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ABSTRACT Deep neural networks (DNNs) are widely used for fault classification using partial dis-
charges (PDs) to evaluate various electrical apparatuses and achieve high classification accuracy pertaining
to trained PD faults. However, there is a risk of false alarm in the case of untrained PD faults because
it is difficult for DNNs to predict data that were not included in the training process. In this paper,
we research classification problems of unknown classes using PDs in gas-insulated switchgears (GISs) and
propose a deep ensemble model to obtain the confidence of output probability and determine thresholds to
detect unknown fault classes. The proposed model was verified by real-world phase-resolved PD (PRPD)
experiments using online ultra-high frequency (UHF) PD measurement systems. The experimental results
show that the proposed model achieves better unknown detection performance for the untrained PD faults
and retains the classification performance for the trained PD faults.

INDEX TERMS Fault diagnosis, convolutional neural network (CNN), ensemble model, partial discharges
(PDs), gas-insulated switchgear (GIS).

I. INTRODUCTION
With the rapid development of power systems, a large number
of devices would be needed to regulate high voltages and
currents in order to function properly. High current in the
flow may cause excessive heating and thus increase the risk
of fire or damage to the equipment. To prevent this exces-
sive current quickly and timely from causing unpredictable
damage, gas-insulated switchgears (GIS) are used, which are
electromechanical devices consisting of high-voltage com-
ponents, such as circuit breakers and disconnectors. Current
is blocked in a circuit automatically when a potential spike
is detected in power grids [1]. However, GISs have internal
defects during manufacture, transportation, and assembly [2].
In GISs, partial discharges (PDs) are not only the precursors
of potential internal defects but also lead to gradual deteriora-
tion of insulation and ultimately break down or lead to surface
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discharge [3], [4]. Therefore, PD detection and diagnosis for
GISs are required to ensure the safety and the reliability of
power grid assets [5].

PDs can be considered a potential hazard for insulation,
the deterioration of which commonly accompanies a series
of physical phenomena, such as electromagnetic (EM) radia-
tion, mechanical vibration, and acoustic waves [6]. There are
several methods to detect PDs, such as ultra-high frequency
(UHF), current induction, and acoustic emission [7]–[9]. The
UHF method measures electromagnetic signals within the
frequency range of 300—3000 MHz and has been widely
used owing to the advantages of high sensitivity, immunity
to external interference, ability to locate PD sources, and
recognize fault types [1]. Therefore, this study utilizes the
UHF method for the PD measurement system [5].

To analyze PD signals, time-resolved PD (TRPD) and
phase-resolved PD (PRPD) were studied. Using TRPD sig-
nals, the shape of the discharge pulse through time-domain,
frequency-domain, and both time- and frequency-domain
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features were analyzed to determine preliminary esti-
mates [10]–[15]. The time-domain analysis requires few
computing resources and simple algorithmic interface with
frequency-domain and time-and-frequency domain tech-
niques [13]. Frequency ranges are required to detect TRPD
in the frequency-domain analysis [14]. In the time- and
frequency-domain analysis, a combination of time and fre-
quency domain can extract effective information to improve
pulse separation [15]. Based on the PRPD measurements,
the phase-amplitude-number (φ-q-n) pattern of the PRPD
was analyzed, where φ is the phase angle for the PD pulse,
q is the amplitude, and n is the number of pulses. The shapes
of the defects were identified by analyzing the number of PD
pulses and the maximum amplitude or average amplitude in
each phase of the PRPD [16]. Using PRPD features, several
studies have applied machine learning techniques to classify
PDs, whereas other studies have used artificial neural net-
works (ANNs), support vector machines (SVMs), and deci-
sion trees [17]–[22]. The combination of signal-processing
techniques and SVMs, which has the advantage of handling
the issues of pulsating or localized shape and a ‘‘dimen-
sionality disaster’’ [17]. An improved bagging algorithm was
used to recognize PD UHF patterns by carrying out wavelet
packet transform with a backpropagation neural network and
an SVM [18]. However, the major limitation of SVMs is
the sensitivity attached to choose the appropriate parameters
of the kernel function [19]. The fuzzy theory has a simple
architecture, which is a nonlinear mapping from the input
space to the output space; however, its classifying ability is
insufficient as it is not likely to take advantage of previous
diagnosis results [20]. Although ANN has been widely used
for PD diagnosis for decades because of superior learning
capabilities in input–output relationships, it is still hindered
owing to complex architectures with sophisticated activation
functions and a larger number of layers and neurons [21],
[22]. This complexity can reach a bottleneck in development,
which can increase the training time and result in the removal
of gradient and overfitting.

The state-of-the-art deep neural networks (DNNs), which
can automatically extract high-level features, have achieved
promising results in multiple pattern recognition-based tasks
such as computer vision, natural language processing,
speech recognition, and text classification [23]–[25]. DNNs
have been proposed to improve fault classification accu-
racy using PRPDs [26]–[29]. A deep convolutional neural
network (CNN) automatically extracts features using UHF
signals for power transformers [26]. Recurrent neural net-
works (RNNs) with long short-term memory (LSTM)
classify PRPD faults in GIS using temporal dependencies
from PRPDs [27]. The self-attention model exhibited better
performance than the LSTMRNNmodel by capturing the rel-
evance among the phases of the PDs based onmulti-head self-
attention and improved computation using parallelism [28].
The stacked sparse autoencoder extracts meaningful features
from the PD data for PD pattern classification [29]. However,
previous studies have analyzed classification accuracy in a

pre-specified class scope [26]–[29], while there is an uncer-
tainty problem of unknown class data.

A commonmajor shortcoming in the existing studies is that
the DNN-based classifiers only focus on improving the clas-
sification capability for pre-specified targets while ignoring
or being incapable to deal with unknown targets. Analyzing
the classification performance of a DNN-based classifier is as
necessary for untrained data as that for trained data. In addi-
tion, acquiring all the types of faults for trained data is a
challenging task for PRPD fault diagnosis in GIS as the fault
types are very diverse on-site [30]. Consequently, a fault that
is not a part of the training data may occur in on-site measure-
ments. Therefore, a fault diagnosis system that detects learned
classes and determines unknown classes is worth researching.
In general, most classifiers based on neural networks obtain
high classification accuracy for trained fault classes but tend
to show overconfident prediction for unwanted fault classes
suffering from the overfitting problem [31].

The unknown target classifications have been proposed
for radar systems [32], [33]. Statistical analysis is performed
for unknown training class samples [32]. Prior to classifi-
cation, a binary hypothesis test is used to detect unknown
targets [33]. However, target classification based on deep
neural networks has the advantages of extracting features
from raw data compared with statistical analysis.

In order to overcome the problem of overconfidence pre-
dictions of untrained on-site PRPD data in GISs, we propose
a deep ensemble model to identify uncertain faults as an
unknown class. The proposed model considers uncertainty
estimates, reduces overconfidence predictions, and is effi-
cient at unknown classification. The proposed model com-
prises multiple CNNs and an ensemble output. The CNN can
extract inherent characteristics without any human superin-
tendence by exploiting spatial or temporal correlations in the
data owing to the use of multiple feature extraction stages.
In comparison with its predecessors, the complexity and
difficulty during the training of the CNNs are drastically
diminished due to sharing parameters and local connections,
which prevent the risk of overfitting [34]. The output of a
single CNN is considered as a confidence score to identify
unknown classes. Confidence scores obtained from multiple
networks are combined for a final prediction.

The major contributions of this study are as follows:
• We propose a deep ensemble model to classify the
targets of untrained PRPD faults as unknown fault
classes. In the proposed method, we develop a confi-
dence threshold for unknown fault classification based
on deep CNNs, which were not investigated in previous
PRPD-related studies.

• To the best of our knowledge, this study is the first one
which demonstrates that a deep ensemble model can
enhance the performance of unknown PRPD diagno-
sis while maintaining the classification accuracy of the
trained PRPDs in the context of GIS. This is because the
proposed model can help reduce confidence predictions
for unknown test examples during classification [31].
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• The proposed model was tested and verified by on-site
PRPD experiments in real-world environments using a
UHF sensor. The performance was verified by reflecting
the on-site PRPD data of seven types of faults that
could occur in the GIS, i.e., crack, floating, free particle,
void, protrusion on conductors (POCs), protrusion on
enclosures (POEs), and particle on spacers (POSs).

The remainder of this paper is organized as follows.
In Section II, we introduce the experimental setup and elab-
orate the results for PRPDs in GISs. The proposed deep
ensemble model architecture is presented in Section III. Per-
formance evaluations of the proposed method are presented
in Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES
In this section, we present the experimental setup and exper-
imental results for PRPDs using online UHF PD monitoring
systems for GISs (GM-3000) [35]. Here, we use on-site
PRPD data of 2003–2015 obtained using the UHF PD moni-
toring system in GIS [30].

Fig. 1 shows a block diagram of the PDmonitoring system,
which is composed of a GIS, an internal UHF sensor, and a
data acquisition system (DAS). The DAS uses a peak detector
to capture the maximum values of the UHF sensor, and N
samples in each power cycle were used to measure PRPD.
The internal UHF sensor is used to measure PD signals; it has
an operating frequency range of 0.5–1.5 GHz and a sensitivity
level gain of -14.5 dBm at 5 pC. The sensitivity verification
was performed by CIGRE TF 15/33.03.05 [30].

FIGURE 1. Block diagram of the PD monitoring system.

On-site PRPDmeasurements were conducted using a UHF
sensor in a GIS system, where seven types of insulation
defects are considered, i.e.., cracks, floating, free particles,
voids, POCs, POEs, and POSs. These seven types of insu-
lation defects are described in [30], where void PDs had
occurred in 170 kVGIS, floating PDs had occurred in 362 kV
GIS, and other PDs had occurred in 275 kV GIS. The mea-
sured signal is defined as

X =
[
xT1 , x

T
2 , . . . , x

T
M

]T
, (1)

where xm = [xm1, xm1, . . . , xmN ], m = 1, . . . ,M , N is the
number of phase angles, andM is the number of power cycles.

Fig. 2 shows PRPDs for seven fault types, for a PRPD
signal ofM = 1000 power cycles and N = 256 phase angles.
Fig. 2a shows that the discharge pulse of the crack is observed
at both halves of the cycle with an amplitude of -50 dBm,
which has a distribution and an amplitude similar to that of
free particle PDs. However, the frequency of pulses in free
particle PDs is lesser. Fig. 2b shows that the PD pulses for
floating are sparsely distributed at both a positive and negative

FIGURE 2. PRPDs for seven fault types in GIS: (a) crack, (b) floating,
(c) free particle, (d) void, (e) POC, (g) POE, and (f) POS.

half cycle, with a maximum amplitude of -30 dBm. For the
void PDs, the discharge pulse across all bands at varying
intensity ranges from -65 to -55 dBm, as shown in Fig. 2d.
In the POC, PD pulses occurred mostly in the region around
90–180 in the negative band. The discharge pulses of POE are
mainly distributed from 270 to 360. PDs for POS are mostly
observed around regions 0–90 and 180–300, with a sparse
occurrence in a range of -75 to -50 dBm.

Fig. 3 depicts the t-distributed stochastic neighbor embed-
ding (t-SNE) representation of vectors for the inputs of seven
PD fault types. The t-SNE deployed high-dimensional vec-
tors into 2D spaces while retaining local similarities or pair-
wise distances and providing a visual indication of the data
arrangement in a high-dimensional space [36]. As can be seen
in Fig. 3, the distributions of raw PD signals are very close to
each other; therefore, it is difficult to distinguish discharge
faults precisely based on the raw PD signals.

Fig. 4 depicts the amplitude levels of PD for on-site
PRPD measurements utilizing statistical parameters such
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FIGURE 3. Visualization of feature representations for the raw input via
t-distributed stochastic neighbor embedding (t-SNE).

FIGURE 4. Amplitude levels of PD for on-site PRPD measurements
utilizing statistical parameters.

as mean(PDs) and max(PDs), in which mean(PDs) and
max(PDs) are calculated as mean(PDs) = mean(X ) =
M∑
m=1

N∑
n=1

xmn

MN and max(PDs) = max(X ) = max{x11, x12, . . . ,
xMN }. Here, we have considered crack, floating, free par-
ticle, and void as known PDs; POC, POE, and POS
are considered as unknown PDs. The mean(PDs) of
known PDs is [−80,−43] dBm, max(PDs) of known
PDs is [−58,−21] dBm, mean(PDs) of unknown PDs
is [−80,−60] dBm, and max(PDs) of unknown PDs is
[−63,−30] dBm. Therefore, it is difficult to classify known
and unknown PDs based on the amplitude levels of PDs.

III. PROPOSED SCHEME
In this section, we define the uncertainty estimation problem
for fault diagnosis and describe the architecture of the pro-
posed method, intended to detect unknown classes in a GIS.

The proposedmodel employs a deep ensemble structure using
multiple CNN models and determines the threshold using
on-site PRPDs to estimate unknown classes.

A. PROBLEM FORMULATION
For fault diagnosis, a large amount of training data is required
for each fault type. However, it is difficult to obtain all types
of real-world fault data. To prevent unexpected insulation
failures in GIS systems, it is necessary to detect known and
unknown PRPDs at an early stage. In this study, we focus
on developing an uncertainty estimation system to classify
unknown classes using real-world PRPD fault data.

A CNN automatically extracts features from PRPDs [26].
However, there is a shortcoming in extracting features from
a single CNN model. In particular, the problem arises due
to misclassification of unknown classes (classes that do not
appear in the training data) as known classes with high
confidence. Therefore, when CNNs are tested on a dataset
with a mixture of known and unknown classes, it can yield
inaccurate predictions. In this study, we classify untrained
PRPD fault data into an unknown class based on a deep
ensemble model using uncertainty estimation.

Let f (X) : RM×N
→ RK

(0,1) denote a function mapping
an input matrix X to a vector that provides a probability
distribution consisting of K probabilities proportional to K
consistently trained classes; M denotes the power cycle, N
is the phase angle, and RK

(0,1) = {xi ∈ (0, 1)|i = 1, . . . ,K } is
the set in which each element lies in the interval (0, 1) and
the elements add up to 1. The highest value is considered the
confidence evaluation γ , whereas the lower confidence eval-
uation indicates a higher chance of the corresponding data
point being unknown.We define the confidence threshold Thc
to detect unknown samples with γ < Thc.

Our goal is to study the confidence score γ and the
corresponding confidence threshold Thc, to obtain the best
detection accuracy of unknown faults on the test data while
retaining the classification accuracy for the trained PD data.

B. DEEP ENSEMBLE MODEL USING CNN
To estimate uncertainty, we propose a deep ensemble net-
work, which consists of an input, multiple CNNs, and an out-
put. The overall architecture of the proposed deep ensemble
neural network is shown in Fig. 5. The input is a sequential
PRPD signal X = M×N in (1).

In the ensemble network, each CNN consists of two convo-
lutional layers, two max-pooling layers, two dropout layers,
a flattened layer, two fully connected layers, and an output
layer. The convolutional layer has 64 filters with kernel size of
3×3 and adopts the rectified linear unit activation function to
improve the speed of the backpropagation and reduce the van-
ishing gradients [37]. We set the kernel size of max-pooling
to 2, to reduce the parameters of the networks and prevent
over-fitting. Dropout is used for regularization [38]. Further-
more, the three-dimensional matrix obtained at this stage is
converted to a vector through a flattened layer. There are two
fully connected layers in eachCNN,with the number of nodes
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FIGURE 5. Architecture of the proposed deep ensemble model.

of each fully connected layer being 128 and 64, respectively.
The output layer represents the probability of each class and
is derived through a softmax function [39], which is defined
as

σk =
ezk∑K
j=1 e

zj
, (2)

where k = 1, · · · ,K is the index of the target class, the total
number of classes is K , and zk is the input of the activation
function. The softmax output in (2) is a relative probability
value in the trained labels. The ensemble output is defined as
follows

σk,ensemble =
1
H

∑H

h=1
σk,h, (3)

where σk,h is the softmax output of the h-th CNN network
and H is the number of CNN networks. In (3), the untrained
classes become one of the trained classes without proper
thresholding, although they have a low similarity score.

To determine the uncertainty of the unknown classes,
we set up the confidence value γ , which can help the model
identify whether the data are from a known label or not. The
confidence value is defined as

γ = max
(
σk,ensemble

)
, (4)

where k = 1, · · · ,K . The confidence value γ can determine
the input PRPD as an unknown or known fault according
to a threshold value Thc. If γ < Thc, the output is an
unknown class, and the output is a trained label otherwise.
Ensemble size can be determined according to the input data
characteristics and the target in classification. In addition,
the threshold value Thc was determined through our exper-
iments, and the most optimal threshold value was used. The
details of determining the ensemble size and the threshold,
Thc, are described in Section IV.

C. TRAIN AND TEST FOR NETWORK
The parameters of each CNN were learned through
mini-batch training, and the loss function was minimized.
Cross-entropy was used as the loss function; it is defined as

Loss(b) = −
∑K

k=1
tk log

(
σ
(b)
k

)
, (5)

where σ (b)
k , tk is denoted as 1 when tk is a true index and

tk is denoted as 0 otherwise, for the b-th training data in a
mini-batch B. The total loss J is calculated as

J =
1
|B|

∑
b∈B

Loss(b). (6)

To train the model, the Adam optimizer was used with
an initial learning rate of 0.002 [40]. The overall process of
training and test phases of the proposed deep ensemble model
is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION
In this section, we present on-site PD measurements for GIS
using the onlineUHFPDmeasurement system and the perfor-
mance evaluation of the deep ensemblemodel for PRPDdiag-
nosis. To detect untrained PD patterns, we consider cracks,
floating, free particles, and voids as known classes and POCs,
POEs, and POSs as unknown classes. Table 1 shows the num-
ber of measurements obtained for the PRPD faults, where the
number of PRPDs for known classes is 137 and the number
of PRPDs for the unknown class is 78. For the known classes,
PRPDs were divided into three parts: training set, validation
set, and test set; thesewere 50%, 20%, and 30%of the original
set, respectively. In addition, PRPDs for the unknown class
were used as the test set. Therefore, the size of the training
set, validation, and test set were 76, 19, and 120, respectively.

In our experiments, we used randomized stratified sam-
pling to ensure that all models were represented equally in
the training and test sets. All of these sets were separate.
We deployed extensive experiments to acquire optimized
hyperparameters for the different parameters used to tune
our model. Some hyperparameters are related to the neural
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Algorithm 1 Deep Ensemble Algorithm for Classification
1: Initialize: Labelled training, validation, and test sets X

in (1);
<Training phase>:

2: for h = 1 : H do
Establish h-th CNN network Ch with randomly
selected weights and biases;
Train Ch independently with the training set;
Loop: for all training data
Step 1: The output of the softmax layer in Ch is
calculated as in (2);
σk,h =

ezk,h∑K
j=1 e

zj,h ;

Step 2: Calculate the error J in (6);
Loss(b) = −

∑K
k=1 tk log

(
σ
(b)
k,h

)
,

J = 1
|B|

∑
b ∈B

Loss(b);

Step 3:UpdateCh parameters using back propagation;
End for

3: Find the optimal parameters of Ch;
4: end for

<Test phase>:
5: Set a confidence threshold Thc;
6: for h = 1 : H do

Based on the Ch model, parameters are optimized, and
the output of the softmax layer is calculated.

7: end for
8: Obtain the output ensemble σk,ensemble in (3);
9: Evaluate the confidence γ in (4);

10: Predict the labels of the test set by taking the maximum
probability of the output ensemble
label = argmax

k
(σk,ensemble).

11: if γ > Thc then
12: Output: label
13: else
14: Output: unknown class decision
15: end if

TABLE 1. Experimental dataset for PRPDs in GISs.

network structure, such as the number of layers, kernel size,
and number of kernels. The others are related to the training
algorithm, such as learning rate, batch size, and the number of
epochs. Table 2 depicts the optimized procession of hyperpa-
rameters within theminimum andmaximumboundary ranges
and indicates whether the parameter value was an integer or a
real number. During the executed processes, the 2-layer CNN
with a 3× 3-size kernel and 64 filters in each layer combine
2-layer FNNwith 128 and 64 notes based on the learning rate,
drop factor, and batch size, as well as epochs of 0.002, 0.5, 32,

TABLE 2. Hyperparameter optimization via minimum and maximum
bound.

and 100, obtaining the highest overall classification accuracy
for the trained PD data.

The experiments were programmed in TensorFlow [41],
[42] and Keras [43] libraries. TensorFlow is an open-source
software library developed by Google for numerical compu-
tation using data flow graphs. Computing a model can be
easily deployed with the support of CPUs or GPUs. Keras is
a high-level API for neural network and is written in Python;
it can run on top of TensorFlow. It is the most widely used
deep learning framework and focuses on fast analysis.

Fig. 6 shows the training and validation accuracy of a
single CNNmodel. These experimental results were based on
known training samples. The single CNN algorithm achieved
100% accuracy for the training set in 20 iterations. Fur-
thermore, the validation dataset could be verified with high
accuracy, with only a small difference in performance. Thus,
the combination of more CNN models maintains classifica-
tion accuracy for known classes.

FIGURE 6. Training and validation accuracy of a single CNN model for
each epoch.

Fig. 7 shows the normalized confusion matrix of a single
CNN model without a confidence threshold for known and
unknown classes. Crack, floating, free particle, and void PDs
were considered as the known classes. In contrast, POCs,
POEs, and POSs did not appear in the training stage, and
they were used in the test stage to evaluate the classification
performance for unknown classes. As shown in Fig. 7, the sin-
gle CNN model has 100% accuracy for all the trained faults.
However, unknown classes are determined as one of trained
classes. POC is determined as a free particle PD. Addition-
ally, 75% of POEs were classified as a crack and 25% as
free particles. Moreover, 28% of POSs were determined as a
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FIGURE 7. Confusion matrix of a single CNN model for known and unknown classes.

FIGURE 8. Histogram of the output confidence in the test set, including
known and unknown class data: (a) single CNN model and deep
ensemble model with size, (b) H = 2, (c) H = 5, and (d) H = 10.

crack and 72% as a free particle fault. Therefore, it is difficult
to determine a fault type by using a single CNN model. The
inaccurate prediction and lack of thresholding for the output
of the single CNN model can be identified as the root of the
problem.

Fig. 8 shows the histogram for the probability of the con-
fidence value γ for the test set, including both known and
unknown classes. In Fig. 8a, most samples have high confi-
dence probability (at 100%). This illustrates that the single
CNN model is overconfident for both known and unknown
class data. As shown in Fig. 8b, c, and d, the deep ensemble
model with size H = 2, H = 5, and H = 10, gradually
controlled the confidence of the unknown class data when
the size increased. As clearly shown in Fig. 8d, there is a
distinction between the two regions above and below 90%
of confidence.

By averaging the outputs of the independent CNN net-
works in the ensemble model, the confidence value of
unknown classes becomes low. In addition, the confidence
values of trained classes remain constant. It can be interpreted

FIGURE 9. Distribution based on the histogram of the predictive entropy
in the test set including known class and unknown class data: (a) a single
CNN model, deep ensemble model with size (b) H = 2, (c) H = 5, and
(d) H = 10.

that the confidence estimate of the deep ensemble model is
more calibrated for the unknown classes.

The quality of uncertainty estimates of CNN and our pro-
posed methods of known and unknown class data are evalu-
ated based on the entropy of the predictive distribution [31].
The entropy value is calculated as [44]

Entropy = −
∑K

k=1
σk,ensemble log

(
σk,ensemble

)
. (7)

Fig. 9 shows the estimated kernel distribution based on
the histogram of the entropy for a single CNN and the deep
ensemble models in the test set. For a single CNN model,
the distribution of the entropy value peak is at Entropy = 0
with small variance. Meanwhile, as H increases, these dis-
tributions significantly change in accordance with prediction
confidence and with an increase in entropy values. As shown
in Fig. 9d, the density at Entropy = 0.65 is greater than that
at Entropy = 0. This result is suitable for the distribution of
unknown classes as the number of unknown classes is larger
than that of the known classes in the test set.
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TABLE 3. Performance evaluation with different thresholds of related methods.

TABLE 4. An analysis of the sensitivity and precision of related methods.

Depending on the ensemble size, the threshold for confi-
dence values is determined differently based on the results
of the confidence evaluation predictions. The classification
accuracy for known and unknown classes involves a trade-off
relationship. As shown in Fig. 8d, confidences have a clear
difference around 0.95, where lower values can be predicted
as an unknown class and higher values are predicted as known
classes. Therefore, we set Thc = 0.95 for the deep ensemble
model with H = 10.
Table 3 illustrates the classification accuracy of trained and

untrained class data according to the confidence threshold
Thc of various sizes of ensemble model. The ensemble model
with size H = 1 (the conventional CNN model) shows the
degree of trained data when increasing the threshold value
is relatively high, with accuracy rates of 100% for Thc = 0
and 0.75; 97.76% and 95.24% for Thc = 0.85 and 0.95,
respectively. However, when the classification is performed
for untrained data, the thresholds do not improve the catego-
rization accuracy. The performance of the trained class data
of ensemble models with size H = 5 and 10 still remains
constant based on the different confidence threshold Thc.
Moreover, the accuracy ratios of the deep ensemble model
withH = 5 and 10 for untrained fault diagnosis increase with
an increase in the threshold values. In this study, the deep
ensemble model with size H = 10 is selected. When the
accuracy rate is secured at 0.95, the decision performance for
the untrained target achieves 100%, which is an improvement
of 97.44% compared with that of the conventional CNN
model.

The sensitivity and precision of the proposed methods are
listed in Table 4, defined as

sensitivity =
TP

TP+ FN
, (8)

precision =
TP

TP+ FP
, (9)

where TP is True Positive, FN is False Negative, and FP
is False Positive [45]. Sensitivity measures the percentage

of samples that are correctly identified out of all positive
predictions that could have been made, which indicates the
coverage of predictions of a class. As can be seen in Table 4,
the proposed ensemble model with sizeH = 10 gained 100%
efficiency for unknown fault classes, while single CNN did
not classify unknown PD classes in 78 actual samples of
unknown data. Precision evaluates the percentage of correct
results in all positive predictions of a class, which shows the
accuracy of each prediction our model made to that class.
The precision of ensemble with size H = 10 in each of
the known classes is 100%. Here, there is not a class that
is predicted to confuse with them even unknown classes.
Moreover, the precision of the proposed ensemble method
for unknown classes is above 90% because there is a small
sample of known classes, which has a confidence value below
Thc = 0.95; therefore, it is predicted to be an unknown
class.

Fig. 10 shows the confusion matrix of the proposed deep
ensemble model with H = 1, H = 5, and H = 10 for the
test set. For better comparison, the thresholds are determined
with 0.95 for all cases, and the red rectangle highlights the
test set performance. Fig. 10a illustrates the result of the
single CNNmodel. In this case, the crack defect is mistakenly
recognized as an unknown fault with 20% probability, and the
unknown classes POC and POS are misclassified as cracks
and free particles. As shown in Fig. 10b, the performance
of the ensemble with size H = 5 remains up to par for
trained classes, but the accuracy for unknown (POC, POE,
and POS) classes is 64%, 30%, and 80%, respectively. As
shown in Fig. 10c, the performance of the proposed ensemble
with size H = 10 clearly achieves 100% classification accu-
racy for unknown classes. Therefore, the proposed method
can solve the problem of determining unknown faults as
an unknown class. As it is difficult to obtain all types of
fault data in the real world in advance, the proposed method
can improve fault classification performance by acquiring
unknown fault PRPDs in GISs.
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FIGURE 10. Confusion matrix of deep ensemble model with threshold = 95% for different sizes: (a) H = 1, (b) H = 5, and (c) H = 10. The first
column is the unknown class performance for POC, the second one is for POE, and the third one for POS.

V. CONCLUSION
Deep neural networks have gained attention as a state-of-
the-art technology for fault diagnosis in power equipment.
However, there are overconfidence problems associated with
classification of untrained data. To prevent incorrect pre-
dictions on untrained data, we propose a deep ensemble
model based on uncertainty estimation for fault diagnosis in
GISs. The proposed method considers untrained data classes
as an unknown class. Using real-world on-site measure-
ments, experimental results show that the proposed method
detects the unknown PRPD faults with 100% accuracy while
retaining the classification performance for trained PRPD
faults. Moreover, other unknown faults that can occur on-site
can be classified using the proposed deep ensemble model.
This is because the determination of the threshold for the

confidence values does not depend on the type of unknown
faults; rather it depends on the ensemble size of the proposed
deep ensemble model. The proposedmethod can be used to in
the maintenance of GISs when detecting PRPDs. In addition,
if unknown PRPDs are detected by the proposed method,
we can investigate new fault types and their corresponding
PRPD data for a stable power grid operation and grid asset
management system.

In future studies, we intend to obtain various on-site faults
to evaluate the proposedmethod, analyze different neural net-
works considering different hyperparameters for each CNN
for the deep ensemble model, and conduct further verifica-
tions of the proposed method for life degradation based on
the effect of each level of PD and for the severity levels
of PD.
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