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ABSTRACT In the Vehicle to Vehicle (V2V) communication based on Optical Camera Communication
(OCC), optical signals are transmitted using LED arrays and received employing cameras. In a complex
scene, how to accurately detect and recognize LEDs in real time remains a problem. To solve this problem,
this paper designs an end-to-end network based on You Only Look Once version 5 (YOLOv5) object
detection model, which can precisely detect the LED array position in real time and alleviate motion
blur simultaneously. Further, we propose an LED segmentation recognition method, which is beneficial
to more reliable LED status recognition. It allows more light sources to be used for communication,
which can effectively improve data rate in the vehicle OCC system. The effectiveness of our method
is demonstrated by theoretical analysis and experiments in real traffic scenes. Our code is available at
https://github.com/cq100/D2Net.

INDEX TERMS Optical camera communication (OCC), vehicle to vehicle (V2V), LED recognition, you
only look once version 5 (YOLOv5), image motion deblurring.

I. INTRODUCTION
In Intelligent Transport Systems (ITS), vehicle communi-
cation is introduced to reduce traffic accidents. Driving
information is transmitted among vehicles [1]. For example,
the front vehicle sends speed, lane changing information,
emergency braking signals, and safety warnings, then the
following vehicles receive these information in real time.
In recent years, the existing Radio Frequency (RF) has been
mature in wireless communication technology. But current
RF technology still has many problems, such as interference,
limited available bandwidth, etc [2]. However, Optical Cam-
era Communication (OCC) can well make up for the existing
gaps. The advantages of OCC are lower cost, broad spectrum,
no harmful effects to human health, and the reduction of
the non-Line-of-Sight (nLoS) system interference. Therefore,
OCC is suitable for the V2V communication field [3]. In the
OCC system, Light Emitting Diodes (LEDs) are used as
transmitters [4], which are common illuminating devices [5].
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Each LED can be individually modulated, which can signif-
icantly improve communication speed. Different from Free
Space Optical (FSO) communication, Visible Light Commu-
nication (VLC), and Light Fidelity technology (LiFi), OCC
utilizes image sensors as receivers [6]. Image sensors can not
only receive LED light intensity information, but also utilize
various color and space domain [7].

Despite the numerous benefits of the OCC system, there
are challenges in the development of V2V communication.
The first challenge is the noise from the sun, street light
sources, and other background lights in the images [8]. These
noises lead to more difficulties on the accurate extracting
the Region of Interest (RoI) in real traffic scenes. Recently,
the RoI signaling technique based on the OCC system has
been introduced into the PHY IV mode that is part of
IEEE 802.15.7-2018 (revision of IEEE 802.15.7-2011 stan-
dard [9]) for vehicle applications. In addition, image blur
always degrades the LED recognition accuracy [10], which
may be caused by vehicle motion. The second challenge
is the low data rate due to the bandwidth limitation of
the camera [11]. The third challenge is the long delay
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as most detection and recognition schemes require higher
computations [12].

In order to obtain excellent performance of the OCC sys-
tem, intensive researches have been carried out. In traditional
methods, LED detection relies on pixel intensity [13]. How-
ever, when the vehicle moves quickly, it is difficult to identify
the LED based on the pixel intensity due to the motion
blur inferring the adjacent LED pixels. In [14], the multiple
exposure overlay coding method was proposed to reduce blur
effects. Although it helped to obtain a high signal quality,
it used two cameras, which brought very high deployment
costs. In [10], when the images are blurry due to a high vehicle
speed, the scheme used pixel intensity, optical flow, and data
information from previous frames to detect the LED position.
But the algorithm cannot accurately recognize the LED status
since it did not alleviate motion blur. Moreover, a video
detection algorithm was applied to the vehicle OCC system
innovatively [15], which achieved a processing time of 69 ms
and lower extraction errors. The previous Cam-Shift algo-
rithm with the Kalman filter scheme had a shorter processing
time of 42 ms [16]. Selective Capture (SC) method was also
introduced for vehicle taillights to reduce the computational
burden [7]. It achieved a data rate of 6.912 kbps and a Bit
Error Rate (BER) of 10−5 at transmission distance of 1.25 m.
In recent years, deep learning has also provided some

methods to solve these problems faced by the OCC system.
However, few studies considered the accuracy, robustness,
data rate, and real-time ability of the OCC system at the
same time. In [17], the RoI was detected by using You Only
Look Once version 2 (YOLOv2) algorithm, which took the
accuracy and real-time performance into account. It provided
an acceptable detection accuracy and a high processing frame
rate. But the transmission distance of this LED recogni-
tion experiment was only 0.5-1 m. The previously proposed
Dimmable Spatial 8-Phase Shift Keying (DS8-PSK) decoder
adopted neural networks to recover data on the simulated
blur images [18]. In [19], the proposed scheme first intro-
duced the Convolutional Neural Networks (CNN) in the VLC
field, which presented more than 95% precision of Optical
Fringe Codes (OFC) classification. But it required that the
RGB-LED and the camera were parallel to each other. Fur-
thermore, the CNN was also used to distinguish logic 0 and
logic 1 [20]. It achieved a higher data rate of 1.2 kbit/s than
the previously proposed algorithm [21].

In this work, we put forward an LED detection and recog-
nition method based on deep learning, which can simul-
taneously consider the accuracy, robustness, data rate, and
real-time performance of the vehicle OCC system in real
traffic scenes. Our contributions in this paper are presented
as follows:
• We design a network based on YOLOv5 model, named

D2Net, which is an end-to-end network that can accu-
rately detect the LED array and achieve image motion
deblurring at the same time. The network not only
lays a foundation for the LED recognition, but also
enhances the robustness of vehicle OCC system.

• We propose an LED segmentation recognition method
that combines machine learning and traditional image
processing. The method can achieve multiple light
sources communication, which can improve data rate.

• We compare other state-of-the-art methods to probe
the effectiveness of our scheme. Related experi-
ments and network training parameters will also
be provided. Furthermore, our code is available at
https://github.com/cq100/D2Net.

The rest of this paper is arranged as follows: In Section II,
we present the proposed vehicle OCC system architec-
ture. In Section III, we illustrate the proposed D2Net.
In Section IV, we illustrate the proposed LED segmentation
recognition method. In Section V, we conduct experiments
and analyze the effectiveness of the proposedmethod. Finally,
in Section VI, we summarize the work of this paper.

II. PROPOSED VEHICLE OCC SYSTEM ARCHITECTURE
Fig. 1(a) shows the vehicle OCC system reference architec-
ture. In the transmitter, the driving information of the front
vehicle is modulated. Various data are transmitted through
different LED statuses. The LED array is powered by the
LED driver and controlled by theMicro Control Unit (MCU).
In the receiver, the camera installed in the following vehi-
cle can continuously capture images. By using detection
and recognition methods, the LED position and status are
determined in the images. Finally, we are able to obtain the
information sent by the front vehicle.

In real traffic scenes, the LED array may be affected by
motion blur. Thus, the key is image detection and deblur-
ring for LED status recognition precisely. Fig. 1(b) shows
the proposed LED detection and recognition architecture.
We initially detect the LED array position and alleviate
motion blur at the same time by using the proposed D2Net.
Then, we use the LED segmentation recognition method that
employs Features from Accelerated Segment Test (FAST)
corner detection algorithm [22] and the LED segmentation
method to identify the LED status through a CNN model.
Finally, the data are recovered.

On-Off Keying (OOK) is a common modulation scheme,
which is used for transmitter modulation in our experiment.
There are only two statuses of the LED: 1 represents On;
0 represents Off.

III. PROPOSED D2NET
How to detect LED array accurately and in real time from
a complex environment is still a challenge. YOLOv5 is a
suitable and efficient model for object detection because it
can be operated at a fast inference speed and guarantee the
detection accuracy simultaneously. There are several models
that can be selected to satisfy different requirements, such as
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, etc. So, it is
a good choice to use the YOLOv5 model to detect LED
arrays in real traffic scenes. However, the captured images
may be blurred when the vehicle moves, which greatly affects
the communication quality. Most earlier deblurring methods
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FIGURE 1. The vehicle OCC system. (a) Reference architecture (b) The proposed LED detection and
recognition architecture.

cannot well capture the complex blur variations, because
motion blur typically has unknown and spatially varying blur
kernels in real scenes. The DeblurGAN-v2 is a single image
motion deblurring network, which utilizes Generative Adver-
sarial Network (GAN) to boost deblurring effectiveness,
quality, and flexibility [23]. It can be applied to image deblur-
ring in real traffic scenes. However, when YOLOv5 model
and the DeblurGAN-v2 are cascaded, it leads to high com-
putations and long delay. Thus, inspired by the DeblurGAN-
v2, we propose a new end-to-end network D2Net based on
YOLOv5 model, which can achieve LED array detection and
image motion deblurring simultaneously.

A. THE D2NET ARCHITECTURE
The D2Net architecture based on YOLOv5l is shown in Fig. 2
(s represents the convolution stride, and s is 1 by default).
It consists of the following four parts: base network, detection
branch, deblurring branch, and discriminator. The base net-
work mainly employs the focus module, the Spatial Pyramid
Pooling (SPP) module [24], and the Cross Stage Partial con-
nections (CSP) module [25]. The focus module can reduce
spatial information loss when using downsampling whereas
the SPP module is to increase the receptive field. The CSP
module solves duplicate gradient problems in large-scale base
networks, so the parameters and Floating-point Operations
per second (FLOPs) can be reduced. The detection branch
uses the Path Aggregation Network (PANet) [26] to output
three feature maps of different shapes to predict the LED
array location in the captured images. These feature maps
enable our network to detect LED arrays of different sizes
at different transmission distances. The deblurring branch
uses the Convolutional Block Attention Module (CBAM)

attentionmechanism [27] andGAN technology. The attention
mechanism can focus on important features and suppress
unnecessary ones for image deblurring. The discriminator is
divided into a global discriminator and a local discriminator.
It provides a reasonable gradient descent direction for the
deblurring branch, which is conducive to removing possible
blur in the images.

B. LOSS FUNCTION
Our loss function is mainly composed of the following two
parts: detection loss and deblurring loss.

In the LED array detection task, we deploy the same class
loss Lclass and confidence loss Lconf as YOLOv5. The dif-
ference is localization loss Llocal that we use Distance Inter-
section over Union (DIoU) loss LDIoU [28], which converges
much faster in the training stage by minimizing the normal-
ized distance between the center points of the predicted box
B and the ground truth box Bgt . The calculation formulas are
presented as follows:

LY = Lclass + Lconf + Llocal (1)

LDIoU = 1− IoU +
ρ2
(
b, bgt

)
c2

(2)

where LY is the overall loss of the detection task, Intersection
over Union (IoU ) is the ratio of the intersection and union of
the two boxes, b and bgt are the center points of B and Bgt ,
ρ(·) is the Euclidean distance, and c is the diagonal length of
the smallest enclosing box containing the two boxes.

In the image deblurring task, we employ the loss func-
tion that is similar to the DeblurGAN-v2, which contains
generator (deblurring branch) loss LG and discriminator
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FIGURE 2. The D2Net architecture based on YOLOv5l.

loss LD as follows:

LG = 0.5 ∗ Lp + 0.005 ∗ Lx + 0.01 ∗ Ladv (3)

Lp = mean(MSE(x, z)) (4)

Lx = mean(MSE(x ′, z′)) (5)

Ladv = E
[
(D(x)− E(D(G(z)))+ 1)2

]
+

1
2

∗E[(D(G(z))− E(D(x))− 1)2
]

(6)

LD = E
[
(D(x)− E(D(G(z)))− 1)2

]
+

1
2

∗E[(D(G(z))− E(D(x))+ 1)2
]

(7)

whereMSE is mean-square-error loss, Lp is pixel-space loss,
x and z are the clean image and the D2Net output image,
Lx represents perceptual loss, x ′ and z′ denote the feature
vectors of x and z through a pre-training VGG16 network
(the first 15 layers), Ladv denotes adversarial loss, and G is
a generator. When the global adversarial loss is calculated,
D is the global discriminator; When the local adversarial loss
is calculated, D is the local discriminator.
In general, multitask end-to-end network is difficult to train

because the loss functions of different tasks have different
convergence speeds, which causes an unbalanced training
process. Thus, we employ the gradient normalization (Grad-
Norm) algorithm [29], which can automatically balance
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multitask training by adjusting the weights of different tasks.
The total loss function L(t) of the D2Net is calculated as
follows:

L(t) = ω1(t) ∗ LY + ω2(t) ∗ LG (8)

where ω1(t) and ω2(t) are the weights, which are updated by
calculating the gradient loss Lgrad (t;ωi(t)) as follows:

Lgrad (t;ωi(t))=
∑
i

∣∣∣Giw(t)−Etask [Giw(t)] ∗ [γi(t)]α∣∣∣1 (9)

where Giw(t) is the gradient norm, w is the subset of the full
network weights, Etask [Giw(t)] is the average gradient norm,
γi(t) is the relative inverse training rate for each task, which is
used to balance gradients, and α is a hyperparameter, which
can tune training rate.

IV. PROPOSED LED SEGMENTATION RECOGNITION
METHOD
In the vehicle OCC system, data rate is one of the key
indicators. The data rate is obtained by multiplying three
factors [11]: frame rate, the number of symbols per frame, and
the number of bits per symbol. Increasing any one of the three
factors will improve data rate. Some ways use a high frame
rate camera that is extremely expensive. Other schemes used
more complex modulation methods [30]. In fact, the use of
multiple light sources is the most economical way. However,
using a large number of LEDs for communication will greatly
increase the system complexity, and it is difficult to ensure
LED recognition accuracy. For example, a 3 × 3 LED array
was used in [31], which had an acceptable computation. If a
16× 16 LED array is used, it will result heavy computations.
The reason is that there are still 2256 combinations even with
simple OOK modulation method. Whether using traditional
image processing method or deep learning, it is difficult to
obtain reliable data in real time.

Therefore, we propose an LED segmentation recognition
method to reliably identify the LED status through a simple
CNN model. The overall structure of LED segmentation
recognition method is shown as Fig. 3. By using FAST cor-
ner detection algorithm, we obtain the precise LED array.
It is split into 256 array blocks to reduce the computational
burden. Then, we only need to utilize a simple CNN model
to identify two statuses of an array block, which utilizes the
generalization ability of neural networks to reduce the impact
of noise. Finally, we employ batch to recover all data of a LED
array at the same time.

FIGURE 3. The overall structure of LED segmentation recognition method.

A. FAST CORNER DETECTION
In order to further reliably identify the LED status in real time,
we adopt FAST corner detection algorithm to obtain more
precise LED array position. When the pixel value difference
between a pixel and three quarters of the pixels in the circular
neighborhood is greater than a predetermined threshold, this
pixel is considered as a candidate feature point. The advan-
tage of this algorithm is that it has a faster detection speed
and guarantees LED array detection accuracy.

In our experiment, the four corner lights of the LED array
keep On, which is conducive to corner detection. The process
of accurately detecting the LED array using FAST corner
detection algorithm is shown in Fig. 4. The predicted box of
the D2Net is expanded by 1.2 times (the confidence score in
the figure is 0.99.), which makes the LED array completely
contained. Then, the FAST algorithm is performed on the
expanded area to obtain the accurate LED array position.
If the LED array or the camera is tilted, LED recognition
accuracy will be seriously affected. So we use perspective
transformation [32] to rectify the LED array, because it can
project an arbitrary quadrilateral into a regular rectangle.

FIGURE 4. The process of accurately detecting the LED array using FAST
corner detection algorithm.

B. LED SEGMENTATION METHOD
Fig. 5 shows the segmentation array blocks for an LED array.
After comparing the LED array of an image with the known
real data from the transmitter, we label the categories of each
array block in order to train CNNmodel. It consists of several
convolutional layers and polling layers. Fig. 6 presents the
labeling results of array blocks. The idea of array block seg-
mentation can simplify a complex task into several subtasks,
which greatly improves LED recognition accuracy. The larger
number of LEDs, the greater the advantage of this LED
segmentation recognition method.

V. EXPERIMENT AND ANALYSIS
A. EXPERIMENT ENVIRONMENT
To verify the performance of our LED detection and recog-
nition method, the experiment dataset is collected in real
traffic scenes. We record several videos in the daytime and
nighttime. Then, we generate 6000 blurry and clean image
pairs by averaging consecutive short-exposure frames [33].
We obtain 30000 image pairs by using data augmentation.
These image pairs are divided into a training set consisting
of 20000 image pairs for the D2Net, a test set consisting
of 5000 image pairs for the D2Net, and a test set consisting of
5000 image pairs for overall system performance evaluation.
In the experiment, we employ the OOK modulation scheme
and a 32× 32 LED array where 4 LEDs send the same logic
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FIGURE 5. The segmentation array blocks for an LED array.

FIGURE 6. The labeling results of array blocks.

0/1. The training parameters related to the D2Net are shown
in Table. 1. Our network uses tensorflow framework, and the
training equipment is GPU Tesla P100. For reference, our
experimental parameters are shown in Table. 2.

B. EXPERIMENT ANALYSIS
To evaluate the D2Net performance quantitatively, we use
Average IoU , Precision (P), Recall rate (R), Average Pre-
cision (AP), Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM ), and Frames Per Second (FPS). The calcu-
lation formulas are given as follows:

IoU =
B ∩ Bgt
B ∪ Bgt

(10)

Average IoU =

∑N
i=1 IoUi
N

(11)

where N represents the total number of the objects (LED
arrays) in the images.

P =
TP

TP+ FP
(12)

R =
TP

TP+ FN
(13)

where TP is the number of the LED array correctly detected,
FP is the number of the non-LED array treated as the LED
array, and FN is the number of the LED array treated as the
non-LED array. The AP considers precision and recall rate,
which can be represented by the area under the P-R curve.

TABLE 1. The training parameters related to the D2Net.

The calculation formula is given as follows:

AP =
∫ 1

0
P(R)dR (14)

To evaluate the deblurring performance of the proposed
network, we employ PSNR and SSIM as follows:

PSNR = 10 ∗ lg

(
(2n − 1)2

MSE(x, z)

)
(15)

SSIM =
(2 ∗ µx ∗ µz + c1) ∗ (2 ∗ σxz + c2)(
µ2
x + µ

2
z + c1

) (
σ 2
x + σ

2
z + c2

) (16)

where n is the number of binary bits representing each pixel,
µx , µz are the average pixel values of the two images, σxz is
the pixel covariance of the two images, σ 2

x , σ
2
z are the pixel

variances of the two images, and c1, c2 are constants.
Table. 3 shows the performance of the D2Net and some

state-of-the-art methods on the model test set. Obviously,
the inference speed of YOLOv3-tiny is the fastest, but the
Average IoU and AP values are lowest. YOLOv5x has the
best detection accuracy, but the inference time is longer than
other detection models. The Average IoU and AP values of
YOLOv5l are similar to YOLOv4 [34], but the inference
speed is faster than YOLOv4. This result demonstrates that
YOLOv5l can balance speed and accuracy well. In addition,
the evaluation metrics of YOLOv5l outperform Single Shot
MultiBox Detector (SSD) [35] and YOLOv3 [36]. So we
choose YOLOv5l as the basis of the D2Net for detecting
LED array, which is reasonable. Compared with the above
models, the accuracy and inference speed of the D2Net are
acceptable, and it can improve the image quality. Although
the DeblurGAN-v2 has better PSNR and SSIM , it has the
longer inference time than the D2Net.

We obtain the following experimental results by using
the D2Net: Fig. 7(a) and Fig. 7(b) are the test results in the
daytime; Fig. 7(c) and Fig. 7(d) are the test results in the
nighttime. Obviously, the D2Net can effectively detect LED
array and reduce blur effects. Meanwhile, the original images
are still clean through the D2Net.

To evaluate the system performance, we design compar-
ative experiments. Table. 4 shows the average BER perfor-
mance relative to different LED detection and recognition
methods on the system test set. Obviously, our LED seg-
mentation recognition method has better robustness than the
average and the center gray thresholds. When the images are
clean, the BER of our scheme is slightly higher than the com-
bination of YOLOv5x and LED segmentation recognition

80902 VOLUME 9, 2021



X. Sun et al.: LED Detection and Recognition Method

TABLE 2. Experimental parameters.

TABLE 3. The performance of the D2Net and some state-of-the-art methods on the model test set.

FIGURE 7. Test results using the D2Net. (a) (b) in the daytime. (c) (d) in the nighttime.

method. When the images are blurred, our BER performance
is greater than other approaches. At the same time, it also has
a high processing frame rate of 36 FPS to ensure real-time
communication.

The BER performance of our scheme at different commu-
nication distances is presented in Fig. 8. When the distance
varies from 1 to 3 m, the BER is 0, indicating that our scheme

performs well on these clean images. The BER increases
slightly when the distance is 3 to 4 m, which always meets
the Forward Error Correction (FEC) requirements (BER <
3.8×10−3). The transmission distance is longer than 0.5-1 m
in [17]. We can achieve error free transmission within 2 m on
the blur images. Note that the BER increases severely when
the distance exceeds 2 m. The reason is that our LED array
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TABLE 4. The average BER performance relative to different LED detection and recognition methods on the system test set.

FIGURE 8. The BER performance of our scheme at different
communication distances.

area becomes smaller when the distance gets longer, which
makes the deblurring effect less obvious. Besides, the pro-
posed scheme can be operated at data rate of 9.216 kbit/s,
which is higher than 6.912 kbps in [7].

VI. CONCLUSION
This paper proposes an LED detection and recognition
method based on deep learning to determine the position and
status of LED in the vehicle OCC system. We design a new
network D2Net based on YOLOv5 object detection model,
which is an end-to-end network that can precisely detect LED
arrays and reduce motion blur at the same time. Moreover,
we propose an LED segmentation recognition method, which
can be beneficial when multiple light sources are used. The
proposed scheme always meets the FEC requirements at the
transmission distance of 2 m on the blur images, and achieves
a processing frame rate of 36 FPS. Our scheme provides an
approach for deep learning applications in the future vehicle
OCC system.
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