IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 27, 2021, accepted May 19, 2021, date of publication May 31, 2021, date of current version June 15, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3085085

Evaluation of Deep Learning Models for
Multi-Step Ahead Time Series Prediction

ROHITASH CHANDRA !, (Senior Member, IEEE), SHAURYA GOYAL 2, AND RISHABH GUPTA3

1School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

2Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India

3Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India

Corresponding author: Rohitash Chandra (rohitash.chandra@unsw.edu.au)

ABSTRACT Time series prediction with neural networks has been the focus of much research in the past
few decades. Given the recent deep learning revolution, there has been much attention in using deep learning
models for time series prediction, and hence it is important to evaluate their strengths and weaknesses. In this
paper, we present an evaluation study that compares the performance of deep learning models for multi-step
ahead time series prediction. The deep learning methods comprise simple recurrent neural networks, long
short-term memory (LSTM) networks, bidirectional LSTM networks, encoder-decoder LSTM networks,
and convolutional neural networks. We provide a further comparison with simple neural networks that use
stochastic gradient descent and adaptive moment estimation (Adam) for training. We focus on univariate
time series for multi-step-ahead prediction from benchmark time-series datasets and provide a further
comparison of the results with related methods from the literature. The results show that the bidirectional
and encoder-decoder LSTM network provides the best performance in accuracy for the given time series
problems.

INDEX TERMS Recurrent neural networks, LSTM networks, convolutional neural networks, deep learning,

time series prediction.

I. INTRODUCTION

Apart from econometric models, machine learning methods
became extremely popular for time series prediction and
forecasting in the last few decades [1]-[7]. Some of the
popular categories include one-step, multi-step, and multi-
variate prediction. Recently, some attention has been given
to dynamic time series prediction where the size of the input
to the model can dynamically change [8]. Just as the term
indicates, one-step prediction refers to the use of a model to
make a prediction one-step ahead in time whereas a multi-step
prediction refers to a series of steps ahead in time from an
observed trend in a time series [9], [10]. In the latter case,
the prediction horizon defines the extent of future predic-
tion. The challenge is to develop models that produce low
prediction errors as the prediction horizon increases given
the chaotic nature and noise in the dataset [11]-[13]. There
are two major approaches for multi-step-ahead prediction
which include recursive and direct strategies. The recur-
sive strategy features the prediction from a one-step-ahead

The associate editor coordinating the review of this manuscript and

approving it for publication was Dost Muhammad Khan

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

prediction model as the input for future prediction horizon
[14], [15], where error in the prediction for the next horizon
is accumulated in future horizons. The direct strategy encodes
the multi-step-ahead problem as a multi-output problem
[16], [17], which in the case of neural networks can be rep-
resented by multiple neurons in the output layer for the pre-
diction horizons. The major challenges in multi-step-ahead
prediction include highly chaotic time series and those that
have missing data which has been approached with non-linear
filters and neural networks [18].

Neural networks have been popular for time series pre-
diction for various applications [19]. Different neural net-
work architectures have different strengths and weaknesses.
Time series prediction requires careful integration of knowl-
edge in temporal sequences; hence, it is important to
choose the right neural network architecture and train-
ing algorithm. Recurrent neural networks (RNNs) are well
known for modelling temporal sequences [20]-[24] and
dynamical systems when compared to feedforward networks
[25]-[27]. The Elman RNN [20], [28] is one of the
earliest architectures to be trained by backpropagation
through-time, which is an extension of the backpropagation

83105

https://orcid.org/0000-0001-6353-1464
https://orcid.org/0000-0001-6299-3819
https://orcid.org/0000-0002-3919-8136

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

algorithm [21]. The limitation in learning long-term depen-
dencies in temporal sequences using canonical RNNs [29],
[30] have been addressed by long short-term memory
(LSTM) networks [23].

Recent deep learning revolution [24] contributed to fur-
ther improvements in LSTM networks with gated recur-
rent unit (GRU) networks [31], [32], which provides similar
performance and are simpler to implement. Some of the
other extensions include predictive state RNNs [33] that
combines RNNs with the power of predictive state rep-
resentation [34]. Bidirectional RNNs connect two hidden
layers of opposite directions to the same output, where
the output layer can get information from past and future
states simultaneously [35]. The idea was further extended
into bidirectional-LSTM networks for phoneme classifica-
tion [36] which performed better than standard RNNs and
LSTM networks. Further work has been done by combining
bidirectional LSTM networks with convolutional neural net-
works (CNNs) for natural language processing with problem
of named entity recognition [37]. Further extensions have
been done by encoder-decoder LSTM networks that used
a LSTM to map the input sequence to a vector of a fixed
dimensionality, and uses another LSTM to decode the target
sequence for language task such as English to French transla-
tion [38]. CNN’s with regularization methods such as dropouts
during training can improve generalization [39]. Adaptive
gradient methods such as the adaptive moment estimation
(Adam optimizer) has become very prominent for training
neural networks [40]. Apart from these, neuroevolution that
uses evolutionary algorithms and multi-task learning have
been used for time series prediction [8], [41]. RNNs have
also been trained by neuroevolution with applications for time
series prediction [42], [95].

We note that limited work has been done to compare FNN
and RNNs for multi-step time series prediction [43], [44].
It is important to evaluate the advancements of deep learning
methods for a challenging problem which in our case is
multi-step time series prediction. LSTM network applications
have dominated applications in natural language processing
and signal processing such as phoneme recognition; how-
ever, there is no work that evaluates their performance for
time series prediction, particularly multi-step ahead predic-
tion. Since the underlying feature of LSTM networks is in
handling temporal sequences, it is worthwhile to investigate
their predictive power, i.e. accuracy as the prediction horizon
increases.

In this paper, we present an evaluation study that com-
pares the performance of selected deep learning models
for multi-step ahead time series prediction. We examine
univariate time series prediction with selected models and
learning algorithms for benchmark time series datasets. The
deep learning methods comprise of standard LSTM, bidirec-
tional LSTM, encoder-decoder LSTM, and CNNs. We also
compare the results with canonical neural networks that use
stochastic gradient descent learning and Adam optimizer.
We further compare our results with other related machine

83106

learning methods for multi-step time series prediction from
the literature.

The rest of the paper is organized as follows. Section 2
presents a background and literature review of related work.
Section 3 presents the details of the different deep learn-
ing models, and Section 4 presents experiments and results.
Section 5 provides a discussion and Section 6 concludes the
paper with discussion of future work.

Il. RELATED WORK

A. MULTI-STEP TIME SERIES PREDICTION

One of the first attempts for recursive strategy multi-
step-ahead prediction used state-space Kalman filter and
smoothing [45] followed by recurrent neural networks [46].
Later, a dynamic recurrent network used current and delayed
observations as inputs to the network which reported excel-
lent generalization performance [47]. The non-parametric
Gaussian process model was used to incorporate the
uncertainty about intermediate regressor values [48]. The
Dempster—Shafer regression technique for prognosis of
data-driven machinery used iterative strategy with promis-
ing performance [49]. Lately, reinforced real-time recur-
rent learning was used with iterative strategy for flood
forecasts [12]. One of the earliest work done using
direct strategy for multi-step-ahead prediction used RNNs
trained by backpropagation through-time algorithm [13].
A review of single-output versus multiple-output approaches
showed direct strategy more promising choice over recur-
sive strategy [17]. Multiple-output support vector regression
(M-SVR) achieved better forecasts when compared to stan-
dard SVR using direct and iterated strategies [50].

The combination of recursive and direct strategies has
also been prominent such as multiple SVR models that were
trained independently based on the same training data and
with different targets [14]. Optimally pruned extreme learn-
ing machine (OP-ELM) used recursive, direct and a combi-
nation of the two strategies in an ensemble approach where
the combination gave better performance than standalone
methods [51]. Chandra et al. [52] presented recursive and cas-
caded neural networks inspired by multi-task learning trained
via cooperative neuroevolution where the tasks represented
different prediction horizons. We note that neuroevolution
provides an alternate training method that does not require
gradients [53]. Ye and Dai [54] presented a multitask learning
method which considers different prediction horizons as tasks
and explores the relatedness amongst prediction horizons.
The method consistently achieved lower error values over
all horizons when compared to other related iterative and
direct prediction methods. A comprehensive study on the
different strategies was given using a large experimental
benchmark (NNS5 forecasting competition) [3], and further
comparison for macroeconomic time series. It was reported
that the iterated forecasts typically outperformed the direct
forecasts [55]. The relative performance of the iterated fore-
casts improved with the forecast horizon, with further com-
parison that presented an encompassing representation for

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

derivation auto-regressive coefficients [56]. A study on the
properties shows that direct strategy provides prediction val-
ues that are relatively robust and the benefits increases with
the prediction horizon [57].

The applications for real-world problems include
1.) auto-regressive models for predicting critical levels of
abnormality in physiological signals [58], 2.) flood fore-
casting using recurrent neural networks [59], [60], 3.) emis-
sions of nitrogen oxides using a neural network and
related approaches [61], 4.) photo-voltaic power forecast-
ing using hybrid support vector machine [62], 5.) Earth-
quake ground motions and seismic response prediction [63],
and 6. central-processing unit (CPU) load prediction [64].
Recently, Wu [65] employed an adaptive-network-based
fuzzy inference system with uncertainty quantification the
prediction of short-term wind and wave conditions for marine
operations. Wang and Li [66] used multi-step ahead predic-
tion for wind speed prediction which was based on optimal
feature extraction, LSTM networks, and an error correction
strategy. The method showed lower error values for one,
three and five-step ahead predictions in comparison to related
methods. Wang and Li [67] also used hybrid strategy for
wind speed prediction with empirical wavelet transformation
for feature extraction. Moreover, they used autoregressive
fractionally integrated moving average and swarm-based
backpropagation neural network.

B. DEEP LEARNING FOR TIME SERIES PREDICTION

Deep learning has been very successful for computer
vision [68], computer games [69], multimedia, and big data
related problems. Deep learning methods have also been
prominent for modelling temporal sequences [24], [70].
RNN s have been popular in forecasting time series with their
ability to capture temporal information [10], [22], [71]-[73].
Mirikitani and Nikolaev used [74] variational inference for
implementing Bayesian RNNs in order to provide uncertainty
quantification in predictions. CNNs have gained attention
recently in forecasting time series. Wang et al. [75] used
CNNs with wavelet transform for probabilistic wind power
forecasting. Xingjian et al. [76] used CNNs in conjunction
with LSTM networks to capture spatiotemporal sequences for
forecasting precipitation. Amarasinghe et al. [77] employed
CNNs for energy load forecasting, and Huang and Kuo [78]
combined CNNs and LSTM networks for air pollution quality
forecasting. Sudriani et al. [79] employed LSTM networks
for forecasting discharge level of a river for managing water
resources. Ding et al. [80] employed CNNs to evaluate dif-
ferent events on stock price behavior, and Nelson et al. [81]
used LSTM networks to forecast stock market trends. Chim-
mula and Zhand employed LSTM networks for forecasting
COVID-19 transmission in Canada [82].

lll. METHODOLOGY

A. DATA RECONSTRUCTION

The original time series data needs to be embedded (recon-
structed) for multi-step-ahead prediction. Taken’s embedding

VOLUME 9, 2021

theorem expresses that the reconstruction can reproduce
important features of the original time series [83]. Therefore,
given an observed time series x(¢), an embedded phase space
Y() = [(x(¢),x(t—T), ..., x(t—(D—1)T)] can be generated,;
where T is the time delay, D is the embedding dimension
(window size) givent = 0,1,2,...,N — DT — 1, and N
is the length of the original time series. A study needs to be
done to determine optimal values for D and T in order to
efficiently apply Taken’s theorem [84]. Taken’s proved that
if the original attractor is of dimension d, then D = 2d + 1
would be sufficient [83].

B. SHALLOW LEARNING VIA SIMPLE NEURAL NETWORKS
We refer to the backpropagation neural network and multi-
layer perceptron as simple neural networks which has been
typically trained by the stochastic gradient descent (SGD)
algorithm. SGD maintains a single learning rate for all the
weight updates which does not change during training. The
Adam optimizer [85] extends SGD by adapting the learning
rate for each parameter (weight) as learning unfolds. Using
first and second moments of the gradients, Adam computes
adaptive learning rate, inspired by the adaptive gradient algo-
rithm (AdaGrad) [86]. In the literature, Adam has shown
better results when compared to SGD and AdaGrad for a
wide range of problems. In our experiments, we evaluate them
further for multi-step ahead time series prediction. Adam
optimiser updates for the set of neural network parameters
represented by weights w and bias b for iteration ¢ can be
formulated as

Or—1 = [wr—1, br—1]
& = Ve (0;-1)
my = Br.m—1 + (1 — B1).g
vi = Pavici + (1 - Bo).g
my = me /(1 — ,Bi)
b= /(1= By)
O = Ot — a3 +) (1)
where, m;, v; are the respective first and second moment

vectors for iteration t; 81, B are constants € [0, 1], « is the
learning rate, and € is a close to zero constant.

C. SIMPLE RNN

The Elman RNN [28] is a prominent example of simple RNNs
that feature a context layer to act as memory and incorporate
current state for propagating information into future states
to handle given future inputs. The use of context layer is to
store the output of the state neurons from computation of the
previous time steps making them applicable for time-varying
patterns in data. The context layer maintains memory of the
prior hidden layer result as shown in Figure 1. A vectorized
formulation for simple RNNs is given as follows

hy = on(Wpx; + Uphy—1 + bp)
Yt = O—y(VVyht + by) 2)

83107

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

x®) | x(t+1)

N
7N ™\

x(t-1) |) X(t+2)
N _
v 2 =N

x(t-2) | :) x(t+3)
4 : -

e /’\/ &
X(t-k+1) () X(t+m)
. Hidden Layers -

Input Layer Output Layer

(a) Feedforward Neural Network

Context Layer

(b) Recurrent Neural Network

Sunspot Time-series

75 100 125 150 175 200
Time (samples)

FIGURE 1. Feedforward neural network and Elman recurrent neural network for time series prediction.

where; x; input vector, i; hidden layer vector, y; output vector,
W represent the weights for hidden and output layer, U is
the context state weights, b is the bias, and oy, and oy are
the respective activation functions. Backpropagation through
time (BPTT) [21] has been a prominent method for training
simple RNNs. In comparison to simple neural networks,
BPTT in RNNs propagate the error for a deeper network
architecture that features states defined by time.

D. LSTM NETWORKS

Simple RNNs have the [23] limitation of learning long-term
dependencies with problems in vanishing and exploding gra-
dients [29]. LSTM networks employ memory cells and gates
for much better capabilities in remembering the long-term
dependencies in temporal sequences as shown in Figure 2.
LSTM units are trained in a supervised fashion on a set of
training sequences using an adaptation of the BPTT algorithm
that considers the respective gates [23]. LSTM networks
calculate a hidden state A; as

ir = o (U + W)
fr cr(x,Uf +ht_1Wf)
0; J(x,U" + h,_1W")
C; = tanh (xtUg + ht,1Wg)

83108

Ct = O'(ft*ct—l +ll*(~:l)
]’l[tanh(C,) * Ot (3)

where, iz, f; and o, refer to the input, forget and output gates,
at time ¢, respectively. x; and A; refer to the number of input
features and number of hidden units, respectively. W and U
is the weight matrices adjusted during learning along with b
which is the bias. The initial values are ¢g = 0 and hg = 0.
All the gates have the same dimensions dj, the size of your
hidden state. C‘, is a ““candidate’’ hidden state, and C; is the
internal memory of the unit as shown in Figure 2. Note that *
denotes element-wise multiplication.

E. BI-DIRECTIONAL LSTM NETWORKS

A major shortcoming of conventional RNNSs is that they only
make use of previous context state for determining future
states. Bidirectional RNNs (BD-RNNs) [35] process infor-
mation in both directions with two separate hidden layers,
which are then propagated forward to the same output layer.
BD-RNNs consist of placing two independent RNNs together
to allow both backward and forward information about the
sequence at every time step. BD-RNN computes the forward
hidden sequence Ay, the backward hidden sequence h;, and
the output sequence y by iterating information from the back-
ward layer, i.e. t = T tot = 1. Then information in the

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

X(t+1) X(t+2) X(t+3) X(t+m)

Output Layer

Lho T [| [R] [A]

1 1 1
) @ @ @
Input Layer X(t) X(t-1) X(t-2) X(t-k+1)

X;= Input Vector

C}_1= Previous Cell Memory
H; 1= Previous Cell Output
C}= Current Cell Memory
H= Current Cell Output
fi=Forget gate

C_t= Intermediate Cell state
I:= Input gate

O:=Outout aate

FIGURE 2. Long Short-Term Memory (LSTM) networks. The LSTM cell
denotes memory cells that uses gates and cell memory for remembering
long-term dependencies.

other network is propagated from ¢ = 1 to t = T in order to
update the output layer; when both networks are combined,
information is propagated in bidirectional manner.

Bi-directional LSTM networks (BD-LSTM) [36] have
been originally proposed for word-embedding in natural lan-
guage processing in order to access long-range context or
state in both directions, similar to BD-RNNs. BD-LSTM
would intake inputs in two ways, one from past to future
and one from future to past which differ from conventional
LSTM networks. By running information backwards, state
information from the future is preserved. Hence, with two
hidden states combined, at any point in time the network
can preserve information from both past and future as shown
in Figure 3. BD-LSTM networks have been used in several
real-world sequence processing problems such as phoneme
classification [36], continuous speech recognition [87], and
speech synthesis [88].

F. ENCODER-DECODER LSTM NETWORKS

Sutskever et al. [89] introduced the encoder-decoder LSTM
network (ED-LSTM) which is a sequence to sequence model
for mapping a fixed-length input to a fixed-length output [90].
The length of the input and output may differ which makes
them applicable in automatic language translation tasks (such
as English to French). Hence, the input can be the sequence
of video frames (x, ..., x,), and the output is the sequence

VOLUME 9, 2021

X(t+1) X(t+2) X(t+3) X(t+m)

Output Layer

Backward Layer

Forward Layer

Input Layer X(t)

FIGURE 3. Bi-directional LSTM network.

Encoder

X(t-k+1) x(t-2) x(t-1) x(t)
Data
Encoder
State
Predictions
X(t+m) x(t+3) x(t+2) x(t+1)

Decoder

FIGURE 4. Encoder-decoder LSTM network.

of words (y1, ..., ym). Therefore, we estimate the condi-
tional probability of an output sequence (yq, ..., Yn), given
an input sequence (X, . .., Xp), i.6. pPOV1,s - - - s YmlX1, - - -, Xn)-
In the case of multi-step series prediction, both the input and
outputs are of variable lengths. ED-LSTM networks handle
variable-length input and outputs by first encoding the input
sequences one at a time, using a latent vector representa-
tion, and then decoding them from that representation. In
the encoding phase, given an input sequence, the ED-LSTM
computes a sequence of hidden states. In the decoding phase,
it defines a distribution over the output sequence given the
input sequence as shown in Figure 4.

G. CNNs

CNNs introduced by LeCun [91], [92] are prominent
deep learning architecture inspired by the natural visual
system of mammals. CNNs can be trained using back-
propagation algorithm for tasks such as handwritten digit

83109

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

Input Layer

0 25 50 75 100 125 150 175 200 X(t'k”)Q

Time (samples) -

Stinspotslime:sarias; Univariate time-series (1-D)

Convolution
&) (64*3*1)

Flatten Layer
Max Pooling (64*1)
(64*1*1)

Output Layer
Fully Connected Layer (10"1)

Flattening

FIGURE 5. One-dimensional convolutional neural network for multi-step ahead time series prediction.

TABLE 1. Configuration of models.

Input Hidden Layers Output Comments
FNN-Adam 5 1 10 Hidden layer = 10 neurons
FNN-SGD 5 1 10 Hidden layer = 10 neurons
LSTM 5 1 10 Hidden layer = 10 cells
BD-LSTM 5 1 10 Forward and backward layer = 10 cells each
ED-LSTM 5§ 4 10 Two LSTM networks with a time distributed layer
RNN 5 2 10 Hidden layer = 10 neurons
CNN 5 4 10 Filters=64, convolutional window size=3, and max-pooling window size=2
0-2001 BN FNN-Adam BN FNN-Adam
== FNN-SGD 0.040 1 =3 FNN-SGD
01751 ST E LST™
B BD-LSTM 0.035 mmm BD-LSTM
0.150 1 B ED-LSTM 0.030 | EE ED-LSTM
EE RNN = ’ I RNN
0.1254 == CNN g 0.025{ B CNN
0.100 & 0.020
2
0.075 0.015
0.050 4 0.010
0.005
0.025
0.000 -
0.000 -

TrainRMSE(Mean)
(a) RMSE across 10 prediction horizons

TestRMSE(Mean)

Steps
(b) 10 step-ahead prediction

FIGURE 6. ACl-finance time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

classification [93]. CNNs have been prominent in many com-
puter vision and image processing tasks. Recently, CNNs
have been applied for time series prediction and produced
very promising results [75]-[77]. CNNs learn spatial hier-
archies of features by using multiple building blocks, such
as convolution, pooling layers, and fully connected layers.
Figure 5 shows an example of a CNN used for time series
prediction using a univariate time series as input where mul-
tiple output neurons represent different prediction horizons.
We note that CNN’s are more appropriate for multivariate time
series with use of features extracted via the convolutional and
the pooling layers.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL DESIGN

We use a combination of benchmark problems that include
simulated and real-world time series. The simulated time

83110

series are Mackey-Glass [94], Lorenz [95], Henon [96], and
Rossler [97]. The real-world time series are Sunspot [98],
Lazer [99] and ACI-financial time series [100]. They have
been used in our previous works and have been promi-
nent for time series problems [101]-[103]. The Sunspot
time series indicates solar activities from November 1834 to
June 2001 and consists of 2000 data points [98]. The
AClI-finance time series contains closing stock prices from
December 2006 to February 2010, featuring 800 data
points [100]. The Lazer time series is from the Santa Fe
competition that consists of 500 points [99].

The respective time series are processed into a state-space
vector [83] with embedding dimension D = 5 and time-lag
T = 1 for 10-step-ahead prediction. We determine respective
model hyper-parameters from trial experiments that include
number of hidden neurons, and learning rate. Table 1 gives
details for the topology of the respective models in terms

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction I E EEACCGSS

0.30 1

0.25 1

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN

CNN

TrainRMSE(Mean) TestRMSE(Mean)

(a) RMSE across 10 prediction horizons

0.10 4 I FNN-Adam
3 FNN-SGD
N LSTM
0.0 / HEE BD-LSTM
[ED-LSTM
—_ N RNN
c
§ 0.06{ == CNN
=
o
wv
=
© 0.04
0.02 4
0.00 -
1 2 3 4 5 6 7 8 9 10
Steps

(b) 10 step-ahead prediction

FIGURE 7. Sunspot time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

0.3

0.24

0.14

0.0-

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN
CNN

TrainRMSE(Mean) TestRMSE(Mean)

(a) RMSE across 10 prediction horizons

0.12 4

0.10 4

0.08

0.06 -

RMSE(Mean)

0.04 4

ED-LSTM
RNN
CNN

0.02

Steps
(b) 10 step-ahead prediction

FIGURE 8. Lazer time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

0.51

0.4 4

0.3

0.21

0.11

0.0 -

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN
CNN

TrainRMSE(Mean) TestRMSE(Mean)

(a) RMSE-Mean

0.175 1
0.150 -
0.125 A
<
b
= 0.100 A
o
g I FNN-Adam
& 0.0757 =1 FNN-SGD
B LSTM
0.050 1 B BD-LSTM
I ED-LSTM
0.025 - B RNN
=1 CNN
0.000 -

Steps
(b) 10 step-ahead prediction

FIGURE 9. Henon time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

of input, hidden and output layers. We use maximum time
of 1000 epochs with rectifier linear units (Relu) in all the
respective models. The simple neural networks feature SGD
and Adam optimizer (FNN-SGD and FNN-Adam). Adam
optimizer is used in the deep learning models that include

VOLUME 9, 2021

simple RNNs, LSTM networks, ED-LSTM, BD-LSTM,
and CNNG.

The time series are scaled in the range [0,1]. We used first
1000 data points from which the first 60% are used for train-
ing and remaining for testing. We use the root-mean-squared

83111

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

0.25 4

0.20 4

0.15 4

0.10 4

0.05 A

TrainRMSE(Mean)

TestRMSE(Mean)

(a) RMSE across 10 prediction horizons

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN

CNN

0.12{ EEE FNN-Adam
I FNN-SGD
Bl LST™M
0101 g BD-LSTM
B ED-LSTM
_.0.08{ HEE RNN
g = CNN
=
I 0.06
w
=
o
0.04
0.02

Steps

(b) 10 step-ahead prediction

FIGURE 10. Lorenz time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

0.25 4

0.20 4

0.15 4

0.10 4

0.05 4

TrainRMSE(Mean)

TestRMSE(Mean)

(a) RMSE across 10 prediction horizons

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN

CNN

0.10 { EEE FNN-Adam
= FNN-SGD
I LSTM
0.08 |/ HEE BD-LSTM
I ED-LSTM
P N RNN
f=4
© 0.06 =3 CNN
=
o
)
=
< 0.04 4
0.02 4
0.00 -

Steps

(b) 10 step-ahead prediction

FIGURE 11. Mackey-Glass time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

0.4 4

0.3

0.2 4

0.1

0.0-
TrainRMSE(Mean)

TestRMSE(Mean)

(a) RMSE across 10 prediction horizons

FNN-Adam
FNN-SGD
LSTM
BD-LSTM
ED-LSTM
RNN

CNN

0.200 A

I FNN-Adam
[FNN-SGD
01751 mm LsTM
BN BD-LSTM
0130 g ED-LSTM
- B RNN
E 0.125 NN
=
< 0.100
(%]
=
%~ 0.075
0.050 -
0.025 4

Steps

(b) 10 step-ahead prediction

FIGURE 12. Rossler time series: performance evaluation of respective methods (RMSE mean and 95% confidence interval as error bar).

error (RMSE) as the main performance measure (Equation 4)

for the different prediction horizons

RMSE =

83112

“)

where, y;, y; are the observed data, predicted data, respec-
tively. N is the length of the observed data.

B. RESULTS
We report the mean and 95 % confidence interval of RMSE
for each prediction horizon for the respective problem for

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

0.5251 ", — actual
0.500 - [predicted
0.475 -)f{\‘l[" _

0.450 (,“W'd' ‘\ \ A{ l\; }t\ ’
0.425 ’1 l\“ ; U' \"J\ A

= AL

T T T T T
0 50 100 150 200 250 300
Time (samples)

0.325 A

(a) Step 1

" . jfu _” redeted
MY

0.40

0.351

0 50 100 150 200 250 300
Time (samples)

(c) Step 5

— actual

0.525 -
\
h predicted

SV Iy
0.425 - ‘ f J r | \ \ UV\H "
Sl)

0.350 4
0.325 1
0 50 100 150 200 250 300
Time (samples)
(b) Step 3

—— actual
0.50 4 —— predicted
i

e .wuf ‘ f V,N b,
L |

0.35

0.30 -

0 50 100 150 200 250 300
Time (samples)

(d) Step 10

FIGURE 13. ACl-finance actual vs predicted values for Encoder-Decoder LSTM Model.

TABLE 2. Performance (rank) of different models for respective time-series problems. Note lower rank denotes better performance.

FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
ACI-finance 2 7 1 3 4 5 6
Sunspot 6 7 2 1 3 4 5
Lazer 6 7 1 2 3 5 4
Henon 6 7 3 2 1 5 4
Lorenz 6 7 2 3 1 5 4
Mackey-Glass 6 7 4 2 1 5 1
Rossler 6 7 4 1 2 5 3
Mean-Rank 5.42 7.00 2. 2.00 2.14 4.85 3.85

train and test datasets from 30 experimental runs with dif-
ferent initial neural network weights. Figure 9 to Figure 12
presents the results for the simulated time series (Tables 8
to 11 in Appendix). Figure 6 to 8 presents the results for the
real-world time series (Tables 5 to 7 in Appendix). We define
robustness as the confidence interval which must be as low as
possible to indicate high confidence in prediction. We con-
sider scalability as the ability to provide consistent perfor-
mance as the prediction horizon increases. The results are
given in terms of the RMSE where the lower values indicate
better performance. Each problem reports 10-step-ahead pre-
diction results with RMSE mean and 95% confidence interval
as error bars, shown in Figures 6 to 12.

We first review results for real-world time series that fea-
ture noise (ACI-Finance, Sunspot, Lazer). Figure 6 shows
the results for the ACI-fiancee problem. We observe that

VOLUME 9, 2021

the test performance is better than the train performance
in Figure 6 (a), where deep learning models provide more
reliable performance. The prediction error (RMSE) increases
with the prediction horizon, and the deep learning methods
do much better than simple neural networks (FNN-SGD and
FNN-Adam). We find that LSTM provides the best overall
performance as shown in Figure 6 (b). The overall test perfor-
mance shown in Figure 6 (a) indicates that FNN-Adam and
LSTM provide similar performance, which are better than
rest of the problems. Figure 13 shows ACI-finance prediction
performance of the best experiment run with selected predic-
tion horizons that indicate how the prediction deteriorates as
prediction horizon increases.

Next, we consider the results for the Sunspot time series
shown in Figure 7 which follows a similar trend as the
AClI-finance problem in terms of the increase in prediction

83113

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

TABLE 3. Comparison with literature for simulated time series.

Problem Method 2-step 5-step 8-step 10 steps
Mackey-Glass
2SA-RTRL* [12] 0.0035
ESN* [12] 0.0052
EKF [104] 0.2796
G-EKF [104] 0.2202
UKEF [104] 0.1374
G-UKF [104] 0.0509
GPF [104] 0.0063
G-GPF [104] 0.0022
Multi-KELM [54] 0.0027 0.0031 0.0028 0.0029
MultiTL-KELM [54] 0.0025 0.0029 0.0026 0.0028
CMTL [52] 0.0550 0.0750 0.0105 0.1200
ANFIS(SL) [105] 0.0051 0.0213 0.0547
R-ANFIS(SL) [105] 0.0045 0.0195 0.0408
R-ANFIS(GL) [105] 0.0042 0.0127 0.0324
FNN-Adam 0.02564 0.0038 0.0520+£ 0.0044 0.0727+£ 0.0050 0.0777=+ 0.0043
FNN-SGD 0.0621+ 0.0051 0.0785£ 0.0025 0.0937+£ 0.0022 0.0990=+ 0.0026
LSTM 0.0080+ 0.0014 0.0238+ 0.0024 0.0381+£ 0.0029 0.0418=+ 0.0033
BD-LSTM 0.00834 0.0015 0.0202£ 0.0026 0.0318+£ 0.0027 0.0359+ 0.0026
ED-LSTM 0.0076+ 0.0014 0.0168+ 0.0027 0.0248+ 0.0036 0.0271+ 0.0040
RNN 0.01424 0.0001 0.0365£ 0.0001 0.0547+£ 0.0001 0.06154 0.0001
CNN 0.01204+ 0.0010 0.0262+ 0.0016 0.0354+ 0.0018 0.0364=+ 0.0017
Lorenz
2SA-RTRL* [12] 0.0382
ESN* [12] 0.0476
CMTL [52] 0.0490 0.0550 0.0710 0.0820
FNN-Adam 0.02064 0.0046 0.0481£ 0.0072 0.0678+ 0.0058 0.0859+ 0.0065
FNN-SGD 0.04324+0.0030 0.0787£ 0.0030 0.1027+£ 0.0025 0.1178=+ 0.0026
LSTM 0.0033+ 0.0010 0.0064+ 0.0026 0.0101+ 0.0038 0.0129+ 0.0042
BD-LSTM 0.00544 0.0026 0.0079£ 0.0036 0.0125+£ 0.0057 0.0146=+ 0.0059
ED-LSTM 0.00444+ 0.0012 0.0059+ 0.0009 0.0090+ 0.0009 0.0110+ 0.0012
RNN 0.01294+ 0.0012 0.0155£ 0.0024 0.0186+£ 0.0042 0.0226=+ 0.0058
CNN 0.0067 £0.0007 0.0098+ 0.0009 0.0132+ 0.0011 0.0157=+ 0.0015
Rossler
CMTL [52] 0.0421 0.0510 0.0651 0.0742
FNN-Adam 0.0202+ 0.0024 0.0400+£ 0.0039 0.0603+£ 0.0050 0.0673=+ 0.0056
FNN-SGD 0.0666+ 0.0058 0.1257+£ 0.0082 0.1664+ 0.0075 0.1881+ 0.0078
LSTM 0.0086£ 0.0011 0.0135£0.0015 0.0185+£ 0.0022 0.0225+ 0.0026
BD-LSTM 0.0047+ 0.0014 0.0084-+ 0.0021 0.0142+ 0.0027 0.0178-+ 0.0032
ED-LSTM 0.0082+ 0.0019 0.0128£ 0.0021 0.0159+£ 0.0024 0.0180=+ 0.0030
RNN 0.02184+ 0.0005 0.0314=£ 0.0004 0.0382+ 0.0004 0.0424+ 0.0004
CNN 0.0105+£ 0.0011 0.0122£ 0.0016 ~ 0.0157+£ 0.0020 0.0220=+ 0.0022
Henon
Multi-KELM [54] 0.0041 0.2320 0.2971 0.2968
MultiTL-KELM [54] 0.0031 0.1763 0.2452 0.2516
CMTL [52] 0.2103 0.2354 0.2404 0.2415
FNN-Adam 0.1606 £ 0.0024 0.1731 £ 0.0005 0.1781 £ 0.0005 0.1762 4 0.0009
FNN-SGD 0.1711 £0.0018 0.1769 + 0.0007 0.1805 4+ 0.0012 0.1773 4+ 0.0011
LSTM 0.0682 £ 0.0058 0.1584 £ 0.0010 0.1707 & 0.0008 0.1756 4 0.0005
BD-LSTM 0.0448 +0.0026 0.1287 + 0.0046 0.1697 + 0.0008 0.1733 4+ 0.0003
ED-LSTM 0.0454 £ 0.0069 0.0694 + 0.0161 0.1371 + 0.0107 0.1689 =+ 0.0046
RNN 0.15154+0.0016 0.1718 £+ 0.0001 0.1768 + 0.0001 0.1751 4+ 0.0002
CNN 0.0859 £ 0.0038 0.1601£ 0.0007 0.1718+£ 0.0003 0.1737=+ 0.0002

error along with the prediction horizon. The test perfor-
mance is better than the train performance as evident from
Figure 7 (a). The LSTM methods (LSTM, ED-LSTM,
BD-LSTM) gives better performance than the other methods
as can be observed from Figure 7 (a) and 7 (b). Note that
the FNN-SGD gives the worst performance and the per-
formance of RNN is better than that of CNN, FNN-SGD,

83114

and FNN-Adam, but poorer than LSTM methods. Figure 14
shows Sunspot prediction performance of the best experiment
run with selected prediction horizons.

The results for Lazer time series is shown in Figure 8,
which exhibits a similar trend in terms of the train and test per-
formance as the other real-world time series problems. Note
that the Lazer problem is highly chaotic (as visually evident

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

0.6 4 ‘ —— actual

\ predicted

059 1 / \

\ [W
041 \'\ / \‘\\ "
AN

0.2+ \ \

0.0

T T T T T
150 200 250 300 400

Time (samples)

T
100 350

(a) Step 1

061 /l\ —— actual

\ predicted
0.5

0.4

03] \\ ’ \ ’il/ l.\

0.2 \
W \
0.1 A 1) \"\J | \
W V / \ ~J
N
o{
0 50 100 150 200 250 300 350 400

Time (samples)

(c) Step 5

0.6

0.5 4

0.4 4

0.3 4

0.2 4

0.1

0.0 1

—— actual
predicted

T
100

T
150

T
200

250 300 350 400

Time (samples)

(b) Step 3

—— actual

0.6 1 predicted

0.5+ f

0.4 1

0.3

0.24

0.14

0.0 1

W/

\

\

N\

J
/

i, P

™

50

100

150

200

250 300 350 400

Time (samples)

(d) Step 10

FIGURE 14. Sunspot actual vs predicted values for Encoder-Decoder LSTM Model.

in Figure 16), which seems to be the primary reason behind
the difference in performance for the prediction horizon in
contrast to other problems as displayed in Figure 8 (b). It is
striking that none of the methods appear to be showing any
trend for the prediction accuracy along the prediction horizon,
as seen in previous problems. In terms of scalability, all the
methods appear to be performing better in comparison with
the other problems. The performance of CNN is better than
that of RNN, which is different from other real-world time
series. Figure 16 shows Lazer prediction performance of the
best experiment run using ED-LSTM with selected prediction
horizons. We note that due to the chaotic nature of the time
series, the prediction performance is visually not clear.

We now consider simulated time series that do not feature
noise (Henon, Mackey-Glass, Rosssler, Lorenz). The Henon
time series in Figure 9 shows that ED-LSTM provides the best
performance. Note that there is a more significant difference
between the three LSTM methods when compared to other
problems. The trends are similar to the ACI-finance and the
Sunspot problem given the prediction horizon performance
in Figure 9 (a) and 9 (b), where the simple neural networks
(FNN-SGD and FNN-Adam) appear to be more scalable than
the other methods along the prediction horizon, although they
perform poorly. Figure 17 and Figure 15 show Mackey-Glass
and Henon prediction performance of the best experi-
ment run using ED-LSTM for selected prediction horizons.

VOLUME 9, 2021

The Henon prediction in Figure 15 indicates that it is far more
chaotic than Mackey-Glass; hence, it faces more challenges.
We show them since these are cases with no noise when
compared to real-world time series previously shown. They
have a larger deterioration in prediction performance as the
prediction horizon increases (Figures 13 and Figure 14).

In the Lorenz, Mackey-Glass and Rossler simulated time
series, the deep learning methods are performing far better
than the simple neural networks as shown in Figures 10, 11
and 12. The trend along the prediction horizon is similar
to previous problems, i.e., the prediction error increases
along with the prediction horizon. If we consider scalability,
the deep learning methods are more scalable in the Lorenz,
Mackey-Glass and Rossler problems than the previous prob-
lems. This is the first instance where the CNN has outper-
formed LSTM for Mackey-Glass and Rossler time series.

We note that there have been distinct trends in prediction
for the different types of problems. In the simulated time
series, given that we exclude Henon, we observe a similar
trend for Mackey-Glass, Lorenz and Rossler time series. The
trend indicates that simple neural networks face major diffi-
culties. ED-LSTM and BD-LSTM networks provides the best
performance, which also applies to Henon time series, except
that it has close performance for simple neural networks
when compared to deep learning models for 7-10 prediction
horizons (Figure 9 b). This difference reflects in the nature of

83115

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

TABLE 4. Comparison with literature for real world time series.

Problem Method 2-step 5-step 8-step 10-step

Lazer
CMTL [52] 0.0762 0.1333 0.1652 0.1885
FNN-Adam 0.1043 £0.0018 0.0761 £ 0.0019 0.0642 £ 0.0020 0.0924+ 0.0018
FNN-SGD 0.0983 £ 0.0046 0.0874 £ 0.0072 0.08644 0.0053 0.0968=+ 0.0052
LSTM 0.0725 £ 0.0027 0.0512 £ 0.0015 0.04644 0.0015 0.0561=+ 0.0044
BD-LSTM 0.0892 £ 0.0022 0.0596 4+ 0.0036 0.0460+ 0.0015 0.0631+ 0.0037
ED-LSTM 0.0894 £ 0.0013 0.0694 4+ 0.0073 0.05104+ 0.0027 0.0615=+ 0.0030
RNN 0.1176 £ 0.0019 0.0755 £ 0.0011 0.06114 0.0015 0.09474+ 0.0027
CNN 0.0729+£ 0.0014 0.0701£ 0.0020 0.0593+£ 0.0029 0.0577+ 0.0018

Sunspot
M-SVR [14] 0.2355 £ 0.0583
SVR-1[14] 0.2729 +0.1414
SVR-D [14] 0.2151 + 0.0538
CMTL [52] 0.0473 0.0623 0.0771 0.0974
FNN-Adam 0.0236%+ 0.0015 0.0407+ 0.0012 0.0582+ 0.0019 0.0745+ 0.0020
FNN-SGD 0.0352+£ 0.0022 0.0610£ 0.0024 0.0856+ 0.0023 0.1012=+ 0.0019
LSTM 0.0148-+ 0.0007 0.0321£ 0.0006 0.0449+ 0.0007 0.0587+ 0.0010
BD-LSTM 0.0155=£ 0.0007 0.0318+ 0.0007 0.0440-+£ 0.0005 0.0576=+ 0.0010
ED-LSTM 0.0170+ 0.0004 0.0348+ 0.0004 0.0519£ 0.0016 0.0673+ 0.0022
RNN 0.0212+£ 0.0003 0.0395£ 0.0002 0.0503£ 0.0002 0.0641+£ 0.0003
CNN 0.0257+ 0.0002 0.0419 £0.0004 0.0555+ 0.0006 0.0723+ 0.0008

ACI-Finance
CMTL [52] 0.0486 0.0755 0.08783 0.1017
FNN-Adam 0.0203 £ 0.0012 0.0272 4+ 0.0008 0.0323 £ 0.0004 0.0357 + 0.0008
FNN-SGD 0.0242 + 0.0020 0.0299 £ 0.0015 0.0350 £ 0.0021 0.0380 + 0.0018
LSTM 0.0168 £ 0.0003 0.0248 £ 0.0006 0.0333 £ 0.0010 0.0367£ 0.0015
BD-LSTM 0.0165 + 0.0002 0.0253 4 0.0004 0.0356 & 0.0010 0.0409 +£ 0.0015
ED-LSTM 0.0171 £0.0003 0.0271 £ 0.0010 0.0359 £ 0.0014 0.0395 £ 0.0014
RNN 0.0202 £ 0.0003 0.0284 4 0.0004 0.0348 £ 0.0004 0.0384 + 0.0003
CNN 0.0217 £0.0004 0.0290 £0.0002 0.0363 +0.0006 0.0401+ 0.0005

the time series which is highly chaotic in nature (Figure 15).
We further note that in the case of the simple neural networks,
Henon (Figure 9) does not deteriorate in performance as the
prediction horizon increases when compared to Mackley-
Glass, Lorenz and Rossler problems. Simple neural networks
in this case performs poorly from the beginning prediction
horizon.

The performance of simple neural networks in Lazer prob-
lem shows a similar trend in Lazer time series, where the
predictions are poor from the beginning and its striking that
LSTM networks actually improve the performance as the
prediction horizon increases (Figure 8 b). This trend is a
clear outlier when compared to the rest of real-world and
simulated problems, since they all show deep learning models
deteriorate as the prediction horizon increases.

C. COMPARISON WITH THE LITERATURE

Tables 3 and 4 show a comparison with related methods
from the literature for simulated and real-world time series,
respectively. We note that the comparison is not fair as other
methods may have employed different models with different
data processing and also in reporting of results with different
measures of error. Moreover, some papers report best exper-
imental run and do not show mean and standard deviation
of the results. We highlight in bold the best performance for
respective prediction horizon. In Table 3, we compare the

83116

Mackey-Glass and Lorenz time series performance for two-
step-ahead prediction by real-time recurrent learning (RTRL)
and echo state networks (ESN) [12]. Note that * in the
results implies that the comparison is not fair due to different
embedding dimension in state-space reconstruction and it
is not clear if the mean or the best run has been reported.
We show further comparison for Mackey-Glass for 5th pre-
diction horizon using Extended Kalman Filtering (EKF),
the Unscented Kalman Filtering (UKF) and the Gaussian
Particle Filtering (GPF), along with their generalized versions
G-EKF, G-UKF and G-GPF, respectively [104]. In the case of
MultiTL-KELM [54], we find that it beats all our proposed
methods for Mackey-Glass, except for the Henon time series.
In general, we find that our proposed deep learning meth-
ods (LSTM, BD-LSTM, ED-LSTM) outperform most of the
methods from the literature for the simulated time series,
except for the Mackey-Glass time series.

In Table 4, we compare the performance of Sunspot time
series with support vector regression (SVR), iterated (SVR-I),
direct (SVR-D), and multiple models (M-SVR) methods [14].
In the respective problems, we also compare with coevolu-
tionary multi-task learning (CMTL) [52]. We observe that
our proposed deep learning methods have given the best per-
formance for the respective problems for most of the predic-
tion horizons. Moreover, we find the FNN-Adam overtakes
CMTL in all time-series problems except in 8-step ahead

VOLUME 9, 2021

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

0.8

0.7

0.6 -

0.5 -

0.4 4

0.3 1

—— actual
0.2 1 — predicted

0 50 100 150 200 250 300 350 400
Time (samples)

(a) Step 1

0.8
0.7 A
0.6
0.5 1
0.4
0.3 1

—— actual
0.2 { —— predicted

0 50 100 150 200 250 300 350 400
Time (samples)

0.9

0.8 1

0.7

0.6

0.5 A

0.4

0.3 1

— actual
0.2 1 — predicted

0 50 100 150 200 250 300 350 400
Time (samples)

(b) Step 3

0.8
0.7
0.6
0.5
0.4
0.3

—— actual
0.2 4 — predicted

0 50 100 150 200 250 300 350 400
Time (samples)

(c) Step 5 (d) Step 10
FIGURE 15. Henon actual vs predicted values for Encoder-Decoder LSTM Model.
TABLE 5. ACl-finance reporting RMSE mean and 95 % confidence interval (+).
FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
Train 0.1628 +0.0012 0.1703 £ 0.0018 0.1471 £0.0014 0.1454 + 0.0021 0.1437 £0.0019 0.1930 £ 0.0018 0.1655 £0.0013
Test 0.0885 £ 0.0011 0.0988 £ 0.0040 0.0860 + 0.0025 0.0915 £ 0.0023 0.0923 £ 0.0032 0.0936 4+ 0.0009 0.09784+ 0.0011
Step-1 0.0165 £ 0.0011 0.0209 + 0.0022 0.0127 £ 0.0003 0.0127 4+ 0.0002 0.0130 £ 0.0005 0.0173 £ 0.0004 0.0193+ 0.0006
Step-2 0.0203 4 0.0012 0.0242 4= 0.0020 0.0168 & 0.0003 0.0165 & 0.0002 0.0171 £ 0.0003 0.0202 £ 0.0003 0.0217 £0.0004
Step-3 0.0217 4 0.0008 0.0266 =+ 0.0032 0.0190 £ 0.0004 0.0194 + 0.0002 0.0204 4= 0.0006 0.0228 £ 0.0003 0.0247+ 0.0003
Step-4 0.0249 £ 0.0009 0.0277 % 0.0023 0.0220 £ 0.0004 0.0229 =+ 0.0003 0.0239 £ 0.0008 0.0258 £ 0.0004 0.0266=+ 0.0002
Step-5 0.0272 £+ 0.0008 0.0299 + 0.0015 0.0248 £ 0.0006 0.0253 4+ 0.0004 0.0271 £ 0.0010 0.0284 £ 0.0004 0.0290 £-0.0002
Step-6 0.0289 £+ 0.0006 0.0325 + 0.0016 0.0281 £ 0.0008 0.0292 4+ 0.0007 0.0302 &+ 0.0012 0.0304 £ 0.0004 0.0315 +0.0004
Step-7 0.0311 4 0.0005 0.0342 4 0.0020 0.0302 = 0.0008 0.0331 £ 0.0010 0.0334 £ 0.0014 0.0327 £ 0.0004 0.0340=+ 0.0003
Step 8 0.0323 4 0.0004 0.0350 £ 0.0021 0.0333 £ 0.0010 0.0356 + 0.0010 0.0359 4+ 0.0014 0.0348 £ 0.0004 0.0363 £0.0006
Step 9 0.0339 =+ 0.0005 0.0357 £ 0.0012 0.0364 £ 0.0013 0.0388 £ 0.0011 0.0380 £ 0.0014 0.0371 £ 0.0003 0.0386=+ 0.0006
Step 10~ 0.0357 £ 0.0008 0.0380 4 0.0018 0.0367+ 0.0015 0.0409 £ 0.0015 0.0395 £+ 0.0014 0.0384 4 0.0003 0.0401+ 0.0005

prediction in Mackey-Glass and 2-step ahead prediction in
Lazer time series. It should also be noted that except for the
Mackey-Glass and ACI-Finance time series, the deep learn-
ing methods are the best which motivates further applications
for challenging forecasting problems.

V. DISCUSSION

We provide a ranking of the methods in terms of perfor-
mance accuracy over the test dataset across the prediction
horizons in Table 2. We observe that FNN-SGD gives the
worst performance for all time-series problems followed by
FNN-Adam in most cases. We observe that the BD-LSTM
and ED-LSTM models provide one of the best performance
across different problems with different properties. We also

VOLUME 9, 2021

note that across all the problems, the confidence interval
of RNN is the lowest, followed by CNN which indicates
that they provide more robust performance accuracy given
different model initialisations in weight space.

We note that it is natural for the performance accuracy to
deteriorate as the prediction horizons increases in multi-step
ahead problems. The prediction is based on current values
and the information gap increases with the prediction horizon
due to our problem formulated as direct strategy of multi-step
ahead prediction, as opposed to iterated prediction strategy.
ACl-finance problem is unique in a way where there is not
a major difference with simple neural networks and deep
learning models (Figure 7 b) when considering the higher
prediction horizons (7 - 10).

83117

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

0.71 — actual

—— predicted
0.6

0.5 A
0.4 4

0.3

024 |l
0.1

0.0

0 50 100 150 200 250 300 350 400
Time (samples)

(a) Step 1

0.7 4 — actual

—— predicted
0.6

0.5 1
0.4 4

0.3 1

0.2 1

0.1

0.0 1

0 50 100 150 200 250 300 350 400
Time (samples)

0.8 —— actual
—— predicted

0.6 1

0.4 4

0.21 'l

0.01

0 50 100 150 200 250 300 350 400
Time (samples)

(b) Step 3

1.0 —— actual

—— predicted
0.8 A

0.6

0.4

0.2 1

0.0 1

0 50 100 150 200 250 300 350 400
Time (samples)

(c) Step 5 (d) Step 10
FIGURE 16. Lazer actual vs predicted values for Encoder-Decoder LSTM Model.
TABLE 6. Sunspot reporting RMSE mean and 95 % confidence interval (+).
FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN

Train 0.2043+ 0.0047 0.3230+ 0.0064 0.1418+ 0.0034 0.1369+ 0.0033 0.1210+ 0.0057 0.18754 0.0011 0.1695+ 0.0019
Test 0.1510+£ 0.0024 0.21794+ 0.0041 0.11604 0.0021 ~ 0.11474 0.0020 0.1322+ 0.0032 0.13424 0.0004 0.14874 0.0015
Step-1 0.0163+ 0.0016 0.0281+ 0.0032 0.0072=+ 0.0005 0.0086+ 0.0006 0.0109+ 0.0006 0.01324 0.0004 0.0186% 0.0002
Step-2 0.0236+ 0.0015 0.0352+ 0.0022 0.0148+ 0.0007 0.01554 0.0007 0.0170% 0.0004 0.02124 0.0003 0.02574 0.0002
Step-3 0.0311+ 0.0013 0.0441+ 0.0025 0.0220+ 0.0005 0.0222+4+ 0.0006 ~ 0.02374 0.0003 ~ 0.02854 0.0002 0.03214 0.0003
Step-4 0.0350+ 0.0006 0.0518+ 0.0022 0.02754 0.0005 0.0276=+ 0.0006 0.0292+ 0.0003 0.0346+ 0.0002 0.03764 0.0003
Step-5 0.0407+ 0.0012 0.0610+ 0.0024 0.03214 0.0006 0.0318=+ 0.0007 0.0348+ 0.0004 0.0395+ 0.0002 0.0419 £0.0004
Step-6 0.0464+ 0.0016 0.0677+ 0.0027 0.0360+ 0.0006 0.0358+ 0.0006 0.0402+ 0.0006 ~ 0.043140.0002 0.04574 0.0004
Step-7 0.0514+ 0.0019 0.0771%£ 0.0020 0.0397+ 0.0006 ~ 0.0395+ 0.0006 ~ 0.0458+ 0.0011 0.0463+ 0.0002 0.0498=+ 0.0005
Step 8 0.0582+ 0.0019 0.0856+ 0.0023 0.0449+ 0.0007 0.0440=+ 0.0005 0.05194 0.0016 0.05034 0.0002 0.05554 0.0006
Step 9 0.0653+ 0.0016 ~ 0.0931+ 0.0023 0.05094 0.0009 0.0498=+ 0.0007 0.0590+ 0.0020 0.0564=+ 0.0002 0.06334 0.0007
Step 10 0.07454 0.0020 0.1012+ 0.0019 0.0587+ 0.0010 0.0576+ 0.0010 0.0673% 0.0022 0.0641+ 0.0003 0.0723=+ 0.0008

Long term dependency problems arise in the analysis of
time series where the rate of decay of statistical dependence
of two points increase with time interval. Simple RNNs had
difficulty in training long-term dependency problems [29];
hence, LSTM networks were developed [23]. The time series
problems in our experiments are not long-term dependency
problems; however, LSTM networks provide better perfor-
mance when compared to simple RNNs. It seems that the
memory gates in LSTM networks help better capture infor-
mation in temporal sequences, even though they do not have
long-term dependencies. We note that the memory gates in
LSTM networks were originally designed to cater for the
vanishing gradient problem. It seems the memory gates of
LSTM networks are helpful in capturing salient features in

83118

temporal series that help in predicting future tends much
better than simple RNNs. We note that simple RNNs provide
better results than simple neural networks (FNN-SGD and
FNN-Adam) since they are more suited for temporal series.
Moreover, we find striking results given that CNNs which
are suited for image processing perform better than simple
RNNSs in general. This could be due to the convolutional
layers in CNNs that help in better capturing hidden features
for temporal sequences.

Moving on, it is important to understand why the novel
LSTM network models (ED-LSTM and BD-LSTM) have
given much better results. The ED-LSTM model was
designed for language modeling tasks, primarily sequence to
sequence modelling for language translation where encoder

VOLUME 9, 2021

R. Chandra et al.:

Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

0.55 - /\ \ 0.55 - /\ | \ A
: /\ / / ‘ \ /\ /| /
0.501 A [M /| A , [| 0.50 4 | A [\ A ‘
\ [A (] N | A AR
oes / ‘ s/ \ A [| | 0.45 1 \ AR \ |1 / |
\“m\ \ | Ny “\)1 T A W A Y
0401 [| \ \ | | 0.40 1] | [1] || [1|
034 |/ | | ‘ 0.35 | \ [| / \‘ \ |
0.30 v V 0.30 || |] V | V
0.25 1 0.25 1 || |
\ — actual \ \ —— actual \
0.20 1 v predicted ~ V v 0.20 4 V predicted ¥
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (samples) Time (samples)
(a) Step 1 (b) Step 3
0.55 - /\ A A 0.55 \ f
0.50 /\ A /\ /\“ 0504 \ /\ A / ’/\
R I /'\ [/‘ [| M / 2 ' ‘ il | } | | /\‘ ‘
st \ L ULV AL R A AN A AN AN
\/‘]\9 L N I Y A I S ‘ ' N L] | N | \
0404 | | | f ! | [|| || 0404 | AR | | ; [\
| [1 | | ‘ ‘ | | | | ‘ [
0.35 ‘\/ \ | g“‘ | \/ [\/ 0.35 A \ \ | | \ \/ \ \m‘ ‘
\ | \ | | | \ | | \/ || \[| | \/
oo{ || A\ Y L] VO ool VAL VY ||
| | \ | | | | ' \ ||
0.25 A | : \ ‘ | 0.25 \ | |
\} —— actual | [|| —— actual \) \
0.20 1 ! predicted ¥ v 0.20 4 | predicted
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (samples) Time (samples)
(c) Step 5 (d) Step 10
FIGURE 17. Mackey-Glass actual vs predicted values for Encoder-Decoder LSTM Model.
TABLE 7. Lazer reporting RMSE mean and 95 % confidence interval (+).
FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
Train 0.3371 £ 0.0026 0.4251 £ 0.0157 0.1954 £ 0.0082 0.1619 £ 0.0106 0.1166 £ 0.0147 0.3210 £ 0.0020 0.21514 0.0029
Test 0.2537 £ 0.0024 0.2821 = 0.0098 0.1910 =% 0.0042 0.2007 £ 0.0042 0.2020 = 0.0057 0.2580 £ 0.0031 0.22404 0.0025
Step-1 0.0746 £ 0.0027 0.0895 £ 0.0041 0.0577 £ 0.0021 0.0439 £ 0.0027 0.0490 £ 0.0039 0.0641 £ 0.0037 0.09424+ 0.0025
Step-2 0.1043 £ 0.0018 0.0983 &£ 0.0046 0.0725 £ 0.0027 0.0892 £ 0.0022 0.0894 £ 0.0013 0.1176 £ 0.0019 0.0729+ 0.0014
Step-3 0.0820 =+ 0.0026 0.0816 £ 0.0028 0.0807 £ 0.0007 0.0773 £ 0.0016 0.0707 £ 0.0014 0.0832 £ 0.0026 0.0684+ 0.0022
Step-4 0.0764 £ 0.0017 0.0852 =+ 0.0048 0.0697 £ 0.0015 0.0547 £ 0.0018 0.0601 £ 0.0029 0.0762 =+ 0.0008 0.06714 0.0013
Step-5 0.0761 £ 0.0019 0.0874 £ 0.0072 0.0512 £ 0.0015 0.0596 =+ 0.0036 0.0694 £ 0.0073 0.0755 4 0.0011 0.07014 0.0020
Step-6 0.0691 £ 0.0013 0.0787 £ 0.0037 0.0540 £ 0.0016 0.0655 £ 0.0014 0.0606 % 0.0041 0.0730 £ 0.0015 0.0677 £0.0014
Step-7 0.0632 £ 0.0013 0.0740 £ 0.0061 0.0537 £ 0.0024 0.0601 £ 0.0007 0.0582 £ 0.0031 0.0643 £ 0.0009 0.0643 £ 0.0041
Step 8 0.0642 + 0.0020 0.0864+ 0.0053 0.0464+ 0.0015 0.0460+ 0.0015 0.0510+ 0.0027 0.0611+ 0.0015 0.05934 0.0029
Step 9 0.08914+ 0.0021 0.10324 0.0042 0.0507=+ 0.0021 0.0599+ 0.0019 0.0527+ 0.0021 0.0882+ 0.0023 0.07734 0.0019
Step 10 0.0924+ 0.0018 0.0968+ 0.0052 0.0561=+ 0.0044 0.0631=+ 0.0037 0.0615+ 0.0030 0.0947+ 0.0027 0.05774 0.0018
TABLE 8. Henon reporting RMSE mean and 95 % confidence interval (+).
FNN-Adam FNN-SGD LST™M BD-LSTM ED-LSTM RNN CNN
Train 0.5470 £ 0.0023 0.5670 £ 0.0015 0.4542 £+ 0.0071 0.4014 £ 0.0100 0.3235 £ 0.0316 0.5247 £+ 0.0027 0.4728+ 0.0038
Test 0.5378 £ 0.0022 0.5578 £ 0.0016 0.4516 £ 0.0052 0.4127 £ 0.0066 0.3294 £ 0.0290 0.5162 4 0.0027 0.4779+ 0.0027
Step-1 0.1465 £ 0.0058 0.1725 £ 0.0031 0.0287 =+ 0.0045 0.0241 £ 0.0014 0.0226 £ 0.0039 0.0885 =4 0.0093 0.06504 0.0018
Step-2 0.1606 =+ 0.0024 0.1711 £ 0.0018 0.0682 =+ 0.0058 0.0448 £ 0.0026 0.0454 =+ 0.0069 0.1515+ 0.0016 0.0859 + 0.0038
Step-3 0.1610 =£ 0.0008 0.1707 £ 0.0017 0.0920 £ 0.0066 0.0610 = 0.0077 0.0517 £ 0.0122 0.1577 4 0.0003 0.1411+£ 0.0021
Step-4 0.1714 £ 0.0009 0.1760 £ 0.0011 0.1386 £ 0.0044 0.0925 £ 0.0077 0.0609 £ 0.0154 0.1643 £ 0.0011 0.1519+ 0.0022
Step-5 0.1731 £ 0.0005 0.1769 =+ 0.0007 0.1584 £ 0.0010 0.1287 £ 0.0046 0.0694 £ 0.0161 0.1718 4 0.0001 0.1601+ 0.0007
Step-6 0.1758 = 0.0006 0.1777 £ 0.0010 0.1642 =+ 0.0007 0.1538 £ 0.0017 0.0868 £ 0.0165 0.1730 £ 0.0003 0.16744 0.0004
Step-7 0.1786 = 0.0006 0.1814 £ 0.0009 0.1684=+ 0.0011 0.1593 £ 0.0016 0.1120 £ 0.0139 0.1764 £ 0.0003 0.1721=+ 0.0006
Step 8 0.1781 &£ 0.0005 0.1805 £ 0.0012 0.1707 4 0.0008 0.1697 £ 0.0008 0.1371 £ 0.0107 0.1768 £ 0.0001 0.1718=+ 0.0003
Step 9 0.1757 £ 0.0004 0.1788 £ 0.0011 0.1723 £ 0.0005 0.1737 £ 0.0004 0.1524 £ 0.0077 0.1752 4 0.0001 0.1752+ 0.0003
Step 10 0.1762 =+ 0.0009 0.1773 £ 0.0011 0.1756 £ 0.0005 0.1733 £ 0.0003 0.1689 =+ 0.0046 0.1751 4 0.0002 0.17374 0.0002

LSTM maps a source sequence to a fixed-length vector, and
the decoder LSTM maps the vector representation back to a
variable-length target sequence [38]. In our case, the encoder

VOLUME 9, 2021

maps an input time series to a fixed length vector and then the
decoder LSTM maps the vector representation to the different
prediction horizons. Although the application is different,

83119

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

TABLE 9. Lorenz reporting RMSE mean and 95 % confidence interval (+).

FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
Train 0.1932+ 0.0124 0.2761+£ 0.0048 0.0242+ 0.0086 0.03004 0.0127 0.02254 0.0031 0.0538= 0.0091 0.0354=+ 0.0032
Test 0.1809+ 0.0119 0.2649+ 0.0048 0.0254+ 0.0093 0.0310+ 0.0137 0.02344 0.0031 0.054240.0097 0.03474 0.0029
Step-1 0.0183+ 0.0042 0.0336+ 0.0035 0.0025+ 0.0006 ~ 0.0043+ 0.0019 0.00514 0.0015 0.01134+0.0013 0.00554 0.0006
Step-2 0.0206+ 0.0046 0.0432+ 0.0030 0.0033+ 0.0010 0.0054+ 0.0026 0.0044+ 0.0012 0.01294+ 0.0012 0.0067 £0.0007
Step-3 0.0253+ 0.0043 0.0547+ 0.0028 0.0042+ 0.0019 0.0064=+ 0.0031 0.0046+ 0.0010 0.01434+ 0.0016 0.0077= 0.0009
Step-4 0.0334+ 0.0048 0.0651+ 0.0032 0.0051% 0.0020 0.0074=+ 0.0035 0.00524 0.0009 0.015140.0018 0.0087= 0.0009
Step-5 0.0481+ 0.0072 0.0787+ 0.0030 0.0064+ 0.0026 ~ 0.0079+ 0.0036 0.00594 0.0009 0.01554 0.0024 0.0098+ 0.0009
Step-6 0.0527+ 0.0076 0.0866+ 0.0033 0.0073+ 0.0029 0.0094+ 0.0046 0.0068=+ 0.0008 0.01644+ 0.0029 0.0109 £0.0010
Step-7 0.0613+ 0.0064 0.0944+ 0.0031 0.0089+ 0.0033 0.0107+ 0.0047 0.0079+ 0.0009 0.01714 0.0036 0.0120 £0.0010
Step 8 0.0678+ 0.0058 0.1027+ 0.0025 0.0101+ 0.0038 0.0125+ 0.0057 0.0090+ 0.0009 0.0186+ 0.0042 0.01324 0.0011
Step 9 0.0885+ 0.0060 0.1116+ 0.0027 0.0117=+ 0.0045 0.0133+ 0.0056 0.0100+ 0.0010 0.01994 0.0049 0.01424 0.0013
Step 10 0.08594 0.0065 0.11784+0.0026 ~ 0.01294 0.0042 0.01464 0.0059 0.0110+ 0.0012 0.02264+ 0.0058 0.0157=+ 0.0015

TABLE 10. Mackey-Glass reporting RMSE mean and 95 % confidence interval (+).

FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
Train 0.1810£ 0.0097 0.2576% 0.0053 0.0890% 0.0076 0.0750E 0.0067 0.0587+ 0.0090 0.1317% 0.0003 0.0854= 0.0052
Test 0.18224 0.0098 0.2599+ 0.0054 0.08974 0.0075 0.0765+ 0.0068 0.0602+ 0.0090 0.132140.0003 0.0868=+ 0.0048
Step-1 0.0162+ 0.0037 0.0485+ 0.0061 0.0056+ 0.0011 0.0052- 0.0009 0.0059+ 0.0010 0.0078=+ 0.0001 0.0075=+ 0.0007
Step-2 0.0256+ 0.0038 0.06214 0.0051 0.0080+ 0.0014 0.00834 0.0015 0.00764 0.0014 0.01424 0.0001 0.0120=+ 0.0010
Step-3 0.0398+ 0.0051 0.0686+ 0.0046 0.01204+ 0.0018 0.011740.0019 0.01034+ 0.0020 0.02144 0.0001 0.0167+ 0.0013
Step-4 0.0457+ 0.0045 0.07454+0.0049 0.0178+ 0.0020 0.0155=£ 0.0023 0.0133+ 0.0024 0.02904 0.0001 0.02164 0.0015
Step-5 0.0520+ 0.0044 0.0785+ 0.0025 0.0238+ 0.0024 0.02024 0.0026 0.01684 0.0027 0.03654 0.0001 0.0262+ 0.0016
Step-6 0.0581+ 0.0042 0.0880+ 0.0031 0.0298+ 0.0025 0.024440.0027 0.0200+ 0.0031 0.0434=+ 0.0001 0.0301=+ 0.0017
Step-7 0.0680+ 0.0047 0.09124 0.0031 0.034140.0028 0.02884 0.0028 0.02274 0.0033 0.04964 0.0001 0.0332+ 0.0018
Step 8 0.07274+ 0.0050 0.09374 0.0022 0.03814 0.0029 0.03184+ 0.0027 0.02484 0.0036 0.05474 0.0001 0.0354+ 0.0018
Step 9 0.0761+£ 0.0046 0.0963+ 0.0031 0.0406+ 0.0030 0.0343=£ 0.0027 0.0261+ 0.0038 0.0586=+ 0.0001 0.03644 0.0017
Step 10 0.07774 0.0043 0.0990+ 0.0026 0.0418+ 0.0033 0.03594 0.0026 0.02714 0.0040 0.06154 0.0001 0.0364+ 0.0017
+

TABLE 11. Rossler reporting RMSE mean and 95 % confidence interval (+).

FNN-Adam FNN-SGD LSTM BD-LSTM ED-LSTM RNN CNN
Train 0.1546+ 0.0087 03757+ 0.0100 0.0416+ 0.0074 ~ 0.0281% 0.0098 0.037440.0082 0.1088+ 0.0009 0.03674 0.0059
Test 0.1473+ 0.0098 0.4314+ 0.0122 0.0488+ 0.0054 0.0349+ 0.0070 ~ 0.04274 0.0072 0.10304 0.0008 0.04544 0.0052
Step-1 0.0148+ 0.0026 0.0467+ 0.0077 0.00804 0.0009 0.0038=+ 0.0008 0.0085+ 0.0025 0.0186+ 0.0009 0.0086+ 0.0010
Step-2 0.0202+ 0.0024 0.0666+ 0.0058 0.0086=+ 0.0011 0.0047+ 0.0014 0.0082+ 0.0019 0.0218+ 0.0005 0.01054 0.0011
Step-3 0.0252+ 0.0022 0.0910+ 0.0083 0.0099+ 0.0013 0.0061+ 0.0017 0.0098+ 0.0018 0.02504 0.0005 0.01184 0.0011
Step-4 0.0322+ 0.0024 0.1060+ 0.0078 0.01174 0.0014 0.00724 0.0020 0.01124 0.0021 0.0290+ 0.0004 0.01224 0.0014
Step-5 0.0400+ 0.0039 0.1257+ 0.0082 0.0135+ 0.0015 0.0084+ 0.0021 0.0128+ 0.0021 0.03144 0.0004 0.01224 0.0016
Step-6 0.0490+ 0.0063 0.1424+ 0.0069 0.01554 0.0019 0.0100=£ 0.0023 0.0141+£ 0.0021 0.03394 0.0004 0.01284 0.0019
Step-7 0.0527+ 0.0049 0.1572+ 0.0063 0.0170+ 0.0020 0.0120+ 0.0024 0.015140.0022 0.0360+ 0.0004 0.01394 0.0020
Step 8 0.0603+ 0.0050 0.1664=+ 0.0075 0.0185+0.0022 0.01424 0.0027 0.01594 0.0024 0.03824 0.0004 0.01574 0.0020
Step 9 0.0621+ 0.0036 0.1818+ 0.0067 0.0204+ 0.0024 0.01574 0.0030 0.01674 0.0026 0.0404+ 0.0005 0.01854 0.0021
Step 10 0.06734+ 0.0056 0.18814 0.0078 0.02254 0.0026 ~ 0.01784 0.0032 0.0180=+ 0.0030 0.04244+ 0.0004 0.0220=+ 0.0022

the underlying task of mapping inputs to outputs remains the
same; hence, ED-LSTM models have been very effective for
multi-step ahead prediction.

Simple RNNs make use of only the previous context states
for determining future states. On the other hand, BD-LSTMs
process information using two LSTM models to feature for-
ward and backward information about the sequence at every
time step [36]. Although these have been useful for language
modelling tasks, our results show that they are applicable for
mapping current and future states for time series modelling.
The information from past and future states are somewhat
preserved which seems to be the key feature in achieving
better performance for multi-step prediction problems when
compared to conventional LSTM models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide a comprehensive evaluation of
emerging deep learning models for multi-step-ahead time
series problems. Our results indicate that encoder-decoder
and bi-directional LSTM networks provide best performance

83120

for both simulated and real-world time series problems. The
results have significantly improved over related time series
prediction methods given in the literature.

In future work, it would be worthwhile to provide similar
evaluation for multivariate time series prediction problems.
Moreover, it is worthwhile to investigate the performance
of given deep learning models for spatiotemporal problems,
such as the prediction of certain characteristics of storms and
cyclones. Further applications to other real-world problems
would also be feasible, such as air pollution and energy
forecasting.

SOFTWARE AND DATA
We provide open source implementation in Python along with
data for the respective methods for further research. !

APPENDIX
See Tables 5-11.

1https://github.com/sydneyfmachineflearning/
deeplearning_timeseries

VOLUME 9, 2021

https://github.com/sydney-machine-learning/deeplearning_timeseries
https://github.com/sydney-machine-learning/deeplearning_timeseries

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

REFERENCES

(1]

[2]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

A. Tealab, “Time series forecasting using artificial neural networks
methodologies: A systematic review,” Future Comput. Informat. J.,
vol. 3, no. 2, pp. 334-340, Dec. 2018.

C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Kong,
and S. T. S. Bukkapatnam, “Time series forecasting for nonlinear and
non-stationary processes: A review and comparative study,” IIE Trans.,
vol. 47, no. 10, pp. 10531071, Oct. 2015.

S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review
and comparison of strategies for multi-step ahead time series forecasting
based on the NN5 forecasting competition,” Expert Syst. Appl., vol. 39,
no. 8, pp. 7067-7083, Jun. 2012.

N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, “An empirical
comparison of machine learning models for time series forecasting,”
Econ. Rev., vol. 29, nos. 5-6, pp. 594-621, Aug. 2010.

J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” Int. J. Forecasting, vol. 22, no. 3, pp. 443—473, Jan. 2006.

G. Li, H. Song, and S. F. Witt, “Recent developments in econometric
modeling and forecasting,” J. Travel Res., vol. 44, no. 1, pp. 82-99,
Aug. 2005.

D. F. Hendry and J.-F. Richard, “The econometric analysis of economic
time series,” Int. Stat. Rev., vol. 51, no. 2, pp. 111-148, 1983.

R. Chandra, Y.-S. Ong, and C.-K. Goh, “Co-evolutionary multi-task
learning for dynamic time series prediction,” Appl. Soft Comput., vol. 70,
pp. 576-589, Sep. 2018.

H. B. Sandya, P. H. Kumar, and S. B. Patil, “Feature extraction, classifi-
cation and forecasting of time series signal using fuzzy and GARCH tech-
niques,” in Proc. Nat. Conf. Challenges Res. Technol. Coming Decades
(CRT), 2013, pp. 1-7.

R. Chandra and M. Zhang, “Cooperative coevolution of elman recurrent
neural networks for chaotic time series prediction,” Neurocomputing,
vol. 86, pp. 116-123, Jun. 2012.

S. B. Taieb and A. F. Atiya, “‘A bias and variance analysis for multistep-
ahead time series forecasting,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 1, pp. 62-76, Jan. 2016.

L.-C. Chang, P.-A. Chen, and F.-J. Chang, “Reinforced two-step-ahead
weight adjustment technique for online training of recurrent neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8,
pp. 1269-1278, Aug. 2012.

R. Boné and M. Crucianu, “Multi-step-ahead prediction with neural
networks: A review,” in Proc. 9th Rencontres Internationales, Approches
Connexionnistes en Sci., vol. 2, 2002, pp. 97-106.

L. Zhang, W.-D. Zhou, P.-C. Chang, J.-W. Yang, and F.-Z. Li, “Iterated
time series prediction with multiple support vector regression models,”
Neurocomputing, vol. 99, pp. 411-422, Jan. 2013.

S. B. Taieb and R. Hyndman, “Recursive and direct multi-step forecast-
ing: The best of both worlds,” Dept. Econ. Bus. Statist., Monash Univ.,
Melbourne, VIC, Australia, Tech. Rep. 19/12, 2012.

A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, ‘“Methodol-
ogy for long-term prediction of time series,” Neurocomputing, vol. 70,
nos. 16-18, pp. 2861-2869, 2007.

S. B. Taieb, A. Sorjamaa, and G. Bontempi, ‘““Multiple-output modeling
for multi-step-ahead time series forecasting,” Neurocomputing, vol. 73,
nos. 10-12, pp. 1950-1957, Jun. 2010.

X. Wu, Y. Wang, J. Mao, Z. Du, and C. Li, ‘““Multi-step prediction of time
series with random missing data,” Appl. Math. Model., vol. 38, no. 14,
pp. 3512-3522, Jul. 2014.

R. J. Frank, N. Davey, and S. P. Hunt, ““Time series prediction and neural
networks,” J. Intell. Robot. Syst., vol. 31, nos. 1-3, pp. 91-103, 2001.

J. L. Elman and D. Zipser, “Learning the hidden structure of speech,”
J. Acoust. Soc. Amer., vol. 83, no. 4, pp. 1615-1626, Apr. 1988.

P. J. Werbos, ‘“Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550-1560, Oct. 1990.

J. T. Connor, R. D. Martin, and L. E. Atlas, ‘“Recurrent neural networks
and robust time series prediction,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 240-254, Mar. 1994.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85-117, Jan. 2015.

VOLUME 9, 2021

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C. W. Omlin, K. K. Thornber, and C. L. Giles, “Fuzzy finite-state
automata can be deterministically encoded into recurrent neural net-
works,” IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 76-89, Feb. 1998.

C. W. Omlin and C. L. Giles, “Training second-order recurrent neural
networks using hints,” in Proc. 9th Int. Conf. Mach. Learn. San Mateo,
CA, USA: Morgan Kaufmann, 1992, pp. 363-368.

C. L. Giles, C. W. Omlin, and K. K. Thornber, “Equivalence in
knowledge representation: Automata, recurrent neural networks, and
dynamical fuzzy systems,” Proc. IEEE, vol. 87, no. 9, pp. 1623-1640,
Sep. 1999.

J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179-211, Mar. 1990.

S. Hochreiter, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” Int. J. Uncertainty, Fuzziness Knowl.-
Based Syst., vol. 6, no. 2, pp. 107-116, Apr. 1998.

Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” 2014,
arXiv:1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078

C. Downey, A. Hefny, B. Boots, G. J. Gordon, and B. Li, “Predictive state
recurrent neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6053-6064.

S. Singh, M. R. James, and M. R. Rudary, “Predictive state representa-
tions: A new theory for modeling dynamical systems,” in Proc. 20th Conf.
Uncertainty Artif. Intell., 2004, pp. 512-519.

M. Schuster and K. K. Paliwal, ‘“Bidirectional recurrent neural net-
works,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681,
Nov. 1997.

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural
Netw., Off. J. Int. Neural Netw. Soc., vol. 18, nos. 5-6, pp. 602-610,
Jul. 2005.

J.P.C. Chiuand E. Nichols, ‘‘Named entity recognition with bidirectional
LSTM-CNNSs,” Trans. Assoc. Comput. Linguistics, vol. 4, pp. 357-370,
Dec. 2016.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104-3112.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

J. M. Adams, N. M. Gasparini, D. E. J. Hobley, G. E. Tucker,
E. W. H. Hutton, S. S. Nudurupati, and E. Istanbulluoglu, ‘“The landlab
v1.0 OverlandFlow component: A Python tool for computing shallow-
water flow across watersheds,” Geosci. Model Develop., vol. 10, no. 4,
pp. 1645-1663, Apr. 2017.

R. Chandra and S. Cripps, ‘““Coevolutionary multi-task learning for
feature-based modular pattern classification,” Neurocomputing, vol. 319,
pp. 164-175, Nov. 2018.

X. Cai, N. Zhang, G. K. Venayagamoorthy, and D. C. Wunsch,
“Time series prediction with recurrent neural networks trained by a
hybrid PSO-EA algorithm,” Neurocomputing, vol. 70, nos. 13-15,
pp. 2342-2353, Aug. 2007.

T. Koskela, M. Lehtokangas, J. Saarinen, and K. Kaski, “Time series
prediction with multilayer perceptron, fir and elman neural networks,”
in Proc. World Congr. Neural Netw., 1996, pp. 491-496.

R. Chandra and S. Chand, “Evaluation of co-evolutionary neural net-
work architectures for time series prediction with mobile application in
finance,” Appl. Soft Comput., vol. 49, pp. 462—473, Dec. 2016.

C. N. Ng and P. C. Young, “Recursive estimation and forecasting of
non-stationary time series,” J. Forecasting, vol. 9, no. 2, pp. 173-204,
Mar. 1990.

H. T. Su, T. J. McAvoy, and P. Werbos, “Long-term predictions of
chemical processes using recurrent neural networks: A parallel train-
ing approach,” Ind. Eng. Chem. Res., vol. 31, no. 5, pp. 1338-1352,
May 1992.

83121

IEEE Access

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

83122

A. G. Parlos, O. T. Rais, and A. F. Atiya, ““Multi-step-ahead prediction
using dynamic recurrent neural networks,” Neural Netw., vol. 13, no. 7,
pp. 765-786, Sep. 2000.

A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith,
“Gaussian process priors with uncertain inputs application to multiple-
step ahead time series forecasting,” in Advances in Neural Informa-
tion Processing Systems, S. Becker, S. Thrun, and K. Obermayer, Eds.
Cambridge, MA, USA: MIT Press, 2003, pp. 545-552.

G. Niu and B.-S. Yang, “Dempster—Shafer regression for multi-
step-ahead time-series prediction towards data-driven machinery prog-

nosis,” Mech. Syst. Signal Process., vol. 23, no. 3, pp.740-751,
Apr. 2009.
Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series predic-

tion using multiple-output support vector regression,” Neurocomputing,
vol. 129, pp. 482-493, Apr. 2014.

A. Grigorievskiy, Y. Miche, A.-M. Venteld, E. Séverin, and A. Lendasse,
“Long-term time series prediction using OP-ELM,” Neural Netw.,
vol. 51, pp. 50-56, Mar. 2014.

R. Chandra, Y.-S. Ong, and C.-K. Goh, “Co-evolutionary multi-task
learning with predictive recurrence for multi-step chaotic time series
prediction,” Neurocomputing, vol. 243, pp. 21-34, Jun. 2017.

A. Rawal and R. Miikkulainen, “Evolving deep LSTM-based memory
networks using an information maximization objective,” in Proc. Genet.
Evol. Comput. Conf., Jul. 2016, pp. 501-508.

R. Ye and Q. Dai, “MultiTL-KELM: A multi-task learning algorithm
for multi-step-ahead time series prediction,” Appl. Soft Comput., vol. 79,
pp. 227-253, Jun. 2019.

M. Marcellino, J. H. Stock, and M. W. Watson, “A comparison of
direct and iterated multistep AR methods for forecasting macroeco-
nomic time series,” J. Econometrics, vol. 135, nos. 1-2, pp. 499-526,
Nov. 2006.

T. Proietti, “Direct and iterated multistep AR methods for difference
stationary processes,” Int. J. Forecasting, vol. 27, no. 2, pp. 266-280,
Apr. 2011.

G. Chevillon, “Multistep forecasting in the presence of location shifts,”
Int. J. Forecasting, vol. 32, no. 1, pp. 121-137, Jan. 2016.

H. El Moaget, D. M. Tilbury, and S. K. Ramachandran, ‘“Multi-step ahead
predictions for critical levels in physiological time series,” IEEE Trans.
Cybern., vol. 46, no. 7, pp. 1704-1714, Jul. 2016.

P.-A. Chen, L.-C. Chang, and F.-J. Chang, “Reinforced recurrent neural
networks for multi-step-ahead flood forecasts,” J. Hydrol., vol. 497,
pp- 71-79, Aug. 2013.

F.-J. Chang, P.-A. Chen, Y.-R. Lu, E. Huang, and K.-Y. Chang, “Real-
time multi-step-ahead water level forecasting by recurrent neural net-
works for urban flood control,” J. Hydrol., vol. 517, pp. 836-846,
Sep. 2014.

J. Smrekar, P. Potocnik, and A. Senegacnik, ““Multi-step-ahead prediction
of NO, emissions for a coal-based boiler,” Appl. Energy, vol. 106,
pp. 89-99, Jun. 2013.

M. G. De Giorgi, M. Malvoni, and P. M. Congedo, ‘“Comparison of
strategies for multi-step ahead photovoltaic power forecasting mod-
els based on hybrid group method of data handling networks and
least square support vector machine,” Energy, vol. 107, pp. 360-373,
Jul. 2016.

D. Yang and K. Yang, “Multi-step prediction of strong earthquake
ground motions and seismic responses of SDOF systems based on
EMD-ELM method,” Soil Dyn. Earthq. Eng., vol. 85, pp. 117-129,
Jun. 2016.

D. Yang, J. Cao, J. Fu, J. Wang, and J. Guo, “A pattern fusion model
for multi-step-ahead CPU load prediction,” J. Syst. Softw., vol. 86, no. 5,
pp. 1257-1266, May 2013.

M. Wu, C. Stefanakos, Z. Gao, and S. Haver, ‘“Prediction of short-term
wind and wave conditions for marine operations using a multi-step-ahead
decomposition-ANFIS model and quantification of its uncertainty,”
Ocean Eng., vol. 188, Sep. 2019, Art. no. 106300.

J. Wang and Y. Li, “Multi-step ahead wind speed prediction based on
optimal feature extraction, long short term memory neural network
and error correction strategy,” Appl. Energy, vol. 230, pp.429-443,
Nov. 2018.

J. Wang and Y. Li, ““An innovative hybrid approach for multi-step ahead
wind speed prediction,” Appl. Soft Comput., vol. 78, pp.296-309,
May 2019.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘“Playing atari with deep
reinforcement learning,” 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

M. Hiisken and P. Stagge, “‘Recurrent neural networks for time series
classification,” Neurocomputing, vol. 50, pp. 223-235, Jan. 2003.

R. Chandra, “Competition and collaboration in cooperative coevolution
of elman recurrent neural networks for time-series prediction,” /EEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp.3123-3136,
Dec. 2015, doi: 10.1109/TNNLS.2015.2404823.

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Int. J.
Forecasting, vol. 36, no. 3, pp. 11811191, Jul. 2020.

D. T. Mirikitani and N. Nikolaev, ‘“Recursive Bayesian recurrent neural
networks for time-series modeling,” IEEE Trans. Neural Netw., vol. 21,
no. 2, pp. 262-274, Feb. 2010.

H.-Z. Wang, G.-Q. Li, G.-B. Wang, J.-C. Peng, H. Jiang, and Y.-T. Liu,
“Deep learning based ensemble approach for probabilistic wind power
forecasting,” Appl. Energy, vol. 188, pp. 5670, Feb. 2017.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and
W.-C. Woo, “Convolutional LSTM network: A machine learning
approach for precipitation nowcasting,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 802-810.

K. Amarasinghe, D. L. Marino, and M. Manic, ‘“‘Deep neural networks
for energy load forecasting,” in Proc. IEEE 26th Int. Symp. Ind. Electron.
(ISIE), Jun. 2017, pp. 1483-1488.

C.-J. Huang and P.-H. Kuo, “A deep CNN-LSTM model for particulate
matter (PMp5) forecasting in smart cities,” Sensors, vol. 18, no. 7,
p. 2220, Jul. 2018.

Y. Sudriani, I. Ridwansyah, and H. A Rustini, “Long short term memory
(LSTM) recurrent neural network (RNN) for discharge level prediction
and forecast in Cimandiri river, Indonesia,” IOP Conf. Ser, Earth
Environ. Sci., vol. 299, Jul. 2019, Art. no. 012037.

X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep learning for event-
driven stock prediction,” in Proc. 24th Int. Conf. Artif. Intell., 2015,
pp. 2327-2333.

D. M. Q. Nelson, A. C. M. Pereira, and R. A. de Oliveira, *“Stock
market’s price movement prediction with LSTM neural networks,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 1419-1426.
V. K. R. Chimmula and L. Zhang, ““Time series forecasting of COVID-19
transmission in canada using LSTM networks,” Chaos, Solitons Fractals,
vol. 135, Jun. 2020, Art. no. 109864.

F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick 1980 (Lecture Notes in Mathematics),
D. Rand and L.-S. Young, Eds. Berlin, Germany: Springer, 1981,
pp. 366-381.

C. Frazier and K. M. Kockelman, “Chaos theory and transportation
systems: Instructive example,” Transp. Res. Rec., J. Transp. Res. Board,
vol. 1897, no. 1, pp. 9-17, Jan. 2004.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/1412.
6980

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121-2159, Feb. 2011.

Y. Fan, Y. Qian, E-L. Xie, and F. K. Soong, “TTS synthesis with
bidirectional SLSTM based recurrent neural networks,” in Proc.
INTERSPEECH, 2014, pp. 1-5.

A. Graves, N. Jaitly, and A.-R. Mohamed, “Hybrid speech recognition
with deep bidirectional LSTM,” in Proc. IEEE Workshop Automat.
Speech Recognit. Understand., Dec. 2013, pp. 273-278.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2014,
pp. 3104-3112.

VOLUME 9, 2021

http://dx.doi.org/10.1109/TNNLS.2015.2404823

R. Chandra et al.: Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction

IEEE Access

[90]

[91]

[92]

[93]
[94]
[95]
[96]
[97]
[98]

[99]

[100

[101]

[102]

[103]

[104]

[105]

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,
“On the properties of neural machine translation: Encoder-decoder
approaches,” Sep. 2014, arXiv:1409.1259. [Online]. Available:
https://arxiv.org/abs/1409.1259

Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, “Handwritten digit recognition with
a back-propagation network,” in Proc. Adv. Neural Inf. Process. Syst.,
1990, pp. 396-404.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Proc. Int. Joint Conf. Neural Netw., vol. 1, 1989, pp. 593-605.

M. Mackey and L. Glass, “Oscillation and chaos in physiological control
systems,” Science, vol. 197, no. 4300, pp. 287-289, Jul. 1977.

E. Lorenz, “Deterministic non-periodic flows,” J. Atmos. Sci., vol. 20,
no. 2, pp. 267-285, 1963.

M. Hénon, “A two-dimensional mapping with a strange attractor,”
Commun. Math. Phys., vol. 50, no. 1, pp. 69-77, Feb. 1976.

O. E. Rossler, “An equation for continuous chaos,” Phys. Lett. A, vol. 57,
no. 5, pp. 397-398, Jul. 1976.

S. Sello, “Solar cycle forecasting: A nonlinear dynamics approach,”
Astron. Astrophys., vol. 377, no. 1, pp. 312-320, Oct. 2001.

A. S. Weigend and N. A. Gershenfeld, “Time series prediction:
Forecasting the future and understanding the past. Proceedings of the
NATO advanced research workshop on a comparative time series analysis
held in Santa Fe, New Mexico, 14—-17 May 1992,” J. Amer. Stat. Assoc.,
vol. 89, no. 427, p. 1149, Sep. 1994 doi: 10.2307/2290964.

NASDAQ Exchange Daily: 1970-2010 Open, Close, High, Low and
Volume. Accessed: Feb. 2, 2015.

R. Chandra, K. Jain, R. V. Deo, and S. Cripps, ‘“Langevin-gradient
parallel tempering for Bayesian neural learning,” Neurocomputing,
vol. 359, pp. 315-326, Sep. 2019.

R. Chandra, “Competition and collaboration in cooperative coevolution
of elman recurrent neural networks for time-series prediction,” /EEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp.3123-3136,
Dec. 2015.

R. Chandra, Y.-S. Ong, and C.-K. Goh, “Co-evolutionary multi-task
learning with predictive recurrence for multi-step chaotic time series
prediction,” Neurocomputing, vol. 243, pp. 21-34, Jun. 2017.

X. Wu and Z. Song, “Multi-step prediction of chaotic time-series with
intermittent failures based on the generalized nonlinear filtering meth-
ods,” Appl. Math. Comput., vol. 219, no. 16, pp. 8584-8594, Apr. 2013.
Y. Zhou, S. Guo, and F.-J. Chang, “Explore an evolutionary recurrent
ANFIS for modelling multi-step-ahead flood forecasts,” J. Hydrol.,
vol. 570, pp. 343-355, Mar. 2019.

VOLUME 9, 2021

ROHITASH CHANDRA (Senior Member, IEEE)
is currently a Senior Lecturer in data science with
the UNSW School of Mathematics and Statis-
tics. He has built a program of research encir-
cling methodologies and applications of artificial
intelligence, particularly in areas of Bayesian deep
learning, neuroevolution, Bayesian inference via
MCMC, climate extremes, landscape and reef evo-
lution models, and mineral exploration. He has
been developing novel methods for machine learn-
ing inspired by neural systems and learning behaviour that include transfer
and multi-task learning, with the goal of developing modular deep learning
methods. The current focus has been on Bayesian deep learning with a focus
on recurrent, convolutional, and graph neural networks, with application
to language models involving sentiment analysis and COVID-19. He has
attracted multi-million dollar funding with a leading international interdisci-
plinary team and by the Australian Research Council (ARC ITTC) Training
Centre for Data Analytics in Minerals and Resources (2020-2025). He is
an Associate Editor for Neurocomputing, IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SysteEms, and Geoscientific Model Development
(Topical Editor).

SHAURYA GOYAL is currently pursuing an inte-
grated B.Tech. and M.Tech. degrees with the
Mathematics and Computing Department, Indian
Institute of Technology, New Delhi. His research
interests include deep learning, reinforcement
learning, and time series prediction.

RISHABH GUPTA is currently pursuing an inte-
grated M.Sc. degree in applied geology and a
minor in computer science and engineering with
the Indian Institute of Technology, Kharagpur.
His research interests include robotics, computer
vision, deep learning, and reinforcement learning.

83123

http://dx.doi.org/10.2307/2290964

