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ABSTRACT We describe a new toolset for the manipulation and analysis of ray clouds (3D maps defined by
a set of rays from amoving lidar to the scanned surfaces). Unlike point clouds, ray clouds contain information
on free-space (air) as well as surface geometry. This allows the toolset to perform volumetric functions and
analysis that cannot be done on point clouds alone. The presented toolset consists of seventeen command-line
functions, with a C++ library available for those who require more control or tight integration. Our aim is
that RayCloudTools is as useful and simple as possible, and we use this paper to demonstrate its utility, and
to assess its ease of use, with comparison to established cloud processing libraries.

INDEX TERMS Ray cloud, point cloud, lidar, 3D mapping, decimation, alignment.

I. INTRODUCTION
Robotic perception has come a long way with the advent
of spinning lidar, depth cameras and computer vision sys-
tems for generating 3D maps directly from the robot. These
maps are typically point clouds, which contain a 3D loca-
tion per point and possible additional data such as colour.
Many libraries have been developed for manipulating and
analysing these point clouds [1]–[8] to aid in perception and
our understanding of what the robot has observed. Unfor-
tunately, the point cloud data alone is lacking an important
piece of information: the knowledge of the free space between
the sensor and contact point. Algorithms based only on point
clouds therefore lack volumetric information about the scene
and are impaired in their ability to correctly analyse it.

Occupancy gridmaps [9] provide a way to approximate
this volumetric information. They voxelise a scanned area
and discretise the ray information into per-voxel statistics
representing attributes such as occupancy [9], partial occu-
pancy [10], and surface covariance [11], [12]. They are valu-
able in real-time scene perception and are common in robotic
navigation. However, as a raster data format, gridmaps are
imprecise for analysis, and lose quality under repeatedmanip-
ulations such as aligning maps. A vector format representing
the exact sensor observations is better suited to the analysis
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and manipulation workflow that is the subject of this paper.
That vector format is the ray cloud.

We present an open-source suite of tools where the fun-
damental data structure is the ray cloud.1 This is the set of
directed line segments from sensor to contact point, together
with a time stamp, and optional colour and intensity infor-
mation. The library of tools treats this data as a volumetric
description of the scene, rather than as a set of surfaces.
We describe the design philosophy, structure and contents of
this library, and demonstrate how this volumetric component
of ray clouds enables long-term mapping techniques and
cloud analysis that is not possible on point clouds alone.

The aim of this library is to provide a set of building-blocks
that are useful to as many users as possible. We define this
usefulness by five criteria, which we demonstrate within the
main sections of the paper:

1) it performs functions that cannot be performed on just
point clouds - Section VI

2) it is viable on large data sets - Section VII
3) inclusion of all the common functions - Section VIII
4) functions are reusable building-blocks - Section IX
5) simplicity of interface - Section X

II. RELATED WORK
Tools for processing point clouds have been available
since the early 2000s, for instance the CloudCompare [1]
software originated in 2003. While primarily a graphical

1https://github.com/csiro-robotics/raycloudtools

79712 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8932-018X
https://orcid.org/0000-0003-2183-9991
https://orcid.org/0000-0002-3267-6801


T. D. Lowe, K. Stepanas: RayCloudTools: Concise Interface for Analysis and Manipulation of Ray Clouds

tool for manipulating point clouds, it also comes with a
command-line interface to allow simple manipulations to be
automated. A similar command-line interface was created by
the developers of the.las/.laz point cloud data format, called
LasTools [2]. This includedmore complex techniques such as
ground extraction, but with a far larger parameter space from
which to find the appropriate function call.

The growing popularity of 3D mapping led to the creation
and growth of Point Cloud Library [3], a C++ library for
processing point clouds. It contains hundreds of classes, with
multiple member functions, which can be connected and used
in many different ways. The benefit of this approach is its
large functionality, but its drawback is the steep learning
curve involved in understanding how to interact with this
wide interface effectively.

Largely due to the above drawback, Open3D [4] was devel-
oped. The resulting interface is simpler than Point Cloud
Library. Even so, its C++ interface contains over 200 classes,
and tools such as aligning clouds have a large search space of
methods, options and parameters.

Other point cloud tools also exist [5]–[8], [13], [14] but
all of these cited tools have the drawback that point clouds
lack the volumetric information required to perform many
of the more useful functions. Examples of these are given in
Section VI.

Additionally, we believe that the growing popularity of 3D
mapping supports a tool suite for non-expert users, where
ease of use is even more important than for existing pack-
ages. For this reason, we have developed RayCloudTools
as a primarily command-line interface with just seventeen
core functions, and with ray clouds as the underlying data
structure.

III. DESIGN PHILOSOPHY
Our goal is to make ray clouds a viable data format by
providing tools for their manipulation that anyone can pick
up and use. For this general audience it is important that tools
are as simple as possible. This leads to our main design goals:

A. TURN-KEY
• command-line tools, no programming knowledge
required

• cmake, make and make install are enough to start
running the command-line tools from anywhere.

• automatic help text whenever the command-line is
incorrect

• minimising the parameter search space where possible

B. INFORMATION HIDING
Basic functionality is turn-key, but advanced functionality is
still available through less visible options. This is a form of
information hiding, which we support in four ways:

• build options allow more features through additional
third party dependencies. Examples include.laz file and
convex hull support.

• optional command-line parameters allow additional
control

• more complex functionality through sequencing multi-
ple commands

• using the C++ interface for greater control

C. NOT REINVENTING THE WHEEL
The ray cloud is stored in a point cloud file format (Stanford
PoLYgon .ply files) with an additional attribute to represent
the ray. This means that existing rendering software can
display the clouds, and specialist libraries for point cloud
processing can continue to be used. Additionally, ray clouds
are imported from an existing point cloud and associated
trajectory file. This means that RayCloudTools is not required
to perform 3D mapping algorithms such as SLAM. So the
generation of the 3D map from the raw sensor data is not part
of the scope of the library. Instead, this library is focused on
the easy manipulation of ray clouds, and on tools that use the
full ray information.

IV. FILE FORMAT
The Stanford polygon (.ply) format is sufficiently versatile to
represent polygon meshes, point clouds and also ray clouds.
It requires a list of vertex positions (x,y,z) and the remainder
are user-defined attributes.
We choose to re-purpose the common user attribute for a

vertex normal (nx,ny,nz) to represent the ray from the end
point to the sensor location. This allows existing rendering
software [1], [13] to display the full set of rays by toggling
vertex normal rendering. Representing ray clouds within
established rendering software is sufficiently valuable that it
more than compensates for re-purposed attribute. See Table 1.

TABLE 1. Ray cloud .ply file attributes.

We have also chosen to utilise the alpha value to store
per-point intensity, such as lidar return intensity. Currently
this comes from an intensity field in the imported point
cloud, if one exists. In addition to its use in visualisation as
per-point opacity, the alpha value has one functional role:
any out-of-range ray is represented with an end point at the
sensor’s maximum range and alpha set to zero. This flags
it as an ‘unbounded ray’ with a non-physical end point.

V. FILE NAMES
We have chosen to use suffixes in naming output files.
This leads to default behaviour where a string of func-
tions is visible in the file name. For instance, if we see
the file farm_decimated_smoothed_aligned.ply
then we have a good idea of how the farm map has been
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adjusted. Moreover, usually farm_decimated.ply and
farm_decimated_smoothed.ply will be available if
the user wants to adjust from an earlier point.

When file names get too long they can of course be
renamed, and farm_*.ply can be removed to clean up the
intermediates.

The output file name option -o is used only when there are
a choice of file types that can be determined from the exten-
sion (rayrender) or when the output file prefix is ambiguous
(raycombine).

VI. THE CASE FOR RAY CLOUDS
Point clouds typically represent surfaces, whereas ray clouds
represent free space, with boundary surfaces. As such, tools
that operate on volumes can only feasibly be performed on
ray clouds. For example, ray information is essential in:
• distinguishing between a thin wall observed from both
sides and a noisy wall observed from one side

• distinguishing between a solid wall and a porous fence
• estimating the density of vegetation
The clearest case of volumetric operations are the set oper-

ators, such as a set union or intersection. These are useful
operators. For instance, if you map a street at two different
times, the union of the two volumes of free space will exclude
any pedestrians that have moved between the two times.
In principle this union can be used for removing transient
objects in maps. The intersection operation does the opposite,
it will include all pedestrian locations, providing a 3D map
of the ‘‘maximum’’ of all transient objects. See Figure 1.
We apply these form of operators in the raytransients tool.

FIGURE 1. Set operations on free space allow transient object removal
(bottom left), or the maximum set of objects seen (bottom right).

A. TRANSIENT OBJECT REMOVAL
The tool raytransients splits a ray cloud into its static
and transient components, suffixed with _fixed.ply and
_transient.ply respectively. A ray cloud however,

FIGURE 2. The ray cloud as a set of rays (left) typically approximates a
volume of free space, unobserved space and a set of surfaces.

is not a boolean volume, instead it represents three states:
free space (approximated by rays), contact surfaces (approx-
imated by end points) and unobserved space. Consequently,
the operations are modified forms of the boolean set oper-
ations, as they need to respect the unknown status of the
unobserved space. See Figure 2.

FIGURE 3. A general ray cloud interpretation identifies porous volumes
and surfaces in addition to solid surfaces. This is required for
raytransients and raycombine. The rays shown in blue pass through the
vicinity of the red ray end-points, identifying them as porous regions.

Moreover, many scenes contain intermediate regions:
porous volumes such as a bush, and porous surfaces such
as a wire fence, as shown in Figure 3. The raytransients
tool generalises these geometries using small ellipsoidal
regions around the neighbourhood of each point in the scene
(Figure 4(a)). Each ellipsoid contains an opacity value rep-
resenting the proportion of intersecting rays that end within
it. Bushes are built from multiple spherical low-opacity ellip-
soids, surfaces from flat ellipsoids, and branches and wires
are built from thin ellipsoids.

With this representation, raytransients looks for ellipsoids
that start or end with a string of r rays passing through
them. This indicates the geometry has changed, and so the
point is transient (Figure 4(b)). How readily the tool classi-
fies transients is controlled by its n rays argument, where
transience = r > n/opacity. Figure 5 shows a real-world
application of the tool where there is a person walking in
the scan, the method removes the moving person without
removing the porous row of bushes.

B. COMBINING CLOUDS
In addition to its use in transient object removal, volumetric
operators provide a consistent approach to combining sep-
arate maps together. The tool for this is raycombine, it is
the same as raytransients but acts on multiple clouds, rather
than within one cloud. This provides the ability to support
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FIGURE 4. Porous volume patches are estimated per-point. In the single cloud example (raytransients), sufficient rays pass through the
ellipsoid at the later time that the object is deemed to have disappeared (a conflict). Depending on the merge type, the point in question is
removed, or the pass through rays are removed. In the double cloud example (raycombine) there are not enough pass through rays in
the second cloud to be certain that the porous object has disappeared.

FIGURE 5. Transient object removal from a single ray cloud, coloured by
lidar return intensity.

long-term mapping, as it allows newly acquired 3D maps to
be merged over previous ones in a meaningful manner. The
only user decision is which merge type to employ.

The merge type only makes a difference in regions where
a ray in one map passes through an ellipsoid in the other
map. If we refer to these cases as merge conflicts, then we
can interpret the merge type as the choice of merge conflict
resolution. This is a 3D map equivalent of the merge con-
flict auto-resolution options that are available on text files
under source control. Text options include using the old text,
using the new text, or including both for manual resolution.

FIGURE 6. The five automatic merge types, for an aerial ray cloud of a
road scanned once (red) and again later (green). If these two scans are
within a single ray cloud then the merge is performed with raytransients,
otherwise it is performed with raycombine.

We support using the oldest geometry, using the newest, and
including both for editing in a 3D editor [1], [13]. We also
support use of the minimal, and maximal geometry on merge
conflicts. These options are displayed in Figure 6.

Version-controlled 3D maps allow the step-change from
using isolated maps to continued mapping operations. How-
ever, there is an important operation that is still required,
the three-way merge. This operation allows multiple users to
edit the same map. It uses the closest common parent map to
discern which map makes which change. An illustration of
the method is given in Figure 7, and a real-world example of
the method is shown in Figure 8, with the ray cloud end points
coloured by lidar return intensity.

raycombine base.ply min cloud1.ply cloud2.ply 10 rays
performs the three-way merge of cloud1 and cloud2 both
onto the base cloud. The operation is a simple variant of
raycombine:
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FIGURE 7. Three-way merge types. Here red and green are two small
static scans that have been merged onto the base map using raycombine
newest, green was captured later. We then merge the two branches using
the base map. The merge types only affect what is done at merge
conflicts, which are where red and green overlap. The disappearance of
the traffic cone and appearance of the bulldozer are therefore in all
merge types.

1) all rays that are present in all three clouds move to the
output cloud

2) all rays in cloud1 and cloud2 that are present in base
are removed

3) cloud1 and cloud2 are then merged with the standard
raycombine and the result added to the output cloud

These operations can be assigned to merges involving
the .ply file type. With the git2 version control system on
Linux this is done by adding to the files3:

~/.config/git/attributes:

*.ply merge=plymerge
~/.config/git/config:
[merge ‘‘plymerge’’]
name = Custom merge for ply files
driver = raycombine %O all %A %B -o %A

In all the above examples, the free-space volume is essen-
tial in performing the function, and ray clouds are the most
direct representation of this observed space. An alternative is
to store the point cloud and sensor trajectory in separate files,
but every transformation and combination of maps would
require the same operation to be performed on the trajectory

2Git is used for this example, but we note that there are more suitable
version control systems for operating on data.

3On earlier systems the files ~/.gitattributes and ~/.gitconfig may be used
instead

files. Furthermore, the above merge operations allow sites
to be re-mapped indefinitely, with new maps being merged
in countless times per day. There would be a growing and
unbounded list of trajectory files, or one giant and complex
merged trajectory file. It is simpler and more robust to store
each ray independently when there is the potential for this
level of continued combining (and splitting) of maps.

C. SPLITTING CLOUDS
Splitting of clouds is our next example of the benefits of ray
clouds. There are many ways that a user may wish to split a
3D map. Using ray clouds enables several forms of splitting
that are not possible with point clouds alone, one can crop out
rays:
• longer than a distance: which may contribute more to
surface noise

• shorter than a distance: to remove the user from the scans
• in a certain direction: as a quick way to remove ceilings

See Figure 9. Our ray cloud tool raysplit allows all of these
split types, in addition to the more common types such as
cropping according to a bounding box or imported triangle
mesh. These functions are different to their point cloud equiv-
alent because they must split each individual ray, to maintain
the validity of the output ray clouds. Split rays that no longer
end within the volume are flagged as unbounded in the usual
fashion, by setting their alpha component to zero.

D. ACCURATE SURFACE ESTIMATES
Lastly, ray information is important in extracting more rep-
resentative local surface geometry. In particular, the ray
direction allows us to differentiate between a thin wall
observed from two sides, and a one-sided wall with noise,
see Table 2 top row. This allows flat walls to be interpreted as
flat, which improves the quality of many functions, includ-
ing: smoothing, denoising, colouring and aligning clouds
together. Table 2 demonstrates the difference that this more
accurate surface estimate makes.

VII. MANAGING SIZE
The amount of acquired cloud data is growing rapidly every
year, due primarily to hardware advances such as multi-beam
lidar and depth cameras. While 5 million points was a large
point cloud ten years ago, 500 million is not uncommon
today.4 This poses several problems for ray cloud processing,
namely: clouds do not fit in working memory, clouds take
a long time to process, and clouds cannot be visualised at
interactive rates. We include three mechanisms to alleviate
this issue of size:

A. DECIMATE - RESTORE
We implement a decimate-restore workflow whereby the
majority of functions (X,Y,. . . ) by the user are performed on
a decimated ray cloud, in the manner of:

4illustrated by lidar data rates [15], such as 2010’s Hokuyo: 40Hz to 2019’s
Velodyne Alpha Prime: 2,400Hz.
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FIGURE 8. Three-way merge on a base map of an industrial building. New scan A and B are taken from the left and right
side of the building respectively. Each are merged onto the base map in commit A and B, using rayalign then raycombine
newest. They contain three highlighted changes each, with the change circled in green (an added cart) common to both A
and B. The three-way merged map contains both sets of changes, apart from where the changes conflict (the opened door
in A and the added barrier in B), we resolve with the oldest merge type here, which keeps the open door and removes the
barrier.

FIGURE 9. Example raysplit operations in a car park. Top: splitting at long
range removes the partially observed trees. Middle: splitting at short
range removes the user from the scan. Bottom: splitting by ray direction
removes the shade cloths. None of these operations are possible on only
a point cloud.

raydecimate→ rayX→ rayY→ . . .→ rayrestore
raydecimate generates a subsampled ray cloud. It can

either pick every n’th ray, or it picks one ray that ends in each
voxel of a specified width.

rayrestore takes the processed decimated ray cloud, and
applies the changes on a per-voxel (or per n’th ray) basis,
to the undecimated ray cloud. For example, if raydenoise has
removed a single ray from the decimated cloud, rayrestore

will remove the whole voxel worth of rays from the undec-
imated cloud. This decimate-restore workflow is therefore
coarser than operating on the undecimated cloud, but it allows
the vast majority of processing to be fast, low memory and
possible to visualise at interactive rates.

B. CHUNKED I/O
In order to avoid running out of working memory, a number
of key tools are processed in a serial fashion, processing one
chunk at a time. This is applied to all tools that are amenable
to serial processing, and it includes all those that operate on
undecimated clouds: rayimport, raydecimate,5 rayrestore
and rayexport. The consequence of serial processing is that
the memory usage has a fixed upper bound, which is approx-
imately 1Gb.

While processing of undecimated clouds can still be slow,
we note that the above listed operations on undecimated
clouds are fairly simple operations, which are typically run
a single time. Additionally, we implement a text counter to
track the progress of the function on large clouds.

C. COMPLEXITY
Under the wide range of possible cloud sizes (n rays) the per-
formance of the tools ought to be a consistent and predictable
function of n. We aim for each tool to have computational
complexity O(n). This is because loading the cloud is already
O(n), so it can’t be any lower, and superlinear complexity

5The memory of spatially decimated clouds is proportional to the size of
the decimated cloud
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TABLE 2. Ray information allows a better representation of each point’s neighbourhood. In particular, it allows two-sided walls to be represented as two
flat surfaces, rather than as one thick volume. Here we show the improvement of several functions, on a building generated with several cm of range
noise (using raycreate building 1).

will require too much computation on large datasets.
We also aim for memory complexity O(n), or O(1) where
possible.

Since processing performance is proportional to number
of rays (rather than map size, or surface area covered) the
decimation function directly controls the performance of all
the tools, and the degree of decimation allows users to trade
off resolution with computational cost.

In addition to the three cited mechanisms, we also include
a raysplit option to split the cloud into a grid of separate files.
This can be a useful final step in the processing pipeline, for
working with very large files that may need to be streamed in
from a server [16]. Finally, we note that the Stanford polygon
file format (.ply) is chosen for its ubiquity and ease of use.
But once the ray clouds are fully processed, they can be

exported to a point cloud in more compressed formats,6 and
as a separate trajectory file. These can make preferable long-
term-storage formats, or data transfer formats.

VIII. THE FULL SUITE OF TOOLS
We will now describe the full suite of seventeen tools, which
are summarised in Table 3. Most of these fall into natural
pairs or triplets (see Figure 13) so we will describe these first,
followed by the remaining ones.

A. IMPORT/EXPORT
The rayimport tool takes a specified point cloud and trajec-
tory file and generates a ray cloud file. The point cloud may

6directly as a.laz file, or further compressed, for instance as a DRACO
file [17]
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TABLE 3. Overview of the full list of tools with typical command-line arguments.

be a .laz file or .ply file, and the trajectory file is a text file
which lists the position (and orientation) of the sensor for
each time stamp in order. These set of times are independent
of the time stamps in the point cloud, and are interpolated to
generate the start point for each ray.

The rayexport command converts the ray cloud back into
a separate point cloud (.ply or .laz) and trajectory file (.ply
or .txt). This allows the user to view the sensor trajectory, and
the point cloud file is also a smaller file.

B. DECIMATE/RESTORE
Described in section VII-A

C. DENOISE/SMOOTH/TRANSIENTS
There are three methods for addressing noise and clutter in
ray clouds, one can remove the rays with outlier end points
(raydenoise) or you can shift these end points onto the near-
est surface (raysmooth). Lastly, you can remove geometry
that is not consistent over time (raytransients).

raydenoise cloud.ply 4 cm removes rays with end points
more than the specified distance from other points. The draw-
back of this is that distant and sparsely scanned regions will
also have their rays removed. For these cases, the command
raydenoise cloud.ply 2 sigmas will remove each ray with
end point more than the specified number of standard devi-
ations from its nearest neighbour points, represented as a
covariance. Table 2 provides an example of this.

raysmooth shifts each ray’s end point onto the nearest
estimated surface, as shown in Table 2. This is the only tool
that rayrestore does not support. So if you decimate a cloud
and smooth it, then rayrestore will not apply that smoothing
to the original cloud, and will not function correctly.

raytransients was described in Section VI. It splits a
ray cloud into the rays corresponding to geometry that has
changed, and the rays corresponding to static geometry. This
is based on the choice of merge type. Typically, the min
merge type is used, and the static (.._static.ply) output cloud
retained, this has the effect of removing transient objects from
the scene.

D. SPLIT/COMBINE
raysplit splits a ray cloud around a given criterion into two
ray clouds. The criterion may be the equation of a plane in
space (given by a single vector), it may be a point in time,
or a range value for the ray. There are multiple criteria, and
they are typically used to discard parts of the map that are not
required. See Figure 9 for examples.

The most versatile option splits the map based on the spec-
ified signed distance from an input polygonal mesh, which is
a .ply file. This allows parts of the map to be cut out, based
on any shape defined in a 3D modelling package.

raycombine does the opposite, it takes multiple ray clouds
and combines them into a single cloud. The merge type
parameter defines which of the rays from each cloud are
included in the final ray cloud when there is a conflict (see
Section VI-B for details). The simplest merge type all
includes every ray, and so is equivalent to a concatenation
of the two sets of rays. The other merge types are illustrated
in Figure 6.

E. TRANSLATE/ROTATE/ALIGN
The two manual transformation functions raytranslate and
rayrotate act in-place; they are the only tools that modify the
supplied ray cloud directly. This is because they both have a
simple and lossless inverse transformation, in order to undo
any mistakes. This also supports a trial-and-improvement
method of aligning a ray cloud, without generating new files
each time. The interfaces are simple:

raytranslate cloud.ply 1,2,3
rayrotate cloud.ply 0,0,90
The rotate command argument is a rotation vector in

degrees: its axis is the axis of rotation and its magnitude
is the rotation angle in degrees. We consider this rotation
representation to be the most user friendly, without over- or
under-parameterising the rotation.

As well as manual alignment, we can also automatically
align a cloud using the rayalign tool. When the tool is used
on a single cloud, it axis-aligns the major orthogonal planes
in the cloud. For example, translating the bottom corner of
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the largest external walls of a building to the origin, and
axis-aligning them. Typically the ground acts as the principle
horizontal plane, and so takes a height of zero. The major
orthogonal planes are extracted using a radon transform [18]
technique, by discretising the cloud to a horizontal grid of
end-point densities. We therefore are making the assumption
that the clouds are already vertically aligned. We have found
this to be a fair assumption for mapping sensors that contain
an Inertial Measurement Unit (IMU).

When rayalign specifies a second cloud file, it aligns the
first cloud onto the second. The alignment is based on a
cross-correlation of the density of end points, with respect
to 3D translation and yaw angle.7 As such it is recommended
that clouds are spatially decimated so that density represents
the geometry rather than time spent observing an object. The
peak correlation is used as the coarse alignment, from where
it performs a gradient-descent minimisation of the differ-
ence between nearby surfaces. See Figure 10 for example.
This second stage generates a rigid transformation of best
fit by default, but can also generate a non-rigid (quadratic)
transformation under the --nonrigid option. This latter option
is primarily useful for long maps that may have a small
amount of bend along their length.

FIGURE 10. Example of aligning the large cloud onto the smaller cloud,
for a scene including rooms and outdoor areas.

F. EXTRACT/CREATE
rayextract is the most experimental of the ray cloud tools.8

It is for extracting meaningful real-world geometries from a
ray cloud. Currently this includes extraction of rough terrain
and extraction of forests. The terrain is extracted as a mesh,
and forests are extracted as text files containing the estimated
location and size of trees.

The raycreate tool acts in the opposite fashion, it takes in
a reduced description (a single random seed, a mesh, or forest
text file) and generates a ray cloud to fit this description. The
current example types are: tree, forest, terrain and building.

G. COLOUR
raycolour colours the end points of the ray cloud based
on the specified criterion. This may be based on the time
stamp, the local shape, the normal direction, lidar intensity
or several other options, including choosing a uniform colour

7This is a form of Fourier-Mellin technique, similar to the ideas of
Rufus et al. [19].

8as such, it currently resides in the experimental branch of the RayCloud-
Tools software repository.

directly. The --lit option provides lighting based on a diffuse
illumination model, in order to aid in visual interpretation of
the 3D scene. A good default colouring is normal --lit, but
time --lit is useful in analysing how a scan unfolded, it cycles
from red to green to blue every minute of the scan.

H. RENDER
rayrender renders the ray cloud to an image from the chosen
view. The ends of each ray can be rendered to display the
map, or the start points can be rendered to show the trajectory.
The full rays can also be rendered, to show the free-space
volumes. A particularly useful render option for vegetation
is to colour the map by surface area density, see [20] for
method. Real, unscaled values can be obtained by rendering
to a High Dynamic Range (.hdr) file. See Figure 12 for a
visual overview.

I. WRAP
The process of converting point clouds to meshes is
an ambiguous one in general, but one process that is
well-defined is ‘wrapping’. We perform this on the surfaces
(the end points) of a ray cloud, as shown in Figure 11.

raywrap takes a ray cloud, a direction type and a curva-
ture value, and wraps the cloud in the given direction up to
the given curvature of penetration. The direction types are
inwards, outwards, upwards and downwards. The inwards
type is closest to our notion of wrapping, when the curvature
is zero it generates the convex hull of the end points of the
ray cloud. For larger curvatures it acts like an increasingly
tight vacuum packing of a surface to the cloud. It generates a
concave hull up to the specified curvature.

Direction type outwards inflates a closed surface onto an
enclosed space such as a room or cave, up to the specified
penetration curvature. upwards wraps an open surface up
to the cloud from below, which is particularly effective at
extracting the ground surface underneath surface geometry
such as grass, trees or stones. downwards wraps an open sur-
face onto the cloud from above, which is useful in extracting
forest canopy shape, or modeling the obstacles that a drone
might fly into. These all use the --fullwrap option, which can
be processor intensive.

The default (non-full) option uses a quadratic approxi-
mation to the above functions, based around the visibility
methods of Katz and Tal [21]. This is much faster, but less
complete as it ignores ‘overhangs’ in the cloud geometry.
Take for instance the upwards direction, the curvature value
no longer represents a spherical curvature but the vertical
curvature of a paraboloid (the second differential of height
with respect to lateral distance). The mesh is the set of points
that such an upwards probing paraboloid can reach, and as
such the mesh will not contain any overhangs. It represents a
form of highest lower-bound surface for the ray cloud [20].

In all cases the resulting mesh is ‘well behaved’: it is a
triangular mesh that is topologically a sphere (inwards, out-
wards) or a plane (upwards, downwards). It contains no holes,
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FIGURE 11. Raywrap: applied to a cabin beside a fence, showing the four wrap directions. These project the mesh in
vertical and radial directions. The ‘--full’ option projects iteratively in each triangle’s normal direction, which allows more
thorough wrapping, at a greater computational cost.

FIGURE 12. Rayrender: multiple views and render types displayed. Cloud
example was generated with raycreate forest.

split edges or branching surfaces, and thin triangles are very
rare as the process is related to the Delauney triangulation.

IX. SEQUENCES
These tools are useful individually, but their main strength is
when combined together in sequences. We present a visual
example of how functions could be sequenced in Figure 13.
In this figure, we visualise the ray cloud tools as the interface
between raw 3D maps (top) and the user information (bot-
tom). Analysis tasks tend to flow downwards, interpreting
the ray clouds into higher level information for the user, this
may involve segmenting and splitting the maps. Conversely,
manipulation tasks flow upwards, taking information from
the user to generate, modify and construct 3D maps.

We now present somemore specific use cases of sequenced
operations, which are useful in a variety of scenarios. In each

case we assume that rayimport has already been used to
convert into the ray cloud format. We also rename the out-
put cloud name to cloud.ply after each command is called,
in order to simplify the presentation of these sequences.

A. CLEAR VISUALISATION
This cleans the data and colours it for clear viewing.

1) raysplit cloud.ply alpha 0 - remove zero-intensity
(unbounded) rays

2) raysplit cloud.ply plane 0,0,2 - remove ceilings so you
can see in

3) raydecimate cloud.ply 4 cm - even density
4) raydenoise cloud.ply 3 sigmas - remove outliers
5) raytransients min cloud.ply 10 rays - remove moving

objects
6) raysmooth cloud.ply
7) raycolour cloud.ply normal --lit

B. LONG-TERM MAPPING
We have a large map.ply ray cloud being maintained, and
wish to merge a newly acquired cloud on top.

1) raydecimate cloud.ply 4 cm
2) raytransients min cloud.ply 10 rays - remove moving

objects
3) rayalign cloud.ply map.ply - fit onto the existing map
4) raycombine newest cloud.ply full_map.ply 10 rays
5) raydecimate map.ply 4 cm - prevent density

increasing
6) commit changes
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TABLE 4. Existence of similar tools within existing open source point cloud packages, coloured by the number of tool parameters. The table illustrates
the low cognitive load of our method (green colouring), the small number of functions to learn (‘Functions’ row) and the clarity of function naming.

C. TRAVERSIBILITY
Obtain a mesh that defines the traversibility of the terrain.

1) raydecimate cloud.ply 4 cm - even density
2) raywrap cloud.ply upwards 0.1 - get ground mesh
3) raysplit cloud.ply cloud_mesh.ply distance 0.5 - get

first 50 cm above ground
4) raywrap cloud.ply downwards 2.0 - mesh of ground

obstacles

The slope of the output mesh triangles gives a gradient cost,
and the circumradius of each triangle represents the size of
the (paraboloidal) concavity that sits between its three cor-
ners. Graph-based planning can be performed on the mesh,
based on these two costs.

X. EASE OF USE
In addition to its functionality, a library should be easy to
use if it is to aid as large an audience as possible. This
requires its interface to be a low cognitive burden on the user.
Poorly named interfaces with a large set of functions demand
a heavier learning effort of the user. Similarly, dozens of
parameters included per function leads to awide search space,
taking time to search, understand, and placing the burden on
the user to find the solution that works.

With this in mind, we compare our interface in Table 4
against the four established cloud libraries: CloudCompare,
LasTools, Open3D and PCL.

Cognitive burden is challenging to quantify, we acknowl-
edge this by providing a coarse colouring per tool based on
the number of independent parameters that are presented to
the user, from under five (green) to over 20 (red). Under
this metric, an enumeration such as top/front/side is one
parameter, and a 3D vector is three independent parameters.
For the LasTools library, all optional parameters listed under
‘‘overview of all tool-specific switches’’ on the web site
are included. For Open3D and PCL, the C++ interfaces
make parameter counting more complicated as there may
be several functions for the same tool, or multiple func-
tions may be required in sequence. In both cases, we sum
the parameter degrees of freedom for each function, or for
each modifier function when the tool is wrapped in a
class.

Additionally, we measure the interface size in the bottom
row of Table 4, this enumerates the total number of func-
tions that are presented to the user, either on the library’s
web site or in documentation. For the libraries that have
no command-line interface we use the number of avail-
able function calls, in both cases there are well over two
hundred.

Lastly, we note that functions that rely heavily on the
full ray cloud (raycombine, raytransients) are not present
in Table 4 for the point cloud based libraries (only the
simple concatenation of clouds is supported in CloudCom-
pare), the useful raycreate and rayrestore functions are
also missing in the point cloud libraries. These demonstrate

79722 VOLUME 9, 2021



T. D. Lowe, K. Stepanas: RayCloudTools: Concise Interface for Analysis and Manipulation of Ray Clouds

FIGURE 13. Typical sequences, combined in a single image. In this
schematic, analysis flows downwards from raw data to information, and
manipulation flows upwards. The example cloud is of a hill with trees
and huts, and the manipulation involves replacing the structures on the
hill with generated trees.

the functionality gap that ray cloud processing is able
to fill.

XI. CONCLUSION
We have described a toolset for easy-to-use fundamental
manipulation and analysis of ray clouds. We have shown that
the choice of ray cloud as a format supports crucial functions
for long term mapping, and that ray information is valuable

for many of the tools. In comparison to established libraries
(Table 4) we have shown both the similarities and differences
against the toolset that we provide, and have provided mea-
sures that indicate a relatively low cognitive burden for our
toolset.

It is our hope that this toolset will encourage people to
adopt the ray cloud as the primary data structure for 3D map-
ping, and will aid in making ray cloud processing available
to a broad community. We also hope that these tools will
encourage the native support for ray clouds within existing
cloud visualisation software.

APPENDIX
PARAMETER COUNTS
As a record, the individual parameter counts from Table 4 are
given here in row order, with multiple functions remaining as
sums for convenience:

RayCloudTools: 3, 2, 4, 2, 2, 2, 5, 4, 3, 3, 0, 5, 3, 4, 2
CloudCompare: 10, 4, 0, 2, 2, 11, 9, 2+ 6, 3
LasTools: 20, 28, 37+ 71, 16+ 24, 62
Open3D: 14+ 3+ 6+ 8, 3, 1+ 1, 2+ 2, 5, 6, 3, 0
PCL: 8+13+4+4+7+3+0, 3+1+11, 5+2, 15, 9+

14+ 4+ 4, 4
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