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ABSTRACT Behavior modeling grounded in the Discrete-Event System Specification (DEVS) and Uni-
fied Modeling Language (UML) activity specifications is crucial for simulating dynamical systems. The
Model-Driven Architecture (MDA) design approach provides flexible yet rigorous layered metamodels
for the UML activity diagrams. Our approach for behavior modeling is focused on the action and control
concepts in the UML activity metamodels and realizing them as artifacts according to the DEVS formalism.
The syntax and semantics for the artifacts conform to the parallel DEVS model specification and execution
protocol. We use the system-theoretic state, component, and hierarchy concepts as the foundation for
formulating the DEVS Activity models and supported with a prototype graphical tool developed in Sirius.
This research also proposes the Parallel DEVS as a formal approach for examining the semantics of
the UML Activities. We develop, simulate, and analyze a set of prototypical multi-processor architecture
systems demonstrating different synchronization and selection schemes using the DEVS-Suite and MS4Me
simulators.

INDEX TERMS Activity diagrams, behavior modeling, DEVS, parallelism, model-based design, modeling
& simulation, software modeling.

I. INTRODUCTION
Dealing with different parts of a system model can be prob-
lematic, particularly when the parts are scattered within
and across different abstraction hierarchies. At some point,
the abstraction layers of a hierarchy, each possibly hav-
ing multiple levels within, have to be bounded with some
constraints to make them useful and prevent issues such
as circularity relationships. For example, the model-driven
architecture (MDA) is defined as a four-layer hierarchy
from M0 through M3, where the former represents the
most concrete, and the latter represents the most abstract.
Although useful, determining the boundaries and relation-
ships among the layers in a clear-cut manner, particularly
from the standpoint of executable models and simulation,
is difficult. Navigating through many possible relationships
across and between the abstraction layers using different
kinds of extension and instantiation schemes poses further
challenges for the simulation models.
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The problem of partitioning models into components and
relationships becomes evident for structure as well as behav-
ior. For the structure, complications may arise with a signifi-
cant increase of multiple message types and communications
requiring computation synchronization and concurrency.
For the behavior, dissecting the internals of communicat-
ing components of a system can also pose difficulties in
developing executions for the abstraction. At some point,
nonetheless, behavioral specifications at multiple levels of
abstraction must take place in controlling and conduct-
ing some lower-level computing tasks. The delegation of
lower-level tasks becomes challenging due to the central
role abstraction hierarchies play in managing complexity and
scale across complementary model specifications. Having
a well-defined formal model specification for control flow
nodes helps in providing a concise basis to understand and
analyze their behaviors.

Considering the ongoing efforts in further deepening
the hierarchy for component-based models, we propose
examining and using the action and control elements at
the meta-layer activities, mainly focused on the M1 and
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M2 layers. The system-theoretic state, component, and hier-
archy concepts are used in defining the action and control
elements essential for specifying model behavior. One of our
goals is to understand the different roles played by different
layers encompassing DEVS andUML, especially frommulti-
ple meta-layers viewpoints. The specifications of such layers
are distinct and explicit for simulation modeling purposes.

In discrete systems [1]–[3], a variety of needs institute the
time scale upon which the system representation or approxi-
mation can execute. Real systems such as smart manufactur-
ing or transportation are known to be large in both scale and
complexity. They have numerous components with various
types of connections among them. Components do not have
to resemble each other except at high levels of abstraction that
are often rendered difficult to concretize in the computational
models. Given these types of systems, some models, such as
synchronous reactive components, provide strong constraints
for timing, state change, and composition. The specification
of synchronization nodes in DEVS allows for the concrete
realizations to take place in a disciplined manner.

Discrete models of discrete systems can have asyn-
chronous behaviors. For a complex discrete system, simpler
models with single-input and single-output can be placed
within models that result in different input and output multi-
plicities and behaviors. Observing the degrees of detail with
sufficient confidence is challenging yet essential to develop,
simulate, and analyze models. Interesting results can disperse
via simulation studies; however, sophisticated observations
can be accessible and clearly understood only through rigor-
ous experiments. Useful analyses such as throughput, as we
will demonstrate in section VII, might be achievable through
making such models subject to experimental designs. Still,
such analyses with a keen sensitivity to temporal aspects
can be intractable or otherwise impractical to carry out for
arbitrary simulations.

The contribution of this paper is the grounding of our
previous works on a behavioral modeling framework sup-
ported with theMDAmetamodeling, UML activity diagrams,
and parallel DEVS formalism. This framework lays out the
basis for an activity-based modeling approach focusing on
action and control nodes in a flow-based manner for simu-
lation modeling and, in particular, for parallel DEVS models.
We examine activity specification as a standalone approach
across different modeling meta-layers to develop useful sim-
ulatable models. We first discuss the MDA architecture and
DEVS modeling frameworks. Then, we present the DEVS
specification for activity modeling. In the remaining sec-
tions, we detail the semantics of the modeling approach
in conjunction with demonstrations of certain aspects of
multi-processing architectures.

II. SIMULATION MODELING ARCHITECTURES AND
FRAMEWORKS
We begin with discussions about related works and back-
ground regarding the development of architectures and frame-
works to support discrete event simulation modeling. First,

we briefly describe MDA and then discuss some of its con-
cepts, particularly when applied to modeling and simulation.
Second, we highlight a few existing studies and present
the researchers’ viewpoints regarding what accounts for the
ongoing efforts in dealing with models that can be developed
using different abstraction means.

A. MODELING LAYERS
In an earlier study [4], we proposed a metamodel for the
DEVS atomic model spanning the MDA concepts and tech-
niques. We extend the core Eclipse Modeling Framework
(EMF) [5] model with primitive notions for behavioral spec-
ifications to make behavioral modeling possible along with
structural specifications. Although useful, there are some
inherent limitations of using such means for behavioral
modeling.

The MDA layers M3, M2, M1, and M0 lay the ground-
work and guidelines for incrementally developing models
of component-based systems. The guidelines are useful if
followed carefully. However, the nature of extension tech-
niques among metamodels may result in unintended and
unnecessary complexity, and overhead [6]. Concepts at a
meta-layer necessitate further efforts to substantiate them
at the next lower meta-layer, often demanding a significant
effort. The key idea is to create a classifier and multiple
extensions and instances thereof across all the MDA layers.
The directions of extension and instances are thought to be
orthogonal. However, the Object Management Group (OMG)
has made more elaborate standards by which distinctions
between cross meta-layers and within a single meta-layer are
drawn. Interpretation and instantiation ascribe the definitions
in meta-layers.

In some cases, extensions reside horizontally within the
same meta-layer, and instances reside vertically in the next
lower layer. The connection is reversed in other cases. In our
work, we observe both standards and deal with such compli-
cations by relying on the theory of modeling and simulation,
modular, hierarchical DEVS in particular, for the demonstra-
tion from a system-theoretic standpoint.

It is essential to establish a more rigorous means of facil-
itating the creation of models at a concrete layer. It is also
significant and yet far more challenging to realize, with math-
ematical rigor, connections between models at the concrete
layer and their counterpart abstractions at some high layer.
The difficulties symmetrically increase with the layers that
are higher in the hierarchy. We examine the concepts and
present works that attempted to map concepts from upper
layers downward. The results are promising for relatively
simple systems but not as much for complex systems.We will
discuss this further in the following section.

B. RELATED WORK
Leaping models and abstractions of models to some coun-
terpart manifestation at a concrete layer is increasingly rec-
ognized as a challenging problem. Some researchers have
focused primarily on efforts to realize implementations of
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FIGURE 1. A metamodel at the M2 layer for modeling activities with associations to the considered multi-processing regimes.

models based on model-driven and model-based system
engineering (MBSE) known as MBSE/M&S in the sequel
[7]. In statecharts [8], models are perceived to construct
the system under development. In some others, the sys-
tem viewpoint is absent, and yet the effort is focused on
ascribing semantics for the intended modeling language [9].
While many others make a more deliberate attempt toward
employment of model-driven frameworks to integrate simu-
lation as a means for precisely observing the system under
study [10]–[13].

Efforts have been made to utilize MDA to provide model
transformation frameworks. A general objective in certain
studies [10], [11] was to promote model reuse across different
platforms. It is quite often the case that specific capabilities
are offered in a target platform but do not apply in others,
which led to the notion of platform-independent solutions.
The problem may also become more difficult for a num-
ber of considerations. Different abstractions of time pose
key challenges across execution environments. Transforming
models with time agnostic or implicit timing to those that
require explicit timing is an example. Timing is a significant
issue in transforming UML and DEVS models and their
modeling environments. MDA alone falls short of providing
a concrete solution for behavioral specification, although it
has been essential in guiding certain advances in different
DEVS-based modeling frameworks (e.g., [10], [11], [14]).

On the one hand, efforts and standards have pushed toward
enabling the creation of a platform-independent model
[15], [16]. On the other hand, the feasibility of executing these
models with techniques such as code generation is subject to
fundamental limitations with knowledge gaps and arbitrary
semantics [17]–[19]. Simulations of complex systems are of
particular importance when it comes to realizing behavioral
specifications. As such, this paper offers a step toward achiev-
ing this goal.

In previous works [19]–[21], we laid a groundwork for
the modeling and simulation of activities using the parallel
DEVS formalismwith its abstract simulator. Some exemplary

models demonstrate a basic mapping from activity action
to the atomic DEVS model specification [20]. The mapping
attempts to utilize a rich simulation framework in addition to
debugging [22] or execution with a fixed time step. We dis-
cussed the approach and the mapping in more detail about
the I/O function in the system specification hierarchy [21].
More recently [23], we extended the work to the coupled
component with a focus on the model hierarchy to facilitate
the construction of the component-based models.

III. ARCHITECTURES FOR MULTI-LAYER MODELING
ACTIVITIES
We propose taking two different views in creating multiple
layers for modeling activities. The first is to consider MDA
layers and place every model and metamodel within them.
The second is to account for a free form layering system and
place activity models and metamodels within their respective
levels according to a given domain-specific model. Next,
we discuss these views and provide a brief comparison with
the advantages and disadvantages for each.

A. CONFORMANCE TO THE MDA LAYERS
In this perspective, we confine all models and metamodels
to MDA. The Meta-Object Facility (MOF) at M3 and the
activity metamodel with our proposed notions at M2 with
horizontal extension techniques are used to define the abstract
concepts for the considered multi-processing regimes (see
Figure 1). Then, the instantiations, or extensions at the lower
layer according to the other perspective, are made at M1 such
as the ones shown in Figure 5 and 7, which we will discuss
with more details in section V and VI.

B. CONFORMANCE TO THE DEVS FORMALISM
In this perspective, we propose lifting conformance to the
MDA and instead use domain-specific knowledge to define
activities in layers forming a well-formed hierarchical struc-
ture. This view offers a wide range of possibilities while
benefiting from layered specifications in general without
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FIGURE 2. The multi-level modeling activities.

having, at least initially, to comply with the MDA layers. The
MDA architectural benefits can be readily undermined when
many extensions, whether vertically and/or horizontally, are
needed. Furthermore, arriving at an early simulation is impor-
tant from an iterative and incremental model development
standpoint. This need can be subjected to a significant delay
when conformance to the MDA standard is to be satisfied
first. Such a delay can adversely impact the development of
simulation studies invaluable for gaining early insights into
requirements. Compliance with the four-layer architecture
can take place at a later stage while benefiting from the DEVS
formalism. The model layers account for basic composition
and inheritance relationships while benefiting from MDA
guidelines. The DEVS abstraction layers can be transformed
into those of the MDA. We proposed grounding such archi-
tecture on the hierarchical and modular DEVS in previous
work [23]. We note that the activity diagrams in Figure 2
have been devised using our tool that we have developed to
visually create and then generate code for the open-source,
free DEVS-Suite and the proprietary, commercial MS4 Me
simulators.

To create a richer set of models, we propose using both
architectures simultaneously as well as distinctly to benefit
from the hierarchical elements defined in both MDA and
DEVS. We will demonstrate methodically with model exam-
ples and simulations. Using both architectures may open up
a wide range of design choices by which various alternative
models can be enriched and explored to benefit the modeling
process with some specific measures or at large. We will
use them as a ground for the models created throughout the
paper.

IV. DEVS SPECIFICATIONS FOR THE ACTION AND
CONTROL NODES
Previous studies [19], [21] have examined different semantics
of activities and created a set of specifications that correspond
to various elements in the UML activity metamodel. We for-
mulate the specifications primarily for two types of activity
elements known as action nodes and control nodes.

In a nutshell, every activity is essentially a graph that
consists of nodes and edges. Edges are referred to as flows,
while the nodes can be an object, control, or action. Control
nodes include join, fork, merge, and decision. The fork node
is the one that synchronizes the production of outputs through
its outgoing flows. Similarly, join synchronizes the flows but
regarding its inputs where it expects an input through each
incoming flow. Because they are symmetric, we will later
refer to fork and join together as the SYNC specification
(Listing 1). In the same vein, the merge and decision nodes
are used to select one flow for proceeding. In the former, it is
incoming, and in the latter, it is outgoing. We will refer to
them jointly in the SELECT specification (Listing 2).

Action nodes are the most fundamental unit of behavior in
the Unified Modeling Language (UML) 2.5 metamodel [16].
They are defined as an abstract node in the metamodel and
are refined in the foundational subset of the executable UML
Models (fUML) [24]. Sets of specific actions are sub-types
of the abstract action. For example, one category suggests a
collection of actions to be reading actions, and therefore, their
specifications are partially defined in the UML specification.
To provide an implementation for such descriptions, the stan-
dard provides a mapping to the Java programming language
through interpretations. The capability of running fUML
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models is delivered through model execution environments
such as Moka within Papyrus [25]. The modeling capability
is in Papyrus. In ourwork, we focus on providing an execution
capability by exploiting a DEVS-compliant simulator such as
the DEVS-Suite simulator [26]. We argue that the inherent
account of time (i.e., as a standalone part of an executable
model) is necessary, with varying degree, to navigate through
the semantics of various activity constructs [19].

Control nodes in activities are also essential for guiding
the flow. Their roles vary; however, we mainly categorize
them into two major types. The first type consists of the fork
and join nodes. The second type consists of the decision and
merge nodes. Similarly, with what we just mentioned earlier,
we capture the specification of the first type in the SYNC
model and the second one in the SELECT model. These two
major types mainly differ from each other in the synchroniza-
tion of their incoming and outgoing flows. In the former type,
the flows are synchronized, but that is not necessary for the
latter. The specifications of different nodes are discussed in
previous studies by [19]–[21].

Next, we define a formalized mathematical specification
for each type according to the parallel DEVS formalism.
Listing 1 shows a formal specification for the first type. The
syntax and semantics of this specification, as with the second
type, strictly conform to the parallel atomic DEVS model
abstraction.

LISTING 1. SYNC atomic DEVS model specification.

In the case of join, the node expects the arrival of input via
all incoming flows before dispatching output. Therefore, this
is represented in the SYNC specification by having multiple
input ports. The state is used to distinguish incoming inputs
arriving onmultiple ports from one another. The distinction is
carried out via (p, c) ∈ C . As soon as all expected inputs have
arrived, the output is dispatched with a zero time advance
assuming no delay is expected to take place for producing and
dispatching the output. The fork behaves similarly, except that
multiple outputs follow for a given input.

The formal specification corresponding the second type of
control node (for merge and decision) is detailed in Listing 2.

LISTING 2. SELECT atomic DEVS model specification.

The above specification is generalized for the decision and
merge nodes. We note that elaboration is required to account
for specific behavior types such as theDEVSMarkovmodels.
The structural part of this specification (input, output, and
state constructs) is the same for the SYNC model. The behav-
ioral specification represents the dynamics of the SELECT
model. The SYNC and SELECT models have the same time
advance function specification.

In previous work [20], we discussed in detail a discipline
for a network switch example. The selection specification
describes the decision node where the flow is directed in
such a network based on a polarity condition. The condi-
tion is maintained and updated at each input arrival time.
The SELECT specification resembles multiple aspects of the
example in the previous work. We will discuss this specifica-
tion with a slightly more concrete example in the following
sections.

A. MAPPING THE UML ACTIVITY CONTROL, OBJECT, AND
FLOW TO THE DEVS MODEL, PORT, AND COUPLING
We note that according to the activity metamodel in the UML,
the notion of a pin can be defined only for the executable
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activity node. The pin can be an input, an output, or a value
pin. Other types of activity nodes (e.g., control node) cannot
be definedwith pins, and therefore, the handling of I/O is tacit
or left undefined. In the DEVS formalism, an atomic model
can be equippedwith a finite but unrestricted number of ports.
Whether it is input or output, each port can be arbitrarily
attached to one or more internal or external coupling. Thus,
we create two ports for each channel (i.e., coupling), one as an
output and the other as an input, where the coupling is added
to link the two ports. A channel, with its input and output
ports, corresponds to a flow in the activity diagram. It serves
as a means to transfer I/O through different models, whether
they correspond to actions or control nodes. By assigning a
distinct port to each coupling, we eliminate the possibility of
duplicating I/O in the DEVS network and therefore needing
some elaborate mechanism for handling many ports per cou-
pling. Each I/O or some part thereof gets transferred only to
the intended element.

From the UML vantage point, flow is classified by control
and object flow types, each having its syntax and semantics.
A closer examination of the flow types for the fUML model
reveals the notion of locus to facilitate execution by carrying
out (i.e., transmitting) information through activity nodes dur-
ing the execution life cycle. Control flow is defined to dictate
order, while object flow is defined to also dictate order but to
do so while carrying data between different nodes. Control
nodes do not distinguish between flow types, nor do they
require pins to link with object flows. The pins are designated
for carrying whichever kind of flow they are connected with.
They pass any received object along to its designated nodes
without any manipulation. An action can have, at most, one
input pin and, at most, one output pin. An action node’s input
and output pins can be linked to object flows; other flows for
the action node can be of a control type. Action can receive
and produce as many object and control flows as needed, but
a finite number of flows can link to action, whether incom-
ing or outgoing. Control nodes cannot connect with pins,
but they can relate with as many flows as needed, whether
object or control. In our proposed approach, we ignore this
classification, and every flow is defined as coupling. That is,
we make no distinction between object and control flows.
We account for the syntax mentioned above and semantics
through the definitions of the port of atomic/coupled DEVS
models. The locus is accounted for in both the specification
as well as the simulation protocol while maintaining the
separation between the model and the simulator. In addition,
the arbitrary handling of I/O is due to the DEVS abstract
execution protocol, which is domain agnostic.

The following subsections describe the mapping for three
major activity components to their DEVS counterparts. First,
we describe the mapping from fork/join activity nodes to
SYNC atomic model. Second, we describe the mapping from
decision/merge activity nodes to SELECT atomic model.
Then, the activity as a whole is mapped to a coupled model
in which all the corresponding atomic models are contained
in it.

1) SYNC ACTIVITY MODEL
In this atomic model (Listing 1), one input port is defined as
corresponding to each incoming flow. An output port is also
designated for each outgoing flow. For example, if the join
node has two incoming flows and one outgoing flow, then the
correspondent atomic model would have two input ports and
one output port. Then, a coupling is attached to each port.
Therefore, the SYNC atomic model initializes in a passive
state. As soon as it receives input through one of its input
ports, it transitions to a waiting state until other incoming
inputs arrive from different ports, and the output does not
dispatch until all required inputs arrive.When an input arrives
through each input port, then the model transitions to a differ-
ent state, after which it combines all inputs and prepares the
resulting outputs. The combining procedure is absent from
the metamodel of activities (i.e., the specifics of a procedure
are to reside in a concrete model according to some given
application domain while having a default procedure in place
for the initial simulation). The output then dispatches through
all output ports, and therefore, their distinctive couplings are
used for delivery to their destinations.

The SYNC model describes the correspondence to both the
join and the fork nodes, and thus, it accounts for the syntax
and semantics of both nodes. The join node can have multiple
incoming flows and a single outgoing flow, while the fork
node can have single incoming flows and multiple outgoing
flows. The behavioral semantics of both nodes are captured
in the specification of δext , δint , δcon, and λ functions. For
structural semantics, the model has a list of queues, each cor-
responding to an input port for holding inputs while waiting
for other inputs to arrive through other input ports. Once there
is an element in each queue, the model moves into a transitory
state to dispatch the output (Figure 3). We also define a
mechanism to check the correspondence among these inputs.

The role of the ports in the SYNC atomic model captures
the syntax of the join node. The ini input ports and the
outi output port correspond to incoming and outgoing flows
for the join node (see Figure 4 (c) and (d)). The behavior
specification for the SYNC model (see Listing 1) shows the
importance of providing structural and behavioral semantics
for flows into and out of the UML activity node, and the
inclusion of the ports for the SYNC model enhances coupling
it to action nodes. The coupling with ports is more expressive
as comparedwith flows that abstractly connect activity nodes.
The same observation applies to the SELECT model.

2) SELECT ACTIVITY MODEL
Similar to the SYNC model, the SELECT model (see List-
ing 2) has one input port for each incoming flow and
one output port for each outgoing flow. However, based
on the semantics of the decision and merge activity nodes,
the SELECT model transitions to an active state as soon as
it gets input through one of its input ports. Then, based on
specific or probabilistic conditions, it decides which port the
output is dispatched from. After determination, the output
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FIGURE 3. Illustrating the inner of the external transition function for a
waiting state in the model of a join node shown at the top.

gets dispatched only through that particular output port. In the
case of a merge, the output is always dispatched through
the same output port since the model has only one. In other
words, the SELECT model with multiple input ports and one
output port corresponds to a merge node. Moreover, with a
single input port and multiple output ports, it corresponds to
a decision node. It also corresponds to both if it has multiple
inputs and multiple output ports. Figure 4 illustrates basic
mapping from activities to DEVS.

The merge and decision nodes are both control nodes, and
they are symmetric in terms of their incoming and outgoing
flows. The merge node receives multiple incoming flows and
produces a single outgoing flow, while the decision node
receives a single incoming flow and produces multiple out-
going flows. From a semantic point of view, they receive or
produce flows that their guarding conditions evaluate as true.
Only a single flow is selected for a particular I/O. Similar
to the case in the SYNC model, the behavioral semantics
of both the merge and decision nodes are captured in the
SELECT model in the specifications of δext , δint , δcon, and λ
functions. A list of Boolean values is attached to correspond
to the flows for the evaluation. Also, a queue is defined for
the case of holding elements when receiving inputs while in
a busy state. Once an element is received, a transitory state is
instantaneously entered before dispatching output.

3) COUPLED ACTIVITY MODEL
In the DEVS formalism, each coupling is attached to the two
ports defined at its ends. All couplings are uni-directional
and there can be no self couplings. For internal coupling,

the beginning of the coupling assigns to an output port, and
the end assigns to an input port. It is, however, permissible
for a port to be attached to multiple couplings. For example,
a model A with one output port out can be attached to two
couplings c1 and c2 where c1 links the output port out in A to
the input port in in model B, and c2 links the output port out
in A to input port in in model C . In such a mechanism, any
output dispatched frommodel Awill be duplicated and simul-
taneously sent out to both models B and C . This discipline
may appear to be suitable for the SYNC specification and the
fork node in particular. It allows for dividing or combining
mechanisms in model A. Conversely, such a mechanism,
once needed, ought to also be part of the receiving B and C
models. Such a scenario is possible in this example, but it
should not be imposed. Therefore, we propose dedicating a
single output port for each coupling to allow for combining
or dividing mechanisms to be defined in any one of models
A, B, or C or any combinations thereof (see Figure 4). Hence,
such mechanisms are left undefined in both DEVS and UML.
They are both abstract in terms of requiring mechanisms
to handle output getting dispatched through outgoing ports
or pins (single or multiple) with multiple links attached to
them (couplings or flows). In the parallel DEVS formalism,
the receipt of multiple inputs through the same input port
is possible. However, they operate in an arbitrary order if
they arrive at the same time instant. In the UML, defining
an input pin with multiple incoming flows imposes join-like
semantics dictating that execution should wait for inputs from
all incoming flows before proceeding [25].

In the following sections, we will examine the use of each
of the SYNC and SELECT specifications in modeling the
relevant activity control flows. In section V, we focus on the
SYNC model. In section VI, we focus on the SELECT model.
While in section VI-B, we discuss the use of both in the same
flow.

V. EXPLOITING PARALLELISM
In the proposed activity specification, the parallel execution
is employed based on the parallel, modular, and hierarchical
DEVS formalism [27]. The implementation of the simula-
tion algorithm determines whether to conduct the simulation
procedure in a parallel or sequential manner while adhering
to the strict principles offered in the formalism. The simu-
lation is not necessarily executed in parallel, although we
account for parallelism from the modeling standpoint, such
as in the activity-based model. Parallel discrete event simula-
tion (PDES) is divided into two categories [28]. First, conser-
vative approaches are developed based on strictly preventing
causality violations. The second category is optimistic, where
the simulation allows violation of causality constraints while
employing mechanisms to detect and resolve them when they
happen. The Parallel DEVS simulator [2] exploits parallelism
based on strict adherence to causality constraint. Events in
some models can cause or otherwise influence events in
other components. Due to modularity, the components only
communicate events through input/output couplings. In each
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FIGURE 4. Illustration of the mapping of different activity nodes with accounts to multiple ports and couplings.

simulation cycle, all imminent components execute in
parallel. Once all output events have taken place, all the
corresponding influences will execute in parallel for the sub-
sequent processing of input events (received output events).
The simulation protocol maintains the variables for the time
of the last event and the time of the next event along with
output message bags to exchange among components through
flat and hierarchical couplings.

A. PARALLELISM SEMANTICS
The use of activities stands to serve as a basis for describ-
ing different patterns that include parallelism semantics.
Encountering such situations is an essential part of develop-
ing activities, and therefore, should be examined in a simu-
lation environment. In this section, an example (divide and
conquer multiple processor archetype) is selected to demon-
strate the use of the first type for control activity nodes (i.e.,
fork and join nodes), which demonstrate some aspects of
parallelism semantics because they allow for parallel flows
to proceed within an activity. They are both shaped with an
opaque rectangle (see Figure 5). And to a limited degree, they
also resemble the semantics of the transition concept in Petri
nets [29]. The fork node is used to split an incoming flow into
multiple concurrent outgoing flows. The offering of the flow
can be arbitrarily accepted by the receiving nodes. The join
node, on the other hand, receivesmultiple incoming flows and
produces one after synchronizing them. The concurrent flows
in a1 and a2 are two independent components. However, they
synchronize at two junctions, at the flows of events into and
out of the fork and join components.
Due to the modularity in the DEVS formalism, the repre-

sentative components for semantics mapping are definedwith
input and output ports. An atomic model component gener-
ally has multiple input and output ports. The simultaneous
arrival of a bag of inputs may occur through the same or
different ports. In the case of having a coupling between one
output port of a model and multiple input ports belonging to
another model, the output is duplicated and sent to each of the

FIGURE 5. Activity-based modeling of the divide and conquer
architecture.

input ports. Although the DEVS formalism does not have a
built-in mechanism to prevent the duplication of events, it can
be accounted for in the model.

On the one hand, the fork node may dedicate an output
port for each outgoing flow. On the other hand, one output
port can correspond to all outgoing flows. In the former,
distinct outputs are sent through different couplings. In the
latter, an output is carried through all correspondent cou-
plings, which can be replaced with some other logic in the
model. The expressiveness, complexity, and scale of these
approaches can be further examined.

Communicating I/O through coupling is instantaneous.
Therefore, inputs arrive at the corresponding models in par-
allel (i.e., at the same time instance). Then, the model has the
responsibility to process, hold, or lose any input it receives.
Multiple inputs can be simultaneously obtained by the same
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model. The processing can take place if the model is in a
‘‘passive’’ state (i.e., a state in which the model can accept
inputs). The holding occurs if the model has some queuing
mechanism. The inputs that cannot be processed or otherwise
stored are lost.

Another essential aspect of parallelism is the handling
of event collisions. The input may arrive at the same time
instant when output is scheduled to dispatch. The confluence
function δcon can handle this collision between input and out-
put. The order was imposed in the classic DEVS formalism
using a select function where output dispatching precedes the
processing of inputs. Moreover, only one atomic model of a
coupled model must execute at once; however, in the paral-
lel DEVS formalism [27], this restriction is relaxed. Every
atomic model can specify the simultaneous input and output
ordering and execution independently of any other atomic
model because the constituent atomic models accommodate
the simultaneity of the input and output events. They also
account for the uni-directional external input and the internal
and external output couplings.

B. A SIMPLE EXPERIMENT FOR AN ARCHETYPE DIVIDE
AND CONQUER ARCHITECTURE IN THE DEVS-SUITE
SIMULATOR
We devise an experiment to demonstrate some of the aspects
discussed earlier with the DEVS-Suite simulator is used for
developing and executing the experiment. The DEVS-Suite
simulator is equipped with capabilities such as animations
and linear and superdense time trajectory run-time tracking,
and these capabilities are used to observe and monitor key
aspects of the behavior of the archetype architecture. First,
the divide and conquer architecture is coupled with an exper-
imental frame (EF)model [30]. The EF has a simple generator
to stimulate the archetype model by providing the inputs.
For demonstration purposes, this simple experiment gener-
ates outputs every five-time units. The transducer is used to
analyze the model’s properties, such as turnaround time and
throughput for processed jobs. The generator communicates
with the divide and conquer coupled model (Figure 5b) via
an external input coupling, and the transmission of a job
through each coupling is instantaneous. It is easy to assign
a delay to job transmission by, for example, introducing a
delay component between the sender and receiver of the job.
Alternatively, a delay can be added to the time assigned for
processing the job. Once the job arrives at the fork node,
the model sets its sigma to zero time advance. Therefore,
it only transitions to a transitory state which instantaneously
sends out the job. Essentially, a delay period can be set, as we
will discuss further when making observations about timing.
Nonetheless, we note that coupling in DEVS is instantaneous.
The account for such delay can only be made through the
notion of elapsed time or in the time advance function, which
is defined within the atomic model.

A dedicated port corresponds to each coupling. How-
ever, the output is dispatched simultaneously by the output
function in the fork component. The components a1 and a2

FIGURE 6. The trajectories for the state variable phase and the input in
and output out ports with events for the a2 component.

(i.e., processors) receive the inputs simultaneously. If a pro-
cessor is in the phase passive, it transitions to the phase busy.
To observe a certain behavior, a1 is set to process inputs five
times faster than a2. Each processor has a FIFO queue to
hold jobs, and the stored jobs are the ones received during
phase busy. The join component is specified to receive both
inputs after being processed by the a1 and a2 components.
When input arrives on a port, it waits for an input from the
other input port. The received inputs are combined, and then
there is the possibility to add a delay before dispatching.
Note that the state trajectory for the phase of a2 (Figure 6)
remains unchanged in phase busy because it processes jobs
slower than a1. The time needed for processing is greater
than or equal to the job arrival rate. Therefore, a new job
arrives before or immediately after finishing the current one.
In this configuration, we set the processing time to be equal to
the job arrival rate to illustrate superdense time trajectories,
as shown in Figure 6 right beneath the phase time trajectory.
In such a case, a phase repositioning to passive happens at the
same time instant of receiving subsequent jobs and therefore,
it transitions back to busy. Note that this repositioning does
not appear in the main trajectory because it is instantaneous.
The property of a2 remaining in phase busy can be formulated
and checked in tools with formal verification capabilities such
as UPPAAL. The archetype can also be specified using con-
strained DEVS [31], and then verified using the DEVS-Suite.
It indicates that once a1 enters the phase busy, it remains in
this phase forever, which is consistent with the state trajectory
shown in Figure 6.

VI. FLOW SELECTION SCHEMES
In a multi-processor pipeline architecture, a job may travel
throughmultiple stages before being completed. At each step,
the model may have to decide whether the job has been
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FIGURE 7. Different abstractions of the pipeline architecture with
possibly different temporal attribution in their simulations.

completed or if additional processing is needed. A decision
node in Figure 7 depicts this choice. Such a node only rep-
resents an abstract element for selecting one of its outgoing
flows. It has yet to be equipped with certain conditions or
perhaps a utility function to facilitate decision-making. In this
architecture example, the decision node is concerned about
the completion of the job.

Further considerations may take place in this decision
logic. Activity diagrams alone do not stand to support such
elaboration. The outgoing flows from the decision (choice)
node are associated with abstract conditions that are left to
be elaborated in one or more concrete layers following the
MDA concept. In our approach, we examine concretization
by developing a simulation of the decision node based on
the DEVS formalism. Meanwhile, the separation between the
abstract layer/layers and their counterpart concrete ones is
iterative and thoroughly maintained.

We define the processing stage as a stage where a job
undergoes partial processing accompanied by a delay. Since
the job travels through multiple stages, its processing time is
simply the total of the delays encountered at each processing
stage. Hence, an activity is too abstract when it comes to
the concept of time, and neither activity nodes nor edges
can account for the delay in the UML metamodel 2.5 [16].
In DEVS formalism, the notion of the passage of time is
supported for atomic models with dispatching and receiving
of events between any two components occurring in order at
the same time instant. We propose the use of control nodes
to provide a means for the so-called controlled coupling [21],
and we show that such a control node benefits from a more
intuitive yet rigorous framework for modeling time-based
dynamics of distributed systems.

A. A PIPELINE ARCHITECTURE
As described above, a simple pipeline consists of multiple
units for processing a task (a non-trivial job) in a piecemeal
fashion and in a particular order. Another way is to intro-
duce decision points among units to determine when the task

has been completed and to which unit the task needs to be
assigned next. Many aspects of the feedforward and feedback
disciplines (Figure 7) can be accounted for in both activity
and DEVS models.

Considering activity modeling, a key to processing tasks
as such is the way nodes are organized to allow the flow of
a certain task. Such activity elements can exist in the flow.
Each flow can also be characterized by the nodes that precede
it and the nodes that follow it. For example, the outgoing
flows from a decision node can relate to propositions that
evaluate to either true or false. This is not necessarily the
case with outgoing flows from an action or even a fork node.
Multiple outgoing flows can be produced from the same node
(e.g., a fork node) as described in the divide and conquer
architecture. Hence, in the pipeline with feedback, parallel
flows are allowed. In Figure 7a, we illustrate the discipline
of a pipeline where the task travels through single flows to
different elements in a strict sequential order. In Figure 7b,
we illustrate the decision-making process, where each task
also travels through the same elements while allowing par-
allel flows for multiple actions. In this architecture, a task
encounters two decision-making procedures.

First, the task is checked before assignment to a certain
processor. Second, whether or not the task has been com-
pleted is checked. A possible scenario of processing one task
starts with the task being checked and assigned to a1. After
some delay, the task is sent out from a1 to themerge node and
immediately delivered to decision node d2. Decision node d2
checks whether the task has been completed or not. When
the task has not been completed, it is sent back to d1 and then
assigned for processing at a2. Afterward, this processed task
directs to the merge node and immediately to the decision
node d2, which dispatches the completed task if it has com-
pleted processing the required action nodes. The two pipeline
disciplines differ in their activity elements even though they
deliver the same outcomes from the standpoint of timing and
simulation. Having the discipline with two decision elements
allows for further control over the assignment of tasks to
different processors and checking for completion of the tasks.
This discipline provides a greater degree of specification of
time granularity through the decision and merge nodes (i.e.,
lifting the restriction on the choices for the incoming and
outgoing flows to be instantaneous). Therefore, the decision
and merge nodes can be used to devise different pipeline
processing procedures. Furthermore, additional measures
of performance, such as throughput and buffering, can be
computed.

B. A MULTI-SERVER ARCHITECTURE
It follows from the previous two architectures, namely the
divide and conquer and the pipeline that all of the essen-
tial activity nodes have been discussed and used in both
multi-processing regimes. In this abstraction, the decision,
merge, and fork nodes are used (see Figure 8). An activity
input parameter defines the activity and is where the decision
node d receives its incoming flows, and a decision is made
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FIGURE 8. Activity-based modeling of the multi-server architecture.

to which subsequent node (i.e., a1 or a2) the task needs to
be sent. Its outgoing flows are subject to satisfying some
Boolean conditions. Satisfying the condition redirects the
task to the most suitable nodes that can depend on action
node availability (see section VII-C for simulating activities
in DEVS-Suite).

Other considerations can be taken into that account to
achieve different computational goals. After the completion
of the set of actions, the merge node m collects the tasks,
and an output is produced. It acts as a bridge point for the
flow toward other nodes and separates the flows from the fork
node f to avoid synchronization. Because the two processors
are independent in this architecture, they do not have to be
synchronized as opposed to other types. Therefore, the activ-
ity in Figure 8a demonstrates the way a flow can be allowed
to proceed without waiting for another. The other alternative
is to link outgoing flows from both a1 and a2 to f directly,
but that would enforce waiting for both flows, whereas that
is unnecessary for this particular architecture. The fork node
receives the completed tasks and then produces two outgoing
flows. One flow acts as a notification being directed back to
the decision node to notify it of the task completion. Thus,
the corresponding resource becomes available for processing
another task. The other flow goes to the activity output param-
eter.

VII. A FRAMEWORK FOR ACTIVITY MODELING
AND SIMULATION
In an earlier study [20], we proposed and developed mapping
from the parallel DEVS formalism to the elements of the
activity model. The core focus of the mapping was on rep-
resenting the behavior of the atomic DEVS model. The illus-
trative metamodel in Figure 9 shows important aspects of this
relationship, where both the DEVS and activity metamodels

FIGURE 9. A high level sketch illustrating (i) the incorporation of the
action and control nodes on the one hand and the state on the other
and (ii) a conceptual relationship between the I/O and the activity pin.

are examined. On the one hand, the concept of state change
as defined in DEVS (i.e., state transition, output, and time
functions) is aligned to the activity node. On the other hand,
various notions of the behavioral activity diagram as defined
in the UML complement the atomic model. The I/O is also
looked at from a DEVS vantage point to set the basis for
the modular and hierarchical construction of models in the
proposed approach.

A. TIME FOR ACTIVITIES
The simulation of activities such as those described above
can be precise using a well-defined time base [19]. Explicit
temporal specifications such as logical time can eliminate
certain ambiguities that manifest themselves during execu-
tion.We also described some limitations related to the expres-
sive behavior of the atomic DEVS model, on the one hand,
and the precision of the activity model, on the other hand.
It is difficult to account for limitations rooted in behavioral
specification by solely depending on, for example, debugging
code techniques and validation methods alone. Such defects
particularly arise in behaviors with relatively more complex
temporal structures such as the ones that must be character-
ized using superdense time [32].

When simulating the mentioned archetype above architec-
tures, it is essential to observe certain phenomena, such as
ordering and arrival of multiple inputs at any instance of time.
Such aspects might result in state transitions that may not
be readily traceable using typical software and simulation
tools. Since architecture complexity is inherent, it is useful
to have the means to generate superdense time trajectories
for executable models [33] and for parallel DEVS models,
in particular. This feature is necessary on multiple occasions,
including the model development, testing, and simulation
experiment for different multi-processor architectures. In all
cases, the processing unit or any other component is expected
to receive either single or multiple inputs simultaneously. It is
also likely to have multiplicity and simultaneity for outputs.

When receivingmultiple inputs, their order is arbitrary, and
the model may or may not process the received inputs. The
external transition function takes place given the current state,
in addition to the received bag of inputs and the elapsed time.
If a state transition is due to a single input, then the transition
is visible using a linear time trajectory. The situation of zero
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time advance, as in the divide and conquer archetype example
in Figure 6, can be tracked using a superdense time trajectory.
Such time representation is due to some elements that are
added to control the flow without encumbering logical time.
Therefore, state transitions that represent such elements can
only be made visible using superdense time. The same holds
true for similar nodes, especially the ones for control flow
purposes only. We will discuss assigning logical execution
time to different node types using the time advance function.

It is essential to consider various representations for
the notion of time in a simulation environment, such
as the ones presented by [34]. In some cases, limited
time-based representations are inadequate when address-
ing relatively challenging concurrency and synchronization
issues. We demonstrate the use of different taxonomies and
how theymay correspond to activities. The goal is to facilitate
earlier experimentation for different processing architectures,
with possibly varying lower-level manifestations through
conforming to the MDA guidelines. Identifying a broader
set of timing needs can be cumbersome. Thus, it is crucial
to facilitate making a more informed decision, especially in
cases where efficiency, cost, and scale trade-offs may exist.

B. OBSERVATIONS OF TEMPORAL ANALYSIS WITH
ACTIVITIES
Notwithstanding the behavioral complexity detailed for
multi-processor archetypes, a temporal analysis may follow,
using an activity node classification based on the activity
metamodel [16]. Different temporal aspects are characterized
by which components are used to describe their specifica-
tions, and different temporal characteristics can be ascribed to
components based on their specification aspects. For exam-
ple, some components represent control nodes, such as deci-
sion. The time elapsed in these components is defined to be
the time spent controlling the flow in some activity. Likewise,
the time elapsed in other components is characterized based
on the node type for which the specifications of these com-
ponents ascribe.

Assume each node in the activity models mentioned
above is associated with processing time pt , which is either
zero or a positive real number. We refer to the activities
in Figures 5a, 7b, and 8 as DC, PL, and MP, respectively.
We also consider a task that is carried out by one activity
holistically and can be assigned to one or divided among
multiple activity processing nodes such as those defined for
DC. The total time required for the task completion must
be consumed in the processing nodes only. Assume the con-
trol nodes may consume time. However, this time cannot
count toward task completion. Instead, they account for other
time-consuming considerations such as overhead. We formu-
late such assumptions using the following definitions:
Tpt refers to the time required for completing the task or

some part thereof.
Tp refers to the time from when processing the task/-

tasks is initiated until its completion, without accounting for
overhead or the time consumed for controlling the flows.

Note that when the task is directed to one action only, then Tp
is the same as Tpt . Also, note that when the task is assigned
to N actions, then Tp will be equal to Tpt/N ad infinitum.
ci,active refers to the control node i while being active in

managing the flow during the processing of the task.
ai,active refers to the action i while being active processing

the task or a part thereof.
α is the task arrival rate.
Tc refers to the time consumed by control nodes. Formally,

for one component, it is the total time elapsed for the atomic
model while in a phase with a specific finite time duration.
Thus, Tc of all control nodes in an activity is the total finite
time for all atomic models that correspond to these control
nodes in the activity. This duration may account for dividing
tasks into multiple sub-tasks and combining them if neces-
sary. It may also account for synchronization and other timing
considerations. Hence, time consumption varies from one
architecture to another since the controlling mechanism may
differ. In DC, Tc would include the time consumed by fork
corresponding components and refers to the time required
for dividing the task to prepare it for being processed by
processor components. It also includes the time needed for
combining multiple parts (the join) of the tasks after being
processed. In PL, Tc would consist of the time consumed by
the decision nodes. In the first decision node, it refers to the
time required to decide which processing node the task needs
to be directed. In the second one, it refers to the time needed
for determining whether the task has been completed or not.
The Tc also includes the required time for merging flows.
In MP, Tc consists of the time required for deciding to which
processing node the task needs to be assigned. It also includes
the time needed for merging the flows and the time needed
for redirecting the completed task and notifying the decision
component of the task completion.

The task is processed in either a1 or a2, as in the MP
architecture. The task could also be processed in parallel
in a1 and a2, as in the DC architecture, or sequentially,
as in the PL architecture. For the above archetypes, time
consumption is calculated as Tpt (task) = Tpt (a1,active) +

Tpt (a2,active). For an archetype with an arbitrary size, the time
required for task completion is equal to the total active time
of all actions A that carry out the processing, which can be
formulated as

Tpt (task) =

n∑
i=1

Tpt (ai,active), (1)

where n ∈ N is the number of actions, for example two in the
activities mentioned above.

Similarly, Tc is defined to allow accounting for the over-
head time in different multi-processor architectures with dif-
ferent performance schemes. In Figure 5a, this accounts for
the time consumed by the corresponding atomic models for
the fork as well as the join nodes. For the given DC, the Tc
for a given task is defined as Tc(task) = Tc(c1,active) +

Tc(c2,active). Thus, the time consumed is equal to the total
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FIGURE 10. Particular cases of throughput of the multi-processing (MP) and pipeline (PL) architecture are observed with different assignments of the
number of tasks and actions. Tpt is set to 10 time units in all cases and Tc is assigned zero time unit.

active time of all control nodes, which can be formulated as

Tc(task) =

l∑
i=1

Tc(ci,active), (2)

where l ∈ N is the number of control nodes in that particular
activity.

We assume the throughput can be measured based on
both Tpt and Tc acquired from Eqs. 1 and 2, respectively.
It can be used to identify the computational efficiency of each
architecture while accounting for the distinction between
processing time and other time-consuming elements. This
type of difference is accessible through the abstraction of
the meta-layer, where control nodes are being defined and
then realized concretely in the simulation environment. Such
measurements are essential for making critical decisions in
various application domains. In formal terms, the throughput
is identified based on the arrival and departure of the tasks
to the coupled model that is created to correspond to the
processing regime, with activity serving as an abstraction.

We characterize the time assigned by control nodes to be
consumed by the task assigned to a particular node, dividing
the task into sub-tasks or synchronizing sub-tasks.We assume
all three are used in the DC architecture since the task
has to be divided, assigned, and synchronized. In PL, only
two of these mechanisms take place, the division, and the
task assignment. In MP, only one takes place since the task
has to get solely assigned to a particular node in a general
multi-processing regime. Thus, a probability for Tc of each
architecture is to be assigned relative to the number of actions.

Particular cases of throughput can be simply observed
subject to restricted assumptions about the configuration
of the experiment. For example, the number of tasks and
their arrival rates is significant in determining the through-
put, especially with the exploitation of parallelism. Under
strict restrictions, some observations may follow trivially.
For instance, the divide and conquer regime will outperform

other architectures for one task if Tc consumes zero time in
all architectures for each task. Similar observations can take
place when different assumptions are given concerning other
variables, such as the arrival rate of tasks or Tpt .
Other cases of throughput can be calculated under some

strict assumptions for Tpt and the arrival rate of tasks. In the
case of the DC architecture, the throughput can be calcu-
lated trivially based on these assumptions by simply dividing
the number of actions by the total processing time for the
completed tasks. In other words, the throughput is equal to
n/Tpt . For the other archetypes (i.e., MP and PL), the case is
less trivial due to the minimum sequential processing time.
Nevertheless, throughput for these is the same as throughput
for the DC architecture for the best-case scenario, where the
number of tasks and the number of actions are equal (see
Eq. 3). The worst-case scenario is where there is only one task
that leads to less parallelism exploitation and, consequently,
results in lower throughput. In Figure 10, some observations
are made where Tp is calculated using the following formula:

Tp = d
k
n
eTpt , (3)

where k is the number of tasks, and n is the number of actions.
Figure 10a shows throughput with different assignments for
both n and k . Figure 10b shows throughput when n = 10
and with different assignments to k . Note that the use of the
ceiling is due to the sequential part of the processing. This part
has to be at least Tpt , resulting in throughput that is always
at most one, and the cases of throughput get closer to one
as the number of tasks increases, as shown. In the following
section, we discuss other cases where the simulation becomes
necessary to arrive at certain results.

C. SIMULATING ACTIVITIES IN THE DEVS-SUITE
SIMULATOR
A set of atomic models corresponds to the discussed DEVS
specifications of the activity constructs in the DEVS-Suite
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simulator. The aim is to create models that complement the
previously developed library and a tool for creating DEVS
models with the activity notation. The library is made as
generic and flexible as possible to allow it to account for
a broader range of activity-based DEVS models. Currently,
the library consists of two generic atomic models by which
the primary activity control constructs can be realized in
addition to the action.

The decision node is realized with multiple output ports
and an array of Boolean values, where each value corresponds
to a single output port. Upon the execution of the output
function, some output is dispatched through a designated port
when the Boolean condition that corresponds to the output is
true. Hence, σ can become assigned with some positive value
by δext or δint functions in any atomic model that corresponds
to the decision node of any other node. The merge node is
similarly realized but with multiple input ports. Note that a
node can be instantiated to have both decisions and merge
properties as discussed earlier in Listing 2 for the SELECT
model.

The fork and join nodes are also realized in the SYNC
atomic model, where the implementation accounts for syn-
chronizing input and outputs. Currently, the combining and
dividing processes only account for the timing requirement.
It remains an open problem to introduce a combining/dividing
mechanism that may suit different semantics. The model cor-
responding to the join node includes multiple queues, where
each queue accounts for a certain input port. Storing inputs in
such a fashion permits accounting for inputs from different
models that may arrive through multiple ports at different
time instances. Listings 3 and 4 demonstrate the external
and internal transition functions for the fork/join procedure,
respectively.

LISTING 3. The external transition function of SYNC .

In the code snippets shown in the above listings, the atomic
model for join is equipped with multiple queues to account

LISTING 4. The internal transition function of SYNC .

for the multiple inputs arriving through different ports, along
with their order. Note that this presumes the input flows
conform to a particular order. When all queues are not empty,
the first element of each is supposed to contribute to constitut-
ing the output that is to be dispatched. However, it is possible
to prioritize elements of a specific queue based on heuristics.
It is also possible to do further manipulation of the queue
itself and its enqueue/dequeue procedures to satisfy different
needs.

We also devised an experiment for the DC architecture to
observe throughput under different settings (i.e., the num-
bers for tasks and actions). In every setting, the experiment
initiates by generating all the tasks instantaneously, with ten
units of processing time for each task. It is possible to choose
different configurations concerning arrival rates for tasks and
processing time based on a specific distribution (e.g., uniform
distribution). In this particular example, we set Tc relative to
the number of actions, assuming more actions require more
time to prepare for dividing and then combining sub-tasks.
This setting amounts to the higher throughput encountered
with more tasks and fewer actions (see Figure 11). The plot
shows the best case, with ten tasks and two actions and worse
throughput when there are more actions and fewer tasks. The
throughput is calculated upon the finishing time, which is
precisely the time unit of dispatching the last task by the
corresponding coupled model of the DC activity. The final
result gets calculated by merely dividing the number of tasks
by that total time.

D. GENERATING DEVS MARKOV SIMULATION MODELS
FOR PARALLEL ACTIVITY NODES
We can generate corresponding DEVS Markov models [35]
for an activity with transition probabilities and time advances.
Since we define states for actions, we can simulate any
activity while giving a probabilistic time assignment for the
next state based on Continuous-Time Markov (CTM) model.
We devise an activity with ten parallel actions that corre-
spond to processors and then run multiple simulations with
varying probabilistic distribution and parallelism schemes.
In the earlier demonstrations, deterministic timing assign-
ments are assumed in the generated code for the models.
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FIGURE 11. Throughput is observed by simulating the activity of divide
and conquer in DEVS-Suite given different numbers of actions and tasks
arriving at the same time. Tpt is equal to 10 time units in all cases and Tc
is assigned linearly relative to the number of actions while a higher
number of actions requires a higher Tc value.

TABLE 1. The result of simulating the generated Markov DEVS models
corresponding to a fork-join scheme activities with ten parallel actions
and 200 generated jobs.

In this experiment, we change the timing in each action as
well as the generator using probabilistic modeling and distri-
butions. For each action, we set the distribution for the time
advance of the active state to be exponential and the mean to
10. We also set the distribution for generating the state of the
generator to be uniform, with the lower and upper values set
to 10. Table 1 shows the results of simulating the generated
Markov DEVS models corresponding to a fork-join scheme
activity with ten parallel actions. Since the actions in this
model do not have queues or the means to store the arriving
jobs when busy, the table shows the lost jobs by each action
after simulating the model with 200 generated jobs. Note that
only 23% of the jobs are lost when assuming the job are lost
when arriving in a busy state that is implementing actions
without a storing mechanism jobs to be processed later. Mod-
elers can change the selections in this model. For example,
it is possible to change the distribution setting or the assigned
values for the transition. This example has been simulated
using theMS4Me simulator [36] because code generation for
DEVS Markov models is supported for this tool. We plan to
support generating more probabilistic models to be simulated
in both the DEVS-Suite and MS4 Me simulators.

VIII. CONCLUSION
In this paper, we discussed within a meta-layer, a vari-
ety of elements can be proposed and connected in many
ways. However, the inclusion of such elements might be

ineffective or ambiguous when it comes to concrete real-
izations or used for transformation to concrete elements.
Conversely, lower-level implementations cannot benefit from
rich simulations without extensive modeling effort from a
small set of higher-level elements. Often many iterations are
necessary to find abstractions that are useful for creating
concrete simulations. We devised a subset of the activity
metamodel from the perspective of discrete event systems
and discrete-event modeling. We started with a taxonomy
of simulation modeling based on MDA and characterized
different constructs of activity modeling based on their actual
behaviors. We then devised a formal specification for each
fundamental element and its corresponding implementation
in the DEVS-Suite simulator. Different time notions are used
to facilitate various temporal analyses. We demonstrated the
distinction between control time and processing time. The
characterization of activity constructs was used to classify
and distinguish between their timing requirements and con-
straints. We showed the use of activity modeling for dif-
ferent multi-processing architectures. Our future work is on
extending the framework and tools to support model verifica-
tion and simulation validation, testing, experimentation, and
activity-based modeling for hybrid systems.
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