 1.

FIGURE 1. Three (blue, orange, and green) histograms as results of
uniform sampling when RB is filled with 10000, 50000, and
100000 experience tuples, respectively. It can be found that the
accumulation of the three histograms and other possible histograms at
different buffer indices will result in an overall exponential sample
distribution.

LetNmax be the size of an RB that is currently filled withN
experiences. And let the batch size for the uniform sampling
be b. The probability of selecting an arbitrary experience
tuple xm at index m is

P(xm) =
b
N
. (12)

Since each experience at any index m will be sampled
with the same probability in uniform sampling, the overall
accumulated sampling frequency f (x) for experience tuple xm
at sampling instance up to N can be found as

f (xm) = b ·
(
1
m
+

1
m+ 1

+ . . .+
1

N − 1
+

1
N

)
≈ b ·

∫ N

m

1
r
dr

= b log
N
m
. (13)

Equation (13) shows that the experience at the smaller
index m will have much larger overall sampling frequency.
We verify this mathematical expression from a preliminary
simulation and show the overall sampling frequency of each
experience as depicted in Figure 2, where the older expe-
rience is located at the smaller index of the buffer. The
histogram clearly shows that old experiences are selected
more frequently and the sampling frequency for the newer
experiences is decreasing almost exponentially, following
equation (13). The severely unbalanced overall sampling fre-
quency distribution couldmake the learning focuses toomuch
on old experiences, which results in a difficulty in learning
new knowledge from the newer experiences.We also evaluate
the overall sampling frequency of PER, and the result is

VOLUME 9, 2021 93155

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

also shown in Figure 2. The result shows that, even though
PER assign a higher sampling probability for experiences
with larger TD error, the overall sampling frequency is still
severely unbalanced. Therefore, PER still suffers from sam-
pling inefficiency problem, similar to the vanilla off-policy
RL algorithm using uniform sampling probability.

FIGURE 2. Overall (accumulated) sampling frequency for different
sampling schemes and N = 105.

B. HALF-NORMAL SAMPLING PROBABILITY WINDOW
To mitigate the severely unbalanced overall sampling fre-
quency problem with the conventional sampling techniques,
we propose a half-normal sampling probability window that
has focused experience replay (FER) sampling on recent
experience tuples in the RB. A half-normal sampling prob-
ability distribution is a folded Gaussian distribution as

P(xm) =
2

σ
√
2π
· e
−

1
2

(
m− µ
σ

)2

=
2n

N
√
2π
· e
−

n2

2

(
m− N
N

)2

, (14)

where µ and σ are the mean and standard deviation, respec-
tively, and 0 ≤ m ≤ N . In the implementation, µ = N and
σ = N/n are used, where n(> 1) is a positive real number.
Therefore, the probability of selecting a newer experience
P

m→N
(xm) is the probability when m is close to N in (14) as

P
m→N

(xm) =
2n

N
√
2π
. (15)

And assuming that m is close to 0 in (14), the probability
of selecting an old experience P

m→0
(xm) becomes

P
m→0

(xm) =
2n

N
√
2π
· e
−

n2

2 . (16)

For N large enough, we can let n be a positive constant
and it becomes that P

m→0
(xm)� P

m→N
(xm), which results in a

higher probability for a newer experience (i.e.,m→ N) to be
selected. On the other hand, older experience (i.e., m → 0)
has given chances to be sampled from the beginning when N
was small. Therefore, the old experience’s overall sampling
frequency will not dominate too much as what happened
when using uniform sampling. And at the same time, it is
not losing generalization as well, since the older experience
still has enough probability to be sampled. Figure 3 illustrates
an example of the half-normal sampling probability window
when applied to a monotonously increasing number of expe-
rience tuples in the RB, where the current number of experi-
ences in the RB is 105. The half-normal sampling probability
window is a folded version of a normal distribution,N (µ, σ),
to the lower half, where the meanµ is set to the current size of
the RB N , and the standard deviation σ is linearly increasing
with respect to N with a factor β1 (0<β1<1).

FIGURE 3. Half-normal probability sampling window.

1) GENERAL SIZING FACTOR FOR σ
In this paper, we introduce a general sizing factor β1
(0<β1 < 1) for the standard deviation, such that σ = β1 N ,
which is to scale σ linearly with N . The quantity β1 is a
hyperparameter that needs to be tuned in advance to achieve
a good learning performance.

2) LOCAL ADJUSTMENT FACTOR FOR σ
In addition to the linearly changing σ , we use a local adjust-
ment factor to enhance the performance of FER by adding
an offset value β2, so that σ = β1N + β2. The factor
β2 is designed such that it increases when the agent’s pol-
icy starts converging. We measure the policy convergence
using KL-divergence (DKL), which measures the difference
between a probability distribution compared to another prob-
ability distribution. When the policy converges, the old and
the current policy should have a similar distribution and
have a small KL-divergence DKL (πcurrent(·|ssst), πold(·|ssst)).
The locally adjustment factor β2 is defined as

β2 = β1N
[

DKL,mid

DKL (πcurrent(·|ssst)‖πold(·|ssst))
− 1

]
, (17)

93156 VOLUME 9, 2021

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

FIGURE 4. Overall (accumulated) sampling frequency using the half-normal sampling probability. New experiences are located at large buffer indices.

where DKL(πcurrent(·|ssst)‖πold(·|ssst)) measures how similar the
current policy πcurrent(·|ssst) with the policy of the sampled
experience πold(·|ssst) with a given ssst and DKL,mid is a hyper-
parameter that indicates the median value of DKL between
the current and old policies from the batch of experiences.
When the current policy is perfectly similar with the old one,
no local adjustment is applied, i.e., β2 = 0.
Note that, equations (15) and (16) prove that utilizing the

half-normal sampling probability at every sampling instance
can result in a more uniform overall experience sampling
frequency when σ is set to a smaller value. For example,
for σ = 0 the sampling window will only allow the latest
experience to be sampled at each sampling instance and,
therefore, the overall sampling frequency will be perfectly
uniform to all experiences. On the contrary, when σ is set
to a very large value, the instantaneous sampling probability
window becomes flat, i.e., more like the conventional uniform
sampling, and the resulting overall sampling frequency will
be similar to that in Figure 2.

The overall sampling frequency distributions for different
choice of σ agree with the mathematical derivation as in
equation (14), and the simulation results in Figure 4 show
that smaller σ leads to more uniform-like distribution of the
overall experience sampling frequency. Figure 4a shows that
the histogram of overall experience sampling frequency is
severely unbalanced for σ = N/2, whereas, as shown in
Figure 4b and 4c, decreasing the standard deviation smaller
than N/2 results in a more balanced (i.e., uniform) over-
all experience sampling frequency distribution. However,
it should be noted that a very small σ leads to a learning
based on the newer experiences only, which results in a poor
learning performance, due to the loss of generalization.

C. ENCOURAGING DIFFERENT FUTURE POLICY
The proposed FER mitigates the severely unbalanced overall
sampling frequency problem by learning more from newer
experiences. However, focusing too much on the newer expe-
riences can cause the agent’s performance to converge pre-
maturely. This is because of the deceptive local optima in
the newer experiences. Therefore, when the agent falls into
local optima, a more diverse experiences are needed for the
agent to learn and escape from that local optima. To handle

this problem, n in (14) should not be too large, and the
agent should be trained to explore more by maximizing a
distance between the current and old policies. A distance
measurement, i.e., KL-Divergence is added to the policy
loss function [31]. For instance, the policy loss function of
SAC [8], [9] with policy distance maximization is defined as

Jπ (φ)

= Essst∼D,εt∼N

[
logπφ(fφ(εt ; ssst)|ssst)

−Qθ (ssst , fφ(εt ; ssst))− DKL(πcurrent(·|ssst)‖πold(·|ssst))
]
.

(18)

In practice, smaller KL-Divergence indicates that the
two policies are very similar, and vice versa. The cost
function Jπ (φ) is minimized to train the policy, therefore,
the KL-divergence term has to be given a negative sign to
maximize the distance between the new policy and the old
policy sampled from the replay memory.

D. ALGORITHM IMPLEMENTATION
The proposed technique is mainly used with the SACv2 algo-
rithm. It can also be implemented onDDPG and TD3, without
utilizing DKL calculation, since the DKL value for the Gaus-
sian noise of TD3 will have the same value for all old and
current policies. The combined algorithm for the proposed
technique applied to SACv2 [9] is described in Algorithm 1.

V. EXPERIMENTS
A. EXPERIMENT SETTINGS
The purpose of our experiment is to evaluate the prac-
tical effect of our proposed experience replay technique,
FER, on the off-policy reinforcement learning algorithms.
We show the learning performance improvements when FER
is applied to the state-of-the-art algorithms such as SACv2,
TD3, and DDPG for solving continuous control tasks in
MuJoCo Gym [10], [13]. Furthermore, we compare our tech-
nique FER with the conventional and widely used sampling
technique PER in the off-policy RL algorithms. In addition,
we include a discussion on the result shown in ERO [30]. For
a fair comparison with the prior works, we used the similar

VOLUME 9, 2021 93157

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

FIGURE 5. MuJoCo Gym environment [13] locomotion tasks used for the experiments.

FIGURE 6. CARLA Gym environment using CARLA simulator and OpenAI Gym wrapper
provided by and used in [33], vehicle states are utilized as the input for the policy.

Algorithm 1 SACv2 With FER
Initialize network parameters θ1, θ2 for critic networks Qθ1 ,
Qθ2 and φ for policy network πφ
Initialize learning rate values for the critic networks λQ,
policy network λπ , and entropy temperature λα
Initialize the soft-update constant τ
Initialize target critic networks θ ′1← θ1, θ

′

2← θ2
Initialize replay memory D
Initialize FER window size σ

for each environment step do
aaat ∼ πφ(aaat |ssst)
ssst+1 ∼ p(ssst+1|ssst ,aaat)
D← D ∪

{
ssst ,aaat , r(ssst ,aaat), ssst+1,µµµaaa,t ,σσσaaa,t

}
end for
for each gradient steps do

Sample batches of experiences using the FER window
θi← θi − λQ∇̂θiJQ(θi) for i ∈ 1, 2
φ← φ − λπ ∇̂πJπ (φ)
α← α − λ∇̂αJ (α)
θ̄i← τθi + (1− τ)θ̄i for i ∈ 1, 2
σ ← σ = β1N + β2

end for

architectures, hyperparameters, activation functions, and
optimizer as in [6], [7], [9] for the SACv2, TD3, and DDPG,
respectively. We include the detailed experiment settings in
Appendix A.

The MuJoCo [13] environment shown in Figure 5 has
continuous control task simulations, where the goal of each
task is to control every joint of a robot and make the robot

move in a way to maximize the total accumulated reward.
In the MuJoCo environments, we conduct simulations for
Hopper, Walker, HalfCheetah, and Ant by using TD3 and
SACv2 as a choice of base algorithms. However, we only
simulate Humanoid using SACv2, since TD3 fails to make a
learning progress in the Humanoid task, based on the results
in [8], [9]. Therefore, there is no merit of applying FER to
TD3 for the Humanoid task. And additionally, we run simu-
lations for Hopper and Walker using DDPG as the third base
algorithm and show the results of DDPG with and without
the proposed technique, which is to improve the clarity of the
simulation results shown in this section. Moreover, we also
conduct experiments for RL-based autonomous vehicle con-
trol on CARLA simulator [32], shown in Figure 6, with a gym
wrapper used in [33].

B. EVALUATION ON THE MuJoCo GYM ENVIRONMENT
Figure 7 and 8 show the average return of multiple evalua-
tions during training of SAC, TD3, and DDPG for various
ER sampling techniques such as the proposed FER, PER,
and the conventional uniform sampling. We perform simu-
lations for the vanilla SAC, TD3, and DDPG (with uniform
sampling) to provide baseline performance, followed by the
simulations with PER and FER. For the experiments, we train
five different agents with different random seeds for the
network initialization and ten evaluations are conducted every
1000 (training) environment steps. The solid curves repre-
sent the average of 10 evaluations from 5 different training
instances, while the shaded regions indicate the 1-standard
deviation. For this experiment, we choose β1 = 1/3 and
DKL,max = 5.

93158 VOLUME 9, 2021

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

FIGURE 7. Training curves on MuJoCo simulation benchmarks using SAC algorithm.

First of all, we observe, in Figure 7, that there are often
enhancements in the learning speed and/or in the final per-
formance when the proposed FER is applied. The results
show that SAC-FER consistently outperforms SAC both in
terms of learning speed and the final performance. We also
confirm that SAC-FER outperforms SAC-PER for all sim-
ulated environments in terms of learning speed, which is
because the proposed FER improves the severely unbalanced
sampling frequency in the early stage of learning. For the
final performance against SAC-PER, SAC-FER excels in
Hopper, HalfCheetah, and Ant by a noticeable distinction,
but performs slightly less for the Walker and Humanoid
environments. The slight deficiency in the final performance
of the total return for theWalker and Humanoid environments
is caused by the brittleness of FER to the size of the sampling
window, on which we give a further discussion on the effect
of the sampling window size of FER in Section V-D.

On the other hand for TD3, the results in Figure 8a-8d
show that TD3-FER consistently outperforms the learning
speed for all of the MuJoCo tasks. However, we notice a
deteriorated result in the final performance of TD3-FER
for the Ant, as shown in Figure 8d. It is observed that the
TD3-FER performance significantly dropped after around
1 million environment steps, which is caused by the insuf-
ficient exploration of the TD3 algorithm; as observed from
the simulation results, TD3-FER reaches the maximum

performance of vanilla TD3 before 1 million environment
steps, whereas the vanilla TD3 and TD3-PER reach the max-
imum performance around 2.5 and 3.0 million environment
steps, respectively. This result indicates that the TD3-FER
has a remarkable learning speed improvement over the vanilla
TD3 by 2.5 times.

For DDPG algorithm, we only conduct the experiments
using Hopper-v2 and Walker2d-v2 tasks as shown in
Figure 8e-8f, since the purpose of this experiment is to show
the ability of FER to enhance the DDPG algorithm. There-
fore, we choose simple tasks, where DDPG works well in
general, and it is difficult to learn complex tasks such as
HalfCheetah-v2 and Ant-v2 using DDPG. We observe the
benefits of applying FER to the DDPG algorithm as shown.
The vanilla DDPG, DDPG -PER, and DDPG-FER performs
similarly for the Hopper-v2 task, since the the training has
a big variance. Therefore, it is difficult to justify the win-
ner for this task. However, the observation is clear with
the Walker2d-v2 task, where DDPG-FER overcomes the
vanilla DDPG and DDPG-FER with a remarkable results.
In fact, DDPG-FER shows an improved learning speed for
the Hopper-v2 task. These additional results prove further the
ability of FER to enhance performance of an off-policy RL
algorithm.

From the results of state-of-the-art off-policy RL algo-
rithms such as SAC, TD3, and DDPG on various Mujoco

VOLUME 9, 2021 93159

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

FIGURE 8. Training curves on MuJoCo simulation benchmarks using TD3 and DDPG algorithms.

TABLE 1. Maximum average return over 10 different trials on the last (training) environment steps. The orange colored values indicate the winning
technique on the tested environment in terms of the mean value and standard deviation and the teal colored values are for the second best performance
within 10% under the best record.

tasks, we observe that the major benefit of applying FER for
ER is either the strong improvement in the learning speed at
the early training stage or final performance improvement.
FER mostly achieves faster learning speed, comparing to the

vanilla and PER-applied off-policy RL algorithms. We sum-
marize the experiment results for sampling techniques and
off-policy RL algorithms in Table 1. The performance of ERO
is not compared nor shown in the table, since ERO requires

93160 VOLUME 9, 2021

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

huge amount of computing resource (e.g., 4×109 weights) for
each experience sampling network. For example, while other
studies such as [6] achieve a final average return of about
3300 using a batch size of 100, ERO achieves a final average
return of about 1750 using a batch size of 64 for Hopper task
in its original study [30], which is because the overall com-
putation increases with the batch size in general. Therefore,
in Table 1, we compare FER to PER and uniform sampling
technique. Note also that in many cases, FER also improves
the final performance of the base algorithm and overcomes
the final performance of the vanilla and PER-applied algo-
rithms. This is because the FER-applied algorithms have a
more uniform distribution of the overall experience sam-
pling frequency as shown in Figure 4, whereas the vanilla
algorithms have a severely unbalanced overall experience
sampling frequency as shown in Figure 2. Lastly, it should be
noted that the exploration ability still depends on the vanilla
algorithm, but the experience utilization ability is enhanced
by the ER sampling technique such as the proposed FER.
When sufficient exploration is not available from the vanilla
algorithm such as TD3 shown in Figure 8a-8d, FER can still
improve the learning speed, but not the final performance.

C. EVALUATION ON THE CARLA GYM ENVIRONMENT
In the CARLA simulator, the input to the RL agent is the ego
vehicle’s states such as heading and offset from the center
of the lane and the goal for the task is to learn how to drive,
i.e., how to follow the lane by controlling the acceleration and
steering angle of the ego-vehicle.

To further demonstrate the improvement with the proposed
FER in complicated tasks, we conduct experiments on the
CARLA, an autonomous vehicle simulator, with an OpenAI
Gym wrapper from [33]. The task is to learn how to drive
along a lane, with ego-vehicle states as an input and the
acceleration and steering angle for the vehicle as an action
output. The vehicle states consist of heading error, lateral
error relative to the center of the lane, vehicle speed, and
indication whether there is an obstacle within some radius.
The main difference between the CARLA gym and MuJoCo
gym in terms of complexity is in the radomization of the ini-
tial state. In the MuJoCo gym locomotion tasks, initial states
are randomized around a particular point, e.g., the Humanoid
robot will always start at the standing-up state with a slight
difference in the joint state values. However, the CARLA
gym simulator starts in a variety of initial states, as it can
starts at the middle of a straight lane, roundabout, or near
an intersection. In the CARLA environments, we could only
apply FER to the SAC algorithm, because SAC is more
capable of solving complex tasks, where wider exploration is
possible by utilizing stochastic policy. This is different than
DDPG and TD3 that use deterministic policies and are not
capable of solving complex tasks such as CARLA. The last
row of Table 1 shows the final performance for the CARLA,
and Figure 9 shows the experiment results for the vanilla SAC
with uniform sampling, SAC-PER, and SAC-FER. Evalua-
tions are conducted every 1000 environment steps, where the

FIGURE 9. Learning curves for CARLA simulation using SAC algorithm.

solid curves represent the average from 10 different evalua-
tions and the shaded region depicts the 1-standard deviation
of the evaluation results. For this experiment, we choose β1 =
1/3 and DKL,max = 5.
The experiment result in Figure 9 shows that SAC-FER

outperforms the vanilla SAC and SAC with PER, in both the
learning speed and the final performance. SAC-FER achieves
more than 1.5 and 2.3 times higher average return than
SAC-PER and vanilla SAC, respectively, after 80k environ-
ment steps with a relatively small variance over 10 evalua-
tions. This result shows similar observation with the results
in MuJoCo locomotion tasks, empirically proving that the
off-policy RL algorithm can be substantially enhanced by
incorporating FER as an ER sampling technique.

D. ABLATION STUDIES
In this subsection, we examine how the performance of the
off-policy RL algorithms with FER affected by different
hyperparameter settings, i.e., the general sizing factor β1
and maximum distance between policies DKL,max defined in
Section 3.2. Our ablation studies are based on the perfor-
mance evaluation through hyperparameter fine-tuning over
multiple simulations as optimum hyperparameters should be
determined to achieve the best performance [34], [35].

1) GENERAL SIZING FACTOR OF THE SAMPLING WINDOW
The quantity β1 is important in FER, since it determines the
sampling probability distribution at every sampling instance.
In Figure 10, we show the performance of SAC-FER for
the Ant environment with different β1 values. When β1 is
set to a small value, for example, 1/5 and 1/10, the σ of
the half-normal sampling probability becomes smaller and,
thus, relatively much higher sampling probabilities for newer
experiences. Therefore, the agent is not sampling enough old
experiences that are required for generalization and results
in deterioration of the training performance. On the other
hand, using a big β1 results in a larger σ , which produces
a uniform-like sampling probability causing an unbalanced

VOLUME 9, 2021 93161

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

FIGURE 10. Learning curves for Ant-v2 environment using SAC-FER
algorithm with different β1 values.

FIGURE 11. Learning curves for Ant-v2 environment using SAC-FER
algorithm with different c = DKL,max values.

overall sampling frequency similar to the graph in Figure 4a.
From the results shown in Figure 10, setting β1 = 1/2 results
in a slower learning speed, comparing to β1 = 1/3,
As observed from the results in Figure 7, 8, and 9,

β1 = 1/3 that has an overall sampling frequency as in
Figure 4b produces good training performance for multiple
MuJoCo tasks. However, the optimal value of β1 could be
slightly different for different environments, so it is useful to
tune β1 properly for different environments.

2) MAXIMUM DISTANCE BETWEEN POLICIES
Distance maximization between old and new policies is
applied to overcome the premature policy convergence when
training using more samples of newer experiences than the
samples of old ones in the RB, as discussed in Section IV-C.
In Figure 11, we show that increasing the maximum allow-
able policy distance, DKL,max, results in unstable training for
SAC-FER in the Ant environment. This is because, the cur-
rent policy, πcurrent, is trained to maximize the distance from

the previous policies, in other words, it becomes a very
different policy at every training step. In addition, the final
performance also decreases as a result of the unstable policy
development. The selectedDKL,max should be higher within a
reasonable magnitude than the average DKL,max between old
policies, πold. In the simulatedMuJoCo tasks, theDKL values
between the old policies when the agent is developing are
around 1, i.e., DKL ≈ 1. Therefore, we choose DKL,max = 5
in our experiments in Section V-B, which performs well for
multipleMuJoCo tasks. ThisDKL,max value is also treated as a
hyperparameter that needs a fine-tuning and could be slightly
different between environments.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have shown theoretical proof of unbalanced
overall experience sampling frequency in the conventional
ER sampling techniques for the off-policy RL algorithms and
confirmed themathematical analysis with preliminary experi-
ments. Based on this observation, we propose a focused expe-
rience sampling technique on recent experiences, focused
experience replay (FER), to mitigate the severely unbal-
anced overall sampling frequency caused by the conven-
tional sampling techniques. Our experimental results indicate
that the major advantage of applying FER to the off-policy
RL algorithms is the improvement in the learning speed at
the early stage of training. For instance, the learning speed
of TD3-FER is 2.5 and 3.5 times faster compared to the
vanilla TD3 and TD3-PER algorithms, respectively, for the
Ant environment. Additionally, in the CARLA environment,
the SAC-FER learns faster and has 2.3 and 1.5 times bet-
ter final performance, compared to the vanilla SAC and
SAC-PER, respectively. In addition, in more than half cases
of our experiments, FER outperforms the final performance
of the vanilla and PER-applied algorithms and, in other cases,
FER maintains the similar performance to other algorithms.

Even if we have shown that FER can improve performance
on someMuJoCo locomotion tasks and CARLA autonomous
driving simulators, we believe that further study is required to
address more on the unbalanced overall sampling frequency
issue. One limitation of our technique is the adjustment of
σ that relies on the general sizing factor, β1, since inap-
propriate choice of β1 could result in a lower final perfor-
mance. The second limitation is that an experience sampling
technique with focused sampling on the relatively newer
experiences may lead to a premature convergence of the
policy. Although we address this issue by using distancemax-
imization in the policy update, there is still a hyperparameter
DKL,max that needs to be tuned. Too largeDKL,max may lead to
a very unstable policy development, while too small DKL,max
leads to premature policy convergence.

APPENDIX
NETWORK ARCHITECTURE AND HYPERPARAMETERS
We present the network architecture and hyperparameters for
algorithms presented in the Section V. The hyperparameters
are selected based on benchmark results in [6]–[9], [11].

93162 VOLUME 9, 2021

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

TABLE 2. Network and hyperparameters for DDPG.

TABLE 3. Network and hyperparameters for TD3.

TABLE 4. Network and hyperparameters for SAC.

For the implementation of DDPG, we use the network
parameters as given in Table 2 that is based on the model
of TD3 in [7], but instead of applying the twin-delayed ver-
sion, we use the actor-critic agent as a single DDPG. The
network parameters of TD3 and SAC are given in Table 3 and
Table 4 that are based on the model proposed in [7] and [9],
respectively.

ACKNOWLEDGMENT
(Seung-Hyun Kong and I. Made Aswin Nahrendra are co-first
authors.)

REFERENCES
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ in Proc. NIPS Deep Learn. Workshop, 2013, pp. 1–9.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[3] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30, no. 1,
pp. 1–7.

[4] M.Hessel, J.Modayil, H. VanHasselt, T. Schaul, G. Ostrovski,W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow: Combining
improvements in deep reinforcement learning,’’ in Proc. AAAI Conf. Artif.
Intell., 2018, vol. 32, no. 1, pp. 1–8.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[7] S. Fujimoto, H. Hoof, and D. Meger, ‘‘Addressing function approximation
error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1587–1596.

[8] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1856–1865.

[9] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Soft actor-critic algo-
rithms and applications,’’ 2018, arXiv:1812.05905. [Online]. Available:
http://arxiv.org/abs/1812.05905

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540. [Online].
Available: http://arxiv.org/abs/1606.01540

[11] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, ‘‘Bench-
marking deep reinforcement learning for continuous control,’’ in Proc. Int.
Conf. Mach. Learn., 2016, pp. 1329–1338.

[12] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[13] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[14] H. Dong, H. Dong, Z. Ding, S. Zhang, and Chang, Deep Reinforcement
Learning. Singapore: Springer, 2020.

[15] M. Yogeswaran and S. G. Ponnambalam, ‘‘Reinforcement learn-
ing: Exploration–exploitation dilemma in multi-agent foraging task,’’
Opsearch, vol. 49, no. 3, pp. 223–236, Sep. 2012.

[16] L.-J. Lin, ‘‘Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,’’ Mach. Learn., vol. 8, nos. 3–4, pp. 293–321,
May 1992.

[17] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–21.

[18] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[19] B. Krawczyk, ‘‘Learning from imbalanced data: Open challenges and
future directions,’’Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, Nov. 2016.

[20] G. Dulac-Arnold, D. Mankowitz, and T. Hester, ‘‘Challenges of real-world
reinforcement learning,’’ in Proc. ICML Workshop Reinforcement Learn.
Real Life, 2019, pp. 1–13.

[21] L. F. Vecchietti, T. Kim, K. Choi, J. Hong, and D. Har, ‘‘Batch pri-
oritization in multigoal reinforcement learning,’’ IEEE Access, vol. 8,
pp. 137449–137461, 2020.

[22] K. James, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and D. Hassabis,
‘‘Overcoming catastrophic forgetting in neural networks,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

VOLUME 9, 2021 93163

S.-H. Kong et al.: Enhanced Off-Policy RL With FER

[23] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G.Wayne, ‘‘Experience
replay for continual learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 1–14.

[24] S. Grossberg, ‘‘How does a brain build a cognitive code?’’ in Studies of
Mind and Brain. Dordrecht, The Netherlands: Springer, 1982, pp. 1–52.

[25] A. R. Mahmood, H. Van Hasselt, and R. S. Sutton, ‘‘Weighted importance
sampling for off-policy learning with linear function approximation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3014–3022.

[26] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, ‘‘A novel DDPG method with
prioritized experience replay,’’ inProc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2017, pp. 316–321.

[27] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. H. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, ‘‘Hindsight experience
replay,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1–15.

[28] S. Zhang and R. S. Sutton, ‘‘A deeper look at experience replay,’’ 2017,
arXiv:1712.01275. [Online]. Available: http://arxiv.org/abs/1712.01275

[29] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–19.

[30] D. Zha, K.-H. Lai, K. Zhou, and X. Hu, ‘‘Experience replay optimiza-
tion,’’ in Proc. 28th Int. Joint Conf. Artif. Intell. (IJCAI), Aug. 2019,
pp. 4243–4249.

[31] Z.-W. Hong, T.-Y. Shann, S.-Y. Su, Y.-H. Chang, T.-J. Fu, and C.-Y. Lee,
‘‘Diversity-driven exploration strategy for deep reinforcement learning,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018, pp. 1–11.

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, ‘‘CARLA:
An open urban driving simulator,’’ in Proc. Conf. Robot Learn., 2017,
pp. 1–16.

[33] J. Chen, S. E. Li, and M. Tomizuka, ‘‘Interpretable end-to-end urban
autonomous driving with latent deep reinforcement learning,’’ IEEE Trans.
Intell. Transp. Syst., early access, Feb. 3, 2021. [Online]. Available:
https://github.com/cjy1992/gym-carla, doi: 10.1109/TITS.2020.3046646.

[34] L. Fridman, J. Terwilliger, and B. Jenik, ‘‘DeepTraffic: Crowdsourced
hyperparameter tuning of deep reinforcement learning systems for multi-
agent dense traffic navigation,’’ in Proc. Neural Inf. Process. Syst. (NIPS)
Deep Reinforcement Learn. Workshop, 2018, pp. 1–13.

[35] H. S. Jomaa, J. Grabocka, and L. Schmidt-Thieme, ‘‘Hyp-RL:
Hyperparameter optimization by reinforcement learning,’’ 2019,
arXiv:1906.11527. [Online]. Available: http://arxiv.org/abs/1906.11527

[36] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent., 2015, pp. 1–15.

SEUNG-HYUN KONG (Senior Member, IEEE)
received the B.S. degree in electronics engineer-
ing from Sogang University, Seoul, South Korea,
in 1992, theM.S. degree in electrical and computer
engineering from Polytechnic University (merged
to NYU), NewYork, in 1994, and the Ph.D. degree
in aeronautics and astronautics from Stanford Uni-
versity, Stanford, CA, USA, in 2005. From 1997 to
2004 and from 2006 to 2010, he was with compa-
nies, including the Telecommunication Research

Center, Samsung Electronics, South Korea, and the Corporate Research and
Development Department, Qualcomm, San Diego, CA, USA, for advanced
technology research and development in mobile communication systems,
wireless positioning, and assisted GNSS. Since 2010, he has been a Faculty

Member with KAIST, working on various research and development projects
in advanced intelligent transportation systems, such as robust GNSS-based
navigation for urban environment, deep learning and reinforcement learning
algorithms for autonomous vehicles, sensor fusion, and vehicular com-
munication systems (V2X). He is currently an Associate Professor with
The Cho Chun Shik Graduate School of Green Transportation, Korea
Advanced Institute of Science and Technology (KAIST), where he has been
a Faculty Member, since 2010. He has authored more than 100 articles
in peer-reviewed journals and conference proceedings and 12 patents. His
research group won the President Award, South Korea, in 2018, in inter-
national student autonomous driving competition host by the Korean Gov-
ernment. He has served as an Associate Editor for IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS (T-ITS) and IEEE ACCESS, an Editor
for IET Radar, Sonar and Navigation, and the Lead Guest Editor for the
IEEE T-ITS Special Issue on ‘‘ITS empowered by AI technologies’’ and
IEEE ACCESS Special Section on ‘‘GNSS, Localization, and Navigation
Technologies.’’ He has also served as the Program Chair for IPNT, South
Korea, from 2017 to 2019, and a Program Co-Chair for IEEE ITSC2019,
New Zealand.

I. MADE ASWIN NAHRENDRA received the
B.S. and M.S. degrees in electrical engineering
from the Bandung Institute of Technology, Indone-
sia, in 2018 and 2019, respectively. He is currently
pursuing the Ph.D. degree with The Robotics Pro-
gram, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, South Korea. His
research interests include reinforcement learning,
robotics, control theory, and autonomous vehicle.

DONG-HEE PAEK received the B.S. degree
in robotics from Kwangwoon University, South
Korea, in 2019. He is currently pursuing the
M.S. degree with The Robotics Program, Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea. His research
interests include autonomous vehicle, reinforce-
ment learning, and robotics.

93164 VOLUME 9, 2021

http://dx.doi.org/10.1109/TITS.2020.3046646

